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THE RESOURCE LEVELING PROBLEM WITH MULTIPLE RESOURCES USING 

AN ADAPTIVE GENETIC ALGORITHM 

 

Abstract 

Resources management ensures that a project is completed on time and at cost, and that its 
quality is as previously defined; nevertheless, resources are scarce and their use in the activities 
of the project leads to conflicts in the schedule. Resource leveling problems consider how to 
make the resource consumption as efficient as possible. This paper presents a new Adaptive 
Genetic Algorithm for the Resource Leveling Problem with multiple resources, and its novelty 
lies in using the Weibull distribution to establish an estimation of the global optimum as a 
termination condition. The extension of the project deadline with a penalty is allowed, avoiding 
the increase in the project criticality punishing the shift of activities. The algorithm is tested 
with the standard Project Scheduling Problem Library PSPLIB, and a complete analysis and 
benchmarking test instances are presented. The proposed algorithm is implemented using VBA 
for Excel 2010 in order to provide a flexible and powerful decision support system that enables 
practitioners to choose between different feasible solutions to a problem, and in addition it is 
easily adjustable to the constraints and particular needs of each project in realistic environments. 

Keywords: Project Scheduling, Resource leveling, Genetic algorithms, Benchmarking 

1. Introduction 

Project management is the process of the coordination and integration of activities in an 
efficient and effective manner using limited resources. It consists of linking resources to their 
respective deliverables and assembling them into the whole project [1]. Resource management 
is an intrinsic element of project management [2,3,4]; resource management ensures that the 
project is completed on time and at cost and that the quality is as previously defined [5,6,7]. 
This is even more necessary for project-based companies such as contractors [3,8,9]. In fact, 
project scheduling problems are one of most important problems that practitioners deal with in 
scheduling, especially when they need to achieve the most efficient resource consumption 
without increasing the prescribed makespan of the project. 

However, because resources are scarce, the use of resources in the activities of the project 
leads to conflicts in the schedule [10]. Project scheduling problems comprise not only resource-
constrained problems but also resource leveling problems, among others [11]. These two kinds 
of problem consider resource consumption in two different ways: in the former it is seen as a 
constraint, and in the latter the problem is to make it as efficient as possible. Even though these 
two approaches may seem similar, they are conceptually different. Both have been widely 
studied by researchers and applied by practitioners, although these two groups are unaware of 
the differences between the approaches and the serious limitations imposed by the heuristics 
used in the commercial software. 

These two problems are defined as non-deterministic polynomial-time hard (NP-hard) 
problems [12]. The first approach is a regular problem known as the Resource Constrained 
Project Scheduling Problem; its objective is to reduce the makespan without exceeding the 
constraints of resource availability [13,12]. The second, known as the Resource Leveling 
Problem (from now on, RLP) is a non-regular problem; its objective is to achieve the most 
efficient resource consumption without increasing the prescribed makespan of the project 
[14,12]. The two problems can be combined together as a multi-objective optimization problem, 
but there is always one main objective (usually the makespan); the other objective (usually the 
efficient resource consumption) is secondary. 

Nevertheless, conventional analytical and heuristic methods are neither flexible nor 
productive when solving the RLP [15]. Some reasons for this inefficiency are, on the one hand, 
that exact procedures simplify the real problems so are not useful at offering optimal solutions 
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with acceptable computational effort [16] and, on the other hand, that heuristics offer solutions 
which are far from optimal, so that it is necessary to apply metaheuristic algorithms to complex 
and realistic projects [17]. Recently, important approaches have been made by researchers to 
improve the efficiency of resource consumption, proposing different heuristics which are 
applicable to small projects; simple examples try to show the merits of a particular algorithm, 
without establishing clear criteria for a performance comparison between the different 
algorithms [18]. 

Following this line of work, Liao et al. [11] proposed some ideas to advance the RLP in 
realistic environments; these authors made several proposals for the development or the 
improvement of the RLP. Regarding resources allocation, these authors proposed the use of a 
decision support system to assist project managers, as well as the development of benchmarking 
tests for performance assessment and comparison [11]. Concerning resources leveling, they 
suggested the use of multiple resources allowing the extension of the project deadline with a 
penalty [11]. We take these proposals as challenges to be overcome in this paper, contributing a 
little to the corpus of knowledge in this field.  

 Therefore, in this paper we present an Adaptive Genetic Algorithm (AGA) for the RLP 
with multiple resources allowing the extension of the project deadline with a penalty; for this 
purpose, we use the Weibull distribution as a termination condition, establishing an estimation 
of the global optimum. The proposed algorithm is tested with the standard “project scheduling 

problem library” (PSPLIB) [18], presenting a complete set of benchmarking tests. A decision 
support system is also used in order to implement this algorithm. Without loss of generality, we 
consider the classical resource leveling objective function: the total squared utilization cost for a 
given schedule. 

The remainder of this paper is organized as follows. Section 2 provides the classification 
and formulation of the RLP. Section 3 details the different solving procedures: exact, heuristic, 
and metaheuristic algorithms with the new use of the Weibull distribution as a termination 
condition. Section 4 describes the algorithm proposed for the RLP with multiple resources. 
Computational results and the benchmarking test are explained in Section 5. Finally, 
conclusions are drawn. 

2. Classification and Formulation of the Resource Leveling Problem 

The general formulation of the RLP requires us to consider the following elements: 
1. The set of activities, N : 

{ }1 2, , , nN j j j= }nj j,  (1) 
n  being the total number of activities. 

2. The set of durations, D : 

{ }1 2, , , nD d d d= }, nd d, n  (2) 

where ,1id i n£ £ is the assigned duration for each activity. 
3. The set of periods of time in which these activities have to be distributed: 

{ }1 2, , , pT t t t= }, , , pt t, , , p  (3) 

pt being the deadline of the project, from now on denotedT . 

4. The set of resources, R: 

{ }1 2, , , kR r r r= }, kr r, k  (4) 

k being the total number of resources. 
5. The set of availabilities of the resources, A : 

{ },1 ,1itA a i k t p= £ £ £ £  (5) 

where ita is the availability of the resource ir  in the period t . 

