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Abstract. 

 

One of the more tedious and complex tasks during the specification of 

conceptual schemas (CSs) is modeling the operations that define the 

system behavior. This paper aims to simplify this task by providing a 

method that automatically generates a set of basic operations that 

complement the static aspects of the CS and suffice to perform all typical 

life-cycle create/update/delete changes on the population of the elements of 

the CS. Our method guarantees that the generated operations are 

executable, i.e. their executions produce a consistent state wrt the most 

typical structural constraints that can be defined in CSs (e.g. multiplicity 

constraints). In particular, our method takes as input a CS expressed as a 

Unified Modeling Language (UML) class diagram (optionally defined 

using a profile to enrich the specification of associations) and generates an 

extended version of the CS that includes all necessary operations to start 

operating the system. If desired, these basic operations can be later used as 

building blocks for creating more complex ones. We show the 

formalization and implementation of our method by means of model-to-

model transformations. Our approach is particularly relevant in the context 

of Model Driven Development approaches.  

 
Keywords: Behavior schema, action, operation, class diagram, UML, model-to-model 

transformation 

 

1. Introduction 
 

Current Model Driven Development (MDD) and Model Driven Architecture (MDA) 

approaches propose applying a chain of model-to-model (M2M) transformations to 

(automatically) derive the final implementation of the system from its initial conceptual 

schema (CS).  

 

One of the most tedious and complex tasks during the definition of CSs is the 

specification of all operations that describe the behavior of the system. In fact, in order 

to be completely functional, designers must provide a detailed specification of the 

change effect of each operation on the system state. The operation specification must 



take into account the constraints specified in the CS to make sure they are fulfilled after 

the operation is executed. This specification can be provided in different languages, 

such as: natural language, imperative action-based languages [1] or as declarative 

contracts expressed, for instance, with the Object Constraint Language (OCL) [2]. In 

any case, operation definitions are linked to the specification of the CS itself, usually 

performed by means of a graphical modeling language like UML, Entity-Relationship 

(ER) [3] or Object Role Modeling (ORM) [4]. In this paper we will use UML as the 

standard notation for drawing CSs [5] and OCL and an action-semantics based 

imperative language for the operation specifications.  

 

Even though the detailed definition of the system behavior is a prerequisite for MDD, 

results of recent surveys about the use of UML among practitioners (e.g. [6]) clearly 

show that most practitioners only focus on the static aspects of class diagrams in their 

day-to-day practice and ignore all other modeling aspects and diagrams. This hampers 

the application of MDD approaches in practice. Therefore, it is clear that any technique 

that can facilitate the definition of such aspects would be really helpful and could 

improve the adoption level of MDD techniques among the software engineering 

community.  

 

In this sense, this paper provides a method to automate the generation of a basic 

behavior specification for the system modeled in the UML class diagram. This improves 

the productivity and quality of the designers’ job since writing a behavior specification 

is a very time-consuming and error-prone task. Although our method can be useful in 

any application domain, our method is specially useful for domains that make an 

intensive use of data-manipulation operations. The basic behavior specification 

generated by our method consists in a set of well-formed set of operations that suffice to 

cover most of the required system’s behavior. More specifically, the generated 

operations allow designers to perform all required life-cycle change events 

(create/delete/update) on the population/value of the different model elements of the 

class diagram. The number and effect of the operations are determined based on the 

domain knowledge contained in the static structure of the class diagram.  

 

The work reported here extends our previous work [7] in several directions. First, the 

input of our method is now a UML class diagram that may contain enriched association 

definitions. These additional properties for associations (introduced in [8]) convey more 

information on the association semantics. This additional knowledge helps us to obtain 

a set of operations closer to the one that the designer would manually specify. A second 

contribution is that in this work we focus on the generation of strongly executable 

operations. That is, we provide a more complete operation specification that ensures that 

the operation execution always maintains the system consistency regarding the 

structural constraints and dependencies between the elements of the class diagram (e.g. 

multiplicity constraints). For these constraints, our operation definition guarantees that 

for any invocation where the precondition is satisfied the operation evolves the system 

state to a new consistent state. Instead, our previous work focused on a weaker 

executability property that only guaranteed that there was at least a chance of obtaining 

a consistent state. Additionally, we formalize our method as a M2M endogenous 

transformation using the ATLAS Transformation Language (ATL) [9] and implement it 

in the Eclipse-based MOSKitt [10] open-source CASE tool.  

 



Our method advances the current state-of-the-art in the area of behavior specification 

generation methods such as [11-27] in several aspects. First, our method deals with 

more expressive input models (e.g. including enriched associations and abstract classes) 

which has a direct impact on the number and the completeness and richness of the 

generated operations. Second, our method mixes two different strategies to avoid 

inconsistencies: checking (by adding preconditions) and maintenance (by adding actions 

that repair the inconsistency). Choosing one or the other depending on the operation 

semantics improves the user experience. Only [13, 14] also consider both strategies but 

only for a reduced set of properties (for instance, they ignore properties as important as 

the minimum and maximum multiplicities of associations). Moreover, many of the 

reviewed methods need a manual specification of the operations [11-15, 20, 21] or do 

not provide tool support and the ones that provide an automatic method with tool 

support (as it is our case) generate less operations and simpler ones than those generated 

by our method as reviewed in detail in Section 7. 

 

The remainder of the paper is structured as follows. Section 2 presents an overview of 

our method. Section 3 introduces some basic concepts regarding structural and 

behavioral aspects of class diagrams. Section 4 explains in detail each step of the 

method. In Section 5 the M2M transformation using the ATL language is defined and 

introduces the tool support. Section 6 presents the results of applying our method to 

different scenarios. Finally, Section 7 reviews the related work and Section 8 draws 

some conclusions and describes further work. 

 

2. Method Overview  
 

Our method takes as input a UML-based class diagram with only the static aspects 

specified and returns as output a class diagram where classes have been extended with 

the operations required to modify the system state. The number and specification of 

these operations are deduced from the properties and dependencies between the 

structural aspects of the class diagram.  

  

The main particularity of our method is that the specification of each operation includes 

the functionality that is necessary to guarantee the fulfillment of the structural properties 

of the elements of the class diagram (as multiplicity constraints, disjointness and so on; 

see Section 3). These properties state conditions that must be satisfied by the system 

state at run-time. All generated operations always leave the system in a consistent state 

wrt these conditions at the end of the operation execution (i.e. the operations are 

strongly executable). 

 

Our method can be split up into three main steps (Fig. 1):  

1. Identification of operations. The method identifies which operations should be 

defined to carry out the necessary modifications on the population or values of the 

different elements of the class diagram, together with the classes where these 

operations have to be attached to. 

2. Specification of the operation bodies. The body of each operation includes the logic 

of the operation (i.e. basic actions as insertion of a new object, deletion of a link, 

…) plus the additional functionality (i.e. other actions and/or preconditions) to 

guarantee that the structural properties that may be affected by the operation are not 

violated during its execution. This added functionality is needed to satisfy possible 

dependencies between the actions in the operation since some actions may require 



the presence of other actions in the same operation in order to be able to leave the 

system in a consistent state. 

3. Specification of the operation signatures. The signature of each operation is derived 

from the actions included in the operation body. The final signature of each 

operation is decided in this last step when all dependencies between the actions in 

the operation are satisfied. 

 

Figure 1. Overall view of the method 

 

We assume in this paper that the initial UML CS defined by the designer is consistent. 

By consistent we mean that it is strongly satisfiable, i.e. it is possible to create valid 

instances of the CS. An instance is valid if it satisfies all the constraints of the CS. 

Otherwise, the designer must, first, fix the CS before applying our method. There are 

several tools available to ensure the consistency of a UML CS, as for instance [28]. 

 

3. Basic Concepts 
 

This section briefly reviews the basic terminology and definitions used in this paper 

regarding the specification of the structural and behavioral aspects of a system. In our 

approach both aspects are described by means of a class diagram expressed in UML 2, 

though, some elements of the class diagram include slight extensions wrt the standard 

elements in the UML metamodel. In particular, we introduce a set of new properties that 

allow associations to be characterized in a more complete and clear way than in the 

UML proposal. A UML profile for this extension has been defined in [29].  

 

Section 3.1 describes the structural aspects of our UML-based class diagrams and 

section 3.2 focuses on the behavioral aspects.  

 

3.1. Structural View  
 

The constructs that our method considers to specify the structural aspects of a system 

are classes, attributes, binary1 associations and generalizations. For the sake of clarity, 

association classes are not considered2.  

 

Classes may be concrete or abstract and attributes may be defined as readOnly, derived 

and isNotNull (the multiplicity is exactly one) [31]. For the sake of simplicity we 

assume that all attributes have a maximum multiplicity of 13. The function 

isAbstract(Cl) returns true when the Cl class is abstract and false otherwise. The 

functions isReadOnly(at), isDerived(at) and isNotNull(at) are similarly defined. 

                                                 
1 N-ary associations can be easily expressed in terms of a set of binary ones plus additional constraints [30]. 
2 An association class could be represented as a regular class with n associations one for each participant plus a 

constraint restricting that no instance of the class can be related with the same exact set of participants.   
3 Multi-valued attributes can be represented and treated as an association between the class owning the attribute and 

the corresponding data type. 



 

Association ends (also known as roles) are the endpoints of associations. Each 

association end connects the association to its participant class. Standard UML 2 

properties upon association ends (considered in this paper) are maximum and minimum 

multiplicities, derived and navigability properties. The functions max(p1; As) and 

min(p1; As) specify the maximum and the minimum multiplicity of the As association 

between classes Cl1 (playing the p1 role) and Cl2 (playing the p2 role) and 

navigability(p1; As) and derived(p1; As) define if the association end p1 is navigable and 

derived, respectively.  

 

A generalization set g, denoted by Gen(Cl;Cl1,…,Cln) between a more general class Cl 

(superclass) and a set of more specific classes Cl1,…,Cln (subclasses) may be disjoint 

and complete. Functions isDisjoint(g) and isCovering(g) return true when g is disjoint 

and complete, respectively.  

