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Abstract

Trigonometric matrix functions play a fundamental role in second order dif-
ferential equation systems. This work presents an algorithm for computing
the cosine matrix function based on Taylor series and the cosine double angle
formula. It uses a forward absolute error analysis providing sharper bounds
than existing methods. The proposed algorithm had lower cost than state-
of-the-art algorithms based on Hermite matrix polynomial series and Padé
approximants with higher accuracy in the majority of test matrices.

Keywords: matrix sine and cosine, double angle formula scaling method,
Taylor series, error analysis, Paterson-Stockmeyer’s method.

1. Introduction

Many engineering processes are described by second order differential
equations, whose exact solution is given in terms of trigonometric matrix
functions sine and cosine. For example, the wave problem

v2
∂2ψ

∂x2
=
∂2ψ

∂t2
, (1)

plays an important role in many areas of engineering and applied sciences.
If the spatially semi-discretization method is used to solve (1), we obtain the
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matrix differential problem

X ′′(t) + AX(t) = 0 , X(0) = X0 , X
′(0) = Y1 , (2)

where A is a square matrix and Y0 and Y1 are vectors. The solution of (2) is

X(t) = cos
(√

At
)
X0 +

(√
A
)−1

sin
(√

At
)
X1, (3)

where
√
A denotes any square root of a non-singular matrix A [1, p. 36]. More

general problems of type (2), with a forcing term F (t) on the right-hand side
arise from mechanical systems without damping, and their solutions can be
expressed in terms of integrals involving the matrix sine and cosine [2].

The most competitive algorithms for computing matrix cosine are based
on Padé approximations [3, 4, 5], and recently on Hermite matrix polynomial
series [6, 7], using scaling of matrix A by a power of two, i.e. A/2s with a
nonnegative integer parameter s, and the double angle formula

cos 2A = 2 cos2A− I. (4)

Matrix sine can be computed using formula sin(A) = cos
(
A− π

2
I
)
and an

algorithm to compute both cosine and sine with a lower cost than computing
them separately has been proposed in [8, Algorithm 12.8].

In this work we present a competitive scaling algorithm for the computa-
tion of matrix cosine based on Taylor series. It uses matrix scaling based on
sharp absolute forward error bounds of the types given in [9], and Paterson-
Stockmeyer’s method for the evaluation of Taylor matrix polynomial [10]. A
MATLAB implementation of this algorithm is made available online and it
is compared with MATLAB function cosher based on Hermite series [6, 7],
and MATLAB function cosm implementing the Padé algorithm from [5].

Throughout this paper Cn×n denotes the set of complex matrices of size
n× n, I denotes the identity matrix for this set, ρ(A) is the spectral radius
of matrix A, and N denotes the set of positive integers. The matrix norm ‖·‖
denotes any subordinate matrix norm, in particular ‖·‖1 is the 1-norm. This
paper is organized as follows. Section 2 summarizes some existing results
for efficient matrix polynomial evaluation based on Paterson-Stockmeyer’s
method [10]. Section 3 presents a general Taylor algorithm for computing
matrix cosine. Section 4 deals with the error analysis in exact arithmetic.
Section 5 describes the new scaling algorithm. Section 6 provides a rounding
error analysis. Section 7 deals with numerical tests, and Section 8 gives the
conclusions.
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2. Matrix polynomial computation by Paterson-Stockmeyer’s method

From [11, p. 6454-6455] matrix polynomial Taylor approximation Pm(B) =∑m
i=0 piB

i, B ∈ Cn×n can be computed optimally for m in the set

M = {1, 2, 4, 6, 9, 12, 16, 20, 25, 30, . . .} , (5)

where we denote the elements of M as m0, m1, m2, . . ., respectively, by
using Paterson-Stockmeyer’s method [10], see [1, p. 72–74] for a complete
description. First, matrix powers B2, B3, · · · , Bq are computed, where q =⌈√

mk

⌉
or �√mk�, both values dividing mk and giving the same cost [1, p.