6. The set of costs, C : 

{ }1 2, , , kC c c c= }, , , kc c, , ,  (6) 



 
3

7. The set SS : to distribute the performance of the activities along the elements of the set 
T one needs to allocate a starting time for each activity, given by the ordered set, SS : 

{ }1 2, , , nSS SS SS SS= }, nSS, n  (7) 

,1iSS i n£ £ , is the starting time of the activity ij . T can be considered as the starting 

time of a finish dummy activity finishSS , and then SS becomes: 

{ }1 2, , , ,n finishSS SS SS SS SS= , ,n fi, ,, ,SS SS, ,, ,n fin fi, ,, ,  (8) 

Obviously, the schedule SS is not unique; on the contrary, there are a large number of 
different possibilities, according to the logic and restrictions of the project to be 
performed. Each of these schedules has significant differences in the efficiency of 
resources consumption, and this is the reason for finding the values of SS which 
optimize this efficiency. 

8. The functions ( ),ir S t , 1 i k£ £ : given a schedule SS , the function ( ),ir S t is defined as 

the consumption of the resource ir  in the period of time t , belonging to the set T , in 

such a way that the consumption of the resource ir  throughout the project is given by: 

( ) ( ) ( )1 1 2 2, , , , , ,i i i i ip i pu r S t u r S t u r S t= = =i ip i p, , , ,, ,u ri ip i pi ip i p, , , ,, ,, , , ,u ru r  (9) 

9. The function f : Given a schedule SS , the efficiency of resources consumption depends 

on the layout of its use. Therefore, it becomes fundamental to establish an optimal 
criterion for the distribution of the resources.  This is the role we want f to play in the 

development of the problem. Hence, the function f  will be different for each 

optimization criterion to be considered. 
 
Once we have the elements that compose the problem, a general formulation could be: 

( )
1

 ,
k

i i

i

Minimize c f r S t
=

é ùë ûå  (10) 

subject to: 

finishSS T£  (11) 

i i ij jSS d SSg+ + £  , for all i which are successors to j  (12) 

ij iju a£  (13) 

where ijg is the lead/lag between i  and j   

Having done this, the choice of the function f , which defines the criterion for the 

optimization of the resources consumption, provides different ways of solving the problem. In 
the case of the RLP, the optimization criterion focuses on getting the resource consumption as 
level as possible. Consequently, a suitable choice of f could be: 

( ) ( )2

1

,
T

it it

i

t

u a
f r S t

T=

-
é ù =ë û å  (14) 

And Eq. (10) turns into: 

( ) ( )2

1 1 1

,  =
k k T

it it

i i i

i i t

u a
Minimize c f r S t c

T= = =

-
× é ùë ûå åå  (15)  

Next, we can simplify the problem by taking into account the following: 
1. 1,for all 1 iic k= £ £  

2. ,for all 1 i  and for all 1ita a k t p= £ £ £ £  

And then Eq. (15) becomes: 

 

( )2

1 1

k T
it

i t

u a
Minimize

T= =

-
åå  (16) 
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As the minimum depends neither on how far the variable is shifted nor on the constant 

values, we can take 0a = and 1T = : 

 

2

1 1

 
k T

rt

r t

Minimize u
= =
åå  (17) 

The objective function expressed in Eq. (17) is known as a minimum squares optimization, 
and was introduced by Burgess and Killebrew [19] in a heuristic algorithm in which the near-
optimality is determined by the schedule with the minimum total sum of the squares of resource 
consumption for each period, as illustrated in Fig. 1. Other measures for the objective function 
are the Minimum Moment (MOM) proposed by Harris [20], and more recently the entropy-
maximization proposed by Christodoulou et al. [21], using the maximality and sub-additivity 
properties of the entropy function. 

Fig. 1 Initial 2

1

T

kt

t

u
=

=å 10.669; levelled 2

1

T

kt

t

u
=

=å  6.477 

To compare the leveling effectiveness between different projects, we use the Resource 

Improvement Coefficient (RIC) developed by Robert Harris [20], a measure that is independent 
of the total resource demand and is given by Eq. (18).  The RIC relates the variation of a 
selected resource histogram to an ideal resource histogram which is a rectangle-shaped resource 
histogram (the ideal leveled schedule corresponds to a RIC value of one): 

 

2

1
2

1

T

t

t

T

t

t

T u

RIC

u

=

=

×
=
æ ö
ç ÷
è ø

å

å
 (18) 

A different kind of non-regular objective function for Eq. (14) can be considered if the 
objective function to be optimized represents the Net Present Value Problem. In this case, the 
objective function represents the net present value of the project, which is to be maximized, and 
this is used in practice when expensive resources have to be purchased.  

3. Solving Procedures 

The previous conceptual linear programming cannot be solved directly, because there is no 
easy way to translate the set S , used in Eq. (10), into a linear programming formulation. Other 
linear programming formulations have to be used in order to be able to specify the resource 
constraints in a correct and solvable form. 

The most efficient formulations are based on integer and binary programming, and can be of 
two kinds, depending on whether the decision variables establish the period of execution or the 
finishing time of the activities. 

The first formulation for the Resource Leveling Problem in the multi-mode case is based on 
a set of binary decision variables jstx  [22] that establish the period in which the activities are 

finished: 
1,  job  is finished in mode  at the end of period 

,
0, otherwise

for , ,and , ,

jst

j j j j

if j s t
x

j J s M t ES d LF

ì ü
= í ý
î þ

é ùÎ Î Î +ë ûé ùLFë ûjj, ,é ùé ù
jLF, , j, ,

 (19) 

The variables jstx can only be executed in one mode, and are defined over the interval 

between the earliest and latest finishing times (the delimiting periods) of the activities of the 
project. These limits are established using the traditional forward and backward pass 
calculations for the unconstrained problem. 

