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Abstract. In this article, the first public release of GREAT as an open-source,
statistical machine translation (SMT) software toolkit is described. GREAT is based
on a bilingual language modelling approach for SMT, which is so far implemented
for n-gram models based on the framework of stochastic finite-state transducers.

The use of finite-state models is motivated by their simplicity, their versatility,
and the fact that they present a lower computational cost, if compared with other
more expressive models. Moreover, if translation is assumed to be a subsequential
process, finite-state models are enough for modelling the existing relations between
a source and a target language.

GREAT includes some characteristics usually present in state-of-the-art SMT,
such as phrase-based translation models or a log-linear framework for local features.
Experimental results on a well-known corpus such as Europarl are reported in order
to validate this software. A competitive translation quality is achieved, yet using
both a lower number of model parameters and a lower response time than the
widely-used, state-of-the-art SMT system Moses.

Keywords: Statistical Machine Translation, Monotonic Bilingual Segmentation,
Grammatical Inference, Language Modelling, Stochastic Finite-State Transducers

1. Introduction

Statistical machine translation (SMT) is a pattern recognition approach
to machine translation where models are automatically inferred from
the analysis of bilingual text corpora (Koehn, 2010). Under this frame-
work, several free/open-source software packages are nowadays pu-
blicly available (Ortiz et al., 2005; Koehn et al., 2007; Li et al., 2009).
The toolkit GREAT is presented here as an efficient SMT approach,
developed in the context of Gonzélez’s (2009) Ph.D. thesis.

In this article, the first release of GREAT as an open-source SMT
software toolkit is described, which may be freely downloaded from
http://prhlt.iti.upv.es/page/software. GREAT is based on a
bilingual language modelling approach for SMT, which is so far imple-
mented for n-gram models based on the framework of stochastic finite-
state transducers (SFSTs). The software offers room for other language
models that future developers may want to incorporate, whether they
are finite-state representable models (Marino et al., 2006; Pérez et al.,
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2 Jorge Gonzalez and Francisco Casacuberta

2008) or they come from a more complex, non-regular grammatical
inference framework.

SFSTs constitute a class of statistical models that is being used in
SMT (Amengual et al., 2000; Casacuberta and Vidal, 2004) and in
other applications of natural language processing (Karttunen, 2001)
with success. Advantages of these models are their great simplicity
and easy integration with the conventional automatic speech recog-
nition models (hidden Markov models), thereby allowing the use of
the simple and traditional Viterbi-beam-search techniques for efficient
speech translation (Vidal, 1997). Besides their versatility, they present a
lower computational cost than other more expressive models, thus being
more interesting in practice. Moreover, most translation relations are
subsequential (Berstel, 1979), therefore SFSTs seem a priori powerful
enough for modelling most existing relations between a source and a
target language. SFSTs are also able to implement and to approach
other SMT models (Bangalore and Riccardi, 2002; Kumar et al., 2006).

Similar to what happens with other statistical models, SFSTs can
also be learned automatically from bilingual corpora (Casacuberta and
Vidal, 2007). One of these SFST estimation techniques is the gram-
matical inference and alignments for transducer inference (GIATI) me-
thod (Casacuberta and Vidal, 2004; Andrés-Ferrer et al., 2008). The
basic idea of this technique, which is not only limited to SFSTs, lies in
the use of a language model of bilingual segments.

State-of-the-art SMT is strongly based on phrases (variable-length
n-grams) and on a log-linear statistical approach (Och and Ney, 2002).
GREAT is able to consider both of them by means of the implemen-
tation of a log-linear framework for phrase-based SFSTs. Experimental
results on a widely used, well-known translation task such as Europarl
are reported in order to validate this software package. They show a
competitive translation quality, yet using a clearly lower number of
parameters than that of a state-of-the-art SMT competitor system,
Moses (Koehn et al., 2007), and far less translation time requirements.

