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Abstract

This PhD thesis elaborates on a proposal made by the Dutch theoretical physicist
G. 't Hooft (1999 Nobel prize in physics), to the effect that quantum mechanics is the
emergent theory of some underlying, deterministic theory. According to this proposal,
information—loss effects in the underlying deterministic theory lead to the arrangement
of states of the latter into equivalence classes, that one identifies as quantum states of
the emergent quantum mechanics. In brief, quantisation is dissipation, according to
’t Hooft. In our thesis we present two mechanisms whereby quantum mechanics is
explicitly seen to emerge, thus explicitly realising ’t Hooft’s proposal.

The first mechanism makes use of Verlinde’s approach to classical mechanics and
general relativity via holographic screens. This technique, first presented in 2010 in
order to understand the emergent nature of spacetime and gravity, is applied in our
thesis to the case of quantum mechanics.

The second mechanism presented to support 't Hooft’s statement is based on a
dictionary, also developed by the authors, between semiclassical quantum mechanics,
on the one hand, and the classical theory of irreversible thermodynamics, on the other.
This thermodynamical formalism, established by Nobel prize winners Onsager and
Prigogine, can be easily mapped into that of semiclassical quantum mechanics.



Resumen

Esta tesis doctoral profundiza en una propuesta hecha por el fisico teérico holandés
G. 't Hooft (premio Nobel de fisica, 1999), en el sentido de que la mecédnica cudntica
es la teoria emergente de una teoria subyacente, determinista. Segln esta propuesta,
los efectos de pérdida de informacion en la teoria determinista subyacente conducen a
la combinacion de estados en clases de equivalencia, que se identifican como estados
cuanticos de la mecédnica cudntica emergente.

En resumen, la cuantizacién es disipacion, de acuerdo con 't Hooft. En nuestra
tesis se presentan dos mecanismos por los que la mecdnica cudntica se ve emerger
explicitamente, verificindose expresamente la propuesta de 't Hooft.

El primer mecanismo hace uso del enfoque de Verlinde a la mecénica cldsica y
la relatividad general a través de pantallas holograficas. Esta técnica, presentada por
primera vez en 2010 con el fin de comprender la naturaleza emergente del espacio-
tiempo y de la gravedad, se aplica en nuestra tesis al caso de la mecdnica cudntica.

El segundo mecanismo presentado para apoyar la afirmacién de "t Hooft se basa en
un diccionario, también desarrollado por nosotros, entre la mecdnica cudntica semiclésica,
por un lado, y la teoria clasica de la termodindmica de los procesos irreversibles, por
el otro. Este formalismo termodinamico, establecido por los premios Nobel Onsager y
Prigogine, se puede trasladar facilmente al caso de la mecédnica cudntica semiclasica.



Resum

Aquesta tesi doctoral aprofundeix en una proposta feta pel fisic teoric holandes G.
’t Hooft (premi Nobel en fisica, 1999), en el sentit que la mecanica quantica és la teo-
ria emergent d’una teoria subjacent, determinista. Segons aquesta proposta, els efectes
de perdua d’informacié en la teoria determinista subjacent condueixen a la combi-
naci6 d’estats en classes d’equivaléncia, que s’identifiquen com a estats quantics de la
mecanica quantica emergent.

En resum, la quantitzaci6 és dissipacid, d’acord amb ’t Hooft. En la nostra tesi es
presenten dos mecanismes pels quals la mecanica quantica es veu emergir explicitament,
verificant expressament la proposta de ’t Hooft.

El primer mecanisme fa ds de I’enfocament de Verlinde a la mecénica cléssica i
la relativitat general a través de pantalles holografiques. Aquesta teécnica, presentada
per primera vegada en el 2010 per tal de comprendre la naturalesa emergent de I’espai-
temps i de la gravetat, es aplicada en la nostra tesi al cas de la mecanica quantica.

El segon mecanisme presentat per recolzar la declaracié de 't Hooft es basa en un
diccionari, també desenvolupat pels autors, entre la mecanica quantica semiclassica,
d’una banda, i la teoria classica de la termodinamica dels processos irreversibles, de
I’altra. Aquest formalisme termodinamic, que va ser establert pels premis Nobel On-
sager i Prigogine, es pot traslladar facilment al cas de la mecanica quantica semiclassica.
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Chapter 1

Overview

1.1 The quantisation paradigm

It has become customary to classify the interactions known in Nature into four classes:
i) gravitational forces;

ii) electromagnetic forces;

iii) weak nuclear forces;

iv) strong nuclear forces.

According to the chronology of their discovery, the gravitational interaction was the
first one to be discovered, followed by the electromagnetic force, and then the nuclear
forces (weak and strong). The same order of presentation also applies to their relative
strength, gravitational forces being the weakest and strong nuclear forces the strongest
of all known interactions.

The two basic pillars on which modern physics stands are quantum theory and
general relativity. These two theories were developed in the first quarter of the 20th
century. Roughly speaking, general relativity accounts for the gravitational force, while
quantum theory underlies the existing models (so—called Yang—Mills theories) of the
electromagnetic force and the nuclear forces (both weak and strong).

In this way Einstein’s theory of gravitation applies to the very large macroworld
(i.e., to astronomical scales, up to 10%8 cm, the radius of the Universe). On the other
hand quantum models (quantum Yang—Mills theories) describe the microworld (by
which we mean length scales the size of an atom, typically 10~8 ¢cm, and below).

Quantum theory and the theory of relativity have been experimentally tested innu-
merable times, always extremely successfully. As long as one remains within the limits
of applicability of the corresponding theory, one can safely claim that both theories are
right.

Now Einstein’s theory of relativity leads to two remarkable predictions about the
Universe. First, that the final state of massive stars is to undergo gravitational col-
lapse behind an event horizon and form a black hole which will contain a singularity.
Secondly, that there is a singularity in our past which constitutes, in some sense, a
beginning to the Universe. One expects the physics of such singularities to be more

9



10 CHAPTER 1. OVERVIEW

correctly described by some quantum version of gravity than it is by the Einstein the-
ory alone. There are good reasons to believe that quantum effects should play a major
role in explaining the true physics of black holes and the so-called Big Bang—the ini-
tial singularity at the beginning of time, out of which everything else in the Universe
evolved. Refined over the course of the 20th century, these models start from an ini-
tial state of high density, high temperature and length scales of the order of the Planck
length (10733 cm). Such extreme conditions require the notions of quantum mechanics
for their correct description.

However, severe technical difficulties arose as soon as one tried to apply the prin-
ciples of quantum mechanics to the theory of relativity. This (failed) programme has
come to be known as the quantisation of gravity; it is an outstanding problem in 20th—
century theoretical physics that penetrates deeply into the 21st century. More than 80
years of hard work on a would—be quantum theory of gravity have produced no tangible
result yet. Which is not to say that time and resources have been completely wasted:
many interesting things have been learnt along the way. However, despite arduous ef-
forts along many different lines of approach, a consistent theory of quantum gravity
still eludes us. Those few approaches that have survived the test of time (most notably
string theory and loop quantum gravity) still face enormous challenges, falling short of
a providing completely satisfactory solution to the problem.

An obvious source of potential difficulties comes from the fact that in the quanti-
sation of gravity one is trying to apply, at an astronomical scale, concepts drawn from
the microworld: these two worlds differ by many orders of magnitude. There is no
guarantee that inconsistencies will not arise when one tries to push a theory beyond its
natural limits, beyond the scope of phenomena for whose explanation it was devised.

Difficult problems can sometimes be solved by application of existing techniques,
often by painstakingly patient application, if necessary by brute—force application.
However, conceptual difficulties often require a change of mind, a change in the pa-
radigms that underlie one’s whole intellectual framework. This viewpoint is based on
the conviction that any theory necessarily has its limits, and that therefore a change in
approach may be convenient, if not altogether necessary.

The quantisation of gravity is possibly one such case. The logic of the problem
can be summarised as follows. One is given Einstein’s classical theory of gravity. By
classical one means that Planck’s constant / is missing: it appears nowhere in the
equations. Next one applies a heuristic set of rules known as quantisation. These
rules have been successfully applied to explain electrons, atoms, molecules, nuclei,
and the whole microworld known to us, so we have some degree of confidence in
them. However, they remain a set of heuristic rules that one applies more or less
automatically, without troubling oneself much about their range of applicability.

Quantisation, by its own definition, is applied on a classical theory to yield the
corresponding quantum theory. The paradigm thus reads: start with a classical theory,
then quantise. The quantum theory is the better theory, the classical one being just an
approximation, sometimes a very coarse one. This paradigm has dominated much of
20th—century physics so successfully, that many physicists find it difficult to accept that
there might be anything wrong with it. Perhaps the best example of the application of
this paradigm is that of quantum electrodynamics, the theory of electrons and photons.
In terms of explanatory power, predictive power and theoretical-numerical accuracy
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checked against experiments, quantum electrodynamics stands out supreme. This suc-
cess story bears the names of Dirac, Feynman and Schwinger, among others. After
quantum electrodynamics (an abelian Yang—Mills theory) comes the standard model of
particle physics (a nonabelian Yang—Mills theory), which unifies the electromagnetic
force, the weak nuclear force, and the strong nuclear force under a single principle.
This second success story, also based on quantum mechanics, is associated with the
names of Yang, Mills, Weinberg, Glashow and Salam, among others.

So there must be something right in the quantisation paradigm—yet, the quantisa-
tion of gravity turned out to be a colossal failure. Could it be the quantisation paradigm
that fails?

Needless to say, in this PhD thesis we will not tackle the quantisation of gravity.
Instead we will be more modest and analyse the alternative possibility that the current
paradigm (start with a classical theory, then quantise) fails for the problem at hand. It
has been suggested by 't Hooft that a possible reason for this failure lies in the mis-
conception that quantum mechanics is a fundamental theory. This point is elaborated
throughout this PhD thesis in detail, starting in the next section.

1.2 Emergent quantum mechanics

The conceptual foundations of quantum mechanics have been the subject of heated dis-
pute ever since the early 1930’s, as the so—called Copenhagen interpretation was chal-
lenged by a few but very vocal (and very remarkable) physicists, Einstein being one
of them. At stake was not the predictive power of the new theory (something every-
body acknowledged without reservations) but, rather, its philosophical underpinning:
God doesn’t play dice! As time went by, the Copenhagen interpretation (as developed
mainly by Bohr, Heisenberg and Born) won the day, and Einstein seemed to lose the
game. In a nutshell, Einstein accepted Copenhagen quantum mechanics as a statisti-
cal theory, but refused to accept the loss of a fundamentally deterministic, ontological
character that the Copenhagen interpretation brought about. For him, Copenhagen
quantum mechanics was merely an effective probabilistic description of some deeper,
deterministic theory, where physical entities play an ontological role independently of
observation.

As quantum mechanics became established, more domains of classical physics
came to be quantised. This, in turn, made the quantum theory even more successful.
However, as already seen, general relativity adamantly resisted quantisation.

Classical Yang—Mills theory can be consistently quantised because, among other
things, there is a systematic procedure for getting rid of some nasty infinities that arise
in the corresponding quantum theory. This procedure is called renormalisation—much
of the credit for this goes to 't Hooft, who proved the renormalisability of (nonabelian)
quantum Yang—Mills theories.

General relativity, however, cannot be consistently quantised because it is not renor-
malisable. Yet one would like to have a quantum theory of gravity: a theory that de-
scribes the structure of spacetime at length scales as tiny as the Planck length. At
the same time, this would—be quantum theory of gravity should be able to reproduce
general relativity when considered at astronomical length scales.
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So either general relativity is not the ultimate theory of spacetime, or quantum
mechanics is not the ultimate theory of the microscopic world—or both.

’t Hooft takes the viewpoint that quantum mechanics as we know it, is not the ul-
timate theory of the microscopic world. This does not invalidate quantum mechanics
as we know it. Rather, according to 't Hooft, quantum mechanics emerges as a prob-
abilistic description of an underlying deterministic theory. In this sense, 't Hooft’s
view agrees with Einstein’s—but one still has to actually construct such a determinis-
tic theory in the first place, and then describe how quantum mechanics emerges from
it. Einstein fell short of achieving these two goals in his critique of the Copenhagen
interpretation, while 't Hooft has taken a number of ground-breaking steps towards
achieving them [56 57,58, 159].

