

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

http://dx.doi.org/10.1016/j.datak.2011.01.003

http://hdl.handle.net/10251/36520

Elsevier

Albert Albiol, M.; Cabot Sagrera, J.; Gómez Seoane, C.; Pelechano Ferragud, V. (2011).
Generating operation specifications from UML class diagrams: A model transformation
approach. Data and Knowledge Engineering. 70(4):365-389.
doi:10.1016/j.datak.2011.01.003.

Generating Operation Specifications from UML Class

Diagrams: A Model Transformation Approach

Manoli Albert

1
, Jordi Cabot

2
, Cristina Gómez

3
, Vicente Pelechano

1

1Departmento de Sistemas Informáticos y Computación. Universidad Politécnica de Valencia

 Camino de Vera s/n 46022 Valencia (Spain)

{malbert,pele}@dsic.upv.es

2
INRIA-École des Mines de Nantes

4, rue Alfred Kastler, B.P. 20722 - F-44307 NANTES Cedex 3 (France)

Jordi.cabot@inria.fr

3
Departament d’Enginyeria de Serveis i Sistemes d’Informació, Universitat Politècnica de Catalunya

Campus Nord, Edif. Omega, Jordi Girona 1-3, 08034 Barcelona (Spain)

cristina@essi.upc.edu

Abstract.

One of the more tedious and complex tasks during the specification of

conceptual schemas (CSs) is modeling the operations that define the

system behavior. This paper aims to simplify this task by providing a

method that automatically generates a set of basic operations that

complement the static aspects of the CS and suffice to perform all typical

life-cycle create/update/delete changes on the population of the elements of

the CS. Our method guarantees that the generated operations are

executable, i.e. their executions produce a consistent state wrt the most

typical structural constraints that can be defined in CSs (e.g. multiplicity

constraints). In particular, our method takes as input a CS expressed as a

Unified Modeling Language (UML) class diagram (optionally defined

using a profile to enrich the specification of associations) and generates an

extended version of the CS that includes all necessary operations to start

operating the system. If desired, these basic operations can be later used as

building blocks for creating more complex ones. We show the

formalization and implementation of our method by means of model-to-

model transformations. Our approach is particularly relevant in the context

of Model Driven Development approaches.

Keywords: Behavior schema, action, operation, class diagram, UML, model-to-model

transformation

1. Introduction

Current Model Driven Development (MDD) and Model Driven Architecture (MDA)

approaches propose applying a chain of model-to-model (M2M) transformations to

(automatically) derive the final implementation of the system from its initial conceptual

schema (CS).

One of the most tedious and complex tasks during the definition of CSs is the

specification of all operations that describe the behavior of the system. In fact, in order

to be completely functional, designers must provide a detailed specification of the

change effect of each operation on the system state. The operation specification must

take into account the constraints specified in the CS to make sure they are fulfilled after

the operation is executed. This specification can be provided in different languages,

such as: natural language, imperative action-based languages [1] or as declarative

contracts expressed, for instance, with the Object Constraint Language (OCL) [2]. In

any case, operation definitions are linked to the specification of the CS itself, usually

performed by means of a graphical modeling language like UML, Entity-Relationship

(ER) [3] or Object Role Modeling (ORM) [4]. In this paper we will use UML as the

standard notation for drawing CSs [5] and OCL and an action-semantics based

imperative language for the operation specifications.

Even though the detailed definition of the system behavior is a prerequisite for MDD,

results of recent surveys about the use of UML among practitioners (e.g. [6]) clearly

show that most practitioners only focus on the static aspects of class diagrams in their

day-to-day practice and ignore all other modeling aspects and diagrams. This hampers

the application of MDD approaches in practice. Therefore, it is clear that any technique

that can facilitate the definition of such aspects would be really helpful and could

improve the adoption level of MDD techniques among the software engineering

community.

In this sense, this paper provides a method to automate the generation of a basic

behavior specification for the system modeled in the UML class diagram. This improves

the productivity and quality of the designers’ job since writing a behavior specification

is a very time-consuming and error-prone task. Although our method can be useful in

any application domain, our method is specially useful for domains that make an

intensive use of data-manipulation operations. The basic behavior specification

generated by our method consists in a set of well-formed set of operations that suffice to

cover most of the required system’s behavior. More specifically, the generated

operations allow designers to perform all required life-cycle change events

(create/delete/update) on the population/value of the different model elements of the

class diagram. The number and effect of the operations are determined based on the

domain knowledge contained in the static structure of the class diagram.

The work reported here extends our previous work [7] in several directions. First, the

input of our method is now a UML class diagram that may contain enriched association

definitions. These additional properties for associations (introduced in [8]) convey more

information on the association semantics. This additional knowledge helps us to obtain

a set of operations closer to the one that the designer would manually specify. A second

contribution is that in this work we focus on the generation of strongly executable

operations. That is, we provide a more complete operation specification that ensures that

the operation execution always maintains the system consistency regarding the

structural constraints and dependencies between the elements of the class diagram (e.g.

multiplicity constraints). For these constraints, our operation definition guarantees that

for any invocation where the precondition is satisfied the operation evolves the system

state to a new consistent state. Instead, our previous work focused on a weaker

executability property that only guaranteed that there was at least a chance of obtaining

a consistent state. Additionally, we formalize our method as a M2M endogenous

transformation using the ATLAS Transformation Language (ATL) [9] and implement it

in the Eclipse-based MOSKitt [10] open-source CASE tool.

Our method advances the current state-of-the-art in the area of behavior specification

generation methods such as [11-27] in several aspects. First, our method deals with

more expressive input models (e.g. including enriched associations and abstract classes)

which has a direct impact on the number and the completeness and richness of the

generated operations. Second, our method mixes two different strategies to avoid

inconsistencies: checking (by adding preconditions) and maintenance (by adding actions

that repair the inconsistency). Choosing one or the other depending on the operation

semantics improves the user experience. Only [13, 14] also consider both strategies but

only for a reduced set of properties (for instance, they ignore properties as important as

the minimum and maximum multiplicities of associations). Moreover, many of the

reviewed methods need a manual specification of the operations [11-15, 20, 21] or do

not provide tool support and the ones that provide an automatic method with tool

support (as it is our case) generate less operations and simpler ones than those generated

by our method as reviewed in detail in Section 7.

The remainder of the paper is structured as follows. Section 2 presents an overview of

our method. Section 3 introduces some basic concepts regarding structural and

behavioral aspects of class diagrams. Section 4 explains in detail each step of the

method. In Section 5 the M2M transformation using the ATL language is defined and

introduces the tool support. Section 6 presents the results of applying our method to

different scenarios. Finally, Section 7 reviews the related work and Section 8 draws

some conclusions and describes further work.

2. Method Overview

Our method takes as input a UML-based class diagram with only the static aspects

specified and returns as output a class diagram where classes have been extended with

the operations required to modify the system state. The number and specification of

these operations are deduced from the properties and dependencies between the

structural aspects of the class diagram.

The main particularity of our method is that the specification of each operation includes

the functionality that is necessary to guarantee the fulfillment of the structural properties

of the elements of the class diagram (as multiplicity constraints, disjointness and so on;

see Section 3). These properties state conditions that must be satisfied by the system

state at run-time. All generated operations always leave the system in a consistent state

wrt these conditions at the end of the operation execution (i.e. the operations are

strongly executable).

Our method can be split up into three main steps (Fig. 1):

1. Identification of operations. The method identifies which operations should be

defined to carry out the necessary modifications on the population or values of the

different elements of the class diagram, together with the classes where these

operations have to be attached to.

2. Specification of the operation bodies. The body of each operation includes the logic

of the operation (i.e. basic actions as insertion of a new object, deletion of a link,

…) plus the additional functionality (i.e. other actions and/or preconditions) to

guarantee that the structural properties that may be affected by the operation are not

violated during its execution. This added functionality is needed to satisfy possible

dependencies between the actions in the operation since some actions may require

the presence of other actions in the same operation in order to be able to leave the

system in a consistent state.

3. Specification of the operation signatures. The signature of each operation is derived

from the actions included in the operation body. The final signature of each

operation is decided in this last step when all dependencies between the actions in

the operation are satisfied.

Figure 1. Overall view of the method

We assume in this paper that the initial UML CS defined by the designer is consistent.

By consistent we mean that it is strongly satisfiable, i.e. it is possible to create valid

instances of the CS. An instance is valid if it satisfies all the constraints of the CS.

Otherwise, the designer must, first, fix the CS before applying our method. There are

several tools available to ensure the consistency of a UML CS, as for instance [28].

3. Basic Concepts

This section briefly reviews the basic terminology and definitions used in this paper

regarding the specification of the structural and behavioral aspects of a system. In our

approach both aspects are described by means of a class diagram expressed in UML 2,

though, some elements of the class diagram include slight extensions wrt the standard

elements in the UML metamodel. In particular, we introduce a set of new properties that

allow associations to be characterized in a more complete and clear way than in the

UML proposal. A UML profile for this extension has been defined in [29].

Section 3.1 describes the structural aspects of our UML-based class diagrams and

section 3.2 focuses on the behavioral aspects.

3.1. Structural View

The constructs that our method considers to specify the structural aspects of a system

are classes, attributes, binary1 associations and generalizations. For the sake of clarity,

association classes are not considered2.

Classes may be concrete or abstract and attributes may be defined as readOnly, derived

and isNotNull (the multiplicity is exactly one) [31]. For the sake of simplicity we

assume that all attributes have a maximum multiplicity of 13. The function

isAbstract(Cl) returns true when the Cl class is abstract and false otherwise. The

functions isReadOnly(at), isDerived(at) and isNotNull(at) are similarly defined.

1 N-ary associations can be easily expressed in terms of a set of binary ones plus additional constraints [30].
2 An association class could be represented as a regular class with n associations one for each participant plus a

constraint restricting that no instance of the class can be related with the same exact set of participants.
3 Multi-valued attributes can be represented and treated as an association between the class owning the attribute and

the corresponding data type.

Association ends (also known as roles) are the endpoints of associations. Each

association end connects the association to its participant class. Standard UML 2

properties upon association ends (considered in this paper) are maximum and minimum

multiplicities, derived and navigability properties. The functions max(p1; As) and

min(p1; As) specify the maximum and the minimum multiplicity of the As association

between classes Cl1 (playing the p1 role) and Cl2 (playing the p2 role) and

navigability(p1; As) and derived(p1; As) define if the association end p1 is navigable and

derived, respectively.

A generalization set g, denoted by Gen(Cl;Cl1,…,Cln) between a more general class Cl

(superclass) and a set of more specific classes Cl1,…,Cln (subclasses) may be disjoint

and complete. Functions isDisjoint(g) and isCovering(g) return true when g is disjoint

and complete, respectively.