This article is organized as follows: Section 2 presents the statistical
framework of GREAT together with a formal definition for SFSTs;
Section 3 is devoted to SFST training; Section 4 documents the GREAT
decoder; Section 5 documents GREAT’s use of a log-linear modelling
framework. Some empirical results are reported in Section 6. The con-
clusions that can be drawn from this work, along with some future
working plans, are presented in the last section.
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GREAT: Open Source Software for Statistical Machine Translation 3

2. Statistical framework

Given a source sentence s, the goal of SMT is to find a target sentence
t, among all possible target strings t, that maximises the probability:

t = argmax Pr(t |s) (1)
t

where Pr(t|s) can be replaced by Pr(s,t) since the relation between
both probability distributions allows us to dispense with the third-party
term, Pr(s), which does not depend on the maximization variable:

t= arginax ID;ES(’SJ)C) = arginax Pr(s,t) (2)
Although there exist different approaches to estimating Pr(s, t) (Mar-
cu and Wong, 2002), the joint probability distribution is also adequately
modelled by using a language modelling framework for monotonic bilin-
gual string segmentations (Simard and Plamondon, 1998).
The concept of monotonic bilingual segmentation is defined for SMT
by means of two functions, ué( : 3* — N for the source sentence s, and
P+ A* — N for the target sentence t:

po (s) = {0, s [} P (6) = {0, [ ]}
po(s) =0 pr(s) =|s| po(t) =0 px(t)=|t|
Vk=1...K:p(s) > pr—1(8) N pr(t) > pr—1(t)

that monotonically divide them into the same number K of substrings:

1° k K
t=1t,...t, ... 1,
_ 5, =gl i, =t"
Vk=1...K:5 =si* | AT =t

therefore, substrings 5, and ¢, are aligned to each other, Vk =1... K.
Hence, a string of K symbols 7 can be derived from p{f(s) and pf (t):

Y=Y Ve Ve
Vk=1...K:vy, =35t

This process is applied to all sentence pairs in the training set, after
which a string corpus is generated on the basis of a bilingual vocabulary,
and from which a language model technique can be employed to learn.

This is the formalism of GREAT, which is so far implemented for
finite-state language models based on a consistent modelling of Pr(s, t)
by means of SFSTs. Other authors (Kanthak et al., 2005) are also
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4 Jorge Gonzalez and Francisco Casacuberta

working in this joint approach, but they use weighted finite-state trans-
ducers (WFSTs) (Mohri et al., 2002) instead, which do not require the
modelling of consistent probability distributions.

2.1. STOCHASTIC FINITE-STATE TRANSDUCERS

Stochastic finite-state transducers are defined by means of a tuple
(X,A,Q,qo, f, P), where ¥ is the alphabet of input symbols, A is the
alphabet of output symbols, () is a finite set of states, g, € @ is the
initial state, f : @ — [0,1] is the probability that states may be final
states, and the partial function P : Q x ¥* x A* x @@ — [0, 1] defines
a set of edges between pairs of states in such a way that every edge is
labelled with an input string in ¥*, also with an output string in A*,
and is weighted by a transition probability.

Moreover, aiming to model Pr(s, t), those functions are constrained
in order to be able to define a consistent probability distribution on
the Cartesian product ¥* x A* (Vidal et al., 2005):

VeeQ: Y. Plg,0,6,d)+ f(a)=1
geXH JEA% ¢'eQ

This description is complemented by a graphical example in Figure 1,
extracted from the parallel corpus used in the experiments in Section 6.

contra este
procedimiento /
on fthis procedure

alguna ob-
servacion /
any com-
ments

1 hay /
are there

0.4

alguna otra observacién /
any other comments

Figure 1. Graphical description of SFSTs. States are denoted as ¢;,Vi : 0 < i < 5,
and represented as circles in the diagram, where a double circle means a final state.
Edges are represented by means of direction arrows between pairs of states, in such a
way that transition labels are shown in the format “input string” / “output string”.
In this particular example, the model is used to address Spanish-to-English SMT.
Transition and final probabilities are in bold.

Under other constraints however, SFSTs may define conditional
models instead. For example, SFSTs for Pr(s|t) or Pr(t|s) are dis-
cussed in Section 5.1.
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GREAT: Open Source Software for Statistical Machine Translation 5

3. Model training with GREAT

Only a few techniques to learn SFSTs can be found in the litera-
ture (Bangalore and Riccardi, 2002; Knight and Al-Onaizan, 1998;
Casacuberta and Vidal, 2007). However, a relation between regular
translations generated by SFSTs and regular languages over some alpha-
bet of string pairs was established through morphisms (Berstel, 1979).
This property was used to propose a method of inference of SFSTs
based on the inference of stochastic finite-state automata (SFSAs)
(Casacuberta and Vidal, 2004). This method, which has been widely
used in SMT applications (Casacuberta and Vidal, 2007; Pérez et al.,
2008; Gonzalez and Casacuberta, 2009), is known as GIATI and is the
training framework of GREAT.