This emergence property of quantum mechanics is analogous to that of classical
thermodynamics as derived from, say, the classical kinetic theory of gases. In the
passage from the kinetic theory to the thermodynamical description there is a great deal
of information loss. At a microscopic level we can, at least in principle, follow the path
of each and every single molecule of gas. This entails a huge amount of information. At
a macroscopic level we renounce almost all this knowledge and satisfy ourselves with
just a handful of variables such as pressure, volume and temperature. Macroscopic
properties can be understood and explained microscopically, but we renounce this vast
amount of information. The emergent theory has entirely different properties from
those of its underlying microscopic theory. Of course, classical thermodynamics is also
a deterministic theory, and in this sense the analogy with quantum mechanics breaks
down. However, this example serves well to illustrate the process of information loss
that, according to 't Hooft, characterises the passage from an underlying deterministic
theory to the probabilistic quantum mechanics that we observe and verify in our labs.

The theory underlying Copenhagen quantum mechanics, called deterministic quan-
tum mechanics by ’t Hooft, must first and foremost be deterministic (as opposed to
probabilistic), and it must also exhibit information loss. It is a quantum theory because
it describes the microscopic world, but it is deterministic because it obeys some classi-
cal equation of motion. States in the deterministic theory are arranged, by a dissipative
process of information loss, into equivalence classes that the Copenhagen interpreta-
tion calls quantum states. To revert to our thermodynamical analogy, pressure can be
understood as arising from the collisions of gas molecules against the container walls.
Many different motions of the molecules will give rise to the same overall momentum
transfer to the wall and, therefore, to the same value of the pressure. Yet, a knowledge
of the pressure is far less detailed than a knowledge of the precise molecules, and the
precise paths they follow as they hit the wall. So one quantum state in the Copenhagen
interpretation (pressure) is the result of arranging very many different deterministic
states (configurations of molecules) into one equivalence class.

Specifically, 't Hooft proves the following existence theorem: For any quantum
system there exists at least one deterministic model that reproduces all its dynamics.

As in the previous thermodynamical analogy, the underlying deterministic theory
may have little in common (at least at first sight) with the emergent statistical theory.
In this way not only quantum mechanics is emergent, but possibly also its symmetries.
’t Hooft further argues that symmetries we are used to such as local gauge symmetry
in Yang-Mills theory, or diffeomorphism invariance in general relativity, may be emer-
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gent symmetries that need not be present, at least in their usual form, in the underlying
deterministic models.

There exists a large body of literature on emergent quantum mechanics, some basic
references being [4} 157, [80]; see also [5| 24} 28| 134} 1511 158, [74} [82] [104} (98, [105]]
for more recent work. The hypothesis of emergence and the holographic principle
[55, [106] have been hailed as landmarks in the endeavour to arrive at a consistent
theory of quantum gravity.

To summarise: if quantum mechanics truly is an emergent theory, then the quan-
tisation paradigm alluded to in section certainly breaks down, because quantum
mechanics is not as fundamental as so far believed.

1.3 Emergent gravity

It turns out that the quantisation paradigm for gravity, mentioned in section[I.1] breaks
down for two reasons. One has already been explained: quantum mechanics is not
a fundamental theory, but rather an effective phenomenon. The other reason is that
spacetime and gravity are both emergent phenomena, too. Although this thesis deals
primarily with the notion of quantum mechanics as an emergent theory, here we would
like to say a few words about the emergent nature of gravity and spacetime.
Groundbreaking advances in our understanding of gravity have led to profound
new insights into its nature (see [87, 188} 89, 90, |91} [113]] and refs. therein). Perhaps
the most relevant insight is the recognition that gravity cannot be a fundamental force,
but rather must be an effective description of some underlying degrees of freedom. As
such, gravity is amenable to a thermodynamical description. Although this fact had
already been suspected for some time [[L1}[12} 153, [111}165}154], it is only more recently
that it has been given due attention. The derivation of Newton’s laws of motion and of
Einstein’s gravity, presented in ref. [113]] from an entropic perspective, has triggered
off an avalanche of research into the subject, ensueing papers being too numerous to
quote here in detail; see however [[77, (18] [108] 30l (76, |41} 43]. A feature of these
developments is that, while offering insights into the quantum structure of spacetime,
the treatment is largely classical, in that no specific microscopic model of spacetime is
assumed. In other words, these developments refer not to the (microscopic) statistical
mechanics of gravity and spacetime, but to its (macroscopic) thermodynamics instead.
In this sense, notions usually considered to be a priori, such as inertia, force and space-
time, appear as phenomena arising from some underlying theory whose minutie are
largely unknown—but fortunately also irrelevant for a thermodynamical description.
Such emergent phenomena are no longer a priori, but derived. We refer readers to the
comprehensive overview of emergent physics presented in the nice book [21]]. Space-
time itself appears as an emergent phenomenon, with the holographic principle playing
a key role [55}[106]]. Developments in string theory also point in this direction [[15}99]].
To summarise: Boltzmann’s dictum, If something heats up, it has microstructure,
applies to the spacetime continuum of general relativity, because many known space-
times can be assigned thermodynamical properties like temperature, entropy, heat ca-
pacity, etc. We do not know yet what the atoms of spacetime look like—in fact we are
probably centuries away from developing the necessary technology that would allow
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one to probe spacetime at the Planck scale. However, the granularity of spacetime is a
commonly accepted feature today, a feature that becomes invisible at the energies cur-
rently available, thus causing the impression of a continuum. In other words, spacetime
is an emergent phenomenon, too, as much as quantum mechanics.

1.4 Structure of this PhD thesis

This PhD thesis is based on the three papers [1} 2, 3]. The publications [1]] and [3] are
original research articles, while the paper [2] contains a written version of the invited
talk presented by J.M.L. at the 5th International Heinz von Foerster Congress: Emer-
gent Quantum Mechanics, Vienna, Austria, Nov. 11-13, 2011. This talk, being largely
based on the previous publication [[1]], is not collected here to avoid repetitions, except
for a brief section that did not appear in the initial paper [1].

Thus chapter [2] of this thesis contains an exact copy of paper [1] plus that section
of [2] that did not appear in [1] (modulo some rearrangements of the material), while
chapter 3] contains an exact copy of the article [3]] (again up to minor rearrangements).
Finally chapter 4] summarises our overall conclusions.



Chapter 2

An entropic picture

2.1 Introduction

It has been conjectured that quantum mechanics must be an emergent theory [81} 4}
105,156, 157, 133), 134, 1351, 136, [67]]; see also 73 138 [19, |20, 22, [23] 24! |69]] for its close
link with gravity theories, and [47, 48| |52 149] for an interpretation in thermodynam-
ical terms. The guiding principle at work in many of these approaches is the notion
that quantum mechanics provides some coarse—grained description of an underlying
deterministic theory. In some of these models [56], quantum states arise as equivalence
classes of classical, deterministic states, the latter being grouped together into equiva-
lence classes, or quantum states, due to our ignorance of the full microscopic descrip-
tion. Quantisation thus appears to be some kind of dissipation mechanism for informa-
tion. In the presence of dissipation, entropy immediately comes to mind [25} 26} [27]].

Thus the two research lines mentioned above, gravity and quantum mechanics,
share the common feature of being effective, thermodynamical descriptions of their re-
spective underlying theories. It is the purpose of this chapter to develop an approach to
emergent quantum mechanics from the entropic point of view pioneered in ref. [113],
with a quantum—mechanical particle replacing the classical particle considered in ref.
[L13]. Additionally, this will contribute towards clarifying the role played by Planck’s
constant 7 in the entropic derivation of classical gravity (Newton’s and Einstein’s)
presented in [113]. Indeed, our results can be regarded as an entropic derivation of
Planck’s constant & from Boltzmann’s constant kz—at least conceptually if not numer-
ically. Altogether, our approach will provide us with a holographic, entropic picture of
emergent quantum mechanics.

Finally let us say a word on notation. Awkward though the presence of 7, ¢, G, kp
in our equations may seem, our purpose of exhibiting how A emerges from kp renders
natural units inconvenient. Quantum operators will be denoted as f , with f being the
corresponding classical function.

15
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2.2 Holographic screens as entropy reservoirs

2.2.1 A quantum of entropy

The starting point in ref. [113] is a classical point particle of mass M approaching
a holographic screen S, from that side of the latter on which spacetime has already
emerged. At a distance from S equal to 1 Compton length, the particle causes the
entropy S of the screen to increase by the amount

AS = 2rkp, @2.1)

where kg is Boltzmann’s constant. The above can also be understood as meaning that
27k p is the quantum by which the entropy of the screen increases, whenever a particle
crosses S. The factor 27 on the right-hand side is conventional. Relevant is only the
fact that the entropy increase of the screen appears quantised in units of kp.

We call bright that side of the holographic screen on which spacetime has already
emerged, whereas the other side might well be termed dark. One can also think of the
holographic screen as being the horizon of some suitably picked observer O in space-
time. For example, in the relativistic case, one can think of this observer as being a
Rindler observer. The dark side might well be identified with the screen itself, as there
is literally no spacetime beyond the bright side—this assertion is to be understood as
relative to the corresponding observer, since different observers might perceive differ-
ent horizons. In this way, for each fixed value of the time variable, a collection of
observers (J;, with the index j running over some (continuous) set J, gives rise to
a foliation of 3-space by 2-dimensional holographic screens S;: R* = Uje 7S;. For
reasons to be explained presently we will mostly restrict our attention to potentials such
that the S; are all closed surfaces; we denote the finite volume they enclose by V;, so
av; = S;.

2.2.2 Two thermodynamical representations

We will take (2.1) to hold for a quantum particle as well. A quantum particle hitting
the holographic screetﬂ exchanges entropy with the latter, i.e., the wavefunction v
exchanges information with S. Just as information is quantised in terms of bits, so is
entropy quantised, as per eqn. (2.1). The only requirement on this exchange is that the
holographic screen act as an entropy reservoir. (See refs. [71,[78] for related proposals,
with the mechanical action integral replacing the entropy).

Describing the quantum particle on the bright side of the screen we have the stan-
dard wavefunction 1, depending on the spacetime coordinates and obeying the usual
laws of quantum mechanics. On the other hand, the entropic wavefunction ¢ _ de-
scribes the same quantum particle, as seen by an observer on the dark side of the holo-
graphic screen. If imagining an observer on the dark side of S, where spacetime has
not yet emerged, raises some concern, one can also think of ¢)_ as being related, in a

'Due to quantum delocalisation, statements such as a quantum particle hitting the holographic screen
must be understood as meaning a quantum—mechanical wavepacket, a substantial part of which has nonzero
overlap with the screen.



2.2. HOLOGRAPHIC SCREENS AS ENTROPY RESERVOIRS 17

way to be made precise below, to the flow of entropy across the horizon S, as measured
by an observer on the bright side of the same horizon.

Our goal is to describe the laws of entropic quantum mechanics, that is, the laws
satisfied by the entropic wavefunction ¢ _, and to place them in correspondence with
those satisfied by the standard wavefunction 1) on spacetime. The relevant thermody-
namical formalism needed here can be found, e.g., in the classic textbook [17]. How-
ever, for later use, let us briefly summarise a few basics. Any given thermodynamical
system can be completely described if one knows its fundamental equation. The latter
contains all the thermodynamical information one can obtain about the system. The
fundamental equation can be expressed in either of two equivalent ways, respectively
called the energy representation and the entropy representation. In the energy repre-
sentation one has a fundamental equation E = E(S,...), where the energy FE is a
function of the entropy S, plus of whatever additional variables may be required. In
the entropy representation one solves for the entropy in terms of the energy to obtain a
fundamental equation S = S(E,...).

As an example, let there be just one extensive parameter, the volume V. Then the
fundamental equation in the entropy representation will be an expression of the form
S =S(E,V), hence dS = (0S/0E)dE + (05/0V)dV. We know that 6Q = TdS,
while the first law of thermodynamics reads, in this case, 6QQ = dE + pdV, with
p the pressure. It follows that 7-1 = 9S/OF and p = T (9S/0V). This latter
equation is the equation of state. For example, in the case of an ideal gas we have
S(E,V) = kgln(V/Vy) + f(E), with f(E) a certain function of the energy and
Vo a reference volume (that can be regarded as a constant contribution to S and thus
neglected). It follows from 9S/0V = kpV ~! that pV is proportional to T', as expected
of an ideal gas.