Our method also considers a more advanced characterization of associations since the

characterization provided in the literature for the association concept (see [1, 32-34])

experiences some drawbacks that make the use and interpretation of this construct

ambiguous. Several works [35-41] have tried to propose alternative semantics. In this

method the particular interpretation of the association concept introduced in [8] is taken

into account. This interpretation allows this method to extract more precise knowledge

from the class diagram in order to improve the specification of the generated operations

to maintain the association population at run-time. The additional association end

properties defined in [8] and used in this paper are:

 Changeability (changeability(p1; As)): Specifies whether links can be created or

deleted after the initialization of objects of the Cl2 class. Possible values are:

 unrestricted: no restrictions on creation and destruction of links. This is

graphically represented annotating the role with the <<+,->> stereotype.

 addOnly: links cannot be deleted after the participating objects of the Cl2 class

have been initialized. Represented with the <<+>> stereotype

 removeOnly: new links cannot be created after the objects of the Cl2 class have

been initialized. Represented with the <<->> stereotype

 readOnly: links can neither be deleted nor inserted after the objects of the Cl2 that

participate in the links have been initialized

The default value of the changeability property is unresticted. The property in UML 2

[1] that is closest to changeability is the boolean isReadOnly property of association

ends. This property maps to our readOnly value (for true values) and to our unrestricted

value (for false values).

 Delete Propagation (delpropagation(p1; As)): Indicates which actions must be

performed when an object of the Cl2 class is deleted. The possible values are:

 restrictive: the object of the Cl2 class to be deleted cannot be deleted if it has links

(an exception is raised if an attempt is made); otherwise, it is deleted. The

restrictive value is depicted by means of the <<RT>> stereotype.

 cascade: links of the object of the Cl2 class to be deleted and its linked objects

must also be deleted. Cascade roles are annotated with the <<CC>> stereotype.

 link (default value): links of the object of the Cl2 class to be deleted must also be

deleted (but not its linked objects). No stereotype is needed in this case.

We would like to remark that the introduced properties are not orthogonal, i.e. there

exist dependencies among the properties. In [29] those dependencies are analyzed. We

assume that class diagrams satisfy all these dependencies.

For the sake of simplicity, our method does not consider, in the current version, other

UML properties as subsetting and redefinition for attributes and ordering, redefinition,

subsetting and uniqueness for association ends. Instead, the method may be applied to

other constructs (as for instance, compositions and aggregations) that may be defined as

a combination of the constructs and properties defined above. For example, a

composition is dealt by our method as an association between the composite and its

parts where the minimum and maximum multiplicity of the composite class role is one

and non-navigable, the part class role is navigable and the value of the delete

propagation property is cascade.

As a running example throughout the rest of the paper, we use the class diagram shown

in Fig. 2. This class diagram represents a disjoint and complete generalization between

the Document abstract class and the InternalDocument and Publication classes. The

name attribute of the Document and Conference classes and the number attribute of the

ConferenceEdition class are read only and not null. Moreover, the acceptanceRatio

attribute of the ConferenceEdition class is derived since its value may be calculated as a

percentage between the number of papers submitted (numberOfSubmissions) and the

number of papers published (participant role). The changeability of the in role

(Publishes association) is defined as addOnly since a publication cannot ever delete its

link with the conference edition in which it was published; however, a publication not

yet published can be linked to a conference at any time. Besides, a conference edition

cannot be deleted when it participates in a link associated to a publication, so delete

propagation at the participant role is marked as restrictive. The non-standard properties

for associations are defined using the UML profile proposed in [29]. We use the implicit

notation [31] to represent the navigability of associations. That is, single arrows indicate

one-way navigable associations and no arrows two-way navigable associations.

 Figure 2. Class diagram used as a running example

3.2. Behavioral View

This section introduces some preliminary concepts to specify the behavioral aspects of a

system. These concepts will be used by our method when creating the specification of

operations for the input static class diagram.

In our case, the operation effect specification is defined in an imperative way. For each

operation the set of basic actions that are applied on the system state when the operation

is executed is explicitly defined. We use the term basic action (also known as structural

event) to refer to an atomic change on the population or value of the system state.

3.2.1. Basic Actions

The list of basic actions that our method considers is the following:

 iCl(x): creates a new x object in the Cl class

 dCl(x): deletes the x object from the Cl class

 uAt(x,v): updates the At attribute of the object x with the v value

 iAs(x,y): creates a new link for the As association with x and y as participant objects

 dAs(x,y): deletes the link <x,y> from the As association

 sClpClc(x): specializes the object x of Clp superclass to the Clc direct subclass. The

action is only applicable if x is an instance of Clp and not of Clc

 gClcClp(x): generalizes the object x of Clc subclass to the Clp direct superclass. This

action is applicable if x is an instance of Clc and not of its subclasses.

We also predefine two frequent compound actions that facilitate the definition of our

method:

 uAs(x,y1,y2): replaces the <x,y1> link in As with a new <x,y2> link

 uClc1Clc2(x): moves x from Clc1 to Clc2 (i.e. generalizes x to the supertype and

specializes it as a new instance of Cl2).

Our list of basic actions is a more fine-grained version (i.e. more elementary) that those

proposed in the UML Action Semantics [1] (e.g. the UML reclassify action is treated as

a sequence of individual generalization and specialization actions). This permits a more

detailed reasoning when generating the operations. Nevertheless, a correspondence

between the basic actions that our method considers and the ones provided by UML

standard is straightforward, see [42, p. 32] for mapping table between the two.

At the syntax level, since the UML does not predefine any concrete syntax for

expressing the actions, we have defined our own textual representation.

3.2.2. Operations

An operation is a behavioral feature of a class that specifies the name, type, parameters,

and constraints (preconditions) for invoking an associated behavior. As we have said

above, the operation behavior is specified by explicitly listing the set of actions that are

executed when calling the operation. We assume that the behavior of the operations is

transactional; it means that the set of actions that define the operation is treated as one

atomic execution unit. In this way, all the participating actions should either succeed or

fail, but if they fail the previous state before the execution must be recovered.

An example of an operation with its specified effect for our running example is the

operation ConferenceEdition::createConferenceEdition:

ConferenceEdition::createConferenceEdition(v:Integer,

conf:Conference){

 iConferenceEdition(x);

 uNumber(x,v);

 iCelebrates(x, conf); }

In fact, this is one of the operations that are automatically generated by our method.

Note that the operation initializes the number and the Celebrates properties; otherwise

the operation would not be executable, as we will also explain in Section 4.2.

4. Generating Operation Specifications from UML Class
Diagrams

This section presents our method for deriving behavioral specifications from static

models. Our method first analyzes the class diagram and extracts relevant information

from the properties of the model elements and from the relationships between them.

Then, this information is used to determine the system operations that are necessary to

carry out all typical modifications on the population or values of different elements of

the class diagram (Section 4.1). Once these operations have been identified, our method

generates their body, including the definition of the maintenance strategies (e.g. in the

form of additional required actions or preconditions that must appear together with a

given action type) that must be added to the operations’ behaviors to ensure that all of

them satisfy the strong executability correctness property wrt to the structural properties

considered (Section 4.2). Finally, our method defines the signature of each operation

(Section 4.3).

4.1. Identifying Operations

This section introduces the rules that allow our method to identify the set of operations

that suffice to provide basic insert/update/delete functionality for the different elements

of the class diagram. We take into account the properties of each model element to

avoid creating unnecessary operations.

Each type of element of the class diagram (class, attribute, association and

generalization set) has an associated rule. Each rule determines the set of operations that

must be defined for elements of that type, depending on the properties of each element.

For example, the rule that determines which operations should be defined for classes,

determines that a createCl operation is only generated for non-abstract classes that are

not superclasses of covering generalizations.

Our method uses the following rules for each element of the input class diagram to

identify the operations of each class:

Rule 1 (Classes). For each Cl class in the input model, if [Cl is not isAbstract(Cl) and

is not superclass of a covering generalization], generate a createCl operation in Cl.

Additionally, if [Cl does not participate in an As(p1:Cl;p2:Cl2) association so that

delpropagation(p2;As) = restrictive and min(p2;As) > 0], generate a deleteCl operation

in Cl.

The rationale of the rule is that object creations may only be performed in concrete

classes that are not superclasses of covering generalizations. Therefore, only for those

classes, a createCl operation should be created. For other classes (e.g. abstract classes),

creation of class objects is performed as a consequence of creation of objects in one of

its subclasses. The second part of the rule ensures that deletion of objects of a class is

only possible for those classes not at the opposite end of an association marked as

restrictive and with the minimum multiplicity greater than 0. Instances of those classes

can only be deleted as part of the deletion of instances of that association or instances of

the opposite class.

For the running example, this rule adds eight new operations. Fig. 3 shows the

application of the rule for all the classes of the example (the figure focuses only on the

elements and properties involved in this rule). Note that for the Document class no

operations have been generated in the output class diagram, since it is an abstract class.

Figure 3. Rule 1 applied to classes of the running example

Rule 2 (Attributes). For each At attribute of Cl in the input model, if [At is not

isDerived(At) and not isReadOnly(At)], generate an updateAt operation in Cl.

In this rule, the rationale is that an operation to update an attribute value must be

generated in the class that owns the attribute if the attribute is not derived and not read

only. Attributes that are derived or read only cannot be modified by the designer, so

none of the operations should be generated for this purpose.

For the running example, this rule would generate four new operations (see Fig. 4).

Figure 4. Rule 2 applied to attributes of the running example

Rule 3 (Associations). For each AsE association end of an As association and Cl2 class

(being Cl1 the opposite class), if [As is not isDerived(As) and navigability(p2;As)] and:

 - [changeability(p2;As) = addOnly or unrestricted and min(p2;As) ≠ max(p2;As)],

generate a createAs operation in Cl1

- [changeability(p2;As) = removeOnly or unrestricted and min(p2;As) ≠ max(p2;As)],

generate a deleteAs operation in Cl1

 - [changeability(p2;As) = unrestricted], generate an updateAs operation in Cl1

The rationale of the rule is that when an association is not derived and a class that

participates in the association can navigate to the class at the opposite end (navigability

is true at the opposite end) operations to create, delete and update links are generated in

that class depending on the values of the changeability and multiplicity properties at the

opposite end. Specifically, if changeability of an association end is unrestricted then

objects of the class at the opposite end may update their links, so the operation to update

the links must be generated. Moreover, an object may add new links if its changeability

is addOnly or unrestricted and the maximum and the minimum multiplicity is not the

same. In this case, the operation to create the links must be generated. In the same way,

an object may remove its links if its changeability is removeOnly or unrestricted and the

maximum and the minimum multiplicity is not the same. The operation to delete the

links must be generated.

For the running example, this rule would generate five new operations (see Fig. 5).

Figure 5. Rule 3 applied to associations of the running example

Note that the createPublishes operation is replicated in two classes (Publication and

ConferenceEdition classes) due to the navigability and changeability values of the

Publishes association. This allows creating an instance of the association from both

classes.

Rule 4 (Generalizations). For each g=Gen(Clp;Cls1,…,Clsn) generalization set,

generate an updateClsiClsj operation in all Clsi subclasses (i,j=1,..,n, i j). Additionally,

if [g is not isCovering(g) or not isDisjoint(g)], generate a specializeClpClsi operation in

Clp (i=1,..,n) and generate a generalizeClsiClp operation in all Clsi subclasses (

i=1,..,n).

The rationale of this rule is that, for generalization sets, operations for moving instances

from each subclass of the generalization set to the rest of the subclasses must be always

generated. The second part of the rule states that operations for specializing and

generalizing instances must be only generated for generalization sets that are not

covering or not disjoint. A generalization set that is covering and disjoint does not

require operations for specializing or generalizing instances.