The GIATT algorithm establishes that a parallel corpus is to be
processed by using monotonic bilingual segmentations to get a string
corpus whose symbols belong to a new bilingual alphabet I' C ¥*x A*.
Then, a language model can be trained from this new sample. Although
GIATI was initially thought as an SFST inference algorithm (and so
it is implemented in GREAT), the core idea is that any language
modelling technique can be applied to the new string corpus. When
a language modelling framework based on finite-state models is used,
an SFSA is inferred from such a synthetic corpus. That model can also
be seen as an SFST for Pr(s,t) as described in Section 2.1, once the
transition labels in I" are traced back to their separate input and output
strings, as a direct derivation from the morphism theorem (Medvedev,
1964). The current release of GREAT is based on n-gram-based SFSAs
and it works with SRILM!, which is then required as additional software.
Future GREAT versions will also interface with other n-gram toolkits.

The tool to train a translation model with GREAT is named giati
and a configuration file must be provided: giati -c <config_file>.
This file points to several working directories and establishes the value
of some training parameters using the format PARAMETER = VALUE.
Details about the most practical settings are given in the README file.
Only the ones related to the translation functions are discussed here.

Different setups are provided through several training parameters,
either instantiated in the configuration file or via the command-line.
Let us analyse them by means of the three sequential steps of giati:

1. A string set is extracted from the word-aligned training corpus
based on the concept of monotonic bilingual sentence segmentation.
New symbols are built by concatenating source and target words using

! Available from http://www.speech.sri.com/projects/srilm/
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6 Jorge Gonzalez and Francisco Casacuberta

two control characters, so that original words can be restored after-
wards. The software looks for possible control characters in a wide
range in such a way that they are not included in the training corpus.

For example, for the sentences “El coche rojo” and “The red car”, a
bilingual string like “El/The coche—rojo/red—car” can be constructed,
where characters ‘/” and ‘—’ are the aforementioned control characters.
Two individual symbols are used, ‘El/The’ and ‘coche—rojo/red—car’,
whose source and target words can later be decoded in step 3 of giati
thanks to these control characters.

If the —-end command-line flag is included, training is not actually
performed, but the control characters that would have been employed
next are outputted. This is useful if step 1 of giati is skipped because
an external bilingual string corpus is provided later, instead of using
the embedded segmentation algorithms of GREAT. This alternative
file has to follow the same format, so the control characters computed
with --end are needed to build it. The --segment command-line flag
skips this step, thus starting giati from step 2.

If neither -—end nor --segment are included into the command-line,
a string set is extracted from the training parallel corpus according to
the following parameters in the configuration file:

— ALIGN refers to a word-alignments file for the training corpus fol-
lowing the GIZA++ format (Och and Ney, 2003). Alignments are
processed to extract monotonic bilingual segmentations from them
according to which ALGORITHM (see next option below) is selected.
Although they may be provided by any means, alignments can also
be statistically learnt by means of GIZA++2 (Och and Ney, 2003).
In this case, basic GIZA++ training is usually enough for GREAT.

— ALGORITHM determines the extraction algorithm to be used. So far,
there are only two bilingual segmentation algorithms implemented,
one for a word-based and one for a phrase-based SMT approach
(Koehn, 2010), described in Gonzalez (2009). They are selected by
setting this parameter to 1 or 3, respectively. Odd numbers are
used because even numbers are reserved for future developments
on factored SMT (Koehn and Hoang, 2007).

— SIMBEXTMAX limits the number of words in the aligned segments.
For the example above, the symbol ‘El/The’ involves two words,
whereas the symbol ‘coche—rojo/red—car’ involves four words.

2. An n-gram model is trained from the string set obtained in step 1.
Probabilities for bilingual symbols to be arranged in sequence are learnt.
The NGRAM parameter refers here to the n-gram order requested to train.