In a sense to be made more precise presently, the bright side of the holographic
screen corresponds to the energy representation, while the dark side corresponds to the
entropy representation. Thus the energy representation will give us quantum mechanics
on spacetime as we know it. One must bear in mind, however, that standard thermo-
dynamical systems admit both representations (energy and entropy) simultaneously,
which representation one uses being just a matter of choice. In our case this choice
is dictated, for each fixed observer, by that side of the screen on which the observer
wants to study quantum mechanics. For example there is no energy variable on the
dark side, as there is no time variable, but an observer can assign the screen an entropy,
measuring the observer’s ignorance of what happens beyond the screen. By the same
token, on the bright side we have an energy but there is no entropyﬂ In this case these
two representations cannot be simultaneous.

The situation just described changes somewhat as soon as one considers two or
more observers, each one of them perceiving a different horizon or holographic screen.
Consider, for simplicity, two observers O, O, with their respective screens Sy, Sa, and
assume the latter to be such that S, gets beyond Sj, in the sense that S, encloses more
emerged volume than S;. That is, the portion of emerged spacetime perceived by O,
includes all that perceived by 1, plus some volume that remains on the dark side of

2We are considering the simplified case of a pure quantum state. Were our quantum state to be described
by a density matrix, there would of course be an entropy associated.
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S1. Call Vy4 this portion of spacetime that appears dark to O, but bright to O». Clearly,
quantum mechanics on V2 will be described in the energy representation by Os and
in the entropy representation by ;. In this case the two representations can coexist
simultaneously—not as corresponding to one observer, as in standard thermodynamics,
but each one of them as pertaining to a different observer.

The differences just mentioned, as well as some more that will arise along the way,
set us somewhat apart from the standard thermodynamical formalism. Nevertheless,
the thermodynamical analogy can be quite useful if one bears these differences in mind.

2.2.3 A holographic dictionary

Let us recall that one can formulate a holographic dictionary between gravitation, on
the one hand, and thermodynamics, on the other [87, [88, 189, 90, 91]. Let Vi denote
the gravitational potential created by a total mass M = fv d3V pas within the volume
V enclosed by the holographic screen S = 9V. Then the following two statements are
equivalent [[113}160]:

i) there exists a gravitational potential Vg satisfying Poisson’s equation V?Vg =
47Gppr, such that a test mass m in the background field created by the mass distri-
bution pjs experiences a force F = —mVVg;

ii) given a foliation of 3—space by holographic screens, R* = U 7S;, there are two
scalar quantities, called entropy S and temperature 7', such that the force acting on a
test mass m is given by F'éz = |, s T0dS. The latter integral is taken over a screen that
does not enclose m.

Moreover, the thermodynamical equivalent of the gravitational theory includes the fol-
lowing dictionary entries [[113]]:

1 —1
@S(w) = MVG(x)A(VG(x))v (2.2
2rkpT(x) = %7 (2.3)
ks / d*aT = LE M. (2.4)
2 Js

In 2.2), @.3) and (2.4) we have placed all thermodynamical quantities on the left,
while their mechanical analogues are on the right. As in ref. [113], the area ele-
ment d?q on S is related to the infinitesimal number of bits dV on it through d%a =
L%4AN. We denote the area of the equipotential surface passing through the point z by
A(Ve(z)), while dV/dn denotes the derivative of Vi along the normal direction to
the same equipotential. The above expressions tell us how, given a gravitational poten-
tial Vo () and its normal derivative dV(; /dn, the entropy S and the temperature 7" can
be defined as functions of space.

Specifically, eqn. (2.2)) expresses the proportionality between the area A of the
screen S and the entropy S it contains. This porportionality implies that gravitational
equipotential surfaces get translated, by the holographic dictionary, as isoentropic sur-
faces, above called holographic screens S.
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Equation (2.3) expresses the Unruh effect: an accelerated observer experiences the
vacuum of an inertial observer as a thermal bath at a temperature 7' that is proportional
to the observer’s acceleration dVg /dn.

Finally, eqn. expresses the first law of thermodynamics and the equipartition
theorem. The right-hand side of (2.4) equals the total rest energy of the mass enclosed
by the volume V, while the left-hand side expresses the same energy content as spread
over the bits of the screen S = 9V, each one of them carrying an energy kg7 /2. Tt
is worthwhile noting that equipartition need not be postulated. Starting from one
can in fact prove the following form of the equipartition theorem:

k—B/d%T: @U(S), A(S) :/d%. (2.5)
2 S 4 S

™

The details leading up to (2.3)) from (2.3)) will be given in section[2.4.5] Above, U can
be an arbitrary potential energyﬂ We will henceforth mean eqn. (2.5) when referring
to the first law and the equipartition theorem. In all the above we are treating the area
as a continuous variable, but in fact it is quantised [113]]. If N (S) denotes the number
of bits of the screen S, then

A(S) = N(S)L3. (2.6)
However, in the limit N — oo, when AN/N << 1, this approximation of the area by
a continuous variable is accurate enough. We will see later on that letting N — oo is
equivalent to the semiclassical limit in quantum mechanics.

We intend to write a holographic dictionary between quantum mechanics, on the
one hand, and thermodynamics, on the other. This implies that we will need to gener-
alise eqns. (2.2)), (2.3) and (2.5) so as to adapt them to our quantum—mechanical setup.
Thus we will replace the classical particle of [[113] with a quantum particle, subject to
some potential energy U of nongravitational origin.

2.3 The energy representation

Let H = K + U be the classical Hamiltonian function on R? whose quantisation leads
to the quantum Hamiltonian operator H =K + U that governs our quantum particle.
The Hamiltonian H will be assumed to possess normalisable states. This condition on
the potential was already reflected in the gravitational case of eqn. (2.2), where the
negative sign of the gravitational potential led to a positive definite entropy.

On the bright side of the screen, spacetime has already emerged. This gives us the
energy representation of quantum mechanics—the one we are used to: a time variable
with a conserved Noether charge, the energy, and wavefunctions depending on the
spacetime coordinates. We have the uncertainty relation

AQ AP > g 2.7)
In the semiclassical limit we have a wavefunction
Py = exp <;I> , 2.8)

3The gravitational potential Vg appearing above is the gravitational energy U per unit test mass m.
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where I = [ dtL is the action integral satisfying the Hamilton-Jacobi equation.

Let V denote the finite portion of 3—space bounded by the closed holographic screen
S = JV. We can now posit the quantum—mechanical analogues of eqns. (2.2),
and (2.5). In the energy representation these analogues read, respectively,

1 4 1 N
50) = s AUE)I0E)), 29
. dU
2rkpT(z) = Lpg, (2.10)
kg 2 A(S) 2

Some comments are in order. We are considering the nonrelativistic limit, in which the
rest energy of the particle can be ignored. We also neglect all gravitational effects, rel-
ativistic or not; we will limit ourselves to the external potential U. Quantum operators
such as U , initially defined to act on wavefunctions in L2 (]RB), must now be restricted
to act on wavefunctions in L?()V). Denote this restriction by Uy. By definition, its
matrix elements (f |Uy|gy) are

(FolOvlgs) == /v PVl 2.12)

the integral extending over the finite volume V instead of all R®. For simplicity we
have suppressed the subindex y in (2.9), and (2.T1)), but it must be understood
that all operators are to be restricted as specified.

The right-hand side of deserves more attention. |U | denotes the operator
whose matrix elements are the absolute values of those of U. Taking the absolute value
ensures that the entropy is positive definite, given that the potential U need not have a
constant sign, contrary to the gravitational case of

It will also be observed that no carets stand above A(U(x)), A(S), because they
are c—numbers. They denote the area of the equipotential surface passing through the
point = and the are of the screen S, respectively. Also, the integral on the left—hand side
of 1i is a standard surface integral, even if the integrand is the operator T, because
the latter depends on the c—-number—valued coordinate functions x.

As a final remark, let us point out that the above equations (2.9), and (2.11),
as well as their classical counterparts (2.2), and (2.5)), are correctly understood as
being expressed in the energy representation of thermodynamics. This is so despite the
fact that one writes the entropy as an explicit function of the potential energy—would
this not be the defining property of the entropy representation? The answer is negative
for two reasons. First, one would need to express the entropy as a function of the total
energy H, rather than as a function of just the potential energy U. Second, all the above
expressions are functions defined on the emerged portion of space, where there exists
a conserved Noether charge, the energy H, and its conjugate variable, the time ¢. The
entropy representation will be introduced later on, when the absence of spacetime will
make it necessary to eliminate the space dependence of quantities such as entropy and
temperature. Such will be the case beyond the holographic screen.
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2.4 The entropy representation

The entropy representation can also be thought of as quantum mechanics in the absence
of spacetime, as we will come to recognise presently.

2.4.1 Action vs. entropy

It is well known, in the theory of thermodynamical fluctuations [17], that the proba-
bility density function d required to compute expectation values of thermodynamical
quantities is given by the exponential of the entropy:

d = exp <:) . (2.13)
B

Its square root, that one may call the amplitude for the probability density d, can there-
fore be identified with an entropic wavefunction 1/1(_61):

s
@ = exp (%B> , (2.14)

This identification is made up to a (possibly point—dependent) phase ¢'®, plus a nor-
malisation. Comparing (2.14) with (2.8 we arrive at the correspondence

il S

T (2.15)

between the energy representation and the entropy representation, both of them taken
in the semiclassical limit. This amounts to the statement that quantum—mechanical
fluctuations can be understood thermodynamically, at least in the semiclassical limit.

We should note that the correspondence is holographic in nature, because
the action integral I is defined on space, while the entropy S is defined on the screen
bounding it. Moreover, the above correspondence also implies that, in the entropic rep-
resentation, the semiclassical limit (the one considered in (2.8)) corresponds to letting
k B — 0.

The wavefunction describes an incoming wave, from the point of view of the
screen. An outgoing wave, from the point of view of the screen, would be described by
exp (—S5/2kp).

It is reassuring to observe that the same correspondence (2.15) has been found in
the context of gravity and black—hole thermodynamics [10} 9]

2.4.2 Quantum states vs. holographic screens

The equation U(xt, 22, 23) = Uy, where Uy is a constant, defines an equipotential
surface in R3. As Uy runs over all its possible values, we obtain a foliation of R by
equipotential surfaces. Following [113]], we will identify equipotential surfaces with
holographic screens. Hence forces will arise as entropy gradients.

Assume that ¥ is nonvanishing at a certain point in space. Consider an infinitesi-
mal cylinder around this point, with height L p and base area equal to the area element
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d2a. Motivated by the proportionality between area and entropy, already mentioned,
we postulate that there is an infinitesimal entropy flow d.S from the particle to the area
element d%a:

dS = C2nkpLp|yy|*da. (2.16)

Here C is a dimensionless numerical constant, to be determined presently. A closed
surface X receives an entropy flux S(X):

S(x) :C(z)zkaLp/ d%a |y | (2.17)
h

The constant C'(X) will in general depend on the particular surface chosen; the latter
may, but need not, be a holographic screen. The key notion here is that the integral of
the scalar field |t/ |? over any surface carries an entropy flow associated. When the
surface X actually coincides with a holographic screen S, and when the latter is not a
nodal surface of 1, the constant C'(S) may be determined by the requirement that the
entropy flux from the particle to the screen equal the quantum of entropy (2.I). Thus

1 _ 2 2
oS _Lp/sd alip 2. (2.18)

Let us now read eqn. (2.18)) in reverse, under the assumption that one knows the
proportionality constants C(S;) for a given foliation R® = U;jc 7S;. This amounts to
a knowledge of the integrands, i.e., of the probability density |+, |? within the surface
integral (2.18) on each and every S;. From these tomographic sections of all probability
densities there emerges the complete wavefunction 1, on all of R3, at least up to a
(possibly point—dependent) phase el®.

Thus the integrand of (2.18) gives the surface density of entropy flow into the holo-
graphic screen S, and the wavefunction 1) becomes (proportional to) the square root
of this flow. The collection of all these tomographic sections of ¢, along all possible
screens amounts to a knowledge of the complete wavefunction. Hence a knowledge
of the different surface densities of entropy flux across all possible screens is equiv-
alent to a knowledge of the quantum—mechanical wavefunction 1. This is how the
quantum-mechanical wavefunction ¢4 emerges from the holographic screens. Close
ideas concerning the wavefunction in relation to foliations of space have been put for-
ward in ref. [19].

2.4.3 The entropic uncertainty principle

Let us define the dimensionless variable
S
5=
2k B ’
that we will call the reduced entropy. It is nonnegative: s > 0. For example, the

semiclassical entropic wavefunction li can be expressed in terms of s as w@ (s) =
e™. We can consider arbitrary functions f(s) on which we let the following operators

QS,PS act:
Qsf(s):=sf(s), Psf(s) := 2nkp d{l(j.