The vector SS of Starting Scheduled period for each activity is defined by: 

 1

j j

j

P LF

j jst js

s t EF

SS t x d
= =

æ ö
= × -ç ÷ç ÷

è ø
å å  (20) 
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The objective function to minimize the minimum total sum of the squares of resource 
consumption for each period is: 

( )

2

1 1 1

 
j j

j

P LFR T

k rst jst

k t j E t s q EF

Minimize c u x
= = Î = =

æ ö
× ×ç ÷ç ÷
è ø

åå å å å  (21) 

Subject to: 

1

1 for 
j j

j

P LF

jst

s t EF

x j J
= =

= Îå å  (22) 

( )
1 1

0 for  and 
j j j j

j j

P LF P LF

js jst ij ist j

s t EF s t EF

t d x t x j J i Pg
= = = =

- × - - × ³ Î Îå å å å  (23) 

{ }0,1 for , 1, ,  and , ,jst j j j jx j J s P t ES d LFé ù é ùÎ Î Î Î +ë û ë ûé ù é ùP t ES d LFP t ES1, d 1, d d ë û ë ûj j j jj j jj j j jj j j1, ,  and , ,and and é ùé ù
jd LF1, ,  and , ,1, ,  and , ,,  and ,  and ,  and j1, ,  and , ,,  and , ,1, ,  and , ,,  and ,  and ,  and 1, ,  and ,  ,  ,  ,  1, ,  and ,  and 1, ,  and ,  and and ,  and  (24) 

The objective function modeled in Eq. (21) minimizes the total sum of the squares of 
resource consumption for each period. Eq. (22) specifies that only one mode and one 
completion time are allowed for every activity. The precedence constraints are given in Eq. 
(23). Finally Eq. (24) specifies that the decision variables are binary. 

Another possible formulation for the RLP is also based on binary programming, but the 
decision variables jstx establish the period in which the activities are executed [23]: 

1,  job  is processed in mode  in period 
,

0, otherwise

for , ,and 1, ,

jst

j j j

if j s t
x

j J s M t ES LF

ì ü
= í ý
î þ

é ùÎ Î Î +ë ûé ùS LFë ûj j jj j j,é ùé ù
j j jS LFj j jj j j,

 (25) 

The vector SS of Starting Scheduled period for each activity is defined by: 

 
( )1

1

j j

j

P LF

j jst jst jst

s ES

SS t x x x-
=

æ ö
= × × -ç ÷ç ÷

è ø
å å  (26) 

The objective function will be: 

( )

2

1 1 1

 
jPR T

k rst jst

k t j E t s

Minimize c u x
= = Î =

æ ö
× ×ç ÷ç ÷
è ø

åå å å  (27) 

subject to: 

1 1

for 
j j

j

P LF

jst j

s t ES

x d j J
= = +

= Îå å  (28) 

( ), 1
1

0 for , ,and 1, , 1
j

t

js jst j t jsq j j j

q ES

d x x x j J s M t ES LF+
= +

é ù× - - £ Î Î Î + -ë ûå é ù1S LFë û1jj, ,, , 1, ,, ,, ,, ,, ,, ,, ,  (29) 

1

1

0 for , , ,and 1, ,
j

t

i jst ij ist j j j i

q ES

d x x j J i P s M t ES LFg
-

= +

é ù× - - £ Î Î Î Î +ë ûå é ùLF1,ë ûii1, ,é ùé ùLF1, , ii1, ,  (30) 

{ }0,1 for , 1, ,  and 1, ,jst j j jx j J s P t ES LFé ù é ùÎ Î Î Î +ë û ë ûé ù é ùd 1,d LFd 1,d d ë û ë ûj j jj j jj j jj j j,  and 1, ,,  and ,  and é ùé ù
j j jLF,  and 1, ,,  and ,  and ,  and ,  and j j jj j j,  and 1, ,,  and ,  and ,  and ,  and ,  and ,  and ,  and ,  and and ,  and ,  and ,  and ,  and ,  and ,  and and ,  and  (31) 

 
The objective function in Eq. (27) minimizes the total sum of the squares of resource 

consumption for each period. Eq. (28) ensures that each activity is executed for jd  time units. 

The execution of the activities without pre-emption is modeled in Eq. (29). The precedence 
constraints are given in Eq. (30). Finally, Eq. (31) specifies that the decision variables are 
binary. Easa [24] proposed a different binary integer formulation, preserving the precedence 
constraints by limiting the shifting of the activities to the free float, which must be equal to or 
greater than zero. 
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The Resource Leveling Problem is NP-Hard even if only one resource is considered [25,12]. 
The time complexity function is of the order of ( )nO q with q  being a positive constant. The 

universe of schedules for an instance is: 

 
1 1

( 1)
jMJ

js

j s

Ht T mkp
= =

+ - +ÕÕ  (32) 

with jsHt  being the total float of the activity j processed in mode s , T the prescribed makespan, 

mkp  the makespan for the resource unconstrained problem (RUPSP or resource relaxation of 

the RCPSP) and jM the execution modes of activity j . 

If the prescribed makespan is established to be equal to the makespan for the RUPSP and 
only one execution mode is considered, Eq. (32) can be simplified to: 

 
1

( 1)
J

js

j

Ht
=

+Õ  (33) 

3.1. Exact Algorithms 

Exact algorithms based upon implicit enumeration, integer programming, and dynamic 
programming techniques, have been proposed to solve the RLP.  Easa [24] used a mixed binary-
integer programming technique that guarantees the optimum leveling. Exhaustive enumeration 
procedures were presented by Ahuja [26]. Bandelloni et al. [27] developed an optimal technique 
based on dynamic programming. Recently, Rieck, Zimmermann & Gather [28] proposed a new 
mixed-integer linear model formulation and domain-reducing pre-processing techniques for the 
RLP based on smart discrete-time formulations. 

The branch-and-bound technique [29] is probably the most widely used exact solution 
technique for solving project scheduling problems, as it is the only technique which allows for 
the generation of optimal solutions with acceptable computational effort. Neumann and 
Zimmermann [30] describe a branch-and-bound procedure that reduces the set of all feasible 
solutions by successively scheduling activities for approximately solving the problem. Recently, 
a lower bound improved method (Maximum Allowable Daily Resources Method) to branch the 
nodes has been developed by Mutlu [31], which may form a basis for the performance 
evaluation of heuristic and metaheuristic procedures for the RLP. Recently, Gather et al. [32] 
presented a new enumeration scheme embedded into a branch-and-bound framework using a 
constructive lower bound as well as pre-processing techniques and Hariga and El-Sayegh [33] a 
new mixed integer binary linear optimization model that allow activity splitting and minimizes 
its associated costs. 

The RLP as an NP-Hard problem has a phenomenon of “combinatorial explosion” [15], 
especially for large-scale projects. For this reason, exact algorithms are only efficient for small 
projects. 