2 Available from http://code.google.com/p/giza-pp
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GREAT: Open Source Software for Statistical Machine Translation 7

3. Finally, an SFST is built from the n-gram model trained in step 2.
The command-line option -F <integer> deals with filtering the SFST
building by means of the test corpus (Gonzélez and Casacuberta, 2009).
This technique implements a sliding window of the size indicated by -F
to determine if any trained n-gram represents an SFST path reachable
by some of the source sentences that are going to be translated later.
If not succeeded, then they are not represented in the SEST structure.
The larger the window size, the more constrained the reachability, and
therefore the smaller the SFSTs are (until convergence is achieved).
By default, -F is set to 0, which means no filtering at all.

4. Decoding with GREAT

Finite-state search is efficiently accomplished with the well-known Viter-
bi algorithm (Viterbi, 1967). Under the application of this decoding
framework to SFSTs (Pic6 and Casacuberta, 2001), several beam-search
techniques (Steinbiss et al., 1994) can be introduced in order to reduce
translation time requirements.

A graph structure known as trellis is employed by the Viterbi al-
gorithm in order to organize the search space represented by SFSTs.
A search strategy where the trellis includes phrase-based transitions
was adopted with the aim of adapting the decoding procedure to a
phrase-based SMT approach, thus allowing us to develop a more ef-
fective and efficient beam-search decoding algorithm for phrase-based
SFSTs (Gonzalez and Casacuberta, 2009). Furthermore, this technique
is algorithmically equivalent to a search strategy based on words in the
case of using word-based SFSTs.

The tool to translate a test corpus with GREAT is called refx, which
requires that a model is provided: refx -m <model> -t <test_set>.

Additional running options can be introduced via the command-
line as well. The most important ones are -b <integer> and the flag
--smooth. The -b option triggers a beam-search technique based on
histogram pruning (Steinbiss et al., 1994). In general terms, it means
that only the number indicated by -b of partial hypotheses are taken
into account in the trellis from stage to stage, i.e. the best scored ones.
The smaller this number is, the more constrained the search process
is, and therefore the faster it is. However, translation results can be
rather poor if the number considered is too small. As a consequence, a
trade-off between quality and time requirements is usually empirically
determined in order to reduce the response time without a significant
quality loss. On the other hand, the flag --smooth is related to SFST
smoothing. Its explanation is discussed in the next subsection.

fosmt.tex; 22/07/2011; 13:19; p.7



8 Jorge Gonzalez and Francisco Casacuberta

4.1. SMOOTHING

Language models typically suffer from a sparseness problem (Rosen-
feld, 1996). GREAT, which is based on a bilingual language modelling
approach for SMT, is even more prone to it. Smoothing in SMT is
typically handled by a recovery method which allows us to be able to
assign a probability to any given sentence pair. Therefore, the probabi-
lity distributions of the SFST's being inferred must be modelled in order
to deal with unseen events out of training data, thus aiming for a larger
coverage in SMT applications. This process is internally carried out by
the giati training tool, which always takes smoothing into account to
estimate the models.

Smoothing in GREAT is so far applied at the language level, thus
currently relying on well-known approaches for n-gram smoothing. Ours
is based on the backoff method, which introduces some penalties for
level downgrading within hierarchical language models. In Kneser and
Ney (1995), backoff was also applied to n-gram models, and in Torres
and Varona (2001) and in Llorens et al. (2002) it was applied to SFSAs.
As Figure 2 suggests, backoff is implemented for SFSAs based on n-
gram models by means of different top-down failure transitions, that
is, used only if there is not any other successful transition available,
between the layers representing consecutive order n-grams.

Unigram
edges BO(q0

Bigram
edges

Bigram
layer

O(q,) /BO(q,)
O(g,)

Unigram
layer

Figure 2. Efficient representation of backoff for bigram-based SFSAs. Backoff (BO)
is expressed as failure transitions from the bigram layer to the unigram layer.
Unigrams go in the other direction and bigrams link states within the bigram layer.

/0

/|

Nevertheless, this equivalence is only in terms of language modelling.
In our context however, a language model of bilingual symbols is used as
a translation device, where only the source sentence is known in running
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GREAT: Open Source Software for Statistical Machine Translation 9

time. If backoff edges are interpreted with a failure meaning, then the
search is partially bound without even considering the scores. This
effect causes some translations of the source sentence to be ignored,
even though their relation is explicitly modelled in the SFST, which
implies a significant loss in translation quality (Gonzélez, 2009).