 

Our method also considers a more advanced characterization of associations since the 

characterization provided in the literature for the association concept (see [1, 32-34]) 

experiences some drawbacks that make the use and interpretation of this construct 

ambiguous. Several works [35-41] have tried to propose alternative semantics. In this 

method the particular interpretation of the association concept introduced in [8] is taken 

into account. This interpretation allows this method to extract more precise knowledge 

from the class diagram in order to improve the specification of the generated operations 

to maintain the association population at run-time. The additional association end 

properties defined in [8] and used in this paper are:  

 

 Changeability (changeability(p1; As)): Specifies whether links can be created or 

deleted after the initialization of objects of the Cl2 class. Possible values are: 

 unrestricted: no restrictions on creation and destruction of links. This is 

graphically represented annotating the role with the <<+,->> stereotype. 

 addOnly: links cannot be deleted after the participating objects of the Cl2 class 

have been initialized. Represented with the <<+>> stereotype  

 removeOnly: new links cannot be created after the objects of the Cl2 class have 

been initialized. Represented with the <<->> stereotype  

 readOnly: links can neither be deleted nor inserted after the objects of the Cl2 that 

participate in the links have been initialized 

 

The default value of the changeability property is unresticted. The property in UML 2 

[1] that is closest to changeability is the boolean isReadOnly property of association 

ends. This property maps to our readOnly value (for true values) and to our unrestricted 

value (for false values). 

 

 Delete Propagation (delpropagation(p1; As)): Indicates which actions must be 

performed when an object of the Cl2 class is deleted. The possible values are: 

 restrictive: the object of the Cl2 class to be deleted cannot be deleted if it has links 

(an exception is raised if an attempt is made); otherwise, it is deleted. The 

restrictive value is depicted by means of the <<RT>> stereotype. 

 cascade: links of the object of the Cl2 class to be deleted and its linked objects 

must also be deleted. Cascade roles are annotated with the <<CC>> stereotype. 

 link (default value): links of the object of the Cl2 class to be deleted must also be 

deleted (but not its linked objects). No stereotype is needed in this case. 



 

We would like to remark that the introduced properties are not orthogonal, i.e. there 

exist dependencies among the properties. In [29] those dependencies are analyzed. We 

assume that class diagrams satisfy all these dependencies. 

 

For the sake of simplicity, our method does not consider, in the current version, other 

UML properties as subsetting and redefinition for attributes and ordering, redefinition, 

subsetting and uniqueness for association ends. Instead, the method may be applied to 

other constructs (as for instance, compositions and aggregations) that may be defined as 

a combination of the constructs and properties defined above. For example, a 

composition is dealt by our method as an association between the composite and its 

parts where the minimum and maximum multiplicity of the composite class role is one 

and non-navigable, the part class role is navigable and the value of the delete 

propagation property is cascade.  

 

As a running example throughout the rest of the paper, we use the class diagram shown 

in Fig. 2. This class diagram represents a disjoint and complete generalization between 

the Document abstract class and the InternalDocument and Publication classes. The 

name attribute of the Document and Conference classes and the number attribute of the 

ConferenceEdition class are read only and not null. Moreover, the acceptanceRatio 

attribute of the ConferenceEdition class is derived since its value may be calculated as a 

percentage between the number of papers submitted (numberOfSubmissions) and the 

number of papers published (participant role). The changeability of the in role 

(Publishes association) is defined as addOnly since a publication cannot ever delete its 

link with the conference edition in which it was published; however, a publication not 

yet published can be linked to a conference at any time. Besides, a conference edition 

cannot be deleted when it participates in a link associated to a publication, so delete 

propagation at the participant role is marked as restrictive. The non-standard properties 

for associations are defined using the UML profile proposed in [29]. We use the implicit 

notation [31] to represent the navigability of associations. That is, single arrows indicate 

one-way navigable associations and no arrows two-way navigable associations. 

 

 
   Figure 2. Class diagram used as a running example 

 

 

3.2. Behavioral View  
 

This section introduces some preliminary concepts to specify the behavioral aspects of a 

system. These concepts will be used by our method when creating the specification of 

operations for the input static class diagram. 



In our case, the operation effect specification is defined in an imperative way. For each 

operation the set of basic actions that are applied on the system state when the operation 

is executed is explicitly defined. We use the term basic action (also known as structural 

event) to refer to an atomic change on the population or value of the system state.  

 
3.2.1. Basic Actions 
 

The list of basic actions that our method considers is the following: 

 iCl(x): creates a new x object in the Cl class 

 dCl(x): deletes the x object from the Cl class  

 uAt(x,v): updates the At attribute of the object x with the v value 

 iAs(x,y): creates a new link for the As association with x and y as participant objects 

 dAs(x,y): deletes the link <x,y> from the As association 

 sClpClc(x): specializes the object x of Clp superclass to the Clc direct subclass. The 

action is only applicable if x is an instance of Clp and not of Clc 

 gClcClp(x): generalizes the object x of Clc subclass to the Clp direct superclass. This 

action is applicable if x is an instance of Clc and not of its subclasses. 

 

We also predefine two frequent compound actions that facilitate the definition of our 

method:  

 uAs(x,y1,y2): replaces the <x,y1> link in As with a new <x,y2> link 

 uClc1Clc2(x): moves x from Clc1 to Clc2 (i.e. generalizes x to the supertype and 

specializes it as a new instance of Cl2). 

 

Our list of basic actions is a more fine-grained version (i.e. more elementary) that those 

proposed in the UML Action Semantics [1] (e.g. the UML reclassify action is treated as 

a sequence of individual generalization and specialization actions). This permits a more 

detailed reasoning when generating the operations. Nevertheless, a correspondence 

between the basic actions that our method considers and the ones provided by UML 

standard is straightforward, see [42, p. 32] for mapping table between the two.  

 

At the syntax level, since the UML does not predefine any concrete syntax for 

expressing the actions, we have defined our own textual representation. 
 
3.2.2. Operations 
 

An operation is a behavioral feature of a class that specifies the name, type, parameters, 

and constraints (preconditions) for invoking an associated behavior. As we have said 

above, the operation behavior is specified by explicitly listing the set of actions that are 

executed when calling the operation. We assume that the behavior of the operations is 

transactional; it means that the set of actions that define the operation is treated as one 

atomic execution unit. In this way, all the participating actions should either succeed or 

fail, but if they fail the previous state before the execution must be recovered. 

 

An example of an operation with its specified effect for our running example is the 

operation ConferenceEdition::createConferenceEdition: 
 

ConferenceEdition::createConferenceEdition(v:Integer, 

conf:Conference){ 

 iConferenceEdition(x); 



 uNumber(x,v); 

 iCelebrates(x, conf); } 

 

In fact, this is one of the operations that are automatically generated by our method. 

Note that the operation initializes the number and the Celebrates properties; otherwise 

the operation would not be executable, as we will also explain in Section 4.2. 

 

4. Generating Operation Specifications from UML Class 
Diagrams 

 

This section presents our method for deriving behavioral specifications from static 

models. Our method first analyzes the class diagram and extracts relevant information 

from the properties of the model elements and from the relationships between them. 

Then, this information is used to determine the system operations that are necessary to 

carry out all typical modifications on the population or values of different elements of 

the class diagram (Section 4.1). Once these operations have been identified, our method 

generates their body, including the definition of the maintenance strategies (e.g. in the 

form of additional required actions or preconditions that must appear together with a 

given action type) that must be added to the operations’ behaviors to ensure that all of 

them satisfy the strong executability correctness property wrt to the structural properties 

considered (Section 4.2). Finally, our method defines the signature of each operation 

(Section 4.3). 

 
4.1. Identifying Operations 

This section introduces the rules that allow our method to identify the set of operations 

that suffice to provide basic insert/update/delete functionality for the different elements 

of the class diagram. We take into account the properties of each model element to 

avoid creating unnecessary operations. 

Each type of element of the class diagram (class, attribute, association and 

generalization set) has an associated rule. Each rule determines the set of operations that 

must be defined for elements of that type, depending on the properties of each element. 

For example, the rule that determines which operations should be defined for classes, 

determines that a createCl operation is only generated for non-abstract classes that are 

not superclasses of covering generalizations.  

Our method uses the following rules for each element of the input class diagram to 

identify the operations of each class: 
 

Rule 1 (Classes). For each Cl class in the input model, if [Cl is not isAbstract(Cl) and 

is not superclass of a covering generalization], generate a createCl operation in Cl. 

Additionally, if [Cl does not participate in an As(p1:Cl;p2:Cl2) association so that 

delpropagation(p2;As) = restrictive and min(p2;As) > 0], generate a deleteCl operation 

in Cl. 
 

The rationale of the rule is that object creations may only be performed in concrete 

classes that are not superclasses of covering generalizations. Therefore, only for those 

classes, a createCl operation should be created. For other classes (e.g. abstract classes), 

creation of class objects is performed as a consequence of creation of objects in one of 



its subclasses. The second part of the rule ensures that deletion of objects of a class is 

only possible for those classes not at the opposite end of an association marked as 

restrictive and with the minimum multiplicity greater than 0. Instances of those classes 

can only be deleted as part of the deletion of instances of that association or instances of 

the opposite class.  

 

For the running example, this rule adds eight new operations. Fig. 3 shows the 

application of the rule for all the classes of the example (the figure focuses only on the 

elements and properties involved in this rule). Note that for the Document class no 

operations have been generated in the output class diagram, since it is an abstract class. 

 
Figure 3. Rule 1 applied to classes of the running example 

 

 

Rule 2 (Attributes). For each At attribute of Cl in the input model, if [At is not 

isDerived(At) and not isReadOnly(At)], generate an updateAt operation in Cl. 

 

In this rule, the rationale is that an operation to update an attribute value must be 

generated in the class that owns the attribute if the attribute is not derived and not read 

only. Attributes that are derived or read only cannot be modified by the designer, so 

none of the operations should be generated for this purpose. 

 

For the running example, this rule would generate four new operations (see Fig. 4).  