(2.19)

(2.20)
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For reasons that will become clear presently, Qs will also be called the normal, or
entropic, position operator, while Pg will be called the normal, or entropic, momen-
tu One finds that i Ps and Qg are Hermitian on L2 [0,00). Unlike the usual case
on L?(R), the Hermitian property of position and momentum on the semiaxis involves
some nontrivial mathematical subtleties that will not be touched upon here; see [LO7].
Now the above operators satisfy the Heisenberg algebra

[Qs, Ps] = 27kp1. (2.21)
Therefore the following entropic uncertainty principle holds:
AQg AP > kp. (2.22)

The above uncertainty principle has been derived rather than postulated; this is in the
spirit of refs. [44] 45].

2.4.4 The entropic Schroedinger equation

Since the screens S; are isoentropic surfaces, the reduced entropy s can be regarded
as a dimensionless coordinate orthogonal to all the S;. Multiplication by Lp gives a
dimensionful coordinate p:

p:= Lps. (2.23)

Modulo multiplication by a dimensionless numerical factor, and the possible addition
of a constant, the above is an equivalent reexpression of the equation [[113]]

M
AS = ZWkBTCAx, (2.24)

where x is the distance measured normally to the screen—in turn, (2.24) is the same
as (2.1). We can exploit this fact if we assume that the time—independent Schroedinger
equation
h* _,
- v U, = F 2.25
Y Yy + U4 (2 (2.25)

is separable in a coordinate system that includes p as one of its coordinate functions.
So let us supplement p with two additional coordinates £, x such that the triple p, £, x

provides an orthogonal set of curvilinear coordinatef] in which (2.25)) separates as per
(2.27) below. Then the Euclidean line element on R? will be given by

ds? = h2dp® + hgde® + h2dx?, (2.26)

where the metric coefficients h,, h¢, h, are functions of all three coordinates p, £, x.
We will call p the normal coordinate to the foliation, while &, y will be called fangential

4The missing factor of i in the definition of Pyg is due to the correspondence .

SIn general, p, £, x are only local coordinates, and need not cover all of R3. In particular, £, x need not
cover a complete screen S;, nor need they be simultaneously defined on different screens S, S,. However,
to simplify our notation, we omit all the indices that would be necessary in order to take all these possibilities
into account.
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coordinates to the foliation. A more physical terminology, based on (2.23)) and (2.10),
could be entropic coordinate for p and isothermal coordinates for £, x.

We recall that U depends only on the normal coordinate p, so equipotential surfaces
are defined by U(p) = Uy, for any constant Uy. The tangential dimensions &, x are
purely spatial constructs: they encode the geometry of the equipotential surfaces. For
example, in the particular case of a Coulomb potential, or also of an isotropic harmonic
oscillator, the S; are a family of concentric spheres of increasing radii. Then p can be
identified with the usual radial coordinate » on R3, while £, y can be taken as the usual
polar angles 6, ¢. In the general case p, &, x need not coincide with any of the standard
coordinate functions on R3. However, each screen S; can be univocally identified
by the equation p = p;. The uncertainty principle (2.22) holds on the phase space
corresponding to p, and the operator Qs defined in is nothing but the position
operator along the normal, or entropic, coordinate.

Thus separating variables as per

and substituting into (2.25)) leads to
1 19 (hehy OR +lﬁ hphy O +lﬁ hyhe OV
hpohehy |ROp \ h, Op Y O£\ he 0€ Y ox \ hy Ox

2M
+ o (B-U) =0, (2.28)

The precise way in which separates into a p—dependent piece and a £, y—dependent
piece cannot be written down in all generality, as it varies according to the particular
choice made for p, ¢, x. This is due to our ignorance of the specific way in which the
metric coefficients h,, h¢, h, depend on all three variables p, £, x. One can, however,
outline some general features of the final outcome. Terms involving the Laplacian V2
will decompose as a sum V?) + Vg,x, where subindices indicate the variables being dif-
ferentiated in the corresponding operators. Calling the separation constant A, there will
be two separate equations. The first equation will involve the normal Laplacian V2,
the potential energy U(p), the energy eigenvalue E, the mass M and the separation
constant \. All these elements (with the exception of V%) appear as a certain function
Fof p:

V2R(p) + F(p,U(p), E, M, \)R(p) = 0. (2.29)

The unknown function F' is explicitly computable once a specific choice has been made
for the coordinates £, x. The second equation involves only the tangential Laplacian
Vg » and the separation constant \:

VY (& x) +AY (& x) =0. (2.30)

It is important to note that (2.30) can be solved independently of (2.29)°/ The eigen-
functions Y (&, x) constitute a complete orthonormal system of eigenfunctions of the

5Needless to say, in the case of a Coulomb field, li becomes the standard radial wave equation, while
(2.30) becomes that satisfied by the usual spherical harmonics, with A = I({ + 1).
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tangential Laplacian within the tangential Hilbert space L*(S;). Moreover, since we
have assumed the screens to be closed surfaces, the eigenvalues A will be quantised.
Once these eigenvalues have been determined, substitution into (2.29) allows the latter
to be completely solved.

We are finally in a position to define the entropic wavefunction ¢_ in terms of its
partner v;.. We take the entropic wavefunction to be the p—dependent piece in the

factorisation (2.27),
v—(p) == R(p). (2.31)

Clearly the entropic, or normal, Hilbert space corresponding to the screen S; will be
L?[0, p;). The latter is considered with respect to an integration measure that includes a
certain Jacobian factor J(p). In order to compute this Jacobian we proceed as follows.
Apply the factorisation to the normalisation condition for ¢ on V;:

Pj
/ &PV [y = /0 dp /S dédx hohehy |R(p) Y (& ). (2.32)

J

In general, the product h,h¢h, depends on all three coordinates p, &, x. The sought—
for Jacobian J(p) equals the p—dependent factor in the integration measure after the
integral over &, x has been carried out. As p; becomes larger and larger, we obtain
the entropic Hilbert space L?[0, o0). The latter would correspond to an observer who
perceives no horizon at all, thus extending his normalisation integral over all of
R3. We will come back to the issue of the different realisations of the entropic Hilbert
space (L?[0, p;) vs. L?[0,00)) in sectionm

In the passage form the energy representation to the entropy representation we ap-
pear to have lost the information corresponding to the holographic screens one inte-
grates over. However the screens carry no dynamics, because the force at point x is
orthogonal to the screen passing through x. Thus a knowledge of the entropic wave-
function Y _, plus of the foliation itself, is equivalent to a knowledge of the wave-
function v in the energy representation. That the foliation is a piece of information
belonging to the entropy representation, was stated in assertion i) of our section[2.2.3]
following [ 113} 160].

It remains to identify the wave equation satisfied by the entropic wavefunction
Y_. Obviously this equation is (2.29), which may thus be regarded as the entropy—

representation analogue of the time—independent Schroedinger equation H vy = Ey,
on space. Recalling (2.9) and (2.23), this entropic Schroedinger equation reads

V2 (s) + G(s, A(s), E, M, \)¢p_(s) = 0. (2.33)

We have called G(s, A(s), E, M, \) the function that results from expressing the po-
tential U as a function of the entropy S and the area A, and writing everything in terms
of the reduced entropy s. As was the case with F' in (2.29), the unknown function G is
explicitly computable once a specific choice has been made for the coordinates &, x.
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2.4.5 Thefundamental equation, the equation of state, and equipar-
tition

In this section we will rewrite the dictionary entries (2.9), (2.10) and (2.11)), found to
hold in the energy representation, in the entropy representation. For this purpose we
first need to solve the eigenvalue equation S ¢_ = S¢_ on the screen, so the latter will
be kept fixed. That is, we will not consider a variable surface S; of the foliation, but
rather a specific surface corresponding to a fixed value of the index j. Observe also a
difference in notation: ¢ instead of ¢. This is to stress the fact that, by (2.9), entropy
eigenstates ¢ cannot be eigenstates of the complete Hamiltonian H, but only of the
potential energy U. Once U is diagonalised by a set of ¢ defined on the bright side,
i.e., once we have solved the eigenvalue equationﬂ

Upy =Uds, (2.34)

then the corresponding ¢ on the screen are defined per continuity: ¢ (S) = ¢.(S).
By 1i the same ¢_ then diagonalise S

- 4hCLP

ASUS). (2.35)

Thermodynamical quantities will now arise as expectation values of operators in the
entropic eigenstates ¢_(S).

We first deal with (2.9). Clearly its reexpression in the entropy representation will
be the thermodynamical fundamental equation S = S(A) in the sense of ref. [17],
since the extensive parameter corresponding to the holographic screen is the area A.

Then we have
kp

(9) = 4helLp

Availing ourselves of the freedom to pick the origin of potentials at will, let us set
|U(S)| = he/Lp. Thus

AS)|US)). (2.36)

W kg
®)= 1z

which is the celebrated Bekenstein—Hawking law. It arises as a thermodynamical fun-
damental equation in the entropy representation.

Our holographic screen is treated thermodynamically as a stretched membrane, so
the generalised force conjugate to the extensive parameter A is the surface tension o.
Then the equation of state corresponding to is

A, (2.37)

kg (T)
4%

(2.38)

Rewrite the above as 27kp <T ) = 8mL%0 and recall that o is the normal component
of force per unit length on the screen. Since force is proportional to acceleration, the
above equation of state turns out to be equivalent to the Unruh law.

7Obviously the ¢ are the well-known eigenfunctions of the position operator on the bright side, but this
property is immaterial for our purposes.
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Finally we turn to the first law of thermodynamics and the equipartition theorem.
As already mentioned in section[2.2.3] it turns out that the equipartition theorem can be
derived from the Unruh law. Since this fact is valid both in the classical case (2.5]) and in
its quantum counterpart (2.TT)), the derivation being exactly the same whatever the case,
we will provide the details pertaining to the derivation of (Z.11) from (2.10). Integrate
the latter over a thin 3—dimensional slice of width dn bounded by two equipotentials
S1 and S;. Now the Planck length Lp is extremely small, so we can safely set dn =
Lp, while the two screens S; and S will not differ appreciably in their surface area.
Then the volume integral of the left-hand side of (2.10) very approximately equals
2rkpLp |, s d2aT. On the rlght —hand side, let us ﬁrst integrate dU/ dn along the
normal direction, to obtain LpU (Se) — L pU (S81). We can take the origin for the
potential function such that it will vanish on &;. The remaining term is the surface
integral Lp | s d2aU (S). The integrand can be pulled past the integration sign because
S is an equipotential surface, thus yielding L pl}(S ) /. s d?a. This latter integral equals
the surface area A(S) of the screen, and follows as claimed.

Taking the expectation value, in the entropic eigenstates ¢_, of the operator equa-
tion (2.11), produces the thermodynamical expression for the equipartition theorem:

kp 2 a _A(S) 2
ta /S @a(T) = =2 0(s)). (239)

2.4.6 Planck vs. Boltzmann, or # vs. kg

Planck’s quantum of action 7 gets replaced, in the entropic picture, with Boltzmann’s
constant kp. This explains the presence of A in the entropic derivation of classical
gravity (Newton’s and Einstein’s) given in ref. [113]: by the correspondence (2.15)),
the presence of h is an unavoidable consequence of the presence of kp, and vicev-
ersa. We find this dichotomy between the energy and the entropy representations very
suggestive—it appears to be a sort of complementarity principle, in Bohr’s sense of
the word. For example, this dichotomy allows one to write a quantum of energy in the
form E = hw, or else in the alternative form £ = CkgT (C being a dimensionless
number). It also allows one to express a quantum of entropy in the form S = hw/T, or
else as S = 27kp. This dichotomy exchanges frequency w with temperature 7', thus
time ¢ maps to inverse temperature 7!, which is reminiscent of the Tolman—Ehrenfest
relation [[110] and also of thermal time [96]].