For example, Figure 3 shows that, as an SFSA where transition
labels are treated as a whole, both strings “el tiempo / the weather
pasa volando / goes quickly” (from ¢, to ¢,, and then from ¢, to g,)
and “el tiempo pasa volando / time flies” (from ¢,, down to ¢., then
up again to ¢,) are accepted by the model taking into account that
backoff edges are failure edges, thus modelling two paths with different
translations for the same input sentence. Nevertheless, as an SFST
looks for the translation of the input string “el tiempo pasa volando”,
if backoff transitions are considered failure transitions, then only the
output string “the weather goes quickly” will be found. This is because
a successful transition is found from ¢, (from ¢, to ¢,) and therefore
the backoff edge ¢, — ¢- can not be taken into account. As a result,
the translation “time flies” remains hidden within the SFST because it
can not be discovered by means of such a search algorithm. This is the
built-in behaviour for refx regarding backoff and thus it is related to
an incomplete exploration of the search space that sometimes may be
convenient for reducing response time.

el tiempo / the weather

T

pasa volando
goes quickly

el tiempo pasa volando /

BO
(%) time flies

Figure 3. Structural pruning of an SFST that is based on a bilingual bigram model.
Backoff edges do not consume any symbol but if they are considered failure transi-
tions, then given the input sentence “el tiempo pasa volando”, the output sentence
“time flies” can not be found in the SFST.

Nevertheless, if a full exploration of the search space is preferred,
a more accurate backoff interpretation algorithm is also implemented.
For n-gram-based SFSTs, the objective is that the definition of n-grams
must be respected in such a way that the exploration of the network
has to be equivalent in smoothing terms. Therefore, backoff edges must
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10 Jorge Gonzalez and Francisco Casacuberta

not be considered failure transitions with regard to the source words
but as for every bilingual label that the input is compatible with.

This behaviour is implemented by means of the interpretation of
backoff edges as /¢ edges instead (¢ means the empty string), and
avoiding the access to some eventually inactive states (Gonzalez and
Casacuberta, 2009). After exhausting all possible transition options
labelled with any pair of strings, the corresponding backoff edge is taken
and other possible transitions using different string pairs are explored.
This second backoff algorithm is applied if refx is launched together
with the ——smooth flag.

Smoothing is still an open problem in SMT (Foster et al., 2006)
and SFSTs are not an exception: they are not completely smoothed
just by smoothing the corresponding SFSAs. Future research on SFST
smoothing should be based on specific criteria for SFSTs as well.

5. Log-linear modelling with GREAT

Sections 2, 3, and 4 are related to a statistical framework where one
SFST modelling Pr(s,t) is used to find the most likely translation t
of a given source sentence s. This section is devoted to extending this
framework by means of a log-linear approach (Och and Ney, 2002),
where several SFSTs? featuring different models are properly combined
in order to decide in conjunction which is the overall best translation.

In general terms, a log-linear statistical framework is enunciated as:

M
t = argmax Z Am b (s, t) (3)
t m=1

where hy, (s, t) is the evaluation of model m over (s, t), also known as
feature, M is the number of models, and each A, is a trainable weight.

GREAT makes this framework available for phrase-based SFSTs,
where an arbitrary number of phrase-based local features can be used.
The main model of such a scenario will always be an SFST for Pr(s, t),
which can be learnt by means of the giati tool, as shown in Section 3.
Several phrase-based local features are proposed, e.g. translation mo-
dels for Pr(s|t) and Pr(t|s) or length models, but users may also
define others of their own interest. The application of phrase-based local
features in the log-linear scenario simplifies the modelling of a sentence-
based feature hy, (s, t) by means of the use of some other lower-context
(based on phrases) models 7,,(3, ).

3 Abuse of notation: SFSTs refers to WFSTs, whether they are stochastic or not
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GREAT: Open Source Software for Statistical Machine Translation 11

The local tool computes both direct and inverse translation models
from the corresponding word-based statistical dictionaries also esti-
mated by GIZA++. For an inverse phrase-based model, i.e. the proba-
bility of a source phrase 5 given a target phrase ¢, the following equation
is performed: n,,(5,t) = Pr(s|t) ~ Poisson(|s|,|t|) H Z Pr(s;|t;),

S;e€st;et
where a Poisson probability distribution is used for normalization on
the basis of the work of Singh and Husain (2007). A similar equation is
applied for direct translation models. A target-sentence length model
is also computed by the local tool regarding a phrase-based approach.
This feature is formulated as 7,,(3,t) = [¢|.