For the example, this rule would generate two new operations (see Fig. 6). Note that

only update operations have been generated since the generalization set of the example

is covering and disjoint.

Figure 6. Rule 4 applied to the generalization set of the running example

4.2. Specifying Operation Bodies

Next step consists in generating the imperative specification body for each operation

identified in the previous step. Initially, the body of those operations just contains the

single basic action that implements the semantics of the operation (see Table 1).

Table 1. Actions Types contained in Operations

Operation Action

createCl at Cl iCl

deleteCl at Cl dCl

updateAt at Cl uAt

createAs at Cl1 and Cl2

(where Cl1 and Cl2 are the participant classes in As)

iAs

deleteAs at Cl1 and Cl2

(where Cl1 and Cl2 are the participant classes in As)

dAs

updateAs at Cl1 and Cl2

(where Cl1 and Cl2 are the participant classes in As)

uAs

specializeClpClsi at Clp

(where Gen(Clp,Cls1,…,Clsn)

sClpClsi

generalizeClsiClp at Clsi

(where Gen(Clp,Cls1,…,Clsn)

gClsiClp

updateClsiClsj at Clsi

(where Gen(Clp,Cls1,…,Clsn)

uClsiClsj

However, in general, this is not enough to guarantee that the operation execution will

respect the integrity constraints defined in the model. Many operations will need to add

new functionality to guarantee that the constraints that may be affected by the

operations are not violated during its execution. This added functionality is needed to

satisfy possible dependencies between the actions in the operation since some actions

may require the presence of other actions in the same operation in order to be able to

leave the system in a consistent state. For instance, consider the createConference

operation (which contains the iConference basic action according to Table 1) of the

Conference class (shown in Fig. 3). The creation of a conference requires the

specification of a value for the name attribute since it cannot be null (isNotNull(name) =

false according to Figure 2). To avoid the violation of the isNotNull property the uName

action should also be included within the createConference operation.

In some other cases, this new functionality will come in the form of preconditions for

the operation that prevent the execution of the operation on those states in which the

changes performed by the operation would leave the system in an inconsistent state. For

instance, consider the deleteConferenceEdition operation (which contains the

dConferenceEdition basic action according to Table 1) of the ConferenceEdition

class (shown in Fig. 3). The deletion of a conference edition when it has a publication

associated to it may not be performed since the delete propagation value of the role

participant is restrictive. To prevent this deletion a precondition to guarantee that the

conference edition has not publications is required.

The specification of the operation effect (i.e. the operation body) for an operation op

initialized with a basic action ac follows these steps:

1. Adding to op the ac1..acn actions or/and pr1…prn preconditions that are necessary to

guarantee that the structural properties (or constraints) that may affected by the

action ac are not violated during its execution (see Section 4.2.1).

2. Applying recursively step 1 to the new actions (ac1 and ac2, ac3,…) added to op

until no more actions or preconditions are required. This is necessary in order to

satisfy the dependencies of the new actions (ac1 and ac2, ac3,…) within the

operation. When an action aci in op has as required action an action acj that is

already part of op, the required action is considered to be satisfied and acj is not

added to op again. In some uncommon scenarios this recursive process to generate

the operation effect may not terminate. Our method identifies these scenarios and

requires the designer to take part in the process to avoid an infinite loop.

During the previous steps, the following considerations apply:

 When ac requires an iClc2 or dClc1 action, being Clc1 and Clc2 subclasses of the

same generalization, and op already includes the uClc1Clc2 action, the required

maintenance action is also considered to be satisfied (since uClc1Clc2 performs the

changes of the iClc2 action and the dClc1 action). The same reasoning has to be

applied to the uAs action regarding the required action of an iAs or dAs action.

 When ac requires an iCl1 action, and op already includes a sClpCl1 action, the

required maintenance action is also considered to be satisfied (since the

specialization of an object implies that a new object of a class is created). The

same reasoning has to be applied to the gCl1Clp action regarding the required

action of the dCl1 action.

As it has been said before, since the UML does not provide any specific concrete syntax

for defining operation specifications, we have defined our own textual notation based on

the typical syntax of other action languages.

4.2.1 Determining Required Actions

This section describes how our method calculates the additional actions and/or

preconditions that are necessary to ensure the maintenance of system properties for each

action type. That is, given an action a, the goal is to characterize either the preconditions

that must be checked by the operation in which the basic action will be included or the

additional actions that must be executed together with a to ensure that a does not cause

to evolve the system to an inconsistent state. Additional actions solve the

inconsistencies that the a action may cause over the properties defined in the class

diagram, whilst preconditions disable the execution of a when the inconsistencies that it

may cause cannot be solved by other actions without changing the effect of the action a.

This process is key to ensure the strong executability of operations (wrt the properties

presented in Section 3) containing potentially problematic actions. To determine how

our method should compute these additional actions or preconditions, we have carried

out two steps:

1. Identify properties to be maintained (Section 4.2.1.1). The properties of the elements

of a class diagram that may be violated when executing a certain action type are

determined. For instance, if a class diagram includes a class Cl with a not null

attribute at, the iCl action will be identified as a problematic action wrt the

isNotNull property of at since the execution of iCl may violate this property (if the

new object does not have the at attribute initialized).

2. Solve or prevent inconsistencies (Section 4.2.1.2). For each problematic <property,

action> pair, the additional action types or preconditions that must be executed

together with action to avoid violating property are determined. For instance, in this

step, the uAt action will be signaled as a mandatory attachment to iCl to avoid

violating the isNotNull property for at caused by the iCl action.

4.2.1.1 Identifying Properties to be Maintained

Some of the property values that can be defined during the specification of a class

diagram (see Section 3.1) imply a constraint that must be satisfied at run-time (for

instance, defining an attribute as not null implies that at run-time that attribute always

has to hold a concrete value). For each one of these properties, we determine the action

types that may violate them. Operations including actions of that type must be redefined

to make sure their execution does not induce a violation of those constraints, as shown

in the next subsection.

Let As be an association between classes Cl1 (playing the role p1) and Cl2 (playing the

role p2) and G a generalization set Gen(Clp,Cls1,…,Clsn), the list of potentially violating

actions for each property are the following:

 Minimum Multiplicity (min(p2;As)). The dAs, uAs, iCl1, sClpClsi and uClsjClsi actions

(such that Clsi=Cl1 and Clsi≠Clsj) may violate the constraint associated to the

minimum multiplicity property when its value is greater than zero. In addition, all the

iClx actions of any Clx class that inherits from Cl1 may also violate this multiplicity.

 Maximum Multiplicity (max(p2;As)). The iAs and uAs actions may violate the

constraint defined by this property when the maximum multiplicity is lower than ‘*’.

 Delete Propagation (delpropagation(p2;As)). The dCl1, gClsiClp and uClsiClsj actions

(such that Clsi=Cl1 and Clsi≠Clsj) may violate the conditions that this property

establishes. Besides these actions, all the dClx actions of any Clx class that inherits

from Cl1 may also violate this condition.

 Changeability (changeability(p2;As)). The iAs and uAs actions may violate the

constraints stated by readOnly or removeOnly changeability values, and the dAs and

uAs actions may violate the constraints defined by the readOnly and addOnly values.

 isNotNull (isNotNull(At)). The iCl1, sClpClsi and uClsjClsi actions (such that Clsi=Cl1

and Clsi≠Clsj) may violate the condition that this property defines when its value is

true. In addition, all the iClx actions of any Clx class that inherits from Cl1 may also

violate this condition.

 isDisjoint (isDisjoint(g)). The sClpClsi action (for each subclass Clsi of Clp) may

violate the condition that this property defines when its value is true.

 isCovering (isCovering(g)). The gClsiClp action (for each subclass Clsi of Clp) may

violate the condition that this property defines when its value is true.

4.2.1.2 Avoiding Inconsistencies

For each property constraint that may be violated by an action type ac, we propose

either adding an action type that compensates the effect of ac to ensure the maintenance

of the constraints induced by that property or a precondition that disables the execution

of ac when its execution may lead to a violation of the constraint. The latter option is

chosen when the former causes collateral effects that prevent maintaining the

consistency of the operation while preserving the intention of the main action [11].

We present in the following tables (from Table 2 to Table 9) the maintenance actions

for each action type ac. Each table describes, for every element of the class diagram (the

Element column), the conditions that the element has to satisfy (Condition column) to

be potentially affected by the execution of ac and the maintenance action chosen

(Required Action column) to guarantee the fulfillment of the problematic property of the

element (Property Ensured column) when ac is executed. For instance, the first row in

Table 2, describes that for attributes that are not null and not derived, the iCl(x) action

may violate its not null property and that to avoid this inconsistency the additional

action uAt(x,v) must be executed after the iCl(x) one.

More specifically, the Required Action column shows either: (1) the additional actions

using the notation (direction, action) where action is the name of the action type

required, and direction indicates whether that action should be executed before () or

after () the action analyzed; or (2) the OCL preconditions (introduced between curly

brackets ({}) that must be satisfied by the system state before proceeding with the

execution of the action. If several actions of the same type are needed in the first

scenario, we indicate the number of times (number times) the action is required before

the action. In addition, the parameters in the actions show the dependencies between the

parameters of the analyzed action type and the parameters of its additional actions or

preconditions.

Table 2 shows the maintenance actions for the iCl(x) basic action. When an object x is

created in a class Cl, its non derived and not null attributes must be initialized after.

Moreover, if the class Cl or its direct or indirect superclasses have a non derived

association with a mandatory participation, several links (as many as the mandatory

multiplicity indicates) of the association must be created after to avoid the violation of

the minimum multiplicity.

As an example, in the running example, the iConferenceEdition(x) action of the

createConferenceEdition operation (see Fig. 3) requires:

 the uNumber(x,v) action to avoid the violation of the not null property of the number

attribute, and

 the iCelebrates(x,y) action to avoid the violation of the minimum multiplicity property

of the conference role.

Note that these actions are just the actions required for avoiding the inconsistencies that

the iConferenceEdition action can cause; the recursive process introduced at the

beginning of section 4.2 must be applied to obtain the complete specification body of

the createConferenceEdition operation. The same consideration has to be taken into

account in the remainder operation examples introduced in this subsection.

Table 2. Required Actions of the iCl(x) action type

Element
(it has to be read:

 for each)

Condition Required Action Property
Ensured

Atk Cl or

Atk Clp
where Clp is a

superclass4 of Cl

isNotNull(Atk) and not

isDerived(Atk)

(, uAtk(x,v)) isNotNull of

Atk

As(p1:Cl1; p2:Cl2)

where Cl = Cl1 or

Cl = Clc and Clc is

a subclass5 of Cl1

min(p2;As) > 0 and not

isDerived(As)

min(p2;As) times (,

iAs(x,y))

Minimum

multiplicity of

p2

Table 3 shows the maintenance actions for the dCl(x) basic action. The deletion of an

object x from the class Cl must be forbidden if Cl participates in any association where

the delete propagation property of its opposite end is marked as restrictive and the

object x participates in any link of the association. This situation is avoided by the

precondition defined in the first row of Table 3. The deletion of an object x from the

class Cl implies the previous deletion of its links (if the opposite end of the association

in which Cl participates is marked as link or cascade) and the deletion of the linked

objects (for the cascade value).