74]. Then, evaluation formula (23) from [11, p. 6455] is computed

Pmk
(B) =

((· · · (Bqpmk
+Bq−1pmk−1 + · · ·+Bpmk−q+1 + Ipmk−q

)
× Bq +Bq−1pmk−q−1 +Bq−2pmk−q−2 + · · ·+Bpmk−2q+1 + Ipmk−2q

)
× Bq +Bq−1pmk−2q−1 +Bq−2pmk−2q−2 + · · ·+Bpmk−3q+1 + Ipmk−3q

)
· · ·

× Bq +Bq−1pq−1 +Bq−2pq−2 + · · ·+Bp1 + Ip0. (6)

Taking into account Table 4.1 from [1, p. 74], the cost of evaluating Pmk
(B)

in terms of matrix products, denoted by Πmk
, for k = 0, 1, . . . is

Πmk
= k. (7)

3. General Algorithm

Taylor approximation of order 2m of cosine of matrix A ∈ Cn×n can be
expressed as the polynomial of order m

Pm(B) =
m∑
i=0

piB
i, (8)

where pi =
(−1)i

(2i)!
and B = A2. Since Taylor series is accurate only near the

origin, in algorithms that use this approximation the norm of matrix A is
reduced using techniques based on the double angle formula (4), similar to
those employed in the scaling an squaring method for computing the matrix
exponential [12]. Algorithm 1 costay computes the matrix cosine based on
these ideas, considering the values of mk ∈ M for the truncated Taylor series
(8), with a maximum allowed value of mk equal to mM .
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Algorithm 1 costay: Given a matrix A ∈ Cn×n and a maximum order
mM ∈ M, this algorithm computes C = cos(A) by a Taylor approximation
of order 2mk � 2mM and the double angle formula (4).

1: Preprocessing of matrix A.
2: B = A2 � The memory for A is reused for B
3: Scaling phase: Choose mk � mM , mk ∈ M, and an adequate scaling

parameter s ∈ N ∪ {0} for the Taylor approximation with scaling.
4: Compute C = Pmk

(B/4s) using (6)
5: for i = 1 : s do
6: C = 2C2 − I
7: end for
8: Postprocessing of matrix C.

The preprocessing and postprocessing are based on applying transforma-
tions to reduce the norm of matrix A and recover the matrix C ∼= cos(A)
from the result of Loop 5-7. The available techniques to reduce the norm of
a matrix are argument translation and balancing [1, p. 299]. The argument
translation is based on the formula

cos(A− πjI) = (−1)j cos(A), k ∈ Z,

and on finding the integer j such that the norm of matrix A−πjI is minimum.
This value can be calculated by using Theorem 4.18 from [1]. Balancing is
a heuristic that attempts to equalize the norms of the kth row and kth
column, for each k, by a diagonal similarity transformation defined by a
non singular matrix D. Balancing tends to reduce the norm, though this
is not guaranteed, so it should be used only for matrices where the norm is
really reduced. For those matrices, if A = D−1(A − πjI)D is the obtained
matrix in the preprocessing step, the postprocessing consists of computing
(−1)jDCD−1, where C is the matrix obtained after Loop 5− 7.

We consider as input argument the maximum Taylor order mM that can
be used for computing the matrix cosine. In the Scaling phase the optimal
order of Taylor approximation mk � mM and the scaling parameter s are
chosen. Analogously to [9], in the proposed scaling algorithm it will be
necessary that the same powers of B are used in (6) for the two last orders
mM−1 and mM , i.e. Bi, i = 2, 3, . . . , q. For each value of mM Table 1 shows
the selected optimal values of q for orders mk, k = 0, 1, 2, . . . ,M , denoted
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by qk. For example, if mM = 20 and m4 = 9 is the optimal order obtained
in the Scaling phase, then q4 = 3.

For the evaluation of Pmk
in Step 4 the Paterson-Stockmeyer’s method

described in Section 2 is applied. Then, the double angle formula is used
to obtain cos(A) in Steps 5 − 7 from matrix C of Step 4. Thus, using (7)
it follows that computational cost of Algorithm costay in terms of matrix
products is

Cost(mk, s) = 1 + k + s. (9)

Table 1: Values of qk depending on the selection of mM .

k 0 1 2 3 4 5 6 7
mM�mk 1 2 4 6 9 12 16 20
12 1 2 2 3 3 3
16 1 2 2 3 3 4 4
20 1 2 2 3 3 4 4 4