The usage of local is similar to refx as for their running options.
Nevertheless, two options are particularly needed here: first, -f 2 se-
lects the n-gram (and not the SFST) model, where a .vocabext file
contains the set of bilingual phrase pairs; second, -C ’xy’ specifies
the two x and y control characters used to build the language model
vocabulary during training. For more information on control characters
and why they are needed, please refer to step 1 of the giati training
tool, described in Section 3. After execution, a .probs file will be
created from the .vocabext file where the former extends the latter
with three scores per phrase pair according to the corresponding local
features presented above.

5.1. THE SFST LOG-LINEAR FRAMEWORK

Phrase-based local features are expressed as a particular case of SFSTs
in order to establish a homogeneous statistical framework to work with.
Figure 4 shows the relation between these features and SFSTs.

Every feature hp,(s,t) is computed as the Viterbi score for s and t
according to the corresponding m-th SFST in the log-linear approach,
what defines the optimal sequence of phrase pairs that best applies.
However, this framework is constrained in such a way so that all the
SFSTs have to define the same segmentation for a given sentence pair:

K>0
S =75 ...5,
=1,...1,
K
> log Pon(qr-1,5,, . ai) +108 fin(ax) m=1
hm(s,t) = kI:(I I
Zlong(qo,Ek,fk,qo):ZIOgnm(Ek,Ek) m>1
k=1 k=1
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12 Jorge Gonzalez and Francisco Casacuberta

source phrase target phrase score

se requiere una accion | action is required o)

se requiere una accién /
action is required

Figure 4. Equivalent representation of phrase-based local features through SFSTs.
Every table entry is embedded within a looping transition of a phrase-based SFST
with no topology at all. Scores are correspondingly stored as transition probabilities.

assuming that m = 1 refers to the main SFST, i.e. the one for Pr(s, t),

where qq...qx is the path for the aforesaid bilingual segmentation.

Phrase-based local features are represented by a model number m > 1.
Then, Equation 3 can be expressed as follows:

M
t = argmax Z Am b (s, t)
t m=1
K
= argmax A1 [Zlogpl (@r—1,5,.t,, ax) +1og fi(gx)| +
k=1
M K
D A Y 1og (5,7,
m=2 k=1
= arginax Z [)\1 log P1(qr—1,5,,1,,qx) ZA log nm(5,,t,) | +
k=1
A1 log f1(gk) (4)

which can be tackled by means of a Viterbi search in the main SFST
through the contribution of all the models (along with their relative
weights) over the phrase pair (5, ,1,) that extends a partial hypothesis.
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GREAT: Open Source Software for Statistical Machine Translation 13

To that end, local scores are embedded into the main SFST by means
of defining an extended transition function P : Q x ©* x A* x Q — RM.
The refx tool builds such an extended SFST by using the -n M option
(together with the aforementioned options -m, -t, -f 2, and -C ’xy’),
as -n stands for the number of scores per transition which SFSTs are
built with.

The tool to train the set of A-weights with GREAT is named simplex
and it uses the same syntax as the refx decoding tool (see Section 4).
It is based on the BLEU evaluation measure (Papineni et al., 2002) and
it is applied to extended SFSTs using development data.

Once the set of optimal weights is established by means of simplex,
a standard SFST with only one score per transition, but that accounts
for all the SFSTs in the log-linear framework, can be built. This process
is also carried out by the refx tool by means of several running options
(-g, -i, -d, and -1) that allow us to instantiate the set of A-weights:
-g for weighting the main model; -i and -d for inverse and direct
translation models, respectively; and -1 refers to the length model.
The number of scores per transition must therefore be set to 1 (-n 1)
so that all the scores in a transition are recombined into a global score
by means of computing the square-bracketed expression of Equation 4.
Therefore, the integrated SFST keeps the structure of the main SFST,
while only the scores originally estimated by giati are modified. As a
consequence, the integrated model does not increase the decoding cost,
and so users may add as many phrase-based local features as they like.