The dConferenceEdition(x) action of the deleteConferenceEdition operation (see Fig. 3)

requires:

 a precondition (which checks that x does not have any publication associated) to

avoid the violation of the delete propagation property of the participant role, and

 the dCelebrates(x,y) action to avoid the violation of the delete propagation property

of the conference role.

Table 3. Required Actions of the dCl(x) action type

Element
(it has to be read:

 for each)

Condition Required Action Property
Ensured

As(p1:Cl1; p2:Cl2)

where Cl = Cl1 or

Cl = Clc and Clc is

a subclass
5
 of Cl1

delpropagation(p2;As) =

restrictive

{x.p2->isEmpty()}
6 Delete

Propagation

of p2 delpropagation(p2;As) =

link

(, dAs(x,y))

delpropagation(p2;As) =

cascade

(, dAs(x,y))

(, dCl2(y))

Table 4 shows the maintenance actions for the iAs (x,y) basic action. The insertion of a

link in the association As may require the previous insertion of one or both objects of

the link for links that cannot be added after the object creations (due to the

changeability or to the multiplicity of the As roles). Moreover, the insertion of a link

must be prohibited if it violates the maximum multiplicity of one or both ends of the

association (avoided by the precondition defined in the second row of the table).

The iPublishes(x,y) action of the createPublishes operation (see Fig. 5) requires:

4 Superclass may be direct or indirect
5 Subclass may be direct or indirect
6 This precondition is slightly modified when the dCl1(x) action is performed together with the dAs(x,y) and dCl2(y)

actions (this occurs when the delpropagation(p1;As) = cascade). In this case the precondition does not have to take

into account the link to be deleted by the dAs action (so, the precondition is {y.p1.p2->excludes(y)->isEmpty()}).

 two preconditions (which check that x and y do not have the maximum number of

associated links) to prevent the violation of the maximum multiplicity property of the

participant and in roles.

Table 4. Required Actions of the iAs(x,y) action type of As(p1:Cl1; p2:Cl2) where x Cl1 and y Cl2

Element

Condition Required Action Property
Ensured

p1 association end

(the same has to be

applied for p2)

changeability(p1;As) =

removeOnly or readOnly
(, iCl2(y)) Changeability

of p1

changeability(p1;As) =

(addOnly or

unrestricted) and

max(p1;As) ≠ min(p1;As)

and max(p1;As) ≠ *

{y.p1->size() <

max(p1;As)}

Maximum

Multiplicity

of p1

changeability(p1;As) =

(addOnly or

unrestricted) and

max(p1;As) = min(p1;As)

(, iCl2(y))

There exist certain combinations of the property values of association ends that could

cause no termination of the process that expands the iAs action. This occurs when both

association ends have minimum multiplicity values greater than 1 and either they have

the same value at minimum and maximum multiplicities (row 3 of Table 4) or the

removeOnly or readOnly values for the changeability property (row 1 of Table 4). In

those cases the designer must specify by hand the body of the operation that contains

the iAs action. Note that these situations are not common in real scenarios and that they

can be at least detected by our method to avoid entering into an infinite loop.

Table 5 shows the maintenance actions for the dAs (x,y) basic action. The deletion of a

link from the association As may require the posterior deletion of one or both objects of

the link for links that cannot be removed (due to the changeability or to the multiplicity

of the As roles). Moreover, the deletion of a link must be prohibited if it violates the

minimum multiplicity of one or both ends of the association (avoided by the

precondition defined in the second row of the table).

The dCelebrates(x,y) action of the deleteCelebrates operation (see Fig. 5) requires:

 the dConferenceEdition(y) action to prevent the violation of the changeability

property of the conference role.

Table 5. Required Actions of the dAs(x,y) action type of As(p1:Cl1; p2:Cl2) where x Cl1 and y Cl2

Element

Condition Required Action Property
Ensured

p1 association end

(the same has to be

applied for p2)

changeability(p1;As) =

addOnly or readOnly
(, dCl2(y)) Changeability

of p1

changeability(p1;As) =

(removeOnly or

unrestricted) and

max(p1;As) ≠ min(p1;As)

and min(p1;As) > 0

{y.p1->size() >

min(p1;As)}
Minimum

Multiplicity

of p1

changeability(p1;As) =

(removeOnly or

unrestricted) and

max(p1;As) = min(p1;As)

(, dCl2(y))

Table 6 shows the maintenance actions for the uAs (x,y,z) basic action. The required

actions are calculated from the required actions of the insertion of a link and from the

deletion of a link.

The uCelebrates(x,y,z) action of the updateCelebrates operation (see Fig. 5) requires:

 the iConferenceEdition(z) and the dConferenceEdition(y) actions to prevent the

violation of the changeability and multiplicity properties of the conference role

(changeability is readOnly and the maximum and the minimum multiplicity is the

same).

Table 6. Required Actions of the uAs(x,y,z) action type of As(p1:Cl1; p2:Cl2) where x Cl1 and y Cl2

and z Cl2

Element

Condition Required Action Property
Ensured

p1 association end changeability(p1;As) =

readOnly or max(p1;As)

= min(p1;As)

(, dCl2(y))

(, iCl2(z))

Changeability

of p,

Maximum

Multiplicity

of p1,

Minimum

Multiplicity

of p1

changeability(p1;As) =

removeOnly and

max(p1;As) ≠ min(p1;As)

and min(p1;As) > 0

 (, iCl2(z))

{y.p1->size() >

min(p1;As)}

changeability(p1;As) =

removeOnly and

max(p1;As) ≠ min(p1;As)

and min(p1;As) = 0

 (, iCl2(z))

changeability(p1;As) =

addOnly and max(p1;As)

≠ min(p1;As) and

max(p1;As) ≠ *

(, dCl2(y))

{z.p1->size() <

max(p1;As)}

changeability(p1;As) =

addOnly and max(p1;As)

≠ min(p1;As) and

max(p1;As) = *

(, dCl2(y))

changeability(p1;As) =

unrestricted and

max(p1;As) ≠ min(p1;As)

and min(p1;As) > 0

{y.p1->size() >

min(p1;As)}

changeability(p1;As) =

unrestricted and

max(p1;As) ≠ min(p1;As)

and max(p1;As) ≠ *

{z.p1->size() <

max(p1;As)}

Table 7 shows the maintenance actions for the sClpClsi(x) basic action. The specialization

of an object x of the class Clp to the subclass Clsi must be prohibited if x is an object of

other subclass of Clsj of a disjoint generalization set. The object specialization requires

the posterior initialization of its non derived and not null attributes, the insertion of links

for non derived association with a mandatory participation and the specialization of the

object to any subclass of Clsi, if Clsi is the superclass of a covering generalization set.

For the running example, operations including specialization actions have not been

generated since the generalization set is disjoint and complete (according to Rule 4).

Table 7. Required Actions of the sClpClsi(x) action type of Gen(Clp,Cls1,…,Clsn)

Element
(it has to be read:

 for each)

Condition Required Action Property
Ensured

As(p1:Cl1; p2:Cl2)

where Clsi = Cl1
min(p2;As) > 0 and not

isDerived(As)

min(p2;As) times (,

iAs(x,y))

Minimum

multiplicity of

p2

Atk Clsi

where Clsi = Cl1

isNotNull(Atk) and not

isDerived(Atk)

(, uAtk(x,v)) isNotNull of

Atk

g=Gen(Clp,Cls1,…,Clsn) isDisjoint(g) {not x.IsTypeOf(Clsj)}

 j=1..n where Clsi Clsj

isDisjoint of g

g’=Gen(Clsi,Clsi1,…,Clsin) isCovering(g’) sClsiClsii’(x)

for any i’=1..n
isCovering of

g’

Table 8 shows the maintenance actions for the gClsiClp(x) basic action. The

generalization of an object x of the subclass Clsi to the class Clp must be prohibited if x is

not an object of other subclass of Clp of a covering generalization set. The object

generalization requires the previous deletion of its links (if the opposite end of the

association in which Clsi participates is marked as link or cascade) and the deletion of

the linked objects (for the cascade value).

Again, for the running example, operations that include generalization actions have not

been generated since the generalization set is disjoint and complete (according to Rule

4).

Table 8. Required Actions of the gClsiClp(x) action type of Gen(Clp,Cls1,…,Clsn)

Element
(it has to be read:

 for each)

Condition Required Action Property
Ensured

As(p1:Cl1; p2:Cl2)

where Clsi = Cl1
delpropagation(p2;As) =

restrictive

{x.p2->isEmpty()} Delete

Propagation

of p2 delpropagation(p2;As) =

link

(, dAs(x,y))

delpropagation(p2;As) =

cascade

(, dAs(x,y))

(, dCl2(y))

g=Gen(Clp,Cls1,…,Clsn) isCovering(g) {x.IsTypeOf(Clsj) }

where Clsi Clsj

isCovering of

g

Table 9 shows the maintenance actions for the u ClsiClsj(x,y,z) basic action. The required

actions are calculated from the required actions of an object specialization and an object

generalization.

The uPublicationInternalDocument(x) action of the

updatePublicationInternalDocument operation (see Fig. 6) requires:

 a precondition (which checks that x does not have any link to a conference edition) to

avoid the violation of the delete propagation property of the in role.

Table 9. Required Actions of the uClsiClsj action type of Gen(Clp,Cls1,…,Clsn)

Element
(it has to be read:

 for each)

Condition Required Action Property
Ensured

As(p1:Cl1; p2:Cl2)

where Clsi = Cl1
delpropagation(p2;As) =

restrictive

{x.p2->isEmpty()} Delete

Propagation

of p2 delpropagation(p2;As) =

link

(, dAs(x,y))

delpropagation(p2;As) =

cascade

(, dAs(x,y))

(, dCl2(y))

As’(p1’:Cl1’;

p2’:Cl2’)

where Clsj = Cl1’

min(p2’;As) > 0 and not

isDerived(As’)

min(p2’;As) times (,

iAs’(x,y))

Minimum

multiplicity of

p2’

Atk Clsj

isNotNull(Atk) and not

isDerived(Atk)

(, uAtk(x,y)) isNotNull of

Atk

g’=Gen(Clsj,Clsj1,…,Clsjn) isCovering(g’) sClsjClsjj’(x)

for any j’=1..n
isCovering of

g’

Note that the table for the uAt action is not defined since the execution of this action

does not cause the violation of any of the properties considered.

4.3. Specifying Operation Signatures

The last step of our method focuses on the specification of the operation signatures.

Obviously, the signature depends on the actions included in the operation body. Each

action may require the addition of new parameters in the signature. The basic idea is that

every variable that appears as a parameter in the action must also appear as a parameter

(of the same type) in the operation so that a designer can provide its value. Four

exceptions apply:

1. Object variables for the iCl action are not parameters of the operation. These new

objects are created during the operation execution.

2. A parameter variable that has already appeared in a previous action does not

generate a new operation parameter (i.e., if an operation consists of two events,

iAs(x1,x2) and iAs(x1,x3), only three parameters x1, x2 and x3 are defined).

3. We use the implicit parameter self as a replacement for one of the parameters

whose type is the class to which the operation is attached (i.e., if an operation

defined in a class Cl has the event uAti(x,v), only a parameter for v is generated;

the implicit self parameter is used whenever x appears).