Figure 4. Rule 2 applied to attributes of the running example 

 

Rule 3 (Associations). For each AsE association end of an As association and Cl2 class 

(being Cl1  the opposite class), if [As is not isDerived(As) and navigability(p2;As)] and: 

  - [changeability(p2;As) = addOnly or unrestricted and min(p2;As) ≠ max(p2;As)], 

generate a createAs operation in Cl1 

- [changeability(p2;As) = removeOnly or unrestricted and min(p2;As) ≠ max(p2;As)], 

generate a deleteAs operation in Cl1 

  - [changeability(p2;As) = unrestricted], generate an updateAs operation in Cl1 

 



The rationale of the rule is that when an association is not derived and a class that 

participates in the association can navigate to the class at the opposite end (navigability 

is true at the opposite end) operations to create, delete and update links are generated in 

that class depending on the values of the changeability and multiplicity properties at the 

opposite end. Specifically, if changeability of an association end is unrestricted then 

objects of the class at the opposite end may update their links, so the operation to update 

the links must be generated. Moreover, an object may add new links if its changeability 

is addOnly or unrestricted and the maximum and the minimum multiplicity is not the 

same. In this case, the operation to create the links must be generated. In the same way, 

an object may remove its links if its changeability is removeOnly or unrestricted and the 

maximum and the minimum multiplicity is not the same. The operation to delete the 

links must be generated.   

 

For the running example, this rule would generate five new operations (see Fig. 5).  

 
Figure 5. Rule 3 applied to associations of the running example 

 

Note that the createPublishes operation is replicated in two classes (Publication and 

ConferenceEdition classes) due to the navigability and changeability values of the 

Publishes association. This allows creating an instance of the association from both 

classes.   

 

Rule 4 (Generalizations). For each g=Gen(Clp;Cls1,…,Clsn) generalization set, 

generate an updateClsiClsj operation in all Clsi subclasses (i,j=1,..,n, i j). Additionally, 

if [g is not isCovering(g) or not isDisjoint(g)], generate a specializeClpClsi operation in 

Clp (  i=1,..,n) and generate a generalizeClsiClp operation in all Clsi subclasses (  

i=1,..,n). 
 

The rationale of this rule is that, for generalization sets, operations for moving instances 

from each subclass of the generalization set to the rest of the subclasses must be always 

generated. The second part of the rule states that operations for specializing and 

generalizing instances must be only generated for generalization sets that are not 

covering or not disjoint. A generalization set that is covering and disjoint does not 

require operations for specializing or generalizing instances. 

 

For the example, this rule would generate two new operations (see Fig. 6). Note that 

only update operations have been generated since the generalization set of the example 

is covering and disjoint. 



 
Figure 6. Rule 4 applied to the generalization set of the running example 

 
4.2. Specifying Operation Bodies 

Next step consists in generating the imperative specification body for each operation 

identified in the previous step. Initially, the body of those operations just contains the 

single basic action that implements the semantics of the operation (see Table 1).   

 
Table 1. Actions Types contained in Operations 

Operation Action 

createCl at Cl iCl 

deleteCl at Cl dCl 

updateAt at Cl uAt 

createAs at Cl1 and Cl2   

(where Cl1 and Cl2  are the participant classes in As) 

iAs 

deleteAs at Cl1 and Cl2   

(where Cl1 and Cl2  are the participant classes in As) 

dAs 

updateAs at Cl1 and Cl2   

(where Cl1 and Cl2  are the participant classes in As) 

uAs 

specializeClpClsi at Clp 

(where Gen(Clp,Cls1,…,Clsn) 

sClpClsi 

generalizeClsiClp at Clsi 

(where Gen(Clp,Cls1,…,Clsn) 

gClsiClp 

updateClsiClsj at Clsi 

(where Gen(Clp,Cls1,…,Clsn) 

uClsiClsj 

However, in general, this is not enough to guarantee that the operation execution will 

respect the integrity constraints defined in the model. Many operations will need to add 

new functionality to guarantee that the constraints that may be affected by the 

operations are not violated during its execution. This added functionality is needed to 

satisfy possible dependencies between the actions in the operation since some actions 

may require the presence of other actions in the same operation in order to be able to 

leave the system in a consistent state. For instance, consider the createConference 

operation (which contains the iConference basic action according to Table 1) of the 

Conference class (shown in Fig. 3). The creation of a conference requires the 

specification of a value for the name attribute since it cannot be null (isNotNull(name) = 

false according to Figure 2). To avoid the violation of the isNotNull property the uName 

action should also be included within the createConference operation. 

In some other cases, this new functionality will come in the form of preconditions for 

the operation that prevent the execution of the operation on those states in which the 

changes performed by the operation would leave the system in an inconsistent state. For 

instance, consider the deleteConferenceEdition operation (which contains the 

dConferenceEdition basic action according to Table 1) of the ConferenceEdition 



class (shown in Fig. 3). The deletion of a conference edition when it has a publication 

associated to it may not be performed since the delete propagation value of the role 

participant is restrictive. To prevent this deletion a precondition to guarantee that the 

conference edition has not publications is required. 

 
The specification of the operation effect (i.e. the operation body) for an operation op 

initialized with a basic action ac follows these steps: 

1. Adding to op the ac1..acn actions or/and pr1…prn preconditions that are necessary to 

guarantee that the structural properties (or constraints) that may affected by the 

action ac are not violated during its execution (see Section 4.2.1).  

2. Applying recursively step 1 to the new actions (ac1 and ac2, ac3,…) added to op 

until no more actions or preconditions are required. This is necessary in order to 

satisfy the dependencies of the new actions (ac1 and ac2, ac3,…) within the 

operation. When an action aci in op has as required action an action acj that is 

already part of op, the required action is considered to be satisfied and acj is not 

added to op again. In some uncommon scenarios this recursive process to generate 

the operation effect may not terminate. Our method identifies these scenarios and 

requires the designer to take part in the process to avoid an infinite loop.  

 

During the previous steps, the following considerations apply: 

 When ac requires an iClc2 or dClc1 action, being Clc1 and Clc2 subclasses of the 

same generalization, and op already includes the uClc1Clc2 action, the required 

maintenance action is also considered to be satisfied (since uClc1Clc2 performs the 

changes of the iClc2 action and the dClc1 action). The same reasoning has to be 

applied to the uAs action regarding the required action of an iAs or dAs action.  

 When ac requires an iCl1 action, and op already includes a sClpCl1 action, the 

required maintenance action is also considered to be satisfied (since the 

specialization of an object implies that a new object of a class is created). The 

same reasoning has to be applied to the gCl1Clp action regarding the required 

action of the dCl1 action. 

 
As it has been said before, since the UML does not provide any specific concrete syntax 

for defining operation specifications, we have defined our own textual notation based on 

the typical syntax of other action languages.  

 
4.2.1 Determining Required Actions 
 

This section describes how our method calculates the additional actions and/or 

preconditions that are necessary to ensure the maintenance of system properties for each 

action type. That is, given an action a, the goal is to characterize either the preconditions 

that must be checked by the operation in which the basic action will be included or the 

additional actions that must be executed together with a to ensure that a does not cause 

to evolve the system to an inconsistent state. Additional actions solve the 

inconsistencies that the a action may cause over the properties defined in the class 

diagram, whilst preconditions disable the execution of a when the inconsistencies that it 

may cause cannot be solved by other actions without changing the effect of the action a.  

 

This process is key to ensure the strong executability of operations (wrt the properties 

presented in Section 3) containing potentially problematic actions. To determine how 



our method should compute these additional actions or preconditions, we have carried 

out two steps: 

1. Identify properties to be maintained (Section 4.2.1.1). The properties of the elements 

of a class diagram that may be violated when executing a certain action type are 

determined. For instance, if a class diagram includes a class Cl with a not null 

attribute at, the iCl action will be identified as a problematic action wrt the 

isNotNull property of at since the execution of iCl may violate this property (if the 

new object does not have the at attribute initialized).  

2. Solve or prevent inconsistencies (Section 4.2.1.2). For each problematic <property, 

action> pair, the additional action types or preconditions that must be executed 

together with action to avoid violating property are determined. For instance, in this 

step, the uAt action will be signaled as a mandatory attachment to iCl to avoid 

violating the isNotNull property for at caused by the iCl action.  

 

4.2.1.1 Identifying Properties to be Maintained 
 

Some of the property values that can be defined during the specification of a class 

diagram (see Section 3.1) imply a constraint that must be satisfied at run-time (for 

instance, defining an attribute as not null implies that at run-time that attribute always 

has to hold a concrete value). For each one of these properties, we determine the action 

types that may violate them. Operations including actions of that type must be redefined 

to make sure their execution does not induce a violation of those constraints, as shown 

in the next subsection. 

 

Let As be an association between classes Cl1 (playing the role p1) and Cl2 (playing the 

role p2) and G a generalization set Gen(Clp,Cls1,…,Clsn), the list of potentially violating 

actions for each property are the following: 

 

 Minimum Multiplicity (min(p2;As)). The dAs, uAs, iCl1, sClpClsi and uClsjClsi actions 

(such that Clsi=Cl1 and Clsi≠Clsj) may violate the constraint associated to the 

minimum multiplicity property when its value is greater than zero. In addition, all the 

iClx actions of any Clx class that inherits from Cl1 may also violate this multiplicity.  

 Maximum Multiplicity (max(p2;As)). The iAs and uAs actions may violate the 

constraint defined by this property when the maximum multiplicity is lower than ‘*’.  

 Delete Propagation (delpropagation(p2;As)). The dCl1, gClsiClp and uClsiClsj actions 

(such that Clsi=Cl1 and Clsi≠Clsj) may violate the conditions that this property 

establishes. Besides these actions, all the dClx actions of any Clx class that inherits 

from Cl1 may also violate this condition.  

 Changeability (changeability(p2;As)). The iAs and uAs actions may violate the 

constraints stated by readOnly or removeOnly changeability values, and the dAs and 

uAs actions may violate the constraints defined by the readOnly and addOnly values. 

 isNotNull (isNotNull(At)). The iCl1, sClpClsi and uClsjClsi actions (such that Clsi=Cl1 

and Clsi≠Clsj) may violate the condition that this property defines when its value is 

true. In addition, all the iClx actions of any Clx class that inherits from Cl1 may also 

violate this condition.  

 isDisjoint (isDisjoint(g)). The sClpClsi action (for each subclass Clsi of Clp) may 

violate the condition that this property defines when its value is true.  

 isCovering (isCovering(g)). The gClsiClp action (for each subclass Clsi of Clp) may 

violate the condition that this property defines when its value is true.  