2.4.7 The second law of thermodynamics, revisited

As a minor technical point, we have restricted our analysis to closed holographic
screens enclosing a finite 3—dimensional volume. Quantum—mechanically this cor-
responds to normalisable states in the energy representation. Nonnormalisable states
correspond to open holographic screens without a boundary (thus having an infinite
surface area and enclosing an infinite volume). Our analysis can be extended to the
latter by replacing absolute quantities with densities (per unit surface or unit volume
as the case may be). The connection with the second law of thermodynamics comes
about as follows. The second law of thermodynamics, AS > 0, lies hidden within
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the quantum theory. Of course, one can derive it from statistical mechanics, but our
purpose here is the opposite. We have seen that the domain of the reduced entropy s is
the half axis s > 0, and that this fact led to the entropic Hilbert space L? [0, 00) (instead
of L?(R)) for the wavefunctions v)_ (s). All this is a quantum—mechanical rewriting of
the second law. One could ask, under what conditions will the entropic coordinate p
be nonnegative? This is certainly the case when the holographic screens are all closed,
but what happens in case they are open? The geometry of the screens is dictated by
the potential U. If the latter has flat directions, then its equipotentials will no longer be
closed surfaces—instead they will have an infinite surface area and will enclose an in-
finite volume. As mentioned above, one appropriately replaces quantities like entropy
and energy with the corresponding densities. However, the corresponding screens must
be such that the normal coordinate to their bright side, p, runs over the half axis p > 0.
This latter condition will be satisfied whenever the potential is such that it possesses a
centre of force, or an axis, or a plane, or possibly a more general surface of symmetry,
with respect to which one can define a nonnegative normal coordinate. This appears to
be the case in all physically interesting situations, thus staying in agreement with the
second law of thermodynamics. Only the free particle lacks a canonical definition of
a normal coordinate—but then again the second principle holds in the form AS = 0,
due to the absence of forces.
The second law of thermodynamics,

AS >0, (2.40)

has been related to the Heisenberg uncertainty principle in ref. [84]. In ref. [32] it
has been argued that the second law of thermodynamics has a quantum—mechanical
reexpression in the Bell inequalities. Above we have established a link between (2.40)
and the Hilbert space of entropic quantum mechanics. Next we would like to propose
yet another quantum-mechanical interpretation of the second law, one that combines
the uncertainty principle with the notion of emergence.

From eqn. (2.1)) one derives the obvious inequality

AS > 7kp (2.41)

which looks like some refinement of the second law (2.40)—the latter would be recov-
ered in the semiclassical limit kg — 0. Therefore let us, for the sake of the argument,
consider eqn. (2.41)) as a more precise statement of the second law than (2.40). As such
(2:41)) is reminiscent the uncertainty principle of quantum mechanics. However
the left-hand side of (2.41) contains just one uncertainty, instead of a product of two
uncertainties as usual. This reflects the fact that the variable on the left, S, is selfcon-
Jjugate—its dimension equals that of the quantum k£ on the right-hand sideﬂ We can
include a dimensionless formal parameter 7 in the left-hand side that will make (2.41))
resemble the uncertainty principle in its standard form. This can be done as follows.

8Compare this situation with (g, p) and (H, t), which are conjugate pairs: the product of the two compo-
nents of each pair has the dimension of A. Angular momentum L is selfconjugate, in the sense that it carries
the dimension of A, but one writes the corresponding uncertainty principle as ALA¢ > h/2, where the
dimensionless variable ¢ is an angle.
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Let N denote the total number of bits on S. Whenever a quantum particle hits the
screen we have AN = 1, and the ratio AN/N will be small if N is large enough. In
this limit we can treat N as a continuous variable, that we redenote by 7 in order to
interpret it as a continuous, dimensionless parameter:

AN

=N h — 1. 2.42
T when N << ( )

This is the limit N' — oo referred to in (2.6). Compatibility with all the above requires
this limit to correspond to kg — 0 or, equivalently, to i — 0. In other words, the large
area limit for a holographic screen corresponds to the semiclassical approximation in
quantum mechanics.

We have A7 > 1, the inequality allowing for the possibility of more than just one
particle hitting S. Thus multiplying the two inequalities A7 > 1 and AS > nkp
together we arrive at the following uncertainty principle on the holographic screen:

ASAT > wkpg. (2.43)

The fact that kp, though small, is nonvanishing, leads to the impossibility of having
strictly reversible processes; reversibility is possible only in the limiting case of a van-
ishing value for the quantum k5. We conclude that quantisation appears as dissipative
mechanism. The notion that information loss leads to a quantum behaviour lies at the
heart of the notion of emergence [13} 114} 33} 34} 155! 156} 197].

We have derived the uncertainty principle (2.43) starting from the second law of
thermodynamics (2.40). Let us now prove that the reverse path is also possible: from
the uncertainty principle to the second law of thermodynamics. We start from in
the bulk rewritten as AI/h > 1, where I = f pdgq is the action. On the boundary, the
correspondence (2.15)) allows to reexpress the above inequality as in (Z.41). Along the
way we have dropped irrelevant numerical factors.

Altogether, we have an equivalence between the uncertainty principle of quantum
mechanics (either in the bulk or on the boundary (2.43)), and a refined version of
the second law of thermodynamics, one that includes a small but nonvanishing value of
the corresponding quantum (A or k) on the right—hand side. This is in agreement with
the results of [84]—now with the added bonus that our equivalence has the properties
of emergence and holography.

2.5 Conclusions to chapter 2

2.5.1 Quantum mechanics as a holographic, emergent phenomenon

Classical thermodynamics can be conveniently expressed in either of two equivalent
languages, respectively called the energy representation and the entropy representation
[L7]. Here we have argued that quantum mechanics as we know it (i.e., on spacetime)
corresponds to the energy representation, while quantum mechanics beyond a holo-
graphic screen (i.e., in the absence of spacetime) corresponds to the entropy represen-
tation. In this paper we have developed the formalism of entropic quantum mechanics
and placed it in correspondence with that of standard quantum mechanics on spacetime.
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In particular, we have formulated the entropic uncertainty principle (2.22) for the
(reduced) entropy variable s that the entropic wavefunction ¢_(s) (sometimes also
denoted R(p)) depends on; see (2.23). The latter arises as the result of factoring out
the part of the wavefunction that depends on the tangential coordinates to the screen,
the normal coordinate being proportional to the entropy itself. We have also written
down a differential equation satisfied by the entropic wavefunction, that one may well
call the entropic Schroedinger equation; see ([2.33).

Moreover, we have identified the explicit expression as corresponding to
the entropic wavefunction in the semiclassical limit kg — 0. There is a nice map,
given by (2.13), between the semiclassical wavefunction in the energy representation
and the corresponding semiclassical wavefunction in the entropy representation. This
map exchanges the classical action integral with the entropy of the screen, while at the
same time introducing a relative factor of ¢. It also exchanges Planck’s constant & with
Boltzmann’s constant k5. In so doing, this map succeeds in explaining why Planck’s
constant  had to appear in the derivation of classical gravity (Newton’s and Einstein’s)
given in ref. [113]. Namely, the presence of & is an inescapable consequence of the
presence of kg, and viceversa, since £ is required by the energy representation, while
kp is required by the entropy representation.

If spacetime is an emergent phenomenon, then everything built on it necessarily
becomes emergent [40]. This applies to quantum mechanics in particular. However,
in the entropy representation developed here, the emergence property of quantum me-
chanics becomes a much sharper feature. Indeed, one usually associates entropy with
lack of information, while energy (e.g., a sharp energy eigenvalue) is thought of as pro-
viding definite information. Now the correspondence implies that, if the entropy
representation is emergent, then so is the energy representation, and viceversa. In this
sense, the information content carried by entropy is no more diffuse than that carried
by energy, nor is the information encoded by energy more sharply defined than that en-
coded in entropy. In other words, the correspondence (2.15) confirms what we already
knew from other sources—namely, that quantum mechanics is definitely an emergent
phenomenon.

We have also succeeded in writing a holographic dictionary between quantum me-
chanics, on the one hand, and thermodynamics, on the other. An analogous holo-
graphic dictionary was presented, in the gravitational case, in ref. [113]. Some key
entries in this gravitational/thermodynamical dictionary are summarised in eqns. (2.2),
(23) and (2.5), preceded by the equivalence between statements i) and ii) of section
As anovelty, here we have presented the corresponding entries in our quantum-—
mechanical/thermodynamical dictionary. These entries include the equivalence be-
tween the analogues of statements i) and ii) of section 2.2.3] In our setup, this is
expressed in the assertion that the energy representation of quantum mechanics (state-
ment 7)) is equivalent to the entropy representation of quantum mechanics (statement
ii)). Further entries in this dictionary of equivalences are the analogues of eqns. (2.2)),
(2.3) and @.5), respectively given by our eqns. (2.9), and when working
in the energy representation. Our eqns. (2.9), (2.10) allow one to define an entropy
field and a temperature field as (operator—valued) functions on R, whereas isa
reexpression of the first law of thermodynamics and of the equipartition theorem. Their
respective vacuum expectation values give rise to the corresponding equations in the
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entropy representation, (2.37), (2.38)) and (2.39)), where the space dependence disap-
pears. Their respective interpretations are the proportionality between the area and the
entropy of the screen (the Bekenstein—-Hawking law), the thermodynamical equation of
state of the screen (the Unruh law), and the equipartition theorem.

2.5.2 Quantum mechanics in the absence of spacetime

Entropic quantum mechanics can be thought of as describing quantum mechanics in
the absence of spacetime. This latter statement must be understood as meaning that
the tangential coordinates to the holographic screens, as well as functions thereof, have
been factored out, while the normal coordinate and functions thereof remain—though
no longer as a spatial coordinate, but rather as a measure of entropy. This viewpoint
is motivated in eqn. (2.24), that we have borrowed directly from [113]. Now in the
absence of time there is no Hamiltonian. In the absence of space there are also no
paths to sum over a la Feynman. One might thus conclude that there can be no quantum
mechanics in the absence of spacetime. This is however not true, as shown here and
as shown also by independent analyses. For example, quantum mechanics without
spacetime has been proposed as a case for noncommutative geometry [100} [101} [64]].
Without resorting to noncommutative geometry, one can also argue as follows.

We have seen that the Hilbert space of entropic quantum states is L?[0, p;) for
an observer who perceives space terminating at the screen S;, and L?[0, 00) for an
observer who perceives no screen at all, or horizon. Given the two screens S; and Sy,
respectively located at p = p; and p = py, with p; < py, it holds that the two spaces
L2[0, p;) and L?[0, py,) are unitarily isomorphic because both are infinite-dimensional
and separable [I07]. Now let p; — oc. The isomorphism between L?[0, p,) and
L?[0, 00), plus the identification between entropy and normal coordinate, allows
the observer who perceives the screen S; to extend his wavefunctions R(p) beyond his
boundary at p;. His wavefunctions are now understood as v_(s), i.e., as functions of
the reduced entropy s—indeed the latter is not bounded from above. It is in this sense
that this second observer can be said to be doing quantum mechanics in the absence of
spacetime.

It is right to observe that the unitary isomorphism between the two different reali-
sations of the entropic Hilbert space, L?[0, oo) and L?[0, p;), need not map the semi-
classical regime of the one into the semiclassical regime of the other, nor the strong—
quantum regime of the one into the corresponding regime of the other. An analogous
statement applies to the spaces L?[0, p;) and L?[0, py,) corresponding to the screens
S, Si. The observation just made will become relevant in section

2.5.3 Open questions

We can summarise our conclusions so far with the assertion that entropic quantum
mechanics is a holographic phenomenon, as emergent as spacetime itself. To round up
our discussion we would like to present some thoughts of a more speculative nature.
As a first thought we would like to state that entropic quantum mechanics is an
observer—dependent phenomenon. That measurement disturbs any quantum system
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is, of course, a basic tenet of quantum mechanics. The statement just made, how-
ever, refers to something different. The concept that quantum mechanics is observer—
dependent has also appeared, in different guises, in [112, |102, [103]] under the name
of duality. Under duality one understands that the notion of classical vs. quantum is
relative to which theory one measures from (see section 6 of ref. [112]]). This is also
the interpretation advocated in refs. [63] by one of the present authors.

An idea that lies close to the above notions is the statement that the entropy of a
horizon is an observer—dependent quantity (see section 3 of ref. [89]). In view of our
correspondence , this latter assertion turns out to be equivalent to the one above
defining duality.

Thus the statement that quantum mechanics is observer—dependent, is an equivalent
reexpression of duality, i.e., of the relativity of the notion of a quantum. In the entropic
picture developed here, this relativity presents itself as the different realisations of the
entropic Hilbert space, explained in section Equivalently, this relativity of the
notion of a quantum arises here as the relativity of the entropy.