4. Error analysis in exact arithmetic and practical considerations

Using (8), it follows that

Emk ,s = ‖cos (A/2s)− Pmk
(B/4s)‖ =

∥∥∥∥∥
∞∑

i=mk+1

(−1)iBi

(2i)!4si

∥∥∥∥∥ (10)

represents the forward absolute error in exact arithmetic from the approxi-
mation of cosine matrix function of the scaled matrix A/2s by Taylor series
truncation. Analogously to [5], for the evaluation of cos (A) in IEEE dou-
ble precision arithmetic we consider an absolute error-based algorithm, by
selecting the appropriate values of mk and s such that

Emk ,s � u, (11)

where u = 2−53 is the unit roundoff in IEEE double precision arithmetic,
providing high accuracy with minimal computational cost. The applica-
tion of the proposed scaling algorithm to IEEE single precision arithmetic is
straightforward and it will not be included in this paper.

In order to bound the norm of the matrix power series in (10), we will
use the following improved version of Theorem 1 from [9, p. 1835]:
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Theorem 1. Let hl(x) =
∞∑
i=l

pix
i be a power series with radius of convergence

w, h̃l(x) =
∞∑
i=l

|pi|xi, B ∈ Cn×n with ρ(B) < w, l ∈ N and t ∈ N with

1 � t � l. If t0 is the multiple of t such that l � t0 � l + t− 1 and

βt = max{b1/jj : j = t, l, l + 1, . . . , t0 − 1, t0 + 1, t0 + 2, . . . , l + t− 1}, (12)

where bj is an upper bound for ||Bj||, ||Bj|| � bj, then

||hl(B)|| � h̃l(βt). (13)

Proof. Note that ||Bt0 ||1/t0 � (||Bt||t0/t)1/t0 = ||Bt||1/t, and then, if we
denote

αt = max
{∥∥Bj

∥∥ 1
j : j = t, l, l + 1, · · · , l + t− 1

}
, (14)

it follows that

αt = max
{∥∥Bj

∥∥ 1
j : j = t, l, l + 1, . . . , t0 − 1, t0 + 1, t0 + 2, . . . , l + t− 1

}
� βt. (15)

Hence

||hl(B)|| �
∑
j�0

l+t−1∑
i=l

|pi+jt| ||Bt||j||Bi|| �
∑
j�0

l+t−1∑
i=l

|pi+jt|αi+jt
t

�
∑
i�l

|pi|βi
t = h̃l(βt). � (16)

Theorem 1 simplifies Theorem 1 from [9, p. 1835] avoiding the need for the
bound bt0 for ||Bt0 || to obtain βt, see (12).

Similarly to [9] we use three types of bounds for the absolute error. Using
(10) and Theorem 1 it follows that

Emk ,s �
∞∑

i=mk+1

(β
(mk)
t /4s)i

(2i)!
, (17)

Emk ,s �
∞∑

i=mk+1

‖(B/4s)i‖
(2i)!

, (18)

Emk ,s �
∥∥(B/4s)mk+1

∥∥
∥∥∥∥∥

qk∑
i=0

(−1)i+mk+1(B/4s)i

(2(i+mk + 1))!

∥∥∥∥∥+

∞∑
i=mk+qk+2

‖(B/4s)i‖
(2i)!

, (19)
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where mk ∈ M and β
(mk)
t , l = mk + 1, 1 � t � l, are the values given in (12)

from Theorem 1. The superscript on β
(mk)
t remarks the dependency on the

order mk through the value of l. In order to compute (12), bounds bj for the
norms of matrix powers ||Bj|| are needed. Analogously to [9], first, ‖Bmk+1‖1
will be estimated using the block 1-norm estimation algorithm of [13], taking
bmk+1 = ‖Bmk+1‖1. For a n× n matrix, this algorithm carries out a 1-norm
power iteration whose iterates are n×r matrices, where r is a parameter that
has been taken to be 2, see [14, p. 983]. Hence, the estimation algorithm has
O(n2) computational cost, negligible compared with a matrix product, whose
cost is O(n3). Then, we compute bounds bj for the rest of needed matrix
power 1-norms involved in (12), (18) and (19) using products of the estimated
1-norm of matrix powers, and the norms of the matrix powers needed for the
computation of Pmk

, taking for them bj = ||Bj||1, j = 1, 2, . . . , qk, see Section
2. Thus, if bek = ‖Bek‖1, k = 1, 2, . . . , L, are all the known norms of matrix
powers we obtain the remaining bounds of norms of matrix powers using∥∥Bj

∥∥
1
� bj = min

{
bi1e1 · bi2e2 · · · biLeL : e1i1 + e2i2 + · · ·+ eLiL = j

}
. (20)

Note that the minimum in (20) is desirable but not necessary. A simple Mat-
lab function has been provided to obtain bj , see nested function powerbound

from costay.m available at [15], analogous to nested function powerbound

in exptayns.m from [9].