 



4.2.1.2 Avoiding Inconsistencies 
 

For each property constraint that may be violated by an action type ac, we propose 

either adding an action type that compensates the effect of ac to ensure the maintenance 

of the constraints induced by that property or a precondition that disables the execution 

of ac when its execution may lead to a violation of the constraint. The latter option is 

chosen when the former causes collateral effects that prevent maintaining the 

consistency of the operation while preserving the intention of the main action [11].  

 

We present in the following tables (from Table 2 to Table 9) the maintenance actions 

for each action type ac. Each table describes, for every element of the class diagram (the 

Element column), the conditions that the element has to satisfy (Condition column) to 

be potentially affected by the execution of ac and the maintenance action chosen 

(Required Action column) to guarantee the fulfillment of the problematic property of the 

element (Property Ensured column) when ac is executed. For instance, the first row in 

Table 2, describes that for attributes that are not null and not derived, the iCl(x) action 

may violate its not null property and that to avoid this inconsistency the additional 

action uAt(x,v) must be executed after the iCl(x) one. 

 

More specifically, the Required Action column shows either: (1) the additional actions 

using the notation (direction, action) where action is the name of the action type 

required, and direction indicates whether that action should be executed before () or 

after () the action analyzed; or (2) the OCL preconditions (introduced between curly 

brackets ({}) that must be satisfied by the system state before proceeding with the 

execution of the action. If several actions of the same type are needed in the first 

scenario, we indicate the number of times (number times) the action is required before 

the action. In addition, the parameters in the actions show the dependencies between the 

parameters of the analyzed action type and the parameters of its additional actions or 

preconditions.  

 

Table 2 shows the maintenance actions for the iCl(x) basic action. When an object x is 

created in a class Cl, its non derived and not null attributes must be initialized after. 

Moreover, if the class Cl or its direct or indirect superclasses have a non derived 

association with a mandatory participation, several links (as many as the mandatory 

multiplicity indicates) of the association must be created after to avoid the violation of 

the minimum multiplicity. 

As an example, in the running example, the iConferenceEdition(x) action of the 

createConferenceEdition operation (see Fig. 3) requires: 

 the uNumber(x,v) action to avoid the violation of the not null property of the number 

attribute, and  

 the iCelebrates(x,y) action to avoid the violation of the minimum multiplicity property 

of the conference role. 

Note that these actions are just the actions required for avoiding the inconsistencies that 

the iConferenceEdition action can cause; the recursive process introduced at the 

beginning of section 4.2 must be applied to obtain the complete specification body of 

the createConferenceEdition operation. The same consideration has to be taken into 

account in the remainder operation examples introduced in this subsection.  

 
 

 

 



Table 2. Required Actions of the iCl(x) action type 

Element  
(it has to be read: 

 for each ) 

Condition Required Action Property 
Ensured 

Atk  Cl or 

Atk  Clp 
where Clp is a 

superclass4 of Cl 

isNotNull(Atk) and not 

isDerived(Atk)  

(, uAtk(x,v)) isNotNull of 

Atk 

 

As(p1:Cl1; p2:Cl2)  

where Cl = Cl1 or 

Cl = Clc and Clc is 

a subclass5 of Cl1  

min(p2;As) > 0 and not 

isDerived(As) 

min(p2;As) times (, 

iAs(x,y)) 

Minimum 

multiplicity of 

p2 

 

Table 3 shows the maintenance actions for the dCl(x) basic action. The deletion of an 

object x from the class Cl must be forbidden if Cl participates in any association where 

the delete propagation property of its opposite end is marked as restrictive and the 

object x participates in any link of the association. This situation is avoided by the 

precondition defined in the first row of Table 3. The deletion of an object x from the 

class Cl implies the previous deletion of its links (if the opposite end of the association 

in which Cl participates is marked as link or cascade) and the deletion of the linked 

objects (for the cascade value).  

 

The dConferenceEdition(x) action of the deleteConferenceEdition operation (see Fig. 3) 

requires: 

 a precondition (which checks that x does not have any publication associated) to 

avoid the violation of the delete propagation property of the participant role, and  

 the dCelebrates(x,y) action to avoid the violation of the delete propagation property 

of the conference role.  
 

Table 3. Required Actions of the dCl(x) action type 

Element  
(it has to be read: 

 for each ) 

Condition Required Action Property 
Ensured 

As(p1:Cl1; p2:Cl2)  

where Cl = Cl1 or 

Cl = Clc and Clc is 

a subclass
5
 of Cl1 

delpropagation(p2;As) = 

restrictive 

{x.p2->isEmpty()}
6 Delete 

Propagation 

of p2 delpropagation(p2;As) = 

link  

(, dAs(x,y)) 

delpropagation(p2;As) = 

cascade  

(, dAs(x,y)) 

(, dCl2(y)) 

 

Table 4 shows the maintenance actions for the iAs (x,y) basic action. The insertion of a 

link in the association As may require the previous insertion of one or both objects of 

the link for links that cannot be added after the object creations (due to the 

changeability or to the multiplicity of the As roles). Moreover, the insertion of a link 

must be prohibited if it violates the maximum multiplicity of one or both ends of the 

association (avoided by the precondition defined in the second row of the table). 

 

The iPublishes(x,y) action of the createPublishes operation (see Fig. 5) requires: 

                                                 
4 Superclass may be direct or indirect  
5 Subclass may be direct or indirect  
6 This precondition is slightly modified when the dCl1(x) action is performed together with the dAs(x,y) and dCl2(y) 

actions (this occurs when the delpropagation(p1;As) = cascade). In this case the precondition does not have to take 

into account the link to be deleted by the dAs action (so, the precondition is {y.p1.p2->excludes(y)->isEmpty()}). 



 two preconditions (which check that x and y do not have the maximum number of 

associated links) to prevent the violation of the maximum multiplicity property of the 

participant and in roles. 

 
Table 4. Required Actions of the iAs(x,y) action type of As(p1:Cl1; p2:Cl2) where x Cl1 and y Cl2 

Element 
 

Condition Required Action Property 
Ensured 

p1 association end 

 

(the same has to be 

applied for p2) 

 

changeability(p1;As) = 

removeOnly or readOnly 
(, iCl2(y)) Changeability 

of p1 

changeability(p1;As) = 

(addOnly or 

unrestricted) and 

max(p1;As) ≠ min(p1;As) 

and max(p1;As) ≠ * 

{y.p1->size() < 

max(p1;As)} 

Maximum 

Multiplicity 

of p1 

changeability(p1;As) = 

(addOnly or 

unrestricted) and 

max(p1;As) = min(p1;As)  

(, iCl2(y)) 

 

There exist certain combinations of the property values of association ends that could 

cause no termination of the process that expands the iAs action. This occurs when both 

association ends have minimum multiplicity values greater than 1 and either they have 

the same value at minimum and maximum multiplicities (row 3 of Table 4) or the 

removeOnly or readOnly values for the changeability property (row 1 of Table 4). In 

those cases the designer must specify by hand the body of the operation that contains 

the iAs action. Note that these situations are not common in real scenarios and that they 

can be at least detected by our method to avoid entering into an infinite loop.  

 

Table 5 shows the maintenance actions for the dAs (x,y) basic action. The deletion of a 

link from the association As may require the posterior deletion of one or both objects of 

the link for links that cannot be removed (due to the changeability or to the multiplicity 

of the As roles). Moreover, the deletion of a link must be prohibited if it violates the 

minimum multiplicity of one or both ends of the association (avoided by the 

precondition defined in the second row of the table). 

 

The dCelebrates(x,y) action of the deleteCelebrates operation (see Fig. 5) requires: 

 the dConferenceEdition(y) action to prevent the violation of the changeability 

property of the conference role.  

 
Table 5. Required Actions of the dAs(x,y) action type of As(p1:Cl1; p2:Cl2) where x Cl1 and y Cl2 

Element 
 

Condition Required Action Property 
Ensured  

p1 association end 

 

(the same has to be 

applied for p2) 

 

changeability(p1;As) =  

addOnly or readOnly 
(, dCl2(y)) Changeability 

of p1 

changeability(p1;As) = 

(removeOnly or 

unrestricted) and 

max(p1;As) ≠ min(p1;As) 

and min(p1;As) > 0 

{y.p1->size() > 

min(p1;As)} 
Minimum 

Multiplicity 

of p1 

changeability(p1;As) = 

(removeOnly or 

unrestricted) and 

max(p1;As) = min(p1;As)  

(, dCl2(y)) 

 



Table 6 shows the maintenance actions for the uAs (x,y,z) basic action. The required 

actions are calculated from the required actions of the insertion of a link and from the 

deletion of a link. 

 

The uCelebrates(x,y,z) action of the updateCelebrates operation (see Fig. 5) requires: 

 the iConferenceEdition(z) and the dConferenceEdition(y) actions to prevent the 

violation of the changeability and multiplicity properties of the conference role 

(changeability is readOnly and the maximum and the minimum multiplicity is the 

same).  
 

Table 6. Required Actions of the uAs(x,y,z) action type of As(p1:Cl1; p2:Cl2) where x Cl1 and y Cl2 

and z Cl2 

Element 
 

Condition Required Action Property 
Ensured  

p1 association end changeability(p1;As) = 

readOnly or max(p1;As) 

= min(p1;As) 

(, dCl2(y)) 

(, iCl2(z)) 

Changeability 

of p, 

Maximum 

Multiplicity 

of p1, 

Minimum 

Multiplicity 

of p1 

changeability(p1;As) = 

removeOnly and 

max(p1;As) ≠ min(p1;As) 

and min(p1;As) > 0 

 (, iCl2(z)) 

{y.p1->size() > 

min(p1;As)} 

changeability(p1;As) = 

removeOnly and 

max(p1;As) ≠ min(p1;As) 

and min(p1;As) = 0 

 (, iCl2(z)) 

changeability(p1;As) = 

addOnly and max(p1;As) 

≠ min(p1;As) and 

max(p1;As) ≠ * 

(, dCl2(y)) 

{z.p1->size() < 

max(p1;As)} 

 
changeability(p1;As) = 

addOnly and max(p1;As) 

≠ min(p1;As) and 

max(p1;As) = * 

(, dCl2(y)) 

 

changeability(p1;As) = 

unrestricted and 

max(p1;As) ≠ min(p1;As) 

and min(p1;As) > 0 

{y.p1->size() > 

min(p1;As)} 

changeability(p1;As) = 

unrestricted and 

max(p1;As) ≠ min(p1;As) 

and max(p1;As) ≠ * 

{z.p1->size() < 

max(p1;As)} 

 

 

Table 7 shows the maintenance actions for the sClpClsi(x) basic action. The specialization 

of an object x of the class Clp to the subclass Clsi must be prohibited if x is an object of 

other subclass of Clsj of a disjoint generalization set. The object specialization requires 

the posterior initialization of its non derived and not null attributes, the insertion of links 

for non derived association with a mandatory participation and the specialization of the 

object to any subclass of Clsi, if Clsi is the superclass of a covering generalization set. 