3.2. Heuristics Algorithms 

To avoid the explosion problem, heuristic rules are mostly used to solve the RLP. These are 
simple rules or sets of rules which aim to obtain a “good” solution (locally optimal) for a 
difficult problem but do not guarantee the best solution (globally optimal). Heuristic algorithms 
can be of two kinds, construction and improvement procedures. Construction procedures are 
used to establish a feasible solution to the problem, and the other procedures are used to 
improve it. 

The first heuristic procedure for the RLP was proposed by Burgess and Killebrew [19], 
establishing the minimum squares as the performance measure. The Burgess-Killebrew 
algorithm is an improvement procedure that readjusts the starting time of each activity and 
reduces the variability to a near optimum (local optimum). The first step of the algorithm 
consists in establishing the starting time scheduled of each activity at their earliest starting time. 
Later, the activities are selected one by one according to the priority rule (earliest finishing 
time), selecting the best starting time, which is the one that minimizes the total sum of the 
squares of resource consumption for each period. 
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The Burgess-Killebrew algorithm is a single-pass algorithm that requires one to be aware of 
the precedence relationships between activities because this is not considered in the formulation. 
This problem was considered and solved by Burman [33] using the free float as the limit for the 
activity shifting. 

Harris proposed a multi-pass algorithm [20] called the MOM, which established the 
minimum moment as the performance measure for minimizing the daily fluctuations in resource 

use while keeping the total project duration unchanged. Later, Harris improved the MOM with 
the packing method (PACK) [34], which recognizes network interactions with a more in-depth 
analysis. Martinez and Ioannou [35] improved this method by introducing the Modified 

Minimum Moment Method to level resources in construction projects. Hiyassat [36] devised a 
heuristic to reduce the calculations needed for the minimum moment approach. Jeetendra et al. 
[37] proposed the use of Petri Nets (PNs) and a P-matrix to help in token movements, 
describing an algorithm for the RLP.  

3.3. Metaheuristic algorithms 

Given the variety of network structures and resources, no single heuristic rule can always 
produce the optimal solution for all the RLP, and exact algorithms require extensive 
computational effort. Therefore they are unable to deal with real large problems. 

Metaheuristic methods are general purpose high level search frameworks grounded in 
physical, biological and animal behavior that can be applied to any optimization problem. 
Several metaheuristic methods have been proposed, such as Grasp (Greedy Randomized 
Adaptive Search Procedure). Other improved methods are evolutionary algorithms (EA), 
genetic algorithms (GA), scatter search (SS), simulated annealing (SA), ant colony optimization 
(ACO), particle swarm optimization (PSO), and shuffled frog-leaping (SFL). 

Evolutionary and genetic algorithms (EAs/GAs) [39,40] and simulated annealing (SA) [41] 
are the most popular metaheuristic methods for solving the RLP. Hybrid methods are presented 
by Son and Skibniewski [41], and by Alsayegh & Hariga [42], with a new approach for the RLP 
which considers the cost of splitting the non-critical activities and combines the particle swarm 
optimization (PSO) and simulated annealing (SA) methods. A hyperheuristic approach 
implemented within commercial project management software has been proposed by Koulinas 
and Anagnostopoulus [43].  Hyperheuristics chooses a sequence of “knowledge poor” heuristics 

that are used to choose the most appropriate low-level heuristic from a set of heuristics during 
the search.  

Metaheuristic algorithms search for a better solution until a termination condition (or one of 
a set of termination conditions) has been satisfied. Possible reasonable termination conditions 
include: a certain amount of time, a maximum CPU time, a fixed maximum number of 
iterations, a vector SS  of Starting time Scheduled with a measured value less than a predefined 
threshold value (Objective Bound), and a fixed maximum number of iterations without 
improvements in the best solution found so far. 

An Objective Bound as a termination condition should be established by computing a Lower 

Bound (LB), by relaxing the restrictions of the RLP. Some LB methods are LP-relaxation, 
cutting planes relaxing the integrality restrictions, Lagrangean Relaxation, removing a set of 
constraints from the original problem and incorporating them into the objective function, or Set 

Covering Based Approach, discarding the precedence constraints and/or allowing the pre-
emption of activities [44]. 

Recently, Paya-Zaforteza et al. [45] and Carbonell, Yepes and González-Vidosa [46] used 
the three-parameter Weibull distribution [47] to establish an estimation of the global optimum. 
They based their research on the fact, proved by Fisher and Tippet [48] that, as the number of 
independent samples of size m grows, their distribution approaches a three-parameter Weibull 
distribution with location parameter g as an estimation of the global optimum. 

4. An Adaptive Genetic Algorithm (AGA) for the RLP with multiple resources 

Genetic Algorithms (GAs) [49] are stochastic search techniques based upon the principles 
of Darwinian evolution, and simulate biological evolution. Basically, a collection of candidate 
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solutions (initial population) is manipulated (evolved) through a number of iterations 
(generations). A candidate solution, called a chromosome or individual, is represented by a set 
of integer values (genes). 

In the RLP, the most usual representation for encoding a candidate solution is the vector 
SS  of Starting time Scheduled for each activity [15]: 

 { }1 2, , , , ,i i i ij iJindividual SS SS SS SS= }ij iJ, , , , ,, ,SS SSij iij i, , , , ,, ,, , , ,  (34) 

The initial population is generated randomly by heuristic constructive algorithms, and the 
quality of individuals is evaluated and ranked using Eq. (10) as a fitness function. In the RLP the 
fitness function can be any of the performance measures: the minimum moment [20], the 
minimum squares (Eq. 17), the RIC (Eq. 18) or the entropy function [21]. 