Then, the values β
(mk)
t from (17) can be obtained using bounds bj in (12)

with l = mk + 1. Taking into account (17), let

Θmk
= max

{
θ :

∞∑
i=mk+1

θi

(2i)!
� u

}
. (21)

To compute Θmk
, we follow Higham in [16] using the MATLAB Symbolic

Math Toolbox to evaluate
∞∑

i=mk+1

θi

(2i)!
in 250-digit decimal arithmetic for each

mk, summing the first 200 terms with the coefficients obtained symbolically.
Then, a numerical zero-finder is invoked to determine the highest value of

Θmk
such that

∞∑
i=mk+1

θi

(2i)!
� u holds. Table 2 shows the values obtained for

the first ten values of mk ∈ M. Using (17) and (21), if β
(mk)
t � Θmk

for
two given values of mk and t, then Emk ,0 � u, and s = 0 can be used with
order mk. Otherwise, for using order mk the appropriate minimum scaling
parameter s > 0 such that β

(mk)
t /4s � Θmk

and Emk ,s � u should be taken.
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Taking into account (7) it follows that Πmk+1
= Πmk

+ 1, but this is

offset by the larger allowed value of θ = β
(mk+1)
t /4s if Θmk+1

> 4Θmk
, since

decreasing s by 1 saves one matrix multiplication in the application of the
double angle formula in Steps 5− 7 of costay. Table 2 shows that Θmk+1

>
4Θmk

for k � 3. Therefore, taking into account (17) and (21) it follows that
selecting mM < m4 = 9 as maximum order is not an efficient choice.

On the other hand, Table 2 shows that Θmk+1
/4 < Θmk

for k � 4. There-
fore, for mM � m5 = 12, if the following expression holds for certain values
of s � 0 and t1, 1 � t1 � mM + 1

ΘmM
/4 � β

(mM )
t1 /4s � ΘmM

, (22)

then, for those matrices where next expression also holds

ΘmM
/4 � β

(mM−1)
t2 /4s � ΘmM−1

, (23)

for certain value of t2, 1 � t2 � mM−1 + 1, one can select s with mM−1

instead of mM saving one matrix product, see (9). Therefore, if mM � 12
the proposed scaling algorithm will consider both orders mM−1 and mM ,
selecting the one that provides the lowest cost.

Table 2: Highest values Θmk
such that

∞∑
i=mk+1

θi

(2i)! � u.

k mk Θmk
k mk Θmk

0 1 5.161913651490293e−8 5 12 6.592007689102032
1 2 4.307719974921524e−5 6 16 2.108701860627005e1
2 4 1.321374609245925e−2 7 20 4.735200196725911e1
3 6 1.921492462995386e−1 8 25 9.944132963297543e1
4 9 1.749801512963547 9 30 1.748690782129054e2

Bounds (18) and (19) are used to refine the results obtained with (17).
In [9] it is shown that using the 1-norm a bound of type (18) can be lower
or higher than a bound of type (19) for normal and also for nonnormal
matrices, depending on the specific matrix, see (20) [9, p. 1839]. Therefore,
both bounds are considered.

To approximate bounds (18) and (19) we use the matrix power 1-norm
bmk+1 = ‖Bmk+1‖1 estimated previously, and the bounds bj for matrix powers
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obtained from (20). Taking into account thatBi takes the values I, B, . . . , Bqk

in the first summation of (19), this summation can be evaluated with a cost
O(n2) reusing the matrix powers needed to compute Pmk

from (8), see Sec-
tion 2. Following [9], we will truncate adequately the infinite series of (18)
and (19) determining in Section 5 the minimum number of terms needed to
introduce negligible errors.