 

For the running example, operations  including specialization actions have not been 

generated since the generalization set is disjoint and complete (according to Rule 4). 
 

 

 

 

 

 

 



Table 7. Required Actions of the sClpClsi(x) action type of Gen(Clp,Cls1,…,Clsn) 

Element 
(it has to be read: 

 for each ) 

Condition Required Action Property 
Ensured 

As(p1:Cl1; p2:Cl2) 

where Clsi = Cl1  
min(p2;As) > 0 and not 

isDerived(As)  

min(p2;As) times (, 

iAs(x,y)) 

Minimum 

multiplicity of 

p2 

Atk  Clsi  

where Clsi = Cl1  

isNotNull(Atk) and not 

isDerived(Atk) 

(, uAtk(x,v)) isNotNull  of 

Atk 

g=Gen(Clp,Cls1,…,Clsn)  isDisjoint(g) {not x.IsTypeOf(Clsj)} 

 j=1..n where Clsi  Clsj 

isDisjoint of g 

 

g’=Gen(Clsi,Clsi1,…,Clsin)  isCovering(g’) sClsiClsii’(x) 

for any i’=1..n 
isCovering of 

g’ 

 

Table 8 shows the maintenance actions for the gClsiClp(x) basic action. The 

generalization of an object x of the subclass Clsi to the class Clp must be prohibited if x is 

not an object of other subclass of Clp of a covering generalization set. The object 

generalization requires the previous deletion of its links (if the opposite end of the 

association in which Clsi participates is marked as link or cascade) and the deletion of 

the linked objects (for the cascade value).  

 

Again, for the running example, operations that include generalization actions have not 

been generated since the generalization set is disjoint and complete (according to Rule 

4). 
 

Table 8. Required Actions of the gClsiClp(x) action type of Gen(Clp,Cls1,…,Clsn) 

Element 
(it has to be read: 

 for each ) 

Condition Required Action Property 
Ensured 

As(p1:Cl1; p2:Cl2) 

where Clsi = Cl1 
delpropagation(p2;As) = 

restrictive 

{x.p2->isEmpty()} Delete 

Propagation 

of p2 delpropagation(p2;As) = 

link  

(, dAs(x,y)) 

delpropagation(p2;As) = 

cascade  

(, dAs(x,y)) 

(, dCl2(y)) 

g=Gen(Clp,Cls1,…,Clsn) isCovering(g)  {x.IsTypeOf(Clsj) } 

where Clsi  Clsj 

isCovering of 

g 

 

Table 9 shows the maintenance actions for the u ClsiClsj(x,y,z) basic action. The required 

actions are calculated from the required actions of an object specialization and an object 

generalization. 

 

The uPublicationInternalDocument(x) action of the 

updatePublicationInternalDocument operation (see Fig. 6) requires: 

 a precondition (which checks that x does not have any link to a conference edition) to 

avoid the violation of the delete propagation property of the in role. 
 

 

 

 

 

 

 

 

 

 



Table 9. Required Actions of the uClsiClsj action type of Gen(Clp,Cls1,…,Clsn) 

Element 
(it has to be read: 

 for each ) 

Condition Required Action Property 
Ensured 

As(p1:Cl1; p2:Cl2) 

where Clsi = Cl1  
delpropagation(p2;As) = 

restrictive 

{x.p2->isEmpty()} Delete 

Propagation 

of p2  delpropagation(p2;As) = 

link   

(, dAs(x,y)) 

delpropagation(p2;As) = 

cascade  

(, dAs(x,y)) 

(, dCl2(y)) 

As’(p1’:Cl1’; 

p2’:Cl2’) 

where Clsj = Cl1’ 

min(p2’;As) > 0 and not 

isDerived(As’)  

min(p2’;As) times (, 

iAs’(x,y)) 

Minimum 

multiplicity of 

p2’ 

Atk  Clsj 

 

isNotNull(Atk) and not 

isDerived(Atk)  

(, uAtk(x,y)) isNotNull of 

Atk 

g’=Gen(Clsj,Clsj1,…,Clsjn) isCovering(g’) sClsjClsjj’(x) 

for any j’=1..n 
isCovering of 

g’ 

 

Note that the table for the uAt action is not defined since the execution of this action 

does not cause the violation of any of the properties considered.  

 

4.3. Specifying Operation Signatures 

The last step of our method focuses on the specification of the operation signatures. 

Obviously, the signature depends on the actions included in the operation body. Each 

action may require the addition of new parameters in the signature. The basic idea is that 

every variable that appears as a parameter in the action must also appear as a parameter 

(of the same type) in the operation so that a designer can provide its value. Four 

exceptions apply:  

1. Object variables for the iCl action are not parameters of the operation. These new 

objects are created during the operation execution.  

2. A parameter variable that has already appeared in a previous action does not 

generate a new operation parameter (i.e., if an operation consists of two events, 

iAs(x1,x2) and iAs(x1,x3), only three parameters x1, x2 and x3 are defined).  

3. We use the implicit parameter self as a replacement for one of the parameters 

whose type is the class to which the operation is attached (i.e., if an operation 

defined in a class Cl has the event uAti(x,v), only a parameter for v is generated; 

the implicit self parameter is used whenever x appears). 

4. Variables for actions that can be obtained by self are not parameters of the 

operations. For example, variables for dAs actions included in a deleteCl 

operation are not parameters of the operation. In those cases, the link/s to be 

deleted are the ones in which the self parameter participates, and thus they can be 

determined automatically. 

 

4.4. Application to the Running Example 
 

In this subsection we apply our method to the example of Fig. 2. In Fig. 3, 4, 5 and 6 we 

have already shown the list of operations generated for the example. Now in what 

follows we introduce the complete specification for each operation. Comments to clarify 

the maintenance actions required for the operation are added if necessary. We present 

the operations grouped by the rule that generates them. 

 

 



Operations generated by the application of Rule 1 (Classes). 
 

 For the Publication class, the operations generated are createPublication and 

deletePublication: 

 

   Publication::createPublication(vname:String){ 

iPublication (p); --main action 

uName(p,vname); --avoiding not null constraint violation} 

 

The createPublication operation specification includes two basic actions. The first 

one, iPublication, corresponds to the basic action of a creation operation (according 

to Table 2). The second one, uName, is defined to avoid the violation of the 

isNotNull property of the name attribute (see row 1 of Table 2). This update action 

does not require further maintenance actions.  
 

   Publication::deletePublication(){ 

 if (self.in->isEmpty()) then 

dPublication(self); --main action 

endif; } 

 

The deletePublication operation specification includes a precondition that prevents 

the deletion of a publication when it has a conference edition associated to it (see 

row 1 of Table 3).  
 

 For the ConferenceEdition class, the operations generated are 

createConferenceEdition and deleteConferenceEdition: 

   ConferenceEdition::createConferenceEdition(vnumber:String,  

   conf:Conference){ 

iConferenceEdition (e); --main action 

uNumber(e,vnumber); --avoiding not null constraint violation 

iCelebrates(e,conf); --due to the min multiplicity } 

 

uNumber is defined to avoid the violation of the isNotNull property of the number 

attribute. iCelebrates is added to satisfy the minimum multiplicity value of the 

conference role (see row 2 of Table 2).  
 

   ConferenceEdition::deleteConferenceEdition(){ 

 if (self.participant->isEmpty()) then 

  dCelebrates(self,self.conference);--delete propagation 

dConferenceEdition(self); --main action 

endif; } 

 

The deleteConferenceEdition operation specification includes a precondition that 

prevents the deletion of a conference edition when it has a publication associated to 

it. dCelebrates is included to delete the link between the conference edition to be 

deleted and its conference (see row 2 of Table 3).  
 

 For the Conference class, the operations generated are createConference and 

deleteConference: 



   Conference::createConference(vname:String){ 

iConference (c);--main action 

uName(c,vname);--avoiding not null constraint violation } 

 

uName, is defined to avoid the violation of the isNotNull property of the name 

attribute. This action does not require any other action.  
 

   Conference::deleteConference(){ 

if (self.edition.participant->isEmpty()) then 

foreach ConferenceEdition e in self.edition do 

dCelebrates(e, self);--delete propagation cascade 

dConferenceEdition(e);--delete propagation cascade 

  end for; 

dConference(self);--main action 

endif; } 

 

The deleteConference operation specification includes an iterative statement that 

deletes all links to conference editions of a conference as well as deletes all the 

associated conference editions. This is because the delete propagation value of the 

edition role is cascade (see row 3 of Table 3). Moreover, the operation includes a 

precondition that prevents the deletion of conference when it has conference 

editions associated that in turn have publications associated to them. This is 

because of the value restrictive at the delete propagation of the participant role (see 

row 1 of Table 3). The last action of the operation is the one that is related to the 

delete operation, dConference. 

 

 For the InternalDocument class, the operations generated are 

createInternalDocument and deleteInternalDocument: 

   InternalDocument::createInternalDocument(v:String){ 

iInternalDocument(i);--main action 

uName(i,v);--avoiding not null constraint violation } 

 

uName, is defined to avoid the violation of the isNotNull property of the name 

attribute. This action does not require any other action.  
    

   InternalDocument::deleteInternalDocument(){ 

dInternalDocument(self);--main action } 

 

Operations generated by the application of Rule 2 (Attributes). 

 
  ConferenceEdition::updateYear(v:Integer){ 

uYear(self,v); --main action } 

 

  ConferenceEdition::updateNumberOfSubmissions(v:Integer){ 

uNumberOfSubmissions(self,v); --main action } 

 

  Publication::updatePublicationDate(v:String){ 

uPublicationDate(self,v); --main action  } 

 

  Document::updateDescription(v:String){ 

uDescription(self,v); --main action  } 

 



Operations generated by the application of Rule 3 (Associations). 