The initial population ( P ) evolves, under a set of cyclic genetic operators. First, two 
parents are randomly selected, based on their fitness values (a mechanism is used to ensure that 
a solution with a better fitness has a higher chance of being selected as a mate). One or more 
point crossovers divides the parents into different sub-parts, generating, by recombination, two 
children or offspring ( 'P ) as new candidate solutions. Some genes of the offspring can mutate 
producing different offspring ( ''P ), adding them to the population and reducing the population 
by selection. The previous algorithm can be structured as follows:  

begin :  
 ()P Generate InitialPopulation¬  

( )Evaluate P  
Do  

  ' ( )P Recombine P¬  
  '' ( ')P Mutate P¬  
  ( '')Evaluate P  

( '' ')P Select P P¬ È  
  termination condition is metLoop until  

end  
4.1. The formulation for the AGA 

The formulation used to solve the RLP with the proposed AGA is based on an integer 
programming formulation with decision variables jd that represents the shifting of the initial 

early start ( jES ) of each activity using the traditional forward and backward pass calculations 

for the resource unconstrained problem. 
The vector SS of Starting time Scheduled (not period) for each activity is defined by: 
 j j jSS ESd= +  (35) 

The objective function to minimize the minimum total sum of the squares of resource 
consumption for each period is: 

( )

2

1 1 1

 
R T J

k kt j

k t j E t j

Minimize c u Te d r
= = Î =

æ ö
× + × + ×Dç ÷ç ÷
è ø

åå å å  (36) 

Subject to: 

( ) 0 for  and j j i i i ij jES ES d j J i Pd d g+ - + + + ³ Î Î  (37) 

finishES T T£ + D  (38) 

0 and integral for j j Jd ³ Î  (39) 

Consequently, the individuals are encoded as follows: 

 { }1 2, , , , ,i i i ij iJindividual d d d d= }ij iJ, , , , ,, ,d dij iij i, , , , ,, ,, , , ,  (40) 

The objective function Eq. (36) minimizes the total sum of the squares of resource 
consumption for each period. The precedence constraints are given in Eq. (37). The prescribed 
makespan, as the maximum project duration, is preserved by Eq. (38) and, finally, Eq. (39) 
specifies that the decision variables are non-negative integer values. 
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The objective function in Eq. (36) has been improved by “punishing” the minimum total 

sum of the squares, ensuring a better solution with the lower shifting and consequently 
increasing the float of the activities. Besides this, Eq. (36) has been completed by allowing an 

extension ( TD ) of the project deadline (T ) or the prescribed makespan, with penalty ( r ). To 

avoid undermining the main objective e must be very small; we recommend a value such that 
the sum of the total float for all the activities multiplied by e is less than one, as expressed in 
Eq. (41): 

 1

1
J

j

j

Totalfloate
=

× <å  (41) 

One of the major difficulties of GA is the premature convergence toward suboptimal 
solutions, and the loss of genetic variability that is caused by inbreeding (crossing individuals 
with common parentage). To avoid this, a GA must find an equilibrium point between 
intensification and diversification strategies. Intensification produces convergence to a local 
optimum with high levels of inbreeding, and diversification produces unfeasible individuals. 
Static and dynamic strategies have been proposed by researchers; the static methodologies 
modify the operation parameters according to a linear or logarithmic function [50]; the dynamic 
strategies adjust the mutation probability [51], or crossover and mutation [52], dynamically, 
with the aim of overcoming the premature problems of convergence and closing to a local 
optimum.  

 
4.2. The initial population 

The initial population is randomly generated by a heuristic backward constructive procedure 
to preserve the maximum diversification of the population with feasible individuals. The 
procedure in pseudocode is as follows: 

begin :  
Topological ordering  

max(50,2 )Popsize Totaljobs= ´  
( 1; ;1)k Popsize=For  

( ;1; 1) in a decreasing topological orderj J= -For  

(0,  )ij random Free Float Td = + D  

;  
;  
end  

Note that in the previous procedure, the shifting values ijd  are randomly established 

between 0 and the free float of each activity, to guarantee that all the individuals are feasible 
solutions to the problem. 

 
4.3. The evolution  

Once the initial population is generated, individuals evolve by a principle inspired by 
natural evolution, each transmitting its genetic material to its offspring. Only the most adapted 
individuals (the elite) are able to survive and breed new individuals. Additionally, the genetic 
information of the offspring is subject to small mutations. 

The population is evaluated and ranked, and Eq. (42) is applied to establish the individuals 
of the elite as a fraction of the total population:  

0 1Elitesize< <  
 ( ) Best individualsElite Elitesize Popsize¬ ´  

Based on the knowledge of the problem, the global optimum is in the neighborhood of the 
best individuals.  Thus, parents are selected from the elite population through the classic 
roulette-wheel mechanism to probabilistically select individuals based on the fitness measure 
( if ): 
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1

( ) ;1i
i Elitesize Popsize

i

i

f
P S i Elitesize Popsize

f
´

=

= £ £ ´

å
 (42) 

random ( )iParents P S¬  
 

4.4. Recombination and mutation 

Like its counterpart in nature, recombination or crossover produces offspring 
( -ons and -aughterd ) that have some parts of both ( -atherf father and -otherm ) parent’s genetic 

material. For a one-point crossover C , the pseudo-code is:  

{ }1 2 1, , , , , ,f f f fc fc fJindividual d d d d d+= }fc fc fJ1 2 11 2 1, ,1 2 11 2 11 2 1d d dfc fc fJfc fc fJ1 2 11 2 11 2 1, ,1 2 11 2 11 2 11 2 11 2 11 2 11 2 11 2 11 2 11 2 1  
{ }1 2 1, , , , , ,m m m mc mc mJindividual d d d d d+= }mc mc mJ1 2 11 2 1, ,1 2 11 2 11 2 1d d d1 2 11 2 1c mJc mJ1 2 11 2 1, ,1 2 11 2 11 2 11 2 11 2 11 2 11 2 11 2 11 2 11 2 1  

( ) (1, )Crossover C random J=
 

{ }1 2 1, , , , , ,s f f fc mc mJoffspring d d d d d+= }fc mc mJ1 2 11 2 1, ,1 2 11 2 11 2 1d d dfc mc mJfc mc mJ1 2 11 2 11 2 1, ,1 2 11 2 11 2 11 2 11 2 11 2 11 2 11 2 11 2 11 2 1  
{ }1 2 1, , , , , ,d m m mc fc fJoffspring d d d d d+= }mc fc fJ1 2 11 2 1, ,1 2 11 2 11 2 1d d dmc fc fJmc fc fJ1 2 11 2 11 2 1, ,1 2 11 2 11 2 11 2 11 2 11 2 11 2 11 2 11 2 11 2 1  

For a multi-point crossover, the procedure is very similar. Crossover points are chosen 
randomly and sorted without duplicates. Then the genes between successive crossover points 
are exchanged between the parents to produce new offspring. 