5. Scaling algorithm

Scaling Phase of Algorithm 1 first tests if any of the orders mk < mM−1 ∈
M, mM � 12, verifies (11) with s = 0, using the error bounds described in
Section 4. If no order mk < mM−1 verifies (11) with s = 0, the algorithm
will use Theorem 1, (17), (21) and values Θmk

from Table 2, to obtain initial

values of scaling parameter for mM−1 and mM , denoted by s
(M−1)
0 and s

(M)
0 ,

respectively. If s
(M−1)
0 > 0 or s

(M)
0 > 0, the algorithm will verify if s

(M−1)
0

or s
(M)
0 can be reduced using bounds (18) and (19), selecting finally the

combination of order and scaling parameter that gives the lowest cost in
Steps 4− 7 from costay, see (9). Next we describe the proposed algorithm.

First we test if m0 = 1 can be used with s = 0. Note that order m0 is
not very likely to be used, given (17), (21) and the value of Θ1 in Table 2.
Then we do not waste work estimating ||B2||1, and, using Theorem 1 with
l = m0 + 1, (17) and (21), order m0 will be selected only if

β
(1)
1 = max{||B||, ||B2||1/2} = ||B|| � Θ1, (24)

taking in practice
β
(1)
1 = min{||B||1, ||B||∞}. (25)

For order m1 = 2, taking into account Table 1, it follows that q1 = 2
and then B2 is computed. Analogously this order is not very likely to be
used. Then, taking b2 = ||B2|| and b3 = ||B2|| ||B|| and using Theorem 1
with l = m1 + 1, from (17) and (21) we will only select m1 if

β
(2)
2 = max{b1/22 , b

1/3
3 } = b

1/3
3 = (||B2|| ||B||)1/3 � Θ2, (26)

taking in practice

β
(2)
2 = (min{||B2||1 ||B||1, ||B2||∞||B||∞})1/3. (27)
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Ordersmk � m2 = 4 are more likely to be used given that Θmk
� Θ4 ≈ 0.013,

see Table 2. Then, we will test successively each value mk ∈ M, from m2 = 4
to mM in increasing order. Whenever the corresponding value of qk for the
current value of mk increases, the corresponding matrix power Bqk will be
computed and used for evaluating the different error bounds. In Subsection
5.1 we use Theorem 1 and (17) to obtain an initial value of the scaling

parameter for mk, denoted by s
(k)
0 . In Subsection 5.2 we use (18) and (19)

to verify if s
(k)
0 can be reduced when s

(k)
0 > 0. The 1-norm will be used for

all norms in both Subsections. The complete algorithm is given finally as
Algorithm 2.

5.1. Initial value of the scaling parameter

For each value of mk ∈ M, 4 � mk � mM , we search for the minimum
value of β

(mk)
t values of (12) from Theorem 1 with l = mk + 1. For that

task we estimate bmk+1 = ||Bmk+1||1 as explained in Section 4, and use the
estimated 1-norms of powers of B that have been computed to test orders
m2, m3, . . . , mk−1, i.e. ||Bm2+1||1, ||Bm3+1||1, · · · , ||Bmk−1+1||1, the 1-norms
of the powers of B used for the computation of Pmk

, i.e. B, B2, . . . , Bqk ,
and bounds bj obtained from (20). Thus, for t = 2, 3, . . . , qk, m2 + 1, m3 +
1, · · · , mk + 1 we will obtain successively

β
(mk)
t = max{b1/jj : j = t,mk +1, mk+2, . . . , t0−1, t0+1, t0+2, . . . , mk + t},

(28)
where t0 is the multiple of t in [mk + 1, mk + t], stopping the process for the
lowest value t = r such that, see (12),

br
1/r ≤ max

{
b
1/j
j : j = mk + 1, mk + 2, . . . , r0 − 1, r0 + 1, . . . , mk + r

}
,

(29)
where r0 is the multiple of r ∈ N such that mk + 1 � r0 � mk + r. Next we
show that if (29) is verified then it follows that β

(mk)
i � β

(mk)
r for i � r. Note

that by (20) one gets br0 � b
r0/r
r , and then it follows that

b1/r0r0
� b1/rr � max{b1/jj : j = mk + 1, mk + 2, . . . , r0 − 1, r0 + 1, . . . , mk + r}.