 

 For the Publishes association, the operations generated are a createPublishes 

operation in the ConferenceEdition and Publication classes:  

   Publication::createPublishes(edt:ConferenceEdition){ 

 if (edt.participant < 100) and (self.in < 1) then 

  iPublishes(self, edt);--main action 

 endif } 

 

   ConferenceEdition::createPublishes(pub:Publication){ 

 if (pub.in < 1) and (self.participant < 100) then 

  iPublishes(pub, self);--main action 

 endif } 

 

The createPublishes operation specification includes a precondition that prevents 

the violation of the maximum multiplicity property of the participant and in roles 

(see row 2 of Table 4).  
 

 For the Celebrates association, a createCelebrates operation,  a deleteCelebrates 

operation and an updateCelebrates operation are generated in the Conference class:  

   Conference::createCelebrates(vNumber:String){ 

 iConferenceEdition(e);--due to the max multiplicity 

uNumber(e,vNumber);--avoiding not null constraint violation 

 iCelebrates(e, self); --main action } 

 

The createCelebrates operation specification includes the creation of a new 

conference edition. This is because of the value readOnly of the changeability 

property at the conference role (see row 3 of Table 4), which means that conference 

editions cannot add celebrate links throughout their live (so, the creation of a 

celebrate link is just possible together with the creation of a conference edition). 

The operation also includes the uName action to avoid the violation of the 

isNotNull property of the name attribute.  
 

   Conference::deleteCelebrates(edt:ConferenceEdition){ 

     if (edt.participant->isEmpty()) then  

dCelebrates(edt, self);--main action 

dConferenceEdition(edt);-- due to readOnly changeability 

 endif; } 

 

The deleteCelebrates operation specification includes the dConferenceEdition 

action to prevent the violation of the changeability property at the conference role 

(see row 1 of Table 5). Note that since a celebrates link cannot be removed from a 

conference edition (changeability(conference, celebrates) = readOnly), in order to 

delete a celebrates link it is necessary that the deleteCelebrates operation also 

deletes the conference edition involved in that link. In addition, since the 

dConferenceEdition action can violate the delete propagation of the participant 

role, a precondition to avoid this violation has been included.  
 

Conference::updateCelebrates(edt:ConferenceEdition,    

vnumber:String){ 



if (edt.participant->isEmpty()) then 

iConferenceEdition (e);  

uNumber(e,vnumber);  

uCelebrates(self, edt, e); 

  dConferenceEdition(edt);  

endif;  

} 

 

The updateCelebrates operation specification includes the iConferenceEdition and 

the dConferenceEdition actions for creating a new conference edition to be linked 

to the conference and deleting the conference edition edt linked to the conference. 

This allows preventing the violation of the changeability and multiplicity properties 

at the conference role (see row 1 of Table 6). The iConferenceEdition action 

requires in turn the uNumber action to prevent the violation of the isNotNull 

property of the number attribute of the ConferenceEdition class. Also, the 

dConferenceEdition action requires a precondition to prevent the deletion of a 

conference edition when it has a publication associated to it. Note that although the 

iConferenceEdition action requires an iCelebrates action and the 

dConferenceEdition action requires a dCelebrates action these actions are not 

included in the updateCelebrates operation since these dependencies are satisfied 

by the uCelebrates action. 
 

Operations generated by the application of Rule 4 (Generalizations). 

 
  InternalDocument::updateInternalDocumentPublication(){ 

 uInternalDocumentPublication(self); --main action} 

 
  Publication::updatePublicationInternalDocument(){ 

 if (self.in->isEmpty()) then 

uPublicationInternalDocument(self);--main action 

 endif } 

 

The updatePublicationInternalDocument operation specification includes a 

precondition that prevents the modification of the specialization of a publication 

when it has a conference edition associated to it (see row 1 of Table 9). 

 
5. Formalizing the method as a model-to-model 
transformation  
 

Our method has been defined as a M2M endogenous transformation that takes a specific 

UML class diagram as input and outputs the same class diagram extended with the set 

of strongly executable operations that suffice to provide a basic behavior for the system 

under development. The source model (and the target one, since it is an endogenous 

transformation) is an instance of the UML metamodel possibly annotated with our 

profile. Note that the target model is still a Platform Independent Model (according to 

the MDA terminology) since it is completely platform independent. The refinement 

introduced by the transformation does not add any technology-specific details.  

 

The formalization of the M2M transformation is defined in ATL [9]. ATL is a hybrid 

model transformation language developed by the ATLANMOD Group [43]. Our set of 



ATL transformation rules automatically transform the elements of a source class 

diagram into elements in the target class diagram according to the steps described in the 

previous section. ATL provides a compiler and a virtual machine that enables the 

execution of ATL transformations.  

 

ATL provides the ATL modules to implement transformations. An ATL module 

specifies the rules that define how the elements of the input model are mapped to 

elements of the output model. A declarative rule in ATL specifies for an input element 

(defined in the “from” section of the rule) how the output elements should be generated 

(defined in the “to” section of the rule). Moreover, ATL modules allow metamodel 

extensions to be specified in order to define computed attributes (attributes) or 

operations (helpers). 

 

5.1. Structure of the Transformation 
 

The complete description of the ATL transformation can be found in [44]. In this 

section we just summarized some of its main elements.  

 

As a first step, we have structured our transformation in an ATL module that defines a 

new model7. The header of the transformation within the eclipse-based ATL IDE is the 

following:  
 

module GeneratingOperations;  

create output : OUT from input : IN; 

 

Although input (IN) and output (OUT) metamodels can be seen in the transformation 

specification, both of them are in fact associated to the same metamodel when the 

transformation is launched. The metamodel used to express the transformation is the 

UML metamodel slightly extended to allow the definition of the enriched association 

properties we have been using throughout the paper. 

 

Then, for each type of element that can be contained in the input model (Classes, 

Associations, Attributes, GeneralizationSets), we define a set of ATL rules to generate 

the corresponding elements in the output model following the rules introduced in 

section 4.1.  

 

As an example, we show the ATL rule for generating creation and deletion operations 

for classes explained in Section 4.1: 

 
rule ClassNotAbstract2ClassCreateOpDeleteOp{ 

    

from 

c: IN!Class (not c.isAbstract and not c.isDerived and not 

c.is_SuperclassCovering and not c.is_InRestrictiveAs) 

to 

 oout : OUT!Class ( 

  name <- c.name, 

  isAbstract <- c.isAbstract, 

  isDerived <- c.isDerived, 

  associationEnd <- c.associationEnd, 

                                                 
7 This implementation creates a new output model that clones the input model and extends it with the new operations. 

Nevertheless, the transformation can also be implemented extending the input model (without creating a new 

model). 



  system <- c.system, 

  operation <- Sequence{createOp,deleteOp} 

 ), 

 createOp: OUT!Operation ( 

  name <- 'create' + c.name, 

  body <- c.build_CreationBody(thisModule.initialize_actionList), 

parameter <- 

c.build_CreationParameters(thisModule.initialize_actionList), 

  system <- c.system 

 ), 

 deleteOp: OUT!Operation ( 

  name <- 'delete' + c.name, 

body <- c.build_DestroyBody(thisModule.initialize_actionList), 

parameter <-

c.build_DestroyParameters(thisModule.initialize_actionList), 

  system <- c.system 

 )  

} 

 

First, the static elements of the source class are cloned in the return class object (since 

the static aspects are not modified by the transformation). Secondly, create and delete 

operations are added if necessary (note that the from clause in the rule restricts the 

application of the rule to classes that are not abstract, not superclass of a covering 

generalization, and not participating in restrictive or mandatory associations, according 

to Rule 1). 
 

The auxiliary helper operation build_CreationBody is in charge of providing the 

imperative description of the creation operation’s behavior. As an example, we show the 

implementation of the build_CreationBody helper: 
 
helper context IN!Class def : build_CreationBody(actionList : 

Sequence(String)) : String = 

 let _notNullAttributes: Sequence (IN!Attribute) = self.attribute->  

select(a |a.isNotNull) ->union(self.get_InheritedAtNotNull) 

 in 

 self.text_iCl + 

 if _notNullAttributes->flatten()->isEmpty() then 

  if self.get_MandatoryClasses(actionList->append(self.text_iCl))->  

notEmpty() then 

   self.get_MandatoryClasses(actionList->  

append(self.text_iCl))->  

collect(y|y.build_CreationLinkBody(actionList->  

append(self.text_iCl)))->sum() 

     else 

   ' ' 

  endif 

 else 

  _notNullAttributes->flatten()->collect(a| a.text_uAt)->sum() + 

  if self.get_MandatoryClasses(actionList->append(self.text_iCl))-> 

notEmpty() then 

   self.get_MandatoryClasses(actionList-> 

append(self.text_iCl))-> 

collect(y|y.build_CreationLinkBody(actionList-> 

append(self.text_iCl)))->sum() 

      else 

   ' ' 

      endif 

 endif; 

 

Note how depending on the properties of the class and the associations, the body will 

include more or less required actions for the creation operation. 

 



More specifically, the helper builds a string that contains the textual behavior 

specification of the creation operation. This string is created by concatenating: 

- (1) the textual specification of the main action of the operation (iCl()). 

- (2) the textual specification of the actions in charge of fulfilling the not null property 

of the attributes of the class (uAt()).  

- (3) the textual specification of the actions in charge of fulfilling the mandatory 

participation of the class in associations (iAs()).  This specification is obtained 

using the build_CreationLinkBody helper. 

 

Similar rules and helpers have been defined for generating the remainder of the 

operations of the class diagram of the output model [44].  

 

5.2 Transformation Validation  
 

We have validated the transformation by checking that it behaves as intended, which is 

a common kind of validation [45]. One way to do so is to apply the transformation to a 

set of model examples and to check the transformation does what it was intended to do 

(i.e. to compare the expected results with the generated ones).  

 

Following this approach, we have validated our transformation by means of testing its 

behavior using as input several case studies used in the Software Engineering course of 

the School of Applied Computer Science of the Universidad Politécnica de Valencia. 

The description of the case studies can be found in [44]. The results returned by the 

transformation have been compared with the expected ones defined by ourselves 

according to the method developed in [46].  

 
5.3 Tool Implementation 
 

The previous transformation has been implemented as an Eclipse plug-in within the 

open-source modeling framework MOSKitt. The MOSKitt project with the 

transformation can be downloaded from [44].  