A mutation operator acts as natural mutation does in natural evolution, perturbing the 
genome. In the mutation process, randomly selected genes of a chromosome are 
probabilistically replaced by other genes from the valid domain of the problem, to produce a 
new genetic structure. The mutation process is controlled by a mutation probability range 
( mutprob ) that must lie between 0 and 1 ( 0 1mutprob< < ) and a maximum number of mutation 

genes ( maxmut ). 
 
4.5. Evaluation and Unfeasibility 

Along the evolution process, offspring are potentially infeasible. Infeasible individuals are 
penalized in the function that measures the quality of an individual, but are not rejected; this 
guarantees the diversification of the population. 

The feasibility range of individuals in the evolved population is controlled using the 
feasibility lower and upper ranges ( ,Flr Fur ). The feasibility range guarantees the equilibrium 
between intensification and diversification strategies, changing the mutation probability range 

( )mutprob  by a value of f  and the maximum number of mutation genes ( maxmut ) byh , 

dynamically maintaining the genetic evolution, the diversity in the population and the 
convergence capacity of the AGA. The proposed adaptive procedure in pseudocode is as 
follows: 

begin :  
 ()P Generate InitialPopulation¬  

( )Evaluate P  

1; 0f h= =   
Do  

  ' ( )P Recombine P¬  
  '' ( ')P Mutate P¬  
  ( '')Evaluate P  
  if feasibility in last  generations is out of range adjust  and g mutprob maxmut :  
   if feasibility ;  Flr maxmut -= f;mutprob h< - =  
   if feasibility > ; Fur maxmut += f;mutprob h+ =  

( '' ')P Select P P¬ È  
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  termination condition is metLoop until  
end  

Due to the conditions of the problem, it is very difficult to establish a general rule for the 
feasibility range. The best performance values have been obtained with values for the feasibility 
lower range equal to 10% ( 0.1Flr = ) and for the feasibility upper range equal to 35% 
( 0.35Fur = ).The effect on the evolution process with different values for the feasibility lower 
and upper ranges can be seen in Fig. 2: 

 
Fig. 2 Effect of different values for the feasibility lower and upper ranges 

 
4.6. Termination conditions; the Weibull distribution 

 
4.6.1. Formulation of the Weibull distribution 

The formulation of the Weibull distribution to compute the location parameter (g ) or, as we 

call it for this special case the Weibull Bound ( )WB , to be used as termination condition, is 
explained in the following lines. Let F be the distribution of a random variable X , in other 
words: [ ]( ) PrF x ob X x= £ , such that, given a sample of size n , the equality: 

[ ] [ ] [ ]1 1 1 1Prob , , Prob Probn n n nX x X x X x X x£ £ = £ £] [ ] [ ]1 1 1Prob Prob] [ ]1 1 11 1 1n n n n] [ ] [1 1 1 11 1 1] [ Prob]1 1 1 11 1 11 1 1] [1 1 11 1 11 1 1 X x[Prob ProbProb] [ ]n n n nn n n n[Prob]1 1 1 11 1 11 1 11 1 1 1] [ X xX x[Prob Prob] [ ]1 1 1 11 1 11 1 1 11 1 1] [n n nn n nn n n[Prob]1 1 1 11 1 11 1 11 1 1 11 1 1] [  (43) 

holds. Let Ln  be a new random variable, given by: 

{ }
1,2,
minn i

i n
L X

=
= {

,
n i{

i n,
n in in i{min  (44) 

The problem we want to solve is to determine the distribution that nL follows, in particular 

at the limit of large samples, and the asymptotic behavior of the random variable
nL . Fisher and 

Tippet [48] solved this problem based on the so-called Stability Postulate: The distribution of 
the largest (smallest) value in samples of size N n´  will tend to the same asymptotic expression 
as the distribution of the largest (smallest) value in samples of size n , since the largest (smallest) 
of the minimums of N samples of size n  is the same as the minimum of the sample of 
size N n´ . Consequently the asymptotic distribution must be the same for both cases. 

Since a linear transformation does not change the form of the distribution, the Stability 
Postulate can be formulated as: 

( ) ( )    n

n nF x F a x b= +  (45) 

Solving this functional equation for F , the Weibull distribution for the smallest value is 
obtained as: 

1 , if ( )

0, if 

x

e x
W x

x

bg
h g

g

-æ ö-ç ÷
è ø

ì
ï - >= í
ï £î

 (46) 

with , 0h b > and where g is called the location parameter, h the scale parameter, and b  the 
shaper parameter. 
 

4.6.2. How to compute the parameters ,g h  and b  when ( )F x  is unknown 

First: We take a sample of size n  in a random way. 
Second: From the sample, we calculate the density and distribution functions: 

( ) xN
f x

n
= ; xN  being the number of times that the value x  appears in the sample 

( ) ( )
X x

F x f x
£

=å  (47) 

Third: We approach the Weibull distribution using the experimental values of ( )F x .

1
( ) 1

1 ( )

x x

F x e e
F x

b bg g
h h
- -æ ö æ ö- -ç ÷ ç ÷

è ø è ø= - ® =
-

 (48) 
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Taking logarithms: 

1
log

1 ( )

x

F x

bg
h
-æ ö æ ö=ç ÷ ç ÷- è øè ø

 (49) 

Taking logarithms again: 

( ) ( )1
log log log log

1 ( )
x

F x
b g b h

æ öæ ö = - -ç ÷ç ÷-è øè ø
 (50) 

Changing the variables: 

( )1
log log ; log

1 ( )
y z x

F x
g

æ öæ ö= = -ç ÷ç ÷-è øè ø
 (51) 

Eq. (49) becomes: 

( )logy z xb b g= - -  (52) 

which can be seen to be a linear regression problem in the variables y  and z ; 

( ) ( ) ( )( )2 2 2 2/yz z yd g s g s g s=  (53) 

The value of g  that minimizes Eq. (53), 0g , is found using derivation techniques. In this 

way we get the regression for the best correlation between y  and z : 

y az b= +  (54) 
Comparing Eq. (51) with Eq. (53) we get: 

( ); loga bb b h= - =   (55) 

which allows us to compute the other parameters b andh  . 
Finally, the termination conditions for the proposed AGA are: 