4. Variables for actions that can be obtained by self are not parameters of the

operations. For example, variables for dAs actions included in a deleteCl

operation are not parameters of the operation. In those cases, the link/s to be

deleted are the ones in which the self parameter participates, and thus they can be

determined automatically.

4.4. Application to the Running Example

In this subsection we apply our method to the example of Fig. 2. In Fig. 3, 4, 5 and 6 we

have already shown the list of operations generated for the example. Now in what

follows we introduce the complete specification for each operation. Comments to clarify

the maintenance actions required for the operation are added if necessary. We present

the operations grouped by the rule that generates them.

Operations generated by the application of Rule 1 (Classes).

 For the Publication class, the operations generated are createPublication and

deletePublication:

 Publication::createPublication(vname:String){

iPublication (p); --main action

uName(p,vname); --avoiding not null constraint violation}

The createPublication operation specification includes two basic actions. The first

one, iPublication, corresponds to the basic action of a creation operation (according

to Table 2). The second one, uName, is defined to avoid the violation of the

isNotNull property of the name attribute (see row 1 of Table 2). This update action

does not require further maintenance actions.

 Publication::deletePublication(){

 if (self.in->isEmpty()) then

dPublication(self); --main action

endif; }

The deletePublication operation specification includes a precondition that prevents

the deletion of a publication when it has a conference edition associated to it (see

row 1 of Table 3).

 For the ConferenceEdition class, the operations generated are

createConferenceEdition and deleteConferenceEdition:

 ConferenceEdition::createConferenceEdition(vnumber:String,

 conf:Conference){

iConferenceEdition (e); --main action

uNumber(e,vnumber); --avoiding not null constraint violation

iCelebrates(e,conf); --due to the min multiplicity }

uNumber is defined to avoid the violation of the isNotNull property of the number

attribute. iCelebrates is added to satisfy the minimum multiplicity value of the

conference role (see row 2 of Table 2).

 ConferenceEdition::deleteConferenceEdition(){

 if (self.participant->isEmpty()) then

 dCelebrates(self,self.conference);--delete propagation

dConferenceEdition(self); --main action

endif; }

The deleteConferenceEdition operation specification includes a precondition that

prevents the deletion of a conference edition when it has a publication associated to

it. dCelebrates is included to delete the link between the conference edition to be

deleted and its conference (see row 2 of Table 3).

 For the Conference class, the operations generated are createConference and

deleteConference:

 Conference::createConference(vname:String){

iConference (c);--main action

uName(c,vname);--avoiding not null constraint violation }

uName, is defined to avoid the violation of the isNotNull property of the name

attribute. This action does not require any other action.

 Conference::deleteConference(){

if (self.edition.participant->isEmpty()) then

foreach ConferenceEdition e in self.edition do

dCelebrates(e, self);--delete propagation cascade

dConferenceEdition(e);--delete propagation cascade

 end for;

dConference(self);--main action

endif; }

The deleteConference operation specification includes an iterative statement that

deletes all links to conference editions of a conference as well as deletes all the

associated conference editions. This is because the delete propagation value of the

edition role is cascade (see row 3 of Table 3). Moreover, the operation includes a

precondition that prevents the deletion of conference when it has conference

editions associated that in turn have publications associated to them. This is

because of the value restrictive at the delete propagation of the participant role (see

row 1 of Table 3). The last action of the operation is the one that is related to the

delete operation, dConference.

 For the InternalDocument class, the operations generated are

createInternalDocument and deleteInternalDocument:

 InternalDocument::createInternalDocument(v:String){

iInternalDocument(i);--main action

uName(i,v);--avoiding not null constraint violation }

uName, is defined to avoid the violation of the isNotNull property of the name

attribute. This action does not require any other action.

 InternalDocument::deleteInternalDocument(){

dInternalDocument(self);--main action }

Operations generated by the application of Rule 2 (Attributes).

 ConferenceEdition::updateYear(v:Integer){

uYear(self,v); --main action }

 ConferenceEdition::updateNumberOfSubmissions(v:Integer){

uNumberOfSubmissions(self,v); --main action }

 Publication::updatePublicationDate(v:String){

uPublicationDate(self,v); --main action }

 Document::updateDescription(v:String){

uDescription(self,v); --main action }

Operations generated by the application of Rule 3 (Associations).

 For the Publishes association, the operations generated are a createPublishes

operation in the ConferenceEdition and Publication classes:

 Publication::createPublishes(edt:ConferenceEdition){

 if (edt.participant < 100) and (self.in < 1) then

 iPublishes(self, edt);--main action

 endif }

 ConferenceEdition::createPublishes(pub:Publication){

 if (pub.in < 1) and (self.participant < 100) then

 iPublishes(pub, self);--main action

 endif }

The createPublishes operation specification includes a precondition that prevents

the violation of the maximum multiplicity property of the participant and in roles

(see row 2 of Table 4).

 For the Celebrates association, a createCelebrates operation, a deleteCelebrates

operation and an updateCelebrates operation are generated in the Conference class:

 Conference::createCelebrates(vNumber:String){

 iConferenceEdition(e);--due to the max multiplicity

uNumber(e,vNumber);--avoiding not null constraint violation

 iCelebrates(e, self); --main action }

The createCelebrates operation specification includes the creation of a new

conference edition. This is because of the value readOnly of the changeability

property at the conference role (see row 3 of Table 4), which means that conference

editions cannot add celebrate links throughout their live (so, the creation of a

celebrate link is just possible together with the creation of a conference edition).

The operation also includes the uName action to avoid the violation of the

isNotNull property of the name attribute.

 Conference::deleteCelebrates(edt:ConferenceEdition){

 if (edt.participant->isEmpty()) then

dCelebrates(edt, self);--main action

dConferenceEdition(edt);-- due to readOnly changeability

 endif; }

The deleteCelebrates operation specification includes the dConferenceEdition

action to prevent the violation of the changeability property at the conference role

(see row 1 of Table 5). Note that since a celebrates link cannot be removed from a

conference edition (changeability(conference, celebrates) = readOnly), in order to

delete a celebrates link it is necessary that the deleteCelebrates operation also

deletes the conference edition involved in that link. In addition, since the

dConferenceEdition action can violate the delete propagation of the participant

role, a precondition to avoid this violation has been included.

Conference::updateCelebrates(edt:ConferenceEdition,

vnumber:String){

if (edt.participant->isEmpty()) then

iConferenceEdition (e);

uNumber(e,vnumber);

uCelebrates(self, edt, e);

 dConferenceEdition(edt);

endif;

}

The updateCelebrates operation specification includes the iConferenceEdition and

the dConferenceEdition actions for creating a new conference edition to be linked

to the conference and deleting the conference edition edt linked to the conference.

This allows preventing the violation of the changeability and multiplicity properties

at the conference role (see row 1 of Table 6). The iConferenceEdition action

requires in turn the uNumber action to prevent the violation of the isNotNull

property of the number attribute of the ConferenceEdition class. Also, the

dConferenceEdition action requires a precondition to prevent the deletion of a

conference edition when it has a publication associated to it. Note that although the

iConferenceEdition action requires an iCelebrates action and the

dConferenceEdition action requires a dCelebrates action these actions are not

included in the updateCelebrates operation since these dependencies are satisfied

by the uCelebrates action.

Operations generated by the application of Rule 4 (Generalizations).

 InternalDocument::updateInternalDocumentPublication(){

 uInternalDocumentPublication(self); --main action}

 Publication::updatePublicationInternalDocument(){

 if (self.in->isEmpty()) then

uPublicationInternalDocument(self);--main action

 endif }

The updatePublicationInternalDocument operation specification includes a

precondition that prevents the modification of the specialization of a publication

when it has a conference edition associated to it (see row 1 of Table 9).

5. Formalizing the method as a model-to-model
transformation

Our method has been defined as a M2M endogenous transformation that takes a specific

UML class diagram as input and outputs the same class diagram extended with the set

of strongly executable operations that suffice to provide a basic behavior for the system

under development. The source model (and the target one, since it is an endogenous

transformation) is an instance of the UML metamodel possibly annotated with our

profile. Note that the target model is still a Platform Independent Model (according to

the MDA terminology) since it is completely platform independent. The refinement

introduced by the transformation does not add any technology-specific details.

The formalization of the M2M transformation is defined in ATL [9]. ATL is a hybrid

model transformation language developed by the ATLANMOD Group [43]. Our set of

ATL transformation rules automatically transform the elements of a source class

diagram into elements in the target class diagram according to the steps described in the

previous section. ATL provides a compiler and a virtual machine that enables the

execution of ATL transformations.

ATL provides the ATL modules to implement transformations. An ATL module

specifies the rules that define how the elements of the input model are mapped to

elements of the output model. A declarative rule in ATL specifies for an input element

(defined in the “from” section of the rule) how the output elements should be generated

(defined in the “to” section of the rule). Moreover, ATL modules allow metamodel

extensions to be specified in order to define computed attributes (attributes) or

operations (helpers).

5.1. Structure of the Transformation

The complete description of the ATL transformation can be found in [44]. In this

section we just summarized some of its main elements.

As a first step, we have structured our transformation in an ATL module that defines a

new model7. The header of the transformation within the eclipse-based ATL IDE is the

following:

module GeneratingOperations;

create output : OUT from input : IN;

Although input (IN) and output (OUT) metamodels can be seen in the transformation

specification, both of them are in fact associated to the same metamodel when the

transformation is launched. The metamodel used to express the transformation is the

UML metamodel slightly extended to allow the definition of the enriched association

properties we have been using throughout the paper.

Then, for each type of element that can be contained in the input model (Classes,

Associations, Attributes, GeneralizationSets), we define a set of ATL rules to generate

the corresponding elements in the output model following the rules introduced in

section 4.1.

As an example, we show the ATL rule for generating creation and deletion operations

for classes explained in Section 4.1:

rule ClassNotAbstract2ClassCreateOpDeleteOp{

from

c: IN!Class (not c.isAbstract and not c.isDerived and not

c.is_SuperclassCovering and not c.is_InRestrictiveAs)

to

 oout : OUT!Class (

 name <- c.name,

 isAbstract <- c.isAbstract,

 isDerived <- c.isDerived,

 associationEnd <- c.associationEnd,

7 This implementation creates a new output model that clones the input model and extends it with the new operations.

Nevertheless, the transformation can also be implemented extending the input model (without creating a new

model).

 system <- c.system,

 operation <- Sequence{createOp,deleteOp}

),

 createOp: OUT!Operation (

 name <- 'create' + c.name,

 body <- c.build_CreationBody(thisModule.initialize_actionList),

parameter <-

c.build_CreationParameters(thisModule.initialize_actionList),

 system <- c.system

),

 deleteOp: OUT!Operation (

 name <- 'delete' + c.name,

body <- c.build_DestroyBody(thisModule.initialize_actionList),

parameter <-

c.build_DestroyParameters(thisModule.initialize_actionList),

 system <- c.system

)

}

First, the static elements of the source class are cloned in the return class object (since

the static aspects are not modified by the transformation). Secondly, create and delete

operations are added if necessary (note that the from clause in the rule restricts the

application of the rule to classes that are not abstract, not superclass of a covering

generalization, and not participating in restrictive or mandatory associations, according

to Rule 1).