 

As an example, Fig. 7 and 8 show the execution of the implemented transformation over 

our running example. As shown in Fig. 7 the output model contains the same static 

elements as the input model but adds 19 new operations (the generated operations are 

those indicated in Fig. 3, 4, 5 and 6). The transformation has also generated a string for 

each operation that contains the description of its behavior in the property body. Fig. 8 

shows the value of the body and parameter property for the creation operation of the 

ConferenceEdition class. The body of the operation is generated by means of the helper 

build_CreationBody shown in section 5.1. 

 



 
 

Figure 7. Representation of the Input and Output models of the case study in the model tree editor  
 

 
Figure 8. Description of the body and parameters of the createConferenceEdition operation 

 

6. Method Evaluation  
 

We have applied our method to different scenarios in order to evaluate its usefulness in 

terms of the completeness and quality gain of our automatically generated specification 

when comparing it with a manual specification and with the results provided by 

generation code tools for the same class diagram.  

 

The first analysis evaluates the completeness of our method (i.e. the percentage and 

richness of operations that our method is able to generate in comparison with the ones 

that: 1 - a designer would manually define and 2 - generated by other code generation 

tools). A second analysis focuses on the quality improvement that can be expected when 



using our method by comparing the operations and the constraints detected and handled 

by each operation when generated by our method with those detected and correctly 

handled by students when manually implementing the same operations.  

 

As can be seen in the next subsections, results are satisfactory in both situations. Our 

method suffices to automatically generate a large number of operations in all analyzed 

situations and is very useful to avoid mistakes during the definition of the operations. 

 

6.1. Evaluation of the Method Completeness 
 

This first analysis consisted in comparing the set of operations originally specified by 

the designers of a real-life application with the set of operations generated automatically 

for the same application. This comparison is based on the well-known osCommerce[47] 

online shop e-commerce solution used by more than 200000 online stores.  

 

The main objective of this analysis was to evaluate the percentage of operations that are 

completely covered by our method with respect to the total number operations designed 

during the original system specification. In the comparison, we also include the results 

obtained when using two alternative popular MDD tools, IBM Rational Architect [26] 

and Poseidon [22], featuring behavioral generation capabilities as well. 

  

The osCommerce is an e-commerce solution available as free software under the GNU 

General Public License. The osCommerce project was started in March 2000 in 

Germany and since then, it has become the base of thousands of online stores around 

the world. For comparison purposes, we have analyzed a fragment of the class diagram 

of osCommerce [44] consisting of 12 classes, 7 associations, 1 generalization set and 43 

attributes. For this class diagram, our method has generated 89 operations (see [44]). 

This accounts for a 85% of the total number of operations originally specified by the 

designers of the system. From these 85%, in a 84% the specification generated by our 

method is completely equivalent to the one in the original system. For the other 1% we 

get a partial definition (the original condition included some degree of additional 

business logic that could not be automatically derived from the class diagram 

information). Clearly, this shows that with our method designers could have avoided the 

generation of most of the system operations resulting in a significant productivity 

improvement during the development. 

 

In comparison, results obtained when using IBM Rational Architect and Poseidon tools 

are much worse. These tools generate only getter and setter methods for each attribute 

and association end of the UML class diagram (Java, C#, C++, and other programming 

languages can be chosen to implement these methods). In the case of IBM Rational 

Architect, the setter methods just set new values (objects) to the attributes (association 

ends) without checking any possible constraint violation. In Poseidon tool, setter 

methods only guarantee the uniqueness of the attribute values (association end objects). 

Comparing these results with the operations generated by our method, we see that our 

approach generates all those setter operations plus 54 additional modification operations 

(to create and destroy objects, for instance) and, most importantly, our operations take 

care of the system integrity by checking or maintaining all constraint violations during 

the operation execution which is not the case for the IBM Rational Architect or 

Poseidon tools. 

 



We have confirmed these completeness results by repeating the study with two more 

case studies, CMA [48] and EmpTraining [44]. In both cases, the results have been 

similar: a 69% of the operations specified for EmpTraining and CMA are completely 

generated by our method and a high percentage of the remaining ones (21% for 

EmpTraining and 31% for CMA) are partially generated as well. We refer the reader to 

[7] for a more detailed description of these experiments. 

 

6.2. Evaluating the Quality gain when using our Method  
 

The second analysis studies several applications developed by undergraduate students 

during their last year in an Applied Computer Science degree. The applications were 

developed in the Visual Studio .Net 2005 environment and implemented using the C# 

language. The input for developing the systems was a set of UML class diagrams 

describing the systems to be implemented (see [44]). 

 

For each student application, we compare the behavior of the application with the 

behavior generated by our method to analyze: (1) the percentage of life cycle operations 

that were missing in the system designed by the student and (2) the percentage of the 

model property constraints that are not guaranteed to be fulfilled by the student’s 

systems. The goal was to demonstrate that our method can be applied to detect and 

avoid many of the common errors made during the implementation of system operations 

when taking only the static part of UML models as a source.  

 

We have analyzed 10 applications for two case studies (CS1 and CS2). These 

applications have been randomly selected. Each application has been developed in 

groups composed of one or two students. Fig. 9 and Fig. 10 summarize the results of the 

evaluation for CS1 and CS2 respectively.  

 
Figure. 9. Results of the analysis for CS1 

 

 
Figure. 10. Results of the analysis for CS2 



The results of the analysis reveal that:  

 an important number of operations are missing in the student applications (42% 

for CS1 and 59% for CS2 of the necessary operations to perform all typical 

create/delete/update changes was not implemented), and  

 a high number of constraints are neither guaranteed to be fulfilled: for example 

just one maximum multiplicity constraint is guarantee in CS1, none in CS2 and 

the only property that is fully guaranteed to be satisfied at both CS1 and CS2 is 

the navigability property.  

Note that the delete propagation and changeability properties are not included in the 

study (see graphics on the right of Fig. 9 and 10). The former is not included since the 

class diagrams used by the students were UML class diagrams where delete propagation 

was not specified. The last property is not included since its value at the class diagrams 

of the case studies was always unrestricted and, therefore, its fulfillment was always 

guaranteed. Moreover, the study points out several interesting issues. On the one hand, 

navigability is always guaranteed to be fulfilled (students correctly avoid implementing 

operations to manage associations in classes with a non-navigable association end). The 

reason for the high-success, in this particular case, could be that non-navigable ends 

always appear as part of aggregation associations and this kind of associations got a 

special emphasis during the course. On the other hand, maximum and minimum 

multiplicity constraints, and isDisjoint and isCovering constraints were almost 

completely ignored. We believe that this shows that students did a very limited set of 

tests with the application. Otherwise they should have detected these violations. It is 

also important to note that no student implemented operations not identified and 

specified by our method, which implies that for these scenarios our method was 

complete.  

 

We believe these empirical evaluations clearly show the benefits of our method. If 

students had been given, instead of a simple static UML diagram, a class diagram 

extended with our operations they would have produced a software system with a 

considerable better quality, since this additional information would have help students 

to significantly reduce the number of errors made during the implementation phase and 

would have considerably reduced the time spent in doing it. Note that expert 

programmers would have better performed the application development, i.e. would have 

specified a higher number of operations and guaranteed a higher number of constraints. 

Nevertheless, our method does generate valuable operations which are always correct. 

Thus, the tool is useful for expert programmers, too. For instance, even if maybe they 

would not have made mistakes when defining the operations we can save them time by 

generating them automatically 

 

7. Related Work 
 

The (semi)-automatic derivation of system behavior from different aspects of a system 

has been faced from different perspectives. A summary table at the end highlights the 

most relevant aspects of this comparison.  

 

In the deductive database field, specifically in approaches that cope with integrity 

checking or integrity maintenance problems at compile-time, we find approaches aimed 

at extending transactions/operations with preconditions or additional actions to always 



ensure their successful execution. Among others, in [11] and [12], the authors adapt the 

state based approach to formal specifications supporting explicitly the concepts of state 

and state transition. In those cases, the expressivity of the logical language used for the 

definition of the structural schema and the operations is poorer than what can be 

expressed in UML. Concretely, they do not deal with properties related to associations 

and attributes (as for instance, read only properties of attributes and association 

navigability). In those works, inconsistent transactions/operations provided by designers 

are replaced, if possible, by new consistent ones preserving the intended effect of the 

old ones. Therefore, these approaches require the designer to provide a first version of 

the operations instead of generating them from scratch and do not enforce the attribute 

and association properties, as our method does. Moreover, none of the previous 

approaches has been implemented. In the same field, [13] uses a declarative logic-based 

approach (implemented in Prolog) to define the structural part of a system and the 

transactions that can be executed on it. As before, the expressiveness of the structural 

schema is limited and the generated operations only consist of insert and delete actions 

(update ones are not supported) that ignore most of the integrity constraints except for 

minimum multiplicities and derived elements.  

 

In the active database field, several approaches suggest the use of triggers to ensure the 

consistency enforcement of transactions (on the contrary, our method does not need 

triggers for guarantying the fulfillment of the properties of the class diagram). 

Remarkable works in this field are [14] and [15]. In [14], the authors adopt Domain 

Relational Calculus as the underlying language in the expression of constraints and 

transaction actions and Relational Algebra for the database definition. The method 

generates automatically a set of actives rules that may be used to enforce the set of 

defined constraints. Thus, when a transaction is executed the method determines a 

partial order on the active rule set to guarantee the termination in a final state such that 

all violated constraints are corrected. If the partial order cannot be determined then the 

transaction is aborted. In this approach transactions must be provided by designers and 

association and attribute properties are not covered except for minimum multiplicities 

and derivability property. The method proposed in [15] extends the previous one. It uses 

SQL based syntax to express constraints. This syntax permits to define more powerful 

constraints as maximum multiplicities. Instead, the method only generates the event and 

the precondition part of the set of active rules that may be used to enforce the set of 

defined constraints. The action part of rules (i.e. the actual behavior of the operation) 

has to be added manually by the designer. 