The previous statements may at first sound surprising. Classic treatises such as, e.g.,
ref. [110], teach that the Lorentz transformation laws for the heat energy and the tem-
perature are such that their ratio (the entropy) is a scalar. Moreover, in principle one ex-
pects physical constants such as kg and 7 to be observer—independent. However, let us
note that a totally analogous phenomenon has been reported in refs. [87,88,189,190,191],
where the entropy of the screen has been argued to be an observer—dependent quan-
tity. That the entropy of a thermodynamical system becomes an observer—dependent
quantity has also been concluded in an information—theoretical context [95]. Upon
transforming back to the energy representation, the dependence just described can be
recast as the dependence of Planck’s constant & upon the observer. Exactly this latter
conclusion concerning 7 has been reported in [114]].

Given that the equations of motion for Einstein’s gravity can be recast as thermo-
dynamical equations of state, it has been claimed that the canonical quantisation of
gravity makes as little sense as quantising sound waves in air [65]. This remark makes
it clear that quantising Einstein’s gravity may be attempting to quantise the wrong
classical theory, but it casts no doubt yet on the validity of quantum theory. However,
doubts concerning the microscopic fundamentality of the latter arise once one realises
that quantum theory, too, is a thermodynamics in disguise...



Chapter 3

A picture of irreversibility

3.1 Introduction

The purpose of this chapter is twofold:

i) to establish an explicit correspondence between quantum mechanics on the one hand,
and the classical thermodynamics of irreversible processes on the other. We claim
validity for this correspondence at least in the Gaussian approximation (which cor-
responds to the linear response regime in thermodynamics, and to the semiclassical
approximation in quantum mechanics);

ii) to use the correspondence just mentioned in order to provide an independent proof
of the statement that quantum mechanics is an emergent phenomenon, at least in the
semiclassical limit.

With hindsight, once one has realised that quantum mechanics in the Gaussian ap-
proximation is a classical thermodynamics in disguise, the emergent nature of quantum
theory becomes selfevident—after all, thermodynamics is a paradigm of emergent the-
ories.

3.2 The Chapman-Kolmogorov equation in quantum
mechanics

To begin with we present a collection of purely quantum—mechanical expressions, for
which there will be purely thermodynamical reexpressions using the correspondence
we are about to develop. Although the material of this section is standard, a good gen-
eral reference is [[L15]]. For simplicity we will restrict to a 1-dimensional configuration
space X coordinatised by x.

The quantum-mechanical propagator K (x2, ta|21,t1) is defined as the amplitude
for the conditional probability that a particle starting at (1, ¢1) end at (2, t2):

K (22, tal1,t1) = (@a|U(ts — t1)|z1), U(t) = exp (-%tH) . 3.1)

33
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Above, U(t) is the unitary time—evolution operator, and H is the quantum Hamiltonian
operator. The time—evolution operators satisfy the group property,

U(t1)U(t2) = U(t1 + ta), (3.2)

an equation known in statistics already since the 1930’s as the Chapman—Kolmogorov
equation [31]]. Its solutions satisfy the differential equation

. dU . dU
IFLE = HU(t), H = IFLE t:O. (33)

Using (3.1I)) we obtain an alternative reexpression of the Chapman—Kolmogorov equa-
tion:

K (x3,t3]21,t1) = /dezK($37t3\x2at2)K($27t2|$1,t1)~ (3.4

Since wavefunctions v are unconditional probability amplitudes, they are related to
propagators K (which are conditional probability amplitudes) as follows:

1/1(1’2,752) = /delK(l‘g,t2|l‘1,t1)1/1(l’1,t1). (35)

Propagators can be computed via path integrals over configuration space X,

I(tQ):IQ

Da(t) exp{ih /b dt L [z(t),:’c(t)]}, (3.6)

t1

K (z9,t2]z1,%1) =/

x(tl):ml

where L is the classical Lagrangian function. Two simple examples in which the path
integral (3.6) can be evaluated exactly are the free particle and the harmonic potential.
For a free particle we have

. 2
K(free) ¢ ) = m m (xQ — 1'1) 7
(w2, t2]21,t1) 2ih (ta — 1) xp | o5 Tt | (3.7

while for a harmonic potential we have, ignoring the caustics,

mw

27mih sin (w(tg — tl)) (38)

J¢ (harmonic) (w2, ta|wy,t1) = \/

X exp {%bm(w(btl)) (3 4 27) cos (w(ty — t1)) — 2x125] } :

When the path integral cannot be computed exactly, an approximate evaluation

can still be helpful. For i — 0 we have the semiclassical approximation to the propa-
gator, denoted by K;:

. ts
K (.%‘2, tgll‘l, tl) =71 exp {;i/ dt L [xcl(t),a'ccl(t)]} s 3.9
ty

where 2 (t) stands for the classical trajectory between (z1,¢;) and (x2,t3), and Z~*
is some normalisation factor[]

'We will henceforth use the collective notation Z 1 to denote all the different normalisation factors that
we will not keep track of.



3.3. FLUCTUATIONS AND IRREVERSIBLE PROCESSES 35

3.3 Fluctuations and irreversible processes

For the benefit of the reader, with an eye on later applications, we include below a
summary of ref. [86].

3.3.1 Thermodynamic forces

Let a thermodynamical system be given. If we are interested in only a single instant,
the probability P of a given state is given by Boltzmann’s principle,

kgln P = S + const, (3.10)

where S is the entropy of that state. If we are interested in two instants widely separated
in time, the probability of given states at each instant is equal to the product of the
individual probabilities. A long time lapse makes the states statistically independent.
Hence the joint probability of the succession is related to the sum of the two entropies.
But if the time lapse is not long, the states will be statistically correlated. It is precisely
the laws for irreversible behaviour which tell us the correlations.

Let the thermodynamical state of our system be defined by a set of extensive vari-
ables y',...,y". The entropy S = S(y',...,%") will be a function of all the 3*. Its
maximum (equilibrium) value will be denoted by Sy, and the 3* will be redefined to
vanish for the equilibrium state: Sy = S(0, ..., 0). The tendency of the system to seek
equilibrium is measured by the thermodynamic forces Yy, defined as

oS

Yy = 22
k 8yk7

k=1,...,N. (3.11)

The Y}, are restoring forces that vanish with the y*.

Fluxes are measured by the time derivatives of the y*. The essential physical as-
sumption made here is that irreversible processes are linear, i.e., they depend linearly
on the forces that cause them. Therefore we hav

dyf &
dyT:ZLinj, i=1,...,N. (3.12)
j=1

J =

Onsager’s reciprocity theorem states that L is a symmetric matrix [85]],
LY = [7°, (3.13)

Further assuming that L is nonsingular one can solve for the forces in terms of the
fluxes:

N
Y; =Y Ryy’, i=1,...,N. (3.14)
j=1

2We use T to denote time in the theory of irreversible thermodynamics, and ¢ to denote time in the
quantum theory. As will be seen in (3.44), 7 and ¢ are related by a Wick rotation.



36 CHAPTER 3. A PICTURE OF IRREVERSIBILITY

Thus the rate of production of entropy,

. Mogs XN .
S=% o = > Y, (3.15)
j=1 j=1
can be expressed in either of two equivalent ways:

N N
S = Z Ry = Z LIY;Y;. (3.16)

i,j=1 i,j=1

One defines the dissipation function ® as the following quadratic form in the ﬂuxes

1 X o
= Z Rij . (3.17)

4,j=1

This function is a potential for the Y}, because 9 /07 = R, Yy, The corresponding
quadratic form of the forces,

N
1
V=g S LYY, (3.18)

ij=1

has a similar property, but it should be noticed that it is a function of the state (since
the Y}, depend only on the y7), whereas the numerically equal @ is a function of its rate
of change.

If we expand the entropy in a Taylor series around equilibrium we have

N
1 o
S = S — 5 Z Sijyzyj + e (319)
i,5=1
The matrix s;; is symmetric and positive definite. Neglect of the higher terms in y*
means the assumption that fluctuations are Gaussian: for Boltzmann’s principle (3.10)

states that the logarithm of the probability of a given fluctuation is proportional to its
entropy, or

N
_ S _ 1 y
Py, ...,yN)=Z 1exp (k?B> = Z texp “ohy E si;y'y’ | . (3.20)

i,7=1

The assumption of Gaussianity (3.19) then implies that the Y; are linear in the 7:

N
V== sy (3.21)
j=1

3We assume R;; to be positive definite. This ensures that S > 0as expected of a dissipative process.
Indeed, the dissipation function ® can be identified with a kinetic energy, T’ = Ziv j=19ij ;leJ /2, Where
gij is a certain Riemannian metric on the space spanned by the velocities ©7. Identifying 7 with ¢/ we
have 9ij = Ri]'.
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Thus the phenomenological laws (3.14) become

N
(Rij i’ + sijy’) = 0. (3.22)

j=1

3.3.2 Fluctuations

Let us now modify the deterministic equations (3.14) to include fluctuations by the
addition of a random force &;,

N
S Ry =Yi+&, (3.23)
j=1
which turns into the set of stochastic equations (3.23). We require that the &;
have zero means, which implies that the right-hand side of is a random force
with means Y;. For simplicity, as in the quantum—mechanical case, let us set N = 1,
so we have a single variable y obeying the stochastic equation

Ry + sy =& (3.24)

We will be concerned with the path of y in time under the influence of these random
forces. Our aim is to calculate the probability of any path. For n instants of time
71 < T <...< T, we denote the cumulative distribution function by F),:

F, (yl'“y”>=P(y(Tk)gyk,k:l,...m). (3.25)
T1 ... Tn

The function F, tells the probability that the thermodynamical path y(7) lie below the

barriers ¥, ..., Yy, at the corresponding instants 7y, ...,7,. A stationary process is

defined as one whose cumulative distribution function F}, is invariant under arbitrary

time shifts §7:

Fn(ylyn):Fn( o Y ) Vér € R. (3.26)

TL ... Tn T+ 0T... T, + 6T

Physically this describes an aged system, one that has been left alone long enough
that any initial conditions have worn off, or been forgotten. Thus we consider entropy
creation as a loss of information: a dissipative system forgets its past.

Alongside F},, the probability density function f,, is defined such that the product

fn (yly) dy, -+ dy, (3.27)

T1...Tn

gives the probability that a thermodynamical path pass through gates of width dyy.
We will also be interested in conditional probabilities. The conditional probability
Sunction for the (n + 1)th event given the previous n,

R (y"“ . y") = P(y(TnH) = Ynt1 ‘ y(Ti) =y, k = 1”)
Tn41 ! T1 ... Tn (3.28)
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is defined implicitly as follows:

Foi1 <y1 o y”“) (3.29)

T+« Tn+1
y1 Yn ~ = = =
:/ d§1-~~/ dgnF1<y"+1 y1~~~yn> an(y1~~~yn).
— 0o —0 Tn+117T1 ... T T ---Tn
Correspondingly, the conditional probability density function f; is defined such that
k| Yk—
f (y |? 1) dy dyi—1 (3:30)
Tk ' Tk—1

equals the probability that a thermodynamical path pass through a gate of width dy;, at
time 7y, given that it passed through a gate of width dy;_; at time 7,_1.

3.3.3 Markov processes

A Markov process is defined as one whose conditional probabilities are independent of
all but the immediately preceding instant [31]:

£ <yn+1 Y1 yn) —F (yn+1
Tn+1!7T1 ... Tn Tn+1

Intuitively: a Markov system has a short memory. For a Markov process (3.29) and

(31 imply
y"_1>...f1 (y2 y1> f <y1) (3.32)
Tn—1 T21T1 1

Y-y Yn
()= (o
T ...Tn Tn

Now f; (gi) is known from Boltzmann’s principle (3.10). Hence, by stationarity, all

y”) . (3.31)

Tn

that is needed in order to obtain the distribution function for an arbitrary number of
gates is to evaluate the conditional probability density function

fi (T%Tﬂlﬂ : (3.33)

which depends only on 7, being independent of 7. Thus the n—gate problem reduces
to the 2—gate problem.

3.3.4 Gaussian processes

A Gaussian stochastic process is one whose probability density function is a Gaussian
distribution. Let us set, in (3.24)),

7= (3.34)

Then the conditional probability function for a Gaussian process is given by [86]]

1 _ a—YoT 2
nl > ‘y1 _ s/kp exp _ s (r—en) . (335)
T+l T V271 /1 —e= 2787 2kp  1—e 207
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Now eqn. (3.35), together with (3.32), constitutes the solution to the problem of finding
the probability of any path in a Gaussian Markov process. We also remark that (3.33)
correctly reduces to the one—gate distribution function (3.20) for 67 — oco.