The auxiliary helper operation build_CreationBody is in charge of providing the

imperative description of the creation operation’s behavior. As an example, we show the

implementation of the build_CreationBody helper:

helper context IN!Class def : build_CreationBody(actionList :

Sequence(String)) : String =

 let _notNullAttributes: Sequence (IN!Attribute) = self.attribute->

select(a |a.isNotNull) ->union(self.get_InheritedAtNotNull)

 in

 self.text_iCl +

 if _notNullAttributes->flatten()->isEmpty() then

 if self.get_MandatoryClasses(actionList->append(self.text_iCl))->

notEmpty() then

 self.get_MandatoryClasses(actionList->

append(self.text_iCl))->

collect(y|y.build_CreationLinkBody(actionList->

append(self.text_iCl)))->sum()

 else

 ' '

 endif

 else

 _notNullAttributes->flatten()->collect(a| a.text_uAt)->sum() +

 if self.get_MandatoryClasses(actionList->append(self.text_iCl))->

notEmpty() then

 self.get_MandatoryClasses(actionList->

append(self.text_iCl))->

collect(y|y.build_CreationLinkBody(actionList->

append(self.text_iCl)))->sum()

 else

 ' '

 endif

 endif;

Note how depending on the properties of the class and the associations, the body will

include more or less required actions for the creation operation.

More specifically, the helper builds a string that contains the textual behavior

specification of the creation operation. This string is created by concatenating:

- (1) the textual specification of the main action of the operation (iCl()).

- (2) the textual specification of the actions in charge of fulfilling the not null property

of the attributes of the class (uAt()).

- (3) the textual specification of the actions in charge of fulfilling the mandatory

participation of the class in associations (iAs()). This specification is obtained

using the build_CreationLinkBody helper.

Similar rules and helpers have been defined for generating the remainder of the

operations of the class diagram of the output model [44].

5.2 Transformation Validation

We have validated the transformation by checking that it behaves as intended, which is

a common kind of validation [45]. One way to do so is to apply the transformation to a

set of model examples and to check the transformation does what it was intended to do

(i.e. to compare the expected results with the generated ones).

Following this approach, we have validated our transformation by means of testing its

behavior using as input several case studies used in the Software Engineering course of

the School of Applied Computer Science of the Universidad Politécnica de Valencia.

The description of the case studies can be found in [44]. The results returned by the

transformation have been compared with the expected ones defined by ourselves

according to the method developed in [46].

5.3 Tool Implementation

The previous transformation has been implemented as an Eclipse plug-in within the

open-source modeling framework MOSKitt. The MOSKitt project with the

transformation can be downloaded from [44].

As an example, Fig. 7 and 8 show the execution of the implemented transformation over

our running example. As shown in Fig. 7 the output model contains the same static

elements as the input model but adds 19 new operations (the generated operations are

those indicated in Fig. 3, 4, 5 and 6). The transformation has also generated a string for

each operation that contains the description of its behavior in the property body. Fig. 8

shows the value of the body and parameter property for the creation operation of the

ConferenceEdition class. The body of the operation is generated by means of the helper

build_CreationBody shown in section 5.1.

Figure 7. Representation of the Input and Output models of the case study in the model tree editor

Figure 8. Description of the body and parameters of the createConferenceEdition operation

6. Method Evaluation

We have applied our method to different scenarios in order to evaluate its usefulness in

terms of the completeness and quality gain of our automatically generated specification

when comparing it with a manual specification and with the results provided by

generation code tools for the same class diagram.

The first analysis evaluates the completeness of our method (i.e. the percentage and

richness of operations that our method is able to generate in comparison with the ones

that: 1 - a designer would manually define and 2 - generated by other code generation

tools). A second analysis focuses on the quality improvement that can be expected when

using our method by comparing the operations and the constraints detected and handled

by each operation when generated by our method with those detected and correctly

handled by students when manually implementing the same operations.

As can be seen in the next subsections, results are satisfactory in both situations. Our

method suffices to automatically generate a large number of operations in all analyzed

situations and is very useful to avoid mistakes during the definition of the operations.

6.1. Evaluation of the Method Completeness

This first analysis consisted in comparing the set of operations originally specified by

the designers of a real-life application with the set of operations generated automatically

for the same application. This comparison is based on the well-known osCommerce[47]

online shop e-commerce solution used by more than 200000 online stores.

The main objective of this analysis was to evaluate the percentage of operations that are

completely covered by our method with respect to the total number operations designed

during the original system specification. In the comparison, we also include the results

obtained when using two alternative popular MDD tools, IBM Rational Architect [26]

and Poseidon [22], featuring behavioral generation capabilities as well.

The osCommerce is an e-commerce solution available as free software under the GNU

General Public License. The osCommerce project was started in March 2000 in

Germany and since then, it has become the base of thousands of online stores around

the world. For comparison purposes, we have analyzed a fragment of the class diagram

of osCommerce [44] consisting of 12 classes, 7 associations, 1 generalization set and 43

attributes. For this class diagram, our method has generated 89 operations (see [44]).

This accounts for a 85% of the total number of operations originally specified by the

designers of the system. From these 85%, in a 84% the specification generated by our

method is completely equivalent to the one in the original system. For the other 1% we

get a partial definition (the original condition included some degree of additional

business logic that could not be automatically derived from the class diagram

information). Clearly, this shows that with our method designers could have avoided the

generation of most of the system operations resulting in a significant productivity

improvement during the development.

In comparison, results obtained when using IBM Rational Architect and Poseidon tools

are much worse. These tools generate only getter and setter methods for each attribute

and association end of the UML class diagram (Java, C#, C++, and other programming

languages can be chosen to implement these methods). In the case of IBM Rational

Architect, the setter methods just set new values (objects) to the attributes (association

ends) without checking any possible constraint violation. In Poseidon tool, setter

methods only guarantee the uniqueness of the attribute values (association end objects).

Comparing these results with the operations generated by our method, we see that our

approach generates all those setter operations plus 54 additional modification operations

(to create and destroy objects, for instance) and, most importantly, our operations take

care of the system integrity by checking or maintaining all constraint violations during

the operation execution which is not the case for the IBM Rational Architect or

Poseidon tools.

We have confirmed these completeness results by repeating the study with two more

case studies, CMA [48] and EmpTraining [44]. In both cases, the results have been

similar: a 69% of the operations specified for EmpTraining and CMA are completely

generated by our method and a high percentage of the remaining ones (21% for

EmpTraining and 31% for CMA) are partially generated as well. We refer the reader to

[7] for a more detailed description of these experiments.

6.2. Evaluating the Quality gain when using our Method

The second analysis studies several applications developed by undergraduate students

during their last year in an Applied Computer Science degree. The applications were

developed in the Visual Studio .Net 2005 environment and implemented using the C#

language. The input for developing the systems was a set of UML class diagrams

describing the systems to be implemented (see [44]).

For each student application, we compare the behavior of the application with the

behavior generated by our method to analyze: (1) the percentage of life cycle operations

that were missing in the system designed by the student and (2) the percentage of the

model property constraints that are not guaranteed to be fulfilled by the student’s

systems. The goal was to demonstrate that our method can be applied to detect and

avoid many of the common errors made during the implementation of system operations

when taking only the static part of UML models as a source.

We have analyzed 10 applications for two case studies (CS1 and CS2). These

applications have been randomly selected. Each application has been developed in

groups composed of one or two students. Fig. 9 and Fig. 10 summarize the results of the

evaluation for CS1 and CS2 respectively.

Figure. 9. Results of the analysis for CS1

Figure. 10. Results of the analysis for CS2

The results of the analysis reveal that:

 an important number of operations are missing in the student applications (42%

for CS1 and 59% for CS2 of the necessary operations to perform all typical

create/delete/update changes was not implemented), and

 a high number of constraints are neither guaranteed to be fulfilled: for example

just one maximum multiplicity constraint is guarantee in CS1, none in CS2 and

the only property that is fully guaranteed to be satisfied at both CS1 and CS2 is

the navigability property.

Note that the delete propagation and changeability properties are not included in the

study (see graphics on the right of Fig. 9 and 10). The former is not included since the

class diagrams used by the students were UML class diagrams where delete propagation

was not specified. The last property is not included since its value at the class diagrams

of the case studies was always unrestricted and, therefore, its fulfillment was always

guaranteed. Moreover, the study points out several interesting issues. On the one hand,

navigability is always guaranteed to be fulfilled (students correctly avoid implementing

operations to manage associations in classes with a non-navigable association end). The

reason for the high-success, in this particular case, could be that non-navigable ends

always appear as part of aggregation associations and this kind of associations got a

special emphasis during the course. On the other hand, maximum and minimum

multiplicity constraints, and isDisjoint and isCovering constraints were almost

completely ignored. We believe that this shows that students did a very limited set of

tests with the application. Otherwise they should have detected these violations. It is

also important to note that no student implemented operations not identified and

specified by our method, which implies that for these scenarios our method was

complete.

We believe these empirical evaluations clearly show the benefits of our method. If

students had been given, instead of a simple static UML diagram, a class diagram

extended with our operations they would have produced a software system with a

considerable better quality, since this additional information would have help students

to significantly reduce the number of errors made during the implementation phase and

would have considerably reduced the time spent in doing it. Note that expert

programmers would have better performed the application development, i.e. would have

specified a higher number of operations and guaranteed a higher number of constraints.

Nevertheless, our method does generate valuable operations which are always correct.

Thus, the tool is useful for expert programmers, too. For instance, even if maybe they

would not have made mistakes when defining the operations we can save them time by

generating them automatically

7. Related Work

The (semi)-automatic derivation of system behavior from different aspects of a system

has been faced from different perspectives. A summary table at the end highlights the

most relevant aspects of this comparison.

In the deductive database field, specifically in approaches that cope with integrity

checking or integrity maintenance problems at compile-time, we find approaches aimed

at extending transactions/operations with preconditions or additional actions to always

ensure their successful execution. Among others, in [11] and [12], the authors adapt the

state based approach to formal specifications supporting explicitly the concepts of state

and state transition. In those cases, the expressivity of the logical language used for the

definition of the structural schema and the operations is poorer than what can be

expressed in UML. Concretely, they do not deal with properties related to associations

and attributes (as for instance, read only properties of attributes and association

navigability). In those works, inconsistent transactions/operations provided by designers

are replaced, if possible, by new consistent ones preserving the intended effect of the

old ones. Therefore, these approaches require the designer to provide a first version of

the operations instead of generating them from scratch and do not enforce the attribute

and association properties, as our method does. Moreover, none of the previous

approaches has been implemented. In the same field, [13] uses a declarative logic-based

approach (implemented in Prolog) to define the structural part of a system and the

transactions that can be executed on it. As before, the expressiveness of the structural

schema is limited and the generated operations only consist of insert and delete actions

(update ones are not supported) that ignore most of the integrity constraints except for

minimum multiplicities and derived elements.

In the active database field, several approaches suggest the use of triggers to ensure the

consistency enforcement of transactions (on the contrary, our method does not need

triggers for guarantying the fulfillment of the properties of the class diagram).