 

In the conceptual modeling field, some proposed techniques aim to generate operations 

from structure diagrams but differ from our method in several aspects. The study in [16] 

partially determines the set of possible basic actions to be applied to a UML class 

diagram (generalizations and changeability and delete propagation properties are not 

considered). For these actions, only preconditions (and not additional actions) are 

generated when they are necessary. In this approach, the modeling language used is the 

B formal notation [49]. In [17], a set of basic operations (similar to our concept of basic 

actions) and a set of elementary operations (similar to our concept of operation) 

composed of basic operations are derived from an EER diagram. The enforcement of 

these operations is achieved by means of update propagations. These operations are not 

necessarily executable since cardinality constraints and other explicit constraints are not 

considered in any case and, thus, preconditions to guarantee these constraints have to be 

added by hand. The work presented in [18] generates the declarative definition of a set 



of structural events to be applied to a structural model with dynamic features expressed 

in the ROSES language. Although this approach deals with association properties 

equivalent to ours, generalizations (with the disjoint and completeness constraints) and 

navigability are not considered. In [19], an approach to automate the extension of the 

declarative operation specifications taking into account only association invariants is 

presented. The authors use the Booster notation to define object models and the 

specifications of the operations. Unlike our proposal, this work just deals with 

referential integrity, multiplicity and symmetry properties.  

 

Additional approaches, as [20] and [21], extend the operations with a set of 

preconditions to ensure the executability of the operations. In this case, operations are 

not generated automatically, as our method does, but the designer is responsible for 

providing the set of operations. In [20] the preconditions are extracted from the set of 

constraints defined in the structural model (a subset of the OMT object model with only 

classes and associations is considered). This approach only works with properties and 

constraints that may be expressed in Z. Generalizations and changeability and delete 

propagation properties are not considered. In [21] the preconditions are extracted from a 

set of predefined constraints. In this work, minimum and maximum multiplicities of 

associations and disjoint and complete constraints are covered but not the others that our 

method considers. Alternatively, other approaches try to generate system operations 

from the information provided in different diagrams, such as the use case diagram. For 

instance, [50] presents a method for generating system operations from use cases 

specifications. Nevertheless, this method is not automatic and the specification of each 

system operation must be provided manually. 

 

A more technological approach related to our work is the one of Akehurst et al. in [51], 

which provides a set of patterns that allow generating automatically Java code from 

UML class diagrams. The patterns cover the implementation of UML 2.0 associations 

generating methods to manage them at run-time. These methods include assertions to 

check that the constraints specified in the UML 2.0 associations are satisfied, whereas 

our proposal goes by covering not only associations but the rest of model elements in 

UML and by adding the possibility of having an integrity maintenance solution that 

compensates the effect of the method behaviour instead of just checking the system 

state at the end of the operation. Moreover, this work targets a specific programming 

language, which hampers its reuse in other technologies. On the contrary, our work 

generates a UML model that it is still at the PIM level, i.e. completely platform 

independent. The operations introduced by our method do not add any technology-

specific details.  

 

Finally, we have analyzed most MDD tools (commercial or open source) able to 

generate methods following a similar philosophy as the one tackled in this paper. 

Nevertheless, the number and content of operations generated by these tools is lesser 

than what it is achieved by our method. Tools such as Poseidon [22], Enterprise 

Architect [23], Fujaba [24], Modelio [25] or IBM Rational Architect [26] provide MDD 

solutions that allow starting the software development process by specifying a class 

diagram of the system under construction. Then, they provide model to text 

transformations that generate code from that diagram including methods for the classes 

in the specified classes. However, these methods are just “basic” getter and setter 

methods for managing attributes and associations (other kinds of methods, e.g. to 

manage generalizations, are not supported). By “basic” we mean methods that these 



methods just include in their body the actions to perform the functionality of the method 

but do not include the necessary checking conditions or additional functionality to 

guarantee that the properties and constraints specified in the UML class diagram are 

satisfied. As a rare exception, Modelio [25] tool provides a library that allows 

generating code that (only) guarantees that cardinality constraints are satisfied. 

Therefore, when using these tools, the designers/programmers have to manually make 

the generated operations executable. We believe these tools could implement the 

method presented in this paper to improve their generation process. Also, note that 

current MDD tools target always a specific programming languages and/or technology 

platforms and thus, their results are hardly reusable for other technologies.  

 

A specially relevant tool is the OO-Method approach [27], an OO MDD method in 

whose development some of the authors have participated. OO-Method is supported by 

the ONME commercial tool [52], which generates system operations to manipulate 

elements specified in a conceptual schema. However, this conceptual schema is defined 

using a proprietary language and the implementation of the operations only guarantees a 

subset of the properties/constraints that are handled in this paper. Moreover the 

definition of the operations is not performed at the conceptual level but using concrete 

implementation languages to generate code which makes difficult the reusability of their 

method. We plan to improve OO-Method with the techniques developed in this work.    

 

Table 10 summarizes the most relevant aspects of the methods and tools previously 

reviewed. For each of them we have identified the inputs of the method (structural part 

plus input behavior model if the method does not generate the operations from scratch) 

and its output (what parts of the behavioural aspects are generated and the constraints 

and properties considered to generate them). We also indicate if there is a tool 

implementing the theoretical concepts presented in the method.  

 
Table 10. Comparative table of related work 

 Method Input Method Output Tool 

available 

Methods 

and 

Tools 

Structural part 
(modeling 

language) 

Behavioral part 
(modeling 

language) 

Behavioral part  Constraints and Properties 

Considered 

 

[11] Logical language  User defined basic 

actions  

(logical language) 

Required actions  Uniqueness, inclusion/exclusion, 

object-generating 

× 

[12] Logical language  User defined basic 

actions  

(logical language) 

Required actions  Uniqueness, inclusion/exclusion, 

object-generating 

× 

[13] Logical based 

language  

User defined basic 

actions except for 

updates  
(logical language) 

Required actions 

and preconditions  

Constraints expressed as closed 

first-order formulas (recursive rules 

and aggregate functions not 
covered) 

 

[14] Relational algebra  User defined 

transactions (DB 

update language) 

Active rules - event, 

preconditions and  

required actions 

Constraints expressed as relational 

calculus formulas (recursive rules 

and aggregate functions not 
covered) 

 

[15] Relational algebra  

 

User defined 

transactions (DB 
update language) 

Active rules - event 

and preconditions 

Constraints expressed in a 

declarative language similar to SQL 
(recursive rules and aggregate 

functions covered) 

× 

[16] UML without 

generalizations  

- Basic actions and 

their preconditions  

Constraints expressed in B language  

[17] EER  - Basic and 

elementary 

operations with 
required actions  

EER constructs (minimum and 

maximum mult. and some general 

constraints not covered) 

× 

[18] ROSES object 

model 

- Structural events 

with preconditions  

Constraints expressed in ROSES 

clauses (minimum and maximum 

mult., derivability, common 

× 



dynamic constraints of objects and 

attributes) 

[19] Booster language - Operations with 

preconditions and 

postconditions  

Graphic constraints (referential, 

multiplicities (only 0..1,1,*) and 

symmetric constraints) 

× 

[20] Subset of OMT 
(only classes and 

relations)  

Basic actions (Z 
language) 

Basic action 
preconditions  

Constraints expressed in Z language 
(disjoint and complete constraints 

and changeability and delete 

propagation properties not covered) 

× 

[21] UML Basic actions 

(OCL) 

Basic action 

preconditions  

Identifier, irreflexive, symmetric, 

asymmetric, antisymmetric, acyclic, 

path inclusion, exclusion and 
equality, value comparison, disjoint 

and complete and minimum and 

maximum mult. 

× 

[50] UML Use cases System operations 
(their specification 

is not provided) 

- × 

[22] UML - Association end 
getter/setter  

Uniqueness property and  
association navigability  

 

[23] 

 

UML - Association end 

getter/setter  

Association navigability and mult. 

(but no bounds check)  
 

[24] 

 
UML - Association end 

getter/setter  
Association navigability and mult. 

(but no bounds check) 
 

[25] 

 

UML - Association end 

getter/setter  

Association navigability and mult.  

[26] 

 
UML - Association end 

getter/setter 
Association navigability  

 [27] Proprietary 

Language 

- Create/Destroy for 

classes, Create 
/ Update/ Delete for 

Association Ends  

Abstract classes, mult., derived 

roles and attributes, delete 
propagation, changeability and 

navigability 

 

Our 

method 

Enriched UML - Basic actions and 

operations with 
preconditions and 

required actions  

ReadOnly, derivabiltiy and 

isNotNull attribute properties, 
abstract class property, minimum 

and maximum mult., derivability, 

navigability, changeability, delete 
propagation association end 

properties and disjoint and complete 

constraints 

 

 

 

8. Conclusions 
 

In this work we have defined a method (formalized as a M2M transformation using 

ATL) that generates a set of basic operations for an initial purely static conceptual 

schema. The operations generated by our method suffice to cover all basic modification 

operations (insert/update/deletes…) for the system under development. The number and 

behavior of the operations is deduced from the characteristics of the structural elements 

(classes, associations and so forth) in the input schema. Our construction process 

guarantees that no irrelevant operations are defined and that all created operations are 

strongly executable with respect to the most common structural properties in CSs (as 

multiplicity property). Our operations can also be used as a foundation to build more 

complex operations.  

 

Our proposal improves the quality and productivity of the behavior specification task of 

the software development process by automating most of it and ensuring the absence of 

errors that could be introduced by designers in a manual specification. Furthermore, our 

method can also be applied to domain models that are derived from ontologies using the 

proposal presented in [53], where a framework that integrates UML class-based models 

and OWL ontologies is introduced. Also our approach can enhance other techniques 

that aim at automating model transformations. For instance, our method can be used for 

enhancing the automation of domain modeling in [54].  



 

With regard to future work, we consider extending our method to deal with additional 

properties and constraints that are not studied in this work, for example, those regarding 

association classes. We also plan to study the integration in our generation process of 

other information sources to provide more richer and complex operations (as the use 

case diagrams). As an example, we will consider the approach presented in [20] that 

uses use case diagrams to generate parts of the behavior specification. Additionally, the 

ideas introduced in this paper could be applied to the verification of existing behavior 

schemas by means of the analysis of their completeness and executability properties as 

done in [55] or to detect inconsistencies between elements defined in the conceptual 

schema. Finally, we would like to improve the maintenance phase of the system 

development as well by analyzing how to incrementally regenerate the behavior schema 

after evolutions on the structural schema.  
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