( )

# established number of 

 ,  where  is the better bound obtained

( ) 0.001, where  is the Weibull distribution

iteration iterations

or BB Objective Bound BB

W BB P x BB W

=ì
ï

£í
ï = £ £î

 

And then the adaptive procedure in pseudocode is as follows: 
begin :  

 ()P Generate InitialPopulation¬  
( )Evaluate P  

   ( ) with ()Compute Weibull Bound WB InitialPopulationg= ê úë û  

1; 0f e= =   
Do  

  ' ( )P Recombine P¬  
  '' ( ')P Mutate P¬  
  ( '')Evaluate P  
  if feasibility in last  generations is out of range adjust  and g mutprob maxmut :  
   if feasibility ;  Flr maxmut -= f;mutprob e< - =  
   if feasibility > ; Fur maxmut += f;mutprob e+ =  

( '' ')P Select P P¬ È  
  termination condition is metLoop until  

end  
 

4.6.3. Numerical example 

For a better understanding and to illustrate the application of the Weibull distribution for the 
estimation of the global optimum as a termination condition, we will show a step by step 
calculation, based on the first instance of the set of problems j30. The exact location 
parameter ( )g  of the Weibull distribution is obtained when n , the size of the sample, goes to 
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infinity. For each sample of size n, a location parameter ( )ng  is obtained, in such a way 

that lim n
n

g g
®¥

= . So there is a monotonous subsequence ( ); 1,2,3,
kn kg = ) , either increasing or 

decreasing, that tends tog when k goes to infinity. Then, by performing a heuristic search for 

such a monotonous subsequence of samples of size 1 32n = , 2 64n = , 3 96n = , we obtain the 

following results step by step: 

First: We choose three samples of feasible solutions of sizes1 ,2 ,3n n n´ ´ ´ , ( 1 2 3, ,S S S  

respectively), n  being the number of jobs of the instance j30_1, in a random way, for example, 

the 2S  sample: 

2S ={7863, 8115, 7905, 7931, 7983, 8151, 7969, 7957, 8113, 8077, 7803, 7903, 8055, 

8163, 8193, 8127, 8145, 7963, 8051, 7959, 7733, 8151, 8005, 7767, 7883, 7937, 7939, 7877, 
7945, 8001, 7745, 7811, 7949, 7865, 8043, 8161, 8033, 7763, 8039, 8259, 7881, 8129, 7993, 
8187, 7957, 8019, 7921, 7965, 8057, 7985, 8137, 7989, 7981, 7999, 8003, 7775, 8171, 8081, 
7969, 8193, 7855, 7953, 8075, 7975} 

Second: From 1 2 3, ,S S S , we calculate the density and distribution functions: 

( ) ; ( ) ( )x

X x

N
f x F x f x

n £

= =å ; (from Eq. (46) and Eq. (47)). 

Third: We approach the Weibull distribution using the experimental values of ( )F x  in 

accordance with Eqs. (48) to (55), obtaining the location parameters 32 64 96( , , )g g g  respectively, 

and the other parameters ( )1 1 2 2 3 3, , ,b h b h b h  to compute the three Weibull distributions (see 

Fig. 3): 
2

32 7517.19 with 0.972123Rg = =  
2

64 7494.65 with 0.982858Rg = =  
2

96 7488.38 with 0.968511Rg = =  
 

Fig. 3 Approach to the Weibull distribution for 32 64 96,  and W W W   

 

Fourth: if the algorithm finds a value for BB (Better Bound) which satisfies the 

inequalities ( )( ) 0,001; 32,64,96nW BB P x BB n= £ £ = , then it stops. 

32(7549) 0.000017 0.001;where =7549W BB= £  

64(7549) 0.000036 0.001;where =7549W BB= £
 

96(7549) 0.000313 0.001;where =7549W BB= £
 

5. Computational results and benchmarking test 

As test instances, we have used the standard sets j30, j60 and j120 for the RCPSP (Resource 
Constrained Project Scheduling Problem). The instances, represented as activity-on-node 
networks, were generated with a full-size instance generator, named ProGen [53], for a general 
class of project scheduling problems with four renewable resources. The PSPLIB library is fully 
accessible in the Project Scheduling Project Library (PSPLIB) at 
http://129.187.106.231/psplib/library.html [18]. 

The values used to compute the instances are shown in Table 1 and Table 2: 
Table 1 GA parameters (1) 

The instances are solved with 0e =  and 1kC = , the prescribed makespan as that obtained for 

the RUPSP (the resource relaxation of the RCPSP), and the penalty as zero ( 0r = ). The 
termination conditions are established at a maximum number of iterations and a probability for 
WB of 0.001%, as can be seen in Table 2: 
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Table 2 GA parameters (2) 
The AGA is programmed with VBA (visual Basic for applications) for Excel 2010, 

applying a matrix algorithm for the RUPSP (the resource relaxation of the RCPSP), as can be 
seen in Fig. 4 [54,55]. We have used a computer with an Intel Core i7 processor, 3.6Gh of 
velocity and 8 GB of RAM with an average time consumed for the j30 set of 15 seconds with 
1000 iterations. 

 
Fig. 4 Decision support system application (VBA for Excel 2010) 

The main statistics of the best improvement values found over the initial value of the 
measure function (total sum of the squares of resource consumption for each period) are shown 
in Table 3: 

Table 3 Test statistics 
 

The complete information about the benchmarking test can be downloaded from the 
“Benchmarking for Resource Leveling Problem (PSPLIB j30, j60, j120)”, 

(https://docs.google.com/spreadsheet/ccc?key=0AgisRN826029dHdEZmNDbmxBZDI1QmZN
SGQ4a1VhY3c), with the initial and leveled value for all the analyzed instances, the 
improvements and the vector SS of Starting time Scheduled for each activity. 