6. Experimental results

Experiments on the Europarl corpus (Koehn, 2005) were conducted
using the partitions that were established in the 1st workshop on Sta-
tistical Machine Translation of the North American Chapter of the
Association for Computational Linguistics.

The Europarl corpus comprises 11 different languages from the pro-
ceedings of the European Parliament, which are electronically published
on the web. However, we only focus here on the German-English,
Spanish-English and French-English tasks since these were the lan-
guage pairs that were selected for the above-mentioned workshop. The
characteristics of the Europarl corpus are presented in Table I.

Our SFST-based log-linear framework was tuned by means of an-
other disjoint partition of parallel data, of similar dimensions to the
one used for testing. The main SFST was based on a bigram model,
where SIMBEXTMAX was set to 14 (7 words per segment and language),
and -F 8 was applied as regards the SFST filtering degree. While at
decoding time, -b 50 was used and the --smooth flag was activated.
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Table I. Characteristics of the Europarl corpus for the training and test partitions.
Thousands and millions of the referred items are respectively denoted as K and M.

Subset features ~ German English Spanish English French English

o Sentences 751K 731K 688K

;:6 Run. words 15.3M 16.1M 15.7M 15.2M 15.6M 13.8M
Vocabulary 195K 66K 103K 64K 80K 62K

. Sentences 2000 2000 2000

& Run. words 54K 58K 60K 58K 66K 58K
OOV words 377 127 207 125 139 133

The Moses system (Koehn et al., 2007) is used for comparison purposes.
In this case, a standard experimental setup was configured for Moses.
Models were not binarised, as they were not binarised in GREAT either.

The results, which are presented in Table II along with the ones ob-
tained with Moses, show the viability of GREAT to perform reasonably
well on benchmark data frequently used in SMT studies, using however
a lower parameter set and less translation time.

Table II. Translation results for the Europarl corpus by using GREAT and Moses.
The experimental setup for Moses is based on eight statistical models, including
phrase-based reordering, direct and inverse phrase-based translation probabilities, di-
rect and inverse word-based lexical weighting, phrase-based and word-based penalties,
and a word-based target language model.

Translation task System BLEU WER Phrase pairs Response time
. GREAT 23.5 67.7 1.8M 25s
German — English
Moses 24.6 66.8 12M 9mO03s
. GREAT 15.9 74.2 1.9M 45s
English — German
Moses 17.5 72.5 13M 21m00s
. . GREAT 28.6 59.9 1.9M 32s
Spanish — English
Moses 30.5 58.3 19M 10m49s
, , GREAT 281  61.0 1.7M 20s
English — Spanish
Moses 29.7 59.5 19M 12m43s
. GREAT 29.3 58.9 1.56M 18s
French — English
Moses 30.3 57.7 15M 17m34s
Enelish — French GREAT 29.3 62.9 1.6M 50s
nelish = FTench £ oges 3.3 60.5 16M 12m48s

Confidence intervals at a level of 95% were computed for BLEU, fol-
lowing the bootstrap resampling technique described by Koehn (2004).
These turned to be around £0.9 points for all the translation experi-
ments, and are omitted in Table II for the sake of clarity.
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These results allow us to compare GREAT with the state-of-the-art
in SMT. For all the translation directions, GREAT displays an ability
to deal with the Europarl task, yielding a performance close to Moses.
Confidence intervals are overlapped in 4 of the 6 cases, and where not,
they are close to overlapping. It appears that bilingual phrases are
better exploited by GREAT, as it attains almost the same translation
quality by using only 10% of the number of phrase pairs considered
in Moses. Translation time requirements are also strongly favourable
with GREAT in all cases. As Moses also uses a lot more models than
GREAT, we conclude that GREAT presents an interesting trade-off
between its performance and the amount of resources needed to get it.

7. Conclusions and future work

In this article, the first public release of GREAT as an open-source SMT
software toolkit is presented. GREAT is based on a bilingual language
modelling approach for SMT, which is so far implemented for n-gram
models based on the framework of SFSTs.

The validity of GREAT to build SMT systems has been confirmed by
means of experiments on a well-known task based on Europarl. Results
close to those yielded by a state-of-the-art system, Moses, have been
achieved, while exhibiting, on the one hand, far less translation time,
and on the other hand, also a lower number of model parameters.

Future work on factored SMT and on additional log-linear features is
planned to be developed on the basis of SFST composition operations.
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