Next let us divide the interval (7, 7 4+ §7) into n equal subintervals of length 47 /n:

0T
T =T, 7'2:7'14»?7 ey Tn+1:7’+57’. (3.36)
Then we have

i (yn+1 ) /dyn- /dygf <yn+1 >~-~f1 (yz)%). (3.37)
Tn+1 Tn+1 T2 1 T1

This is again the Chapman—Kolmogorov equation. The integral above extends over all
the n — 1 intermediate gates. Using (3.37) one can reexpress (3.33) in the following
alternative form [86]]:

A (yn+1 yl) — Z lexp {_4;3/ " dr R [y(7) +7y(7)]2} ,  (3.38)

Tn+1 171 1 min

subject to y(71) = v1, Y(Tht1) = Ynt1. The subscript min refers to the fact that
argument of the exponential is to be evaluated along the trajectory that minimises the

integral.
Y1

by taking 71 = —oo and y; = 0 (because the aged system certainly was at equilibrium
long ago). Thus we set n = 1 in (3.38) and define the thermodynamical Lagrangian
Sfunction L as

The one-gate distribution is obtained from the conditional distribution f; (

T2

LI,y = 5 57) + () (3.39)

The dimension of £ is entropy per unit time, instead of energy. However, our map
between mechanics and thermodynamics will justify the denomination “Lagrangian”.
The Euler-Lagrange equation for a minimum value of the integral in (3.38) is

i — %y = 0. (3.40)
The solution to the above that satisfies the boundary conditions y(7 = —o0) = 0 and
y(t =10) = ya is

y(1) =y, (3.41)

Evaluating the integral in (3:38) along this extremal trajectory leads to

0 _ s
A2 ) =n () =2 ew |- G
Ty | —00 To 2kg

This result is in agreement with what one expects from Boltzmann’s principle (3.10) in
the Gaussian approximation (3.19).

Finally substituting (3:42) into (3.37), we obtain the thermodynamical analogue of
the quantum—mechanical relation (3.5)):

i (y2> _ /dy1 P <yz y1> f <y1) (3.43)
T2 T2 1T T1

This concludes our summary of ref. [86].
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3.4 Quantum mechanics from irreversible thermody-
namics

The Wick rotation
T =1t (3.44)

between the thermodynamical evolution parameter 7 and the quantum—mechanical
time variable ¢ is the first entry in our dictionary between classical irreversible ther-
modynamics and quantum mechanics.

3.4.1 Path integrals in irreversible thermodynamics

The concept of a path integral can be traced back to the Chapman—Kolmogorov equa-

tion. Indeed letting n — oo in (3.36) and using (3.37), the right-hand side of (3.38)
becomes a path integral over the thermodynamical configuration space Y :

Y2 | Y1 B y(T2)=y2 1 T2 ) 9
a(B) = [ T ou e { g [T ar Rl e -
(3.45)

Thus it turns out that actually equals the semiclassical approximation (as per
(3.9)) to the path integral (3.45). This latter expression for the distribution function
f1 in terms of a path integral is implicit in ref. [86]—but actually never written down
explicitly in that paper; see however [460].

Dropping in the term proportional to 3y (a total derivative), we redefine the
thermodynamical Lagrangian function £ to be

L1 w0 = & [2) +7252(7)] (3.46)

We observe that 3/%(7) and 32 (7) in £ carry the same relative sign. Similarly dropping
in (3.43)) the term proportional to gy, we can rewrite the path integral using (3.46) as

y(72)=y2 )
fi (‘Tg ?ji) = /y Dy(r) exp{—Q;B / dTﬁ[y(T),y(T)]}. (347)

(7' 1)=ZI1 T1
The path integral is the thermodynamical analogue of the path integral (3.6)
that defines the quantum—mechanical propagator. Thus setting n = 1 in (3.38)), drop-
ping the total derivative yy, and replacing the integrand with the thermodynamical
Lagrangian leads to the Gaussian approximation to (3.47):

T2
1 <y2 ’ yl) =Z 'exp {—1 / dr L [ycl(r),yd(r)]} . (3.43)
T2 1 T1 QkB Pl
Here L [y1(7), ya1(7)] stands for the evaluation of along the classical trajectory
Yo (7) that satisfies the equations of motion (3.40). In this way is seen to cor-
respond to the semiclassical approximation for the quantum—mechanical propagator,
given in (3.9). On the thermodynamical side, the quantum-mechanical semiclassical
approximation translates as the assumption of Gaussianity for the stochastic forces &
and for the entropy .S, as well as the assumption of linearity between forces and fluxes

(which leads up to the quadratic forms (3.17) and (3.18)).
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3.4.2 Propagators from thermodynamical distributions

The next entry in our dictionary relates quantum—mechanical wavefunctions and prop-
agators to thermodynamical distribution functions. Within the Gaussian approximation
we use throughout, this entry will refer to the free particle and the harmonic oscillator.
We first we need to identify certain mechanical variables with their thermodynamical
partners. Specifically, we will make the following replacementsﬂ

mw s
—_ o — . 3.49

wer  SEegs ey (3.49)

To begin with, one expects the squared modulus of the wavefunction |1/|? to be
related to the 1-gate distribution function f; (ZT’), while the propagator K must cor-

respond to a 2-gate distribution function f; ( ¥2[?! ). Indeed the 1-gate distribution

function (3.42) gives the squared modulus of the ground state 1o () = exp (—mwa?/2h)
of the harmonic oscillator once the replacements (3.44), (3.49) are applied:

A (5) =77 oo (“B2a7) = @R @0

With the appropriate choices for the constants m and w, (3.50) can also represent a free
wavepacket. Next we turn to propagators K. Elementary algebra brings the conditional
probability function for a Gaussian process (3.35) into the form

YT/2 VT 20 0T/ 2, ) 2
f1(y2’y1):i67exp _s L vz~ © )| (3.51)
710 2kp /7 sinh (y7) 2kp 2 sinh (y7)

We will also be interested in the limit y — 0 of the above:
2
yg‘yl) o5 1 s (y2—wy) 350
fl(’T 0 AHO_ZkB«/W'yTeXp{ 2kp 29T ' (3.52)

Using (3.44) and (3.49), the free quantum—mechanical propagator (3.7)) follows from
(3.52):

k‘B To | T
K (g, ey, 0) = /2 1 (7)) 3.53
(z2,t|71,0) S Ny 0/ 0 (3.53)
The case when < is nonvanishing requires some more work. Again (3.44) and (3.49)

allow one to relate the conditional probability (3.51) to the harmonic propagator (3.8)
as follows:

T2]T1) g g \/m (harmonic)
h (it 0 ) B eXp( 2 hw ) 5 K (w2, tx1,0),  (3.54)

where V (z) = kx?/2 is the harmonic potential and AV = V(z2) — V(x1). As had to
be the case, (3.54) correctly reduces to (3.53) when w — 0. The square roots present
in (3.53)) and (3.54) ensure that these two equations are dimensionally correct.

4A dimensionful conversion factor must be understood as implicitly contained in the replacement x < y,
whenever needed.
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3.4.3 Integrability vs. square—integrability

Under our correspondence, the squared modulus of the wavefunction |¢)|? gets mapped

into the unconditional probability density f; (21 ) , while the propagator K gets mapped

into the conditional probability density f1 (zg | ) . One should bear in mind, however,

that the quantum—mechanical objects 1, K are probability amplitudes, while the ther-
modynamical objects f; are true probabilities. Therefore quantum mechanics is not
just the Wick rotation of classical, irreversible thermodynamics—it is also the square
root thereof, so to speak, because of the Born rule. In order to address this question
in mode detail we need to recall some background mathematics; see ref. [107] for a
physics—oriented approach, and also [§]] for a recent discussion of some of the issues
analysed later in this section.
Let M be a measure space, and denote by L? (M) the Banach spaceE]

1/p
LMY= {f: M —C, |[flly <o}, [Iflly = (/MW)  0<p<oo.

(3.55)
It turns out that LP(M) is a Hilbert space only when p = 2. Moreover, L?(M) and
L%(M) are linear duals of each other whenever 1/p+1/q = 1. Two particular cases of
this duality will interest us. The firstone is p = 2, q = 2, the otheroneisp = 1, ¢ = oo.

When p = 2 we have that L?(M) is selfdual, the duality being given by the scalar
product: (-|-) : L?>(M) x L*(M) — C. The corresponding algebra of bounded
operators is £(L?(M)), a noncommutative C*—algebra with respect to operator mul-
tiplication. Complex conjugation in £(L?(M)) consists in taking the adjoint operator,
while the noncommutativity is that of matrix multiplication.

The operator algebra £L(L”(M)) is also a Banach algebra for any p > 0, and not
just for p = 2. However, only when p = 2 is a L(L?(M)) a C*—algebra, because only
when p = 2 does L(LP(M)) possess a complex conjugation.

Set now p = 1. The dual of L!(M) is L°°(M). Elements of the latter are measur-
able, essentially bounded functions f with a finite norm || f||co:

L=(M) ={f: M = C, [[fllc <o},  |[lflloc :=sup.en{lf(2)[}. (3.56)
The duality between L' (M) and L°° (M) is

(}): L2(M) x LY(M) — C,  (flp) == /M fo. (3.57)

forany f € L°°(M) and any p € L'(M). Now L°(M) also qualifies as a C*—
algebra, the multiplication law being pointwise multiplication of functions (hence com-
mutative), and the complex conjugation being that of the functions f. An important dif-
ference with respect to the previous case is that £(L?(M)) is noncommutative, whereas
L*>(M) is commutative.

>The space LP(M) is complex or real according to whether its elements f are taken to be complex—
valued or real-valued functions on M. For quantum—-mechanical applications we will consider the complex
case, while thermodynamical applications require the real case. For generality, this summary assumes all
spaces complex.
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We will henceforth write X for the space M when dealing with the mechanical
configuration space, and Y when referring to the thermodynamical configuration space.

Textbook quantum mechanics regards quantum states as unit rays within L?(X),
while physical observables O are represented by selfadjoint operators O € £(L?*(X)) E]
On the other hand, the natural framework for the theory of irreversible thermodynam-
ics is the real Banach space L'(Y) and its dual, the real Banach algebra L>°(Y).
Thermodynamical states are probability distributions p € L!(Y"), that is, real func-
tions, normalised as per fY p = 1. Thermodynamical observables are real functions
f € L>(Y). Thus fY fpin equals the average value of the physical quantity f
in the state described by p.

Clearly the thermodynamical setup is not quite as sophisticated as its mechanical
counterpart. As opposed to the complex Hilbert space L?(X), the real Banach space
L'(Y) does not know about the existence of the imaginary unit 4. In the absence of
a complex conjugation to implement time reversal, the thermodynamical setup nec-
essarily describes irreversible processes. Moreover, there exists no scalar product on
LY(Y). Correspondingly there is no notion of a selfadjoint operator in £L(L!(Y))—in
fact, thermodynamical observables are elements of a very different space, L™ (Y)E]

The previous differences notwithstanding, we can establish a map between quantum—
mechanical states/observables and their thermodynamical counterparts, as we do next.
We treat observables first, and discuss states later.

It is reasonable to identify real thermodynamical averages ( f|p) with quantum me-
chanical expectation values (1)|O|1)) of selfadjoint operators O, something like

/ fo=(flp) = ([Ofg) = / b0, (3.58)
Y X

where the correspondence denoted by <+ has yet to be given a precise meaning. For
this we can assume diagonalising O by a (complete, orthonormal) set of eigenstates
; € L?(X), so we can replace the right-hand side of with the corresponding
eigenvalue \;. We want to define a functional f for the left-hand side of (3.58). A
sensible definition actually involves a collection of constant functionals f;, each one of
them equal to the corresponding eigenvalue \;:

Since the eigenvalues )\; are constants and the density p can be normalised to unity, the
imprecise correspondence (3.58)) can be replaced with the precise dictionary entry

/ fir = (filp) = Xi = (W3] Oly) = / Y O. (3.60)
% X

This generalises in the obvious way to the case of a set of commuting observables Oy.
Noncommuting observables, not being simultaneously diagonalisable, lead to the im-
possibility of simultaneously defining the corresponding thermodynamical functionals

6We ignore the mathematical subtleties due to the fact that O is generally an unbounded operator, hence
generally not an element of £(L?(X)), because this fact is immaterial to the discussion.
7In particular, the real space L>°(Y") is a Banach algebra but not a C*—algebra.



44 CHAPTER 3. A PICTURE OF IRREVERSIBILITY

f on the left-hand side of (3.60). We will examine the thermodynamical analogue of
quantum commutators in a forthcoming publication.