(30)
Thus, substituting t by r and t0 by r0 in (28), and using (30) it follows that

β(mk)
r = max{b1/jj : j = mk + 1, mk + 2, . . . , r0 − 1, r0 + 1, . . . , mk + r}

= max{b1/jj : j = mk + 1, mk + 2, . . . , mk + r}. (31)
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Hence, for i > r, if

b
1/i
i � max{b1/jj : j = mk + 1, mk + 2, . . . , i0 − 1, i0 + 1, . . . , mk + i}, (32)

where i0 is the multiple of i in [mk + 1, mk + i], then in a similar way and
using (31) it follows that

β
(mk)
i = max{b1/jj : j = mk + 1, mk + 2, . . . , mk + i}

� max{b1/jj : j = mk + 1, mk + 2, . . . , mk + r} = β(mk)
r . (33)

Otherwise, if (32) is not verified, since i > r and by (20) one gets b
1/i
i � b

1/i0
i0

,
then it follows that

β
(mk)
i = b

1/i
i > max{b1/jj : j = mk + 1, mk + 2, . . . , mk + i}

� max{b1/jj : j = mk + 1, mk + 2, . . . , mk + r} = β(mk)
r , (34)

and then, using (33) and (34), it follows that β
(mk)
i � β

(mk)
r for i > r.

Let β
(mk)
min be the minimum value of all computed values β

(mk)
t , 1 � t � r,

β
(mk)
min = min{β(mk)

t , t = 2, 3, . . . , qk, m2 + 1, m3 + 1, · · · , r}. (35)

Then the appropriate initial minimum scaling parameter s
(k)
0 � 0 is obtained

such that 4−s
(k)
0 β

(mk)
min � Θmk

, i.e.

s
(k)
0 = max

{
0, �1/2 log2(β(mM )

min /Θmk
)�
}
. (36)

Table 3 shows the order and initial scaling selection depending on the values
of β

(1)
1 , β

(2)
2 and β

(m)
min, m = 4, 6, . . . , mM , taking into account (22) and (23) to

use the most efficient choice between mM and mM−1 in each case represented
in the last four rows of the table, where i is a nonnegative integer parameter.
If s

(k)
0 = 0 then the proposed scaling algorithm selects mk and s = 0 for

Steps 4-7 of Algorithm costay. Otherwise the refinement proposed in next
subsection is carried out.

5.2. Refinement of the scaling parameter

If s
(k)
0 > 0 for the current value of mk, taking into account (19), bounds

from (20) are used to verify if the following inequality holds:

mk+N∑
i=mk+1

bi
ci4si

� u, (37)
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Table 3: Selection of initial scaling s
(k)
0 and order m ∈ M, m � mM using only the first

part of the proposed scaling algorithm, described in Subsection 5.1, depending on the

values of β
(m)
min, for mM = 9, 12, 16, 20. Total cost, denoted by CT

m, is also presented. The

cost with mM = 12 and 9 is the same and it is presented in one column. β
(1)
min and β

(2)
min

are not calculated for first orders m = 1 and 2, using β
(1)
1 and β

(2)
2 instead. The tests are

done from top to bottom: If the condition for current row is not verified then we test the
condition for the next row. In last four rows i can take the values i = 0, 1, . . .