Remarkable works in this field are [14] and [15]. In [14], the authors adopt Domain

Relational Calculus as the underlying language in the expression of constraints and

transaction actions and Relational Algebra for the database definition. The method

generates automatically a set of actives rules that may be used to enforce the set of

defined constraints. Thus, when a transaction is executed the method determines a

partial order on the active rule set to guarantee the termination in a final state such that

all violated constraints are corrected. If the partial order cannot be determined then the

transaction is aborted. In this approach transactions must be provided by designers and

association and attribute properties are not covered except for minimum multiplicities

and derivability property. The method proposed in [15] extends the previous one. It uses

SQL based syntax to express constraints. This syntax permits to define more powerful

constraints as maximum multiplicities. Instead, the method only generates the event and

the precondition part of the set of active rules that may be used to enforce the set of

defined constraints. The action part of rules (i.e. the actual behavior of the operation)

has to be added manually by the designer.

In the conceptual modeling field, some proposed techniques aim to generate operations

from structure diagrams but differ from our method in several aspects. The study in [16]

partially determines the set of possible basic actions to be applied to a UML class

diagram (generalizations and changeability and delete propagation properties are not

considered). For these actions, only preconditions (and not additional actions) are

generated when they are necessary. In this approach, the modeling language used is the

B formal notation [49]. In [17], a set of basic operations (similar to our concept of basic

actions) and a set of elementary operations (similar to our concept of operation)

composed of basic operations are derived from an EER diagram. The enforcement of

these operations is achieved by means of update propagations. These operations are not

necessarily executable since cardinality constraints and other explicit constraints are not

considered in any case and, thus, preconditions to guarantee these constraints have to be

added by hand. The work presented in [18] generates the declarative definition of a set

of structural events to be applied to a structural model with dynamic features expressed

in the ROSES language. Although this approach deals with association properties

equivalent to ours, generalizations (with the disjoint and completeness constraints) and

navigability are not considered. In [19], an approach to automate the extension of the

declarative operation specifications taking into account only association invariants is

presented. The authors use the Booster notation to define object models and the

specifications of the operations. Unlike our proposal, this work just deals with

referential integrity, multiplicity and symmetry properties.

Additional approaches, as [20] and [21], extend the operations with a set of

preconditions to ensure the executability of the operations. In this case, operations are

not generated automatically, as our method does, but the designer is responsible for

providing the set of operations. In [20] the preconditions are extracted from the set of

constraints defined in the structural model (a subset of the OMT object model with only

classes and associations is considered). This approach only works with properties and

constraints that may be expressed in Z. Generalizations and changeability and delete

propagation properties are not considered. In [21] the preconditions are extracted from a

set of predefined constraints. In this work, minimum and maximum multiplicities of

associations and disjoint and complete constraints are covered but not the others that our

method considers. Alternatively, other approaches try to generate system operations

from the information provided in different diagrams, such as the use case diagram. For

instance, [50] presents a method for generating system operations from use cases

specifications. Nevertheless, this method is not automatic and the specification of each

system operation must be provided manually.

A more technological approach related to our work is the one of Akehurst et al. in [51],

which provides a set of patterns that allow generating automatically Java code from

UML class diagrams. The patterns cover the implementation of UML 2.0 associations

generating methods to manage them at run-time. These methods include assertions to

check that the constraints specified in the UML 2.0 associations are satisfied, whereas

our proposal goes by covering not only associations but the rest of model elements in

UML and by adding the possibility of having an integrity maintenance solution that

compensates the effect of the method behaviour instead of just checking the system

state at the end of the operation. Moreover, this work targets a specific programming

language, which hampers its reuse in other technologies. On the contrary, our work

generates a UML model that it is still at the PIM level, i.e. completely platform

independent. The operations introduced by our method do not add any technology-

specific details.

Finally, we have analyzed most MDD tools (commercial or open source) able to

generate methods following a similar philosophy as the one tackled in this paper.

Nevertheless, the number and content of operations generated by these tools is lesser

than what it is achieved by our method. Tools such as Poseidon [22], Enterprise

Architect [23], Fujaba [24], Modelio [25] or IBM Rational Architect [26] provide MDD

solutions that allow starting the software development process by specifying a class

diagram of the system under construction. Then, they provide model to text

transformations that generate code from that diagram including methods for the classes

in the specified classes. However, these methods are just “basic” getter and setter

methods for managing attributes and associations (other kinds of methods, e.g. to

manage generalizations, are not supported). By “basic” we mean methods that these

methods just include in their body the actions to perform the functionality of the method

but do not include the necessary checking conditions or additional functionality to

guarantee that the properties and constraints specified in the UML class diagram are

satisfied. As a rare exception, Modelio [25] tool provides a library that allows

generating code that (only) guarantees that cardinality constraints are satisfied.

Therefore, when using these tools, the designers/programmers have to manually make

the generated operations executable. We believe these tools could implement the

method presented in this paper to improve their generation process. Also, note that

current MDD tools target always a specific programming languages and/or technology

platforms and thus, their results are hardly reusable for other technologies.

A specially relevant tool is the OO-Method approach [27], an OO MDD method in

whose development some of the authors have participated. OO-Method is supported by

the ONME commercial tool [52], which generates system operations to manipulate

elements specified in a conceptual schema. However, this conceptual schema is defined

using a proprietary language and the implementation of the operations only guarantees a

subset of the properties/constraints that are handled in this paper. Moreover the

definition of the operations is not performed at the conceptual level but using concrete

implementation languages to generate code which makes difficult the reusability of their

method. We plan to improve OO-Method with the techniques developed in this work.

Table 10 summarizes the most relevant aspects of the methods and tools previously

reviewed. For each of them we have identified the inputs of the method (structural part

plus input behavior model if the method does not generate the operations from scratch)

and its output (what parts of the behavioural aspects are generated and the constraints

and properties considered to generate them). We also indicate if there is a tool

implementing the theoretical concepts presented in the method.

Table 10. Comparative table of related work

 Method Input Method Output Tool

available

Methods

and

Tools

Structural part
(modeling

language)

Behavioral part
(modeling

language)

Behavioral part Constraints and Properties

Considered

[11] Logical language User defined basic

actions

(logical language)

Required actions Uniqueness, inclusion/exclusion,

object-generating

×

[12] Logical language User defined basic

actions

(logical language)

Required actions Uniqueness, inclusion/exclusion,

object-generating

×

[13] Logical based

language

User defined basic

actions except for

updates
(logical language)

Required actions

and preconditions

Constraints expressed as closed

first-order formulas (recursive rules

and aggregate functions not
covered)

[14] Relational algebra User defined

transactions (DB

update language)

Active rules - event,

preconditions and

required actions

Constraints expressed as relational

calculus formulas (recursive rules

and aggregate functions not
covered)

[15] Relational algebra

User defined

transactions (DB
update language)

Active rules - event

and preconditions

Constraints expressed in a

declarative language similar to SQL
(recursive rules and aggregate

functions covered)

×

[16] UML without

generalizations

- Basic actions and

their preconditions

Constraints expressed in B language

[17] EER - Basic and

elementary

operations with
required actions

EER constructs (minimum and

maximum mult. and some general

constraints not covered)

×

[18] ROSES object

model

- Structural events

with preconditions

Constraints expressed in ROSES

clauses (minimum and maximum

mult., derivability, common

×

dynamic constraints of objects and

attributes)

[19] Booster language - Operations with

preconditions and

postconditions

Graphic constraints (referential,

multiplicities (only 0..1,1,*) and

symmetric constraints)

×

[20] Subset of OMT
(only classes and

relations)

Basic actions (Z
language)

Basic action
preconditions

Constraints expressed in Z language
(disjoint and complete constraints

and changeability and delete

propagation properties not covered)

×

[21] UML Basic actions

(OCL)

Basic action

preconditions

Identifier, irreflexive, symmetric,

asymmetric, antisymmetric, acyclic,

path inclusion, exclusion and
equality, value comparison, disjoint

and complete and minimum and

maximum mult.

×

[50] UML Use cases System operations
(their specification

is not provided)

- ×

[22] UML - Association end
getter/setter

Uniqueness property and
association navigability

[23]

UML - Association end

getter/setter

Association navigability and mult.

(but no bounds check)

[24]

UML - Association end

getter/setter
Association navigability and mult.

(but no bounds check)

[25]

UML - Association end

getter/setter

Association navigability and mult.

[26]

UML - Association end

getter/setter
Association navigability

 [27] Proprietary

Language

- Create/Destroy for

classes, Create
/ Update/ Delete for

Association Ends

Abstract classes, mult., derived

roles and attributes, delete
propagation, changeability and

navigability

Our

method

Enriched UML - Basic actions and

operations with
preconditions and

required actions

ReadOnly, derivabiltiy and

isNotNull attribute properties,
abstract class property, minimum

and maximum mult., derivability,

navigability, changeability, delete
propagation association end

properties and disjoint and complete

constraints

8. Conclusions

In this work we have defined a method (formalized as a M2M transformation using

ATL) that generates a set of basic operations for an initial purely static conceptual

schema. The operations generated by our method suffice to cover all basic modification

operations (insert/update/deletes…) for the system under development. The number and

behavior of the operations is deduced from the characteristics of the structural elements

(classes, associations and so forth) in the input schema. Our construction process

guarantees that no irrelevant operations are defined and that all created operations are

strongly executable with respect to the most common structural properties in CSs (as

multiplicity property). Our operations can also be used as a foundation to build more

complex operations.

Our proposal improves the quality and productivity of the behavior specification task of

the software development process by automating most of it and ensuring the absence of

errors that could be introduced by designers in a manual specification. Furthermore, our

method can also be applied to domain models that are derived from ontologies using the

proposal presented in [53], where a framework that integrates UML class-based models

and OWL ontologies is introduced. Also our approach can enhance other techniques

that aim at automating model transformations. For instance, our method can be used for

enhancing the automation of domain modeling in [54].

With regard to future work, we consider extending our method to deal with additional

properties and constraints that are not studied in this work, for example, those regarding

association classes. We also plan to study the integration in our generation process of

other information sources to provide more richer and complex operations (as the use

case diagrams). As an example, we will consider the approach presented in [20] that

uses use case diagrams to generate parts of the behavior specification. Additionally, the

ideas introduced in this paper could be applied to the verification of existing behavior

schemas by means of the analysis of their completeness and executability properties as

done in [55] or to detect inconsistencies between elements defined in the conceptual

schema. Finally, we would like to improve the maintenance phase of the system

development as well by analyzing how to incrementally regenerate the behavior schema

after evolutions on the structural schema.

Acknowledgments

The authors want to thank the anonymous referees of this journal for their interesting

suggestions. This work has been partly supported by the MICINN under projects

TIN2008-00444, Grupo Consolidado and TIN2010-18011, and by the Generalitat

Valenciana under the project ORCA PROMETEO/2009/015, and co-financed with

European Regional Development Fund.

References

[1] Object Management Group, UML 2.2 Superstructure Specification, OMG Adopted

Specification, (2009).

[2] Object Management Group, Object Constraint Language (OCL) 2.0, OMG Adopted

Specification (2006).

[3] P. Chen. The Entity-Relationship Model: Toward a Unified View of Data. In: ACM

Transactions on Database Systems 1(1), pp. 9-36, (1976).