So much for the observables; now we turn to the states. Since thermodynamical
probabilities are elements of L'(Y") while quantum—mechanical amplitudes belong to
L?(X), we would like to define some map of L%(X) into L*(Y), or viceversa. Given
¢ € L%(X), one’s first instinct is to set p := || because then p € L'(X); this is
of course the Born rule. The attentive reader will have noticed that we actually need
p € LY(Y): itis generally meaningless to equate p to |1)|>—or to any other function
of 1, for that matter. We will proceed ahead under the simplifying assumption that
X=Y.

The usual Born map b is defined as

b: L*(X) — LY(X), b)) := % (3.61)

This map is obviously not 1-to—1, so it fails to be an injection. As such it possesses no
inverse. We will however use the formal notation b~ to denote the map

bl LN(X) — LX), b '(p) = \/per®, (3.62)
where ¢ is taken as the solution to the continuity equation
p+V-(pVp)=0 (3.63)

that is well known from the Madelung transformation. Moreover, if b=1(p) satisfies
the Schroedinger equation, then ¢ must of course equal the action integral I = [ d¢ L,
and thus satisfy the guantum Hamilton—Jacobi equation [38]. Although the map b~!
also fails to be an injection, we use the notation b~! because bb=1(p) = p. Aside
from this difficulty about the lack of injectivity, b and b~! provide us with the required
maps from quantum—mechanical states into thermodynamical distribution functions,
and viceversa.
The Chapman—Kolmogorov equation (3.37), written below for n = 2,

f (y3 y1> :/dy2f1 <y3 yz) f (y2 y1>’ (3.64)
T3 1T T3 1 T2 T2 1T

is the thermodynamical analogue of the quantum-mechanical equation (3.4). This

y) which is a
T1

leads us to the following point. Our correspondence maps f; (22

conditional probability, into K (2, ta|z1,t1), which is an amplitude for a conditional
probability. In other words, under our correspondence, the Born rule does not apply to
the map between conditional probabilities, although it does apply to the map between
unconditional probabilities. There is nothing wrong with this. Indeed, f; and K satisfy
the respective Chapman—Kolmogorov equations (3.64) and (3.4). Regarding the latter
as matrix equations (which is what they are), they read formally f; x f; = f; and
K x K = K. That is, squaring f; and K as matrices (which is how they should be
squared, since f; and K are operators), they are idempotent. It therefore makes sense
not to impose the Born rule on the map between K and f.
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3.4.4 Entropy vs. action

To complete our dictionary between quantum mechanics and irreversible thermody-
namics we postulate the following correspondence between the action integral / and
the entropy S:

i 1
(mechanics) %I > k—S (thermodynamics), (3.65)
B
up to a numerical, dimensionless factor. Now the Wick rotation (3.44)) replaces il with

the Euclidean action I, so we could just as well write

1 1
(mechanics) ﬁl E < k—S (thermodynamics), (3.66)
B

again up to a numerical, dimensionless factor. We observe that both I and .S indepen-
dently satisfy an extremum principle. We also note that the respective fluctuation the-
orie in the Gaussian approximation are obtained upon taking the exponential. Thus
exponentiating (3.65) we arrive at the wavefunction

Y = /p exp (;,LI> (3.67)
and at the Boltzmann distribution function (3.10):
1 1
pp=2 "exp|—S5|. (3.68)
kp

We should point out that the correspondence (3.65), (3.66) has also been found to hold
in independent contexts, long ago by de Broglie [16] and more recently e.g. in [} 19].

Applying the Born rule we set the Boltzmann probability density pp equal to the
quantum-mechanical probability density |¢|%:

pp = [V]* = p. (3.69)

(See ref. [7] for distributions other than the squared modulus). Hence

p=2ZLtexp <1S> . 3.70)
kg

Substitution of (3.70) into yields an elegant expression for the wavefunction

1 .
P = 712 exp (2kBS> exp (;I) , 3.71)

combining thermodynamics and quantum mechanics into a single formula.

8These fluctutations are of course measured with respect to the corresponding mean values of I and S as
given by their extremals.
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Implicitly assumed in (3.71)) is the identification of mechanical variables = and ther-
modynamical variables y, as already done in (3.49). One can now define the complex—
valued action I (x|

1 1
I(z) i= — —1I. 72
(1) =5 =S+ 7 (3.72)
in order to write
U(z) = Z7V2% exp (Z(x)) (3.73)

as the semiclassical wavefunction (3.71)), where

Z = /dx|exp (Z(z)) | (3.74)

We realise that the correspondence (3.63), leads naturally to the existence of a
complexified action such as (3.72), which expresses a fundamental symmetry between
entropy and mechanical action.

Finally we would like to point out that complexified action functionals have also
been considered recently in ref. [79].

3.5 Conclusions to chapter 3

We can summarise this chapter in the following statements:
i) we have succeeded in formulating a correspondence between standard quantum me-
chanics, on the one hand, and the classical thermodynamics of irreversible processes,
on the other;
ii) this correspondence holds at least in the Gaussian approximation (the latter being
defined in quantum mechanics as the semiclassical limit, and in thermodynamics as the
regime of linearity between forces and fluxes);
iii) this possibility of encoding of quantum—mechanical information in thermodynam-
ical terms provides an independent proof of the statement that quantum mechanics is
an an emergent phenomenon.

Specifically, our correspondence between semiclassical quantum mechanics and
Gaussian irreversible thermodynamics includes the following points of section 3.4}
i) we have shown that the path—integral representation for quantum—mechanical prop-
agators is already present in the thermodynamical description of classical dissipative
phenomena (section[3.4.1);
ii) we have mapped thermodynamical distribution functions into quantum—mechanical
propagators (section [3.4.2));
iii) we have constructed an explicit correspondence between quantum—mechanical states
and thermodynamical states, and also an analogous correspondence between quantum-—
mechanical observables and thermodynamical observables (section [3.4.3);
iv) we have grounded our correspondence in the existence of a fundamental symmetry

9While the entropy S is a true function of z, the action integral T is actually a functional of (t). However,
in we need I within the exponential defining . To this end, I is to be evaluated along the classical
trajectory starting at a certain given point and ending at a variable endpoint x. This amounts to regarding
as a true function of = and no longer as a functional.
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between mechanical action and entropy (section [3.4.4).

In order to make this chapter selfcontained we have also included, in section @ a
crash course in classical irreversible thermodynamics, the latter considered in the lin-
ear approximation. Presumably, the theory of irreversible thermodynamics beyond the
linear regime should allow one to extend the present correspondence beyond the semi-
classical approximation of quantum mechanics.

Having mapped quantum mechanics into classical irreversible thermodynamics
raises another old question, viz., the issue of how sharply, how univocally defined is
the divide between quantumness and classicality. This issue has also been addressed,
from the viewpoint of emergent theories, in ref. [37]; we defer our own contribu-
tion to the subject until a forthcoming publication. However we would like to briefly
touch upon the emergence property of spacetime—not from a gravitational perspec-
tive, but from a purely quantum—mechanical viewpoint. If spacetime is an emergent
phenomenon, as widely conjectured, then everything that makes use of spacetime con-
cepts must necessarily be emergent, too. Quantum mechanics is no exception, unless
one succeeds in constructing a quantum—mechanical formalism that is entirely free
of spacetime notions. Progress towards this latter goal has been achieved along lines
based on noncommutative geometry (see [42] and references therein). A more modest
approach is to try and directly map quantum mechanics into thermodynamics, as done
here and elsewhere. It turns out that spacetime arises as an emergent concept also in
our quantum—mechanical approach, if only because our correspondence has required
replacing space variables x with thermodynamical variables y. Thus, indirectly, we
have also furnished (admittedly cirmcumstantial) evidence of the emergence property
of spacetime.
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Chapter 4

Overall summary

Emergent physics as a research topic has drawn a lot of attention recently [21} 62].
The very spacetime we live in, as well as the gravitational force that governs it, both
appear to be emergent phenomena [61} 91} |113]. Quantum mechanics has also been
conjectured to be the emergent theory of some underlying deterministic model, in part
because of its long—standing conflict with general relativity. The guiding principle
in all emergent theories is the fact that they provide a coarse—grained description of
some underlying theory [21]]. Due to our ignorance of a full microscopic description,
emergent phenomena are in principle amenable to a thermodynamical description.

Without touching on the difficulties facing quantum gravity, a number of interpre-
tational questions and foundational issues arise and remain within a purely quantum—
mechanical setup (or, eventually, within a quantum field theory setup, see [59]). In
this thesis, following our papers [1} 2, 3], we have focused on the emergent aspects of
quantum mechanics applying a thermodynamical approach. In fact the classical ther-
modynamics of irreversible processes and fluctuation theory turns out to share many
common features with quantum mechanics—surprisingly, with Feynman’s path inte-
gral approach to quantum mechanics. Some basic references on the subject of fluctu-
ations and irreversible thermodynamics are [[70} 185 186} (93| [109]); intriguing questions
such as the emergence of macroscopic irreversibility from microscopic reversibility,
the arrow of time, and other related puzzles are analysed in [75,/94]]. A more complete
list of references can be found in [84].

We take the view that, apart from other important reasons [6} |66} (67} [77, 78, 192],
quantum theory must be an emergent phenomenon also because the spacetime it is
defined on is an emergent concept. There exist in the literature a number of different
approaches to account for the emergent nature of spacetime, too numerous to quote
here in detail. Here we have followed the holographic [55} [106] proposal presented in
ref. [113]. Thus gravity and quantum mechanics share the common feature of being
effective, thermodynamical descriptions of their respective underlying theories.

The entropy representation of quantum mechanics, as presented here, is a holo-
graphic projection of the energy representation of the same theory, as defined on space-
time. Our central claim, summarised by eqn. (2.15), expresses this holographic prop-
erty.

49
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There is, however, one additional property of quantum mechanics that is deeply
encoded in eqn. (2.T3); as such it is not immediately recognised. Namely, quantum
mechanics is an emergent phenomenon also because quantum mechanics is defined on
spacetime, and spacetime itself is an emergent phenomenon. Let us analyse this latter
point in more detail.

Any model of emergent gravity must ultimately account for the laws governing the
motion of material bodies. Thus, e.g., the proposal made in [113] allows for a (some-
what heuristic) derivation of Newton’s law of motion, F' = ma, and of the relativistic
generalisations thereof, as emergent, thermodynamical laws. Moreover, the intriguing
presence of Planck’s constant 7 [29] in the purely classical setup of ref. [113] makes
one suspect that quantum mechanics also has a role to play in that setup. On the other
hand, it is well known that Newton’s law F' = ma can be recovered in the semiclassi-
cal limit of quantum mechanics, as being satisfied by the expectation values of certain
operators (Ehrenfest’s theorem). Last but not least, thermodynamics is the paradigm of
emergent phenomena.

All these different pieces of evidence point toward one and the same conclusion—
viz., that if classical mechanics follows from the emergence property of spacetime,
then the same should be true of quantum mechanics. Here we have exploited this
point of view. We would like to stress that this conclusion is ultimately independent of
the precise mechanism whereby spacetime emerges. Thus, although the holographic
dictionary presented in previous sections hinges crucially on the emergence mechanism
being precisely that of ref. [113]}, the holographic correspondence (2.15) is independent
of that mechanism. As such, the holographic correspondence (2.13)) should hold just
as well in any other specific model for the emergence of spacetime (say, string theory,
loop quantum gravity or any alternative thereto such as [39} [72]]).

It was Einstein’s dream to see quantum mechanics formulated as an ensemble the-
ory in which uncertainties would not have a fundamental ontological status. Instead,
Einstein would have uncertainties and fluctuations arise as a consequence of the sta-
tistical nature of the description of an underlying deterministic system (see [68, [83]]
and refs. therein). Thermodynamical fluctuation theory thus appears to be the archety-
pal example that Einstein would presumably have liked for quantum mechanics to be
modelled upon.

Actually it has been known since the early days of quantum mechanics that the
(free) Schroedinger equation can be interpreted as the standard heat equation in imag-
inary time, so the thermodynamical connection has always existed. An unavoidable
consequence of imaginary time is that real (decaying) exponentials replace imaginary
(oscillatory) exponentials. This is the hallmark of dissipation. Thus quantum mechan-
ics can be thought of as a dissipative phenomenon that becomes conservative only in
stationary states [13l [14} [57]]—that little ¢ in the Schroedinger equation makes a big
difference [66].
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