The correlation values obtained as a function of the logarithm of the time complexity and 
the initial value of the measure function for the solved instances are shown in Table 4, Fig.5 and 
Fig.6: 

Table 4 Test correlation 

Fig. 5 Correlation ( xyr ); Improvement over logarithm of the time complexity ( )nO q  

Fig. 6 Correlation ( xyr ); Improvement over initial sum of the squares 

Finally, as there are no known results from other researchers for the PSPLIB, and to 
determine how good the proposed AGA algorithm is, we have computed the same instances 
with three different parallel scheduling schemes [56]: a parallel backward scheme with earliest 
finishing time as the priority rule and maximum free float as the secondary one, a parallel 
forward scheme with latest finishing time as the priority rule and maximum total float as the 
secondary one, and a forward-backward scheme with the priority rule depending on the 
direction of the scheduling. The results obtained compared with the proposed AGA are shown 
in Table 5 and Fig. 7. 

Table 5 Heuristic results vs. proposed AGA 
Fig. 7 Heuristic results vs. proposed AGA 

The results obtained in the test instances show that there is a significant positive correlation 

between the improvement and the logarithm of the time complexity ( )nO q , but that this is not 

statistically significant when compared with the initial sum of the squares.  
This is due to the fact that algorithmic complexity is determined by the slack in the tasks, 

and, in the majority of cases, if the slacks are regularly distributed over the geometry of the 
graph they will provide a greater number of feasible solutions to the problem, and consequently 
a greater improvement capacity. 

The heuristic does not differ significantly between the forward and backward scheduling 
schemes, but a forward-backward scheme presents significant improvements compared with the 
single direction scheduling scheme. The improvement of the forward-backward scheme with 
respect to case of the single direction scheme is constant, and it seems not to be related to the 
time complexity or the number of tasks. However, comparing the values obtained from the 
application of the AGA and the analyzed heuristics, the improvement over the best heuristic 
significantly increases with the number of tasks of the problem. 

6. Conclusions 

The Resource Leveling problem (RLP) is a non-regular problem whose objective is to 
achieve a resource consumption which is the most efficient possible, without increasing the 
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prescribed makespan of the project. Conventional analytical and heuristic methods are neither 
flexible nor productive when solving the RLP. Exact procedures are not useful for offering 
optimal solutions with acceptable computational effort; and, on the other hand, heuristics offer 
solutions which are far from the optimal so that it is necessary to apply metaheuristic algorithms 
for complex and real projects in realistic environments. 

In this paper: 
1. We describe the complete state of the art of the RLP, proposing different binary and 

integer mathematical formulations and incorporating modifications and improvements 
on previous contributions. 

2. We propose an Adaptive Genetic Algorithm (AGA) for the RLP with multiple resources 
allowing the extension of the project deadline with a penalty.  

3. We propose the use of the three-parameter Weibull distribution as a termination 
condition for the metaheuristic, with location parameter g or the Weibull Bound (WB  ) 

as an estimation of the global optimum. 
The previous contributions have been tested with the standard “project scheduling problem 

library” (PSPLIB), presenting a complete set of benchmarking tests solved with only the most 

usual and common parameters to provide clear criteria for comparison between the different 
algorithms. To prove the merits of the proposed algorithm, the results we obtained have been 
compared with the most common heuristic procedures and with a more efficient forward-
backward scheduling scheme. The proposed AGA is always better than the heuristics, especially 
for the most difficult problems with 120 jobs. 

The proposed AGA for the RLP has been implemented with VBA for Excel 2010 to provide 
a flexible and powerful decision support system that enables practitioners to choose between 
different feasible solutions to a problem, and that is in addition easily adjustable to the 
constraints and particular needs of a project in a realistic environment. This contribution is a 
tool that can be applied in a direct and simple way by practitioners; besides, it can serve as a 
starting point for specialists in order to develop user-friendly and practical computer 
applications to provide realistic and good solutions for production and project management. 

The use of the Weibull distribution was applied following a heuristic process. Its 

improvement is proposed as a future research field, searching for a bound ( )0e > in such a way 

that the inequality 0,n n Ng g e- £ " ³  holds for all sample sizes n  greater than a given 

size 0N ; the exact parameter would therefore be in the interval n ng e g g e- £ £ + . 

Another important area for future research is the consideration of the graph density as a new 
variable in the computational test, to determine its influence on the optimization and the 
correlation between the other variables. 
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Fig. 2 Effect of different values for the feasibility lower and upper range 
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Fig. 3 Approach of Weibull distribution for 32 64 96,  and W W W   
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Fig. 4 Decision support system application (VBA for Excel 2010) 
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Fig. 5 Correlation ( xyr ); Improvement over logarithm of the time complexity ( )nO q  
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Fig. 6 Correlation ( xyr ); Improvement over initial sum of the squares 
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Fig. 7 Heuristic results vs. proposed AGA 
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Table 1 

GA parameters (1) 
 Totaljobs

 
Popsize  Elitesize

 
Crosspoints  mutprob  Flr  Fur  

30j  32 32,64,96 0.1 1 0.1 15% 35% 
60j  62 62,124,186 0.1 1 0.1 15% 35% 

120j  122 122,244,366 0.1 1 0.1 15% 35% 
 

Table 1



Table 2 

GA parameters (2) 
 e  { }; 1,2,3,4kC k =  ,T TD   r  instances max iterations  

30j  0 1 RUPSP, 0 0 480 1000 
60j  0 1 RUPSP, 0 0 480 2000 

120j  0 1 RUPSP, 0 0 480 3000 
 

Table 2



Table 3 

Test statistics 
 

 Average 
m  

Deviation 
s  Min value Max value 

% values 
2m s±  

30j  18.45% 0.07176 4.41% 42.33% 96.04% 

60j  23.10% 0.07483 7.57% 48.24% 95.42% 

120j  27.86% 0.06737 11.25% 47.74% 96.25% 

 

Table 3



 

Table 4 

Test correlation 

 
Over complexity 

( )nO q  

 Over initial 
Sum of the squares 

 j30 j60 j120  j30 j60 j120 

Covariance 0.146 0.301 0.556  -449.025 -2295.646 -854.354 

Pearson ( xyr ) 0.544 0.544 0.583  -0.213 -0.341 -0.040 
2

xyr  29.578% 29.624% 33.962%  4.544% 11.609% 0.160% 

Table 4



Table 5 

Heuristic results vs. proposed AGA 
  j30 j60 j120 
Parallel forward scheme 12.645% 15.314% 17.208% 
Parallel backward scheme 12.641% 15.530% 17.496% 
Fw-Bw scheme 14.652% 18.014% 20.742% 
AGA 18.452% 23.099% 27.858% 

 

Table 5