[4] T. Halpin. Information Modeling and Relational Databases. From Conceptual Analysis to

Logical Design. Morgan Kaufmann Publishers, (2001).

[5] D. Spinellis. UML Everywhere. In: IEEE Software 27 (5), pp. 90-91, September (2010).

[6] B. Dobing, and J. Parsons, How UML is Used, In: Communications of the ACM 49(5), May

(2006).

[7] M. Albert, C. Gómez, J. Cabot, V. Pelechano, Automatic generation of basic behavior

schemas from UML class diagrams, In: Software and Systems Modeling 9(1), pp. 47-67, (2010).

[8] M. Albert, V. Pelechano, J. Fons, M. Ruiz, and O. Pastor, Implementing UML Association,

Aggregation and Composition. A Particular Interpretation based on a Multidimensional

Framework, In: Proc. of the Advanced Information Systems Engineering (CAiSE’03), (2003).

[9] J. Bézivin, F. Jouault, and D. Touzet, An Introduction to the ATLAS Model Management

Architecture, Research Report LINA, (2005).

[10] MOSKitt, MOdeling Software Kitt, 14 Jan 2011, <www.moskitt.org>

[11] K. Schewe, and B. Thalheim, Towards a theory of consistency enforcement, In: Acta

Informatica 36, pp. 97-141, (1999).

[12]S. Link, Consistency Enforcement in Databases, In: Semantics in Databases, pp. 201-213,

(2003).

[13] J. A. Pastor, and A. Olivé, Supporting transaction design in conceptual modelling of

information systems, In: Proc. of Advanced Information Systems Engineering, pp. 40-53,

(1995).

[14] S. Ceri, P. Fraternali, S. Paraboschi, and L. Tanca. Automatic Generation of Production

Rules for Integrity Maintenance, In: ACM Transactions on Database Systems, 19(3), pp. 367-

422, (1994)

[15] S. Ceri, and J. Widom. Deriving Production Rules for Constraint Maintenance, In: Proc.

VLDB, pp. 566-577, (1990)

[16] R. Laleau, and F. Polack, Specification of integrity-preserving operations in information

systems by using a formal UML-based language, In: Information and Software Technology 43

pp. 693-704, (2001).

[17] G. Engels, M. Gogolla, U. Hohenstein, K. Hülsmann, P. LöhrRichter, G. Saake, and H.

Ehrich, Conceptual modelling of database applications using an extended ER model, In: Data

Knowledge Engineering 9, pp. 157-204, (1992).

[18] D. Costal, M. Sancho, A. Olivé, and A. Roselló, The role of structural events in behaviour

specification, In: Proc. of DEXA’97, pp. 673-686, (1997).

[19] James Welch, David Faitelson, and Jim Davies, Automatic maintenance of association

invariants, In: Software and Systems Modeling 7(3), (2008).

[20] Y. Ledru, Idenitfying pre-conditions with the Z/EVES theorem prover, In: Proc. of the 13th

International Conf. on Automated Software Engineering, IEEE Computer Society Press, 1998.

[21] D. Costal, C. Gómez, A. Queralt, E. Teniente,

Drawing Preconditions of Operation

Contracts from Conceptual Schemas, In: Proc. Of the Advanced Information Systems

Engineering (CAiSE’08), (2008).

[22] Gentleware, Poseidon for UML, 14 Jan 2011, <http://www.gentleware.com/>

[23] Enterprise Architect, Sparx Systems, 14 Jan 2011, < http://www.sparxsystems.com.au/>

[24] Fujaba Tool Suit, Fujaba Project, 14 Jan 2011, <http://www.fujaba.de/>.

[25] Objecteering Software, Modelio, 14 Jan 2011, < http://www.modeliosoft.com/>

[26] IBM Software, Rational, 14 Jan 2011, <http://www-

01.ibm.com/software/awdtools/developer/rose/>

[27] O. Pastor, E. Insfrán, V. Pelechano, J. Romero, and J. Merseguer, OO-METHOD: An OO

software production environment combining conventional and formal methods, In: Proc. of the

9th International Edition on Advanced Information Systems Engineering (CAiSE '97), pp. 145-

158, (1997).

[28] J. Cabot, R. Clarisó, and D. Riera, UMLtoCSP: a tool for the formal verification of

UML/OCL models using constraint programming, In: Proc. of 22nd International Conference

Automated Software Engineering (ASE’07), (2007).

[29] M. Albert, Tratamiento de Asociaciones en Entornos de Producción Automática de Código,

Ph.D Thesis. Departamento de Sistemas Informáticos y Computación. Universidad Politécnica

de Valencia.

[30] A. J. McAllister, and D. Sharpe, An Approach for Decomposing N-Ary Data Relationships,

In: Software: Practice and Experience 28(2), pp. 125-154, (1998).

[31] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling Language Reference

Manual, (2005).

[32] S. Cook, and J. Daniels, Designing Objects Systems. Object-Oriented Modelling with

Syntropy, Prentice Hall, (1994).

[33] D.F. D’Souza, and A.C. Wills, Catalysis- Objects, Components and Frameworks with

UML, Addison-Wesley, Reading, MA, (1998).

[34]D. Firesmith, B. Henderson-Sellers, and I. Graham, The OML Reference Manual, SIGS

Books, NY, (1997).

[35] F. Civello, Roles for composite objects in object-oriented analysis and design, In: ACM

SIGPLAN Notices 28(10), pp. 376-393, (1993).

[36] B. Henderson-Sellers, and F. Barbier, What Is This Thing Called Aggregation?, In: J.

Bosch R. Mitchell, A.C. Wills and B. Meyer, editors, Proc. of TOOLS 29, pp. 216-230, Los

Alamitos, CA, USA, (1999).

[37] J.J. Odell, Six different kinds of composition, In: Journal of Object Oriented Programming

(JOOP) 5(8), pp. 10-15, (1994).

[38] A.L. Opdahl, B. Henderson-Sellers, and F. Barbier, Ontological Analysis of Whole-Part

Relationships in OO-models, In: Information and Software Technology, 43 pp. 387-399, (2001).

[39] M. Saksena, R.B. France, and M.M. Larrondo-Petrie, A Characterization of Aggregation,

In: C. Rollandand and G. Grosz, editors, Proc. of OOIS'98, pp. 11-19., (1998).

[40] Y. Wand, V.C. Storey, and R. Weber, An Ontological Analysis of the Relationship

Construct in Conceptual Modeling, In: ACM Transactions on Database Systems 24(4) pp. 494-

528, (1999).

[41] D. Milicév, On the Semantics of Associations and Association Ends in UML, In: IEEE

Transactions on Software Engineering 33(4), (2007).

[42] J. Cabot, Incremental Integrity Checking in UML/OCL Conceptual Schemas, PhD.

Dissertation (2006), < http://jordicabot.com/papers/TesiJCabot.pdf>.

[43] ATLANMOD : Technologies de modélisation pour la production, le fonctionnement et

l'évolution du logiciel, 14 Jan 2011, < http://www.inria.fr/recherche/equipes/atlanmod.fr.html >

[44] OO-Method Labs, 14 Jan 2011, <

http://www.pros.upv.es/labs/index.php?option=com_content&view=category&id=21&Itemid=35&layout=default>

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Claris=oacute=:Robert.html

[45] B. Hetzel, The complete guide to software testing (2nd ed.), QED Information Sciences,

Inc., Wellesley, MA, USA (1988).

[46] P. Giner, and V. Pelechano, Test-driven Development of Model Transformations, In: Proc.

of Model Driven Engineering Languages and Systems (Models’09), pp. 748-752, (2009).

[47] A. Tort, OsCommerce conceptual schema, UPC, 2007.

[48] R. Raventós, A conceptual schema for a conference management application, UPC,

Technical Report. 05-01-R, 2005.

[49] J. R. Abrial, The B-Book: Assigning Programs to Meanings, Cambridge University Press,

(1996).

[50] S. Sendall, and A. Strohmeier, From Use Cases to System Operation Specifications, In:

Proc. of «UML» 2000 — the Unified Modeling Language, pp. 1-15, (2000).

[51] D. Akehurst, G. Howells and K. McDonald-Maier. Implementing associations: UML 2.0 to

Java 5, In: Software and Systems Modeling 6 (1), (2006).

[52] CARE Technologies, OLIVANOVA Programming Machine (ONME), 14 Jan 2011,

<http://www.care-t.com/>

[53] F. S. Parreiras and S. Staab. Using ontologies with UML class-based modeling: The

TwoUse approach. In: Data Knowledge Engineering 69(11), pp. 1194-1207, November (2010).

[54] I. Reinhartz-Berger. Towards automatization of domain modeling. In: Data Knowledge

Engineering 69(5) pp. 491-515, May (2010).

[55] E.Planas, J. Cabot, and C.Gómez, Verifying Action Semantics Specifications in UML

Behavioral Models, In: Proc. Of the Advanced Information Systems Engineering (CAiSE’09),

(2009).

Manoli Albert is Assistant Professor in the Department of Information Systems and

Computation (DSIC) at the Universidad Politécnica de Valencia (Spain), where she is teaching

Software Engineering and Design Patterns. She is a member of the the PROS Research Center

at the UPV. She received her Ph.D. degree from the Valencia University of Technology in 2006.

Her research interests are Model driven development, Conceptual Modelling, Method

Engineering, Software Patterns and Ubiquitous and Pervasive systems.

Jordi Cabot received the BSc and PhD degrees in Computer Science from the Technical

University of Catalonia. While working toward his PhD, he did a research stay at the

Politecnico di Milano. He has held a senior lecturer position at the Open University of Catalonia

and a postdoctoral fellow position at the University of Toronto and now he is an associate

professor at the École des Mines de Nantes where he leads the AtlanMod INRIA/EMN research

team. His research interests include conceptual modeling, model-driven development, formal

verification and web engineering. He is a member of the IEEE and the ACM.

Cristina Gómez received her Degree in Informatics Engineering from the Universitat

Politècnica de Catalunya in 1993. She later got his PhD degree from the same university in

2003. Currently, she is teaching Software Engineering at the Universitat Politècnica de

Catalunya and at the Universitat Oberta de Catalunya. She is a member of the MPI research

group at the Universitat Politècnica de Catalunya. Her research interest focuses on conceptual

modeling, information systems and object-oriented analysis and design.

Vicente Pelechano is Associate Professor in the Department of Information Systems and

Computation (DISC) at the Universidad Politécnica de Valencia, Spain. His research

interests are Model Driven Development, Ubicomp and Ambient Intelligence, Web Engineering

and HCI. He received his Ph.D. degree from the Universidad Politécnica de Valencia in

2001. He is the head of the Ambient Intelligence and Web Technology Research Group in the

ProS Research Center at the UPV. He has published in several well-known scientific

journals, book chapters and international conferences. He is currently leading the

technical supervision of the MOSKitt Open Source CASE Tool (http://www.moskitt.org).

Corresponding author: Manoli Albert

Complete Address:

Departamento de Sistemas y Computación

Universidad Politécnica de Valencia

Cami de Vera s/n 46022

Valencia, Spain

Tfn.: (+34) 96 387 7007 – Ext 83511

Fax: (+34) 96 3877359

http://www.moskitt.org/