mM 9 12 9,12 16 20
interval s0, m s0, m CT

m s0, m, C
T
m s0, m, C

T
m

β
(1)
1 � Θ1 0,1 0,1 0 0,1,0 0,1,0

β
(2)
2 � Θ2 0,2 0,2 1 0,2,1 0,2,1

β
(m)
min � Θ4 0,4 0,4 2 0,4,2 0,4,2

β
(m)
min � Θ6 0,6 0,6 3 0,6,3 0,6,3

β
(m)
min � Θ9 0,9 0,9 4 0,9,4 0,9,4

β
(m)
min � Θ12 1,9 0,12 5 0,12,5 0,12,5

β
(m)
min � 4Θ9 1,9 1,9 5 0,16,6 0,16,6

β
(m)
min � Θ16 2,9 1,12 6 0,16,6 0,16,6

β
(m)
min � 4i+1Θ12 2+i,9 1+i,12 6+i 1+i,12,6+i i,20,7+i

β
(m)
min � 4i+2Θ9 2+i,9 2+i,9 6+i 1+i,16,7+i i,20,7+i

β
(m)
min � 4iΘ20 3+i,9 2+i,12 7+i 1+i,16,7+i i,20,7+i

β
(m)
min � 4i+1Θ16 3+i,9 2+i,12 7+i 1+i,16,7+i 1+i,16,7+i

where ci = (2i)!, and s = 0 if mk < mM−1, and s = s(k) = s
(k)
0 − 1 �

0 if mk � mM−1. For testing (37), we have truncated the series in (19)
by choosing N � qk + 2 terms as this number of terms will be also used
when computing (19), see (38). At the end of this subsection we provide
justification for the number of terms N to select for a negligible truncation
error. We stop the series summation in (37) if after summing one term the
sum is greater than u. If the sum of one or more terms is lower than u but
the complete truncated series sum is not, we can estimate bmk+2 = ||Bmk+2||1
to verify if (37) holds. If (37) holds, using (18) it follows that the forward
absolute error Emk,s is approximately lower than or equal to u.
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If (37) does not hold, then, from (19) we verify if next bound holds

‖Bmk+1‖1
4s(mk+2)

∥∥∥∥∥
qk∑
i=0

cmk+2

ci+mk+1

(−1)iBi

4s(i−1)

∥∥∥∥∥
1

+

mk+N∑
i=mk+qk+2

cmk+2

ci

bi
4si

≤ ucmk+2, (38)

where s = 0 if mk < mM−1, and s = s(k) = s
(k)
0 − 1 � 0 if mk � mM−1, and

we truncate the series in (38) taking N � qk + 2. We multiply both sides of
(19) by cmk+2 to save the product of matrix B by a scalar. If the first term of
the left-hand side of (38) is lower than ucmk+2 but the sum of the two terms
is not, we can estimate bmk+qk+2 = ||Bmk+qk+2||1 to verify if (38) holds then.

Next, we obtain lower bounds for expression (38) to avoid its computation
in some cases, see (16)-(18) from [9, p. 1838]. Let

T
(mk)
i =

cmk+2 ‖Bi‖
ci+mk+14s(i−1)

, i = 0 : qk,

and
T

(mk)
j = max

{
T

(mk)
i , i = 0 : qk

}
,

be. Since ∥∥∥∥∥
qk∑
i=0

cmk+2

ci+mk+1

(−1)iBi

4s(i−1)

∥∥∥∥∥ � T (mk)
s ,

where

T (mk)
s = max

{
0, T

(mk)
j −

∑
i �=j

T
(mk)
i

}
,

then if
‖Bmk+1‖
4s(mk+2)

T (mk)
s +

i=mk+N∑
i=mk+qk+2

cmk+2bi
ci4si

> ucmk+2, (39)

then there is no need to test (38).
For the case where mk < mM−1 if (37) or (38) hold with s = 0, the scaling

algorithm selects mk and s = 0 for Steps 4 − 7 of costay. Otherwise, the
two stages of the scaling algorithm from previous and this subsections are
repeated with the next value of mk ∈ M until mk = mM−1.

For mk � mM−1, firstly, an initial value s
(k)
0 of the scaling parameter is

obtained as explained in Subsection 5.1, see (36). If s
(k)
0 = 0, then mk and

s(k) = 0 are selected. Otherwise, (37) and (38) are tested with s(k) = s
(k)
0 −1.

13



If none of both bounds hold, then we take s(k) = s
(k)
0 , and finally the order

mM−1 or mM that provides the lowest cost is selected for Steps 4 − 7 of
costay. It is possible to evaluate Pm(4

−sB) with optimal cost for both
orders because we set in its evaluation that both use the same powers of B,
see Section 3.

Note that the cost of evaluating (37) and (38) is O(n2) and if any of them

is verified with s(k) < s
(k)
0 matrix products are saved, whose cost is O(n3).

Finally, we provide justification for the truncation of the series in (37) and
(38). From (17), (35) and (36) it follows that the remainder of the infinite
series without the first N terms, denoted by Rmk+N+1,s(B), verifies

||Rmk+N+1,s(B)|| �
∞∑

i=mk+N+1

‖Bi‖
(2i)!4si

�
∞∑

i=mk+N+1

(β
(mk)
min /4

s)i

(2i)!
. (40)

If the minimum value of s to be tested is s = s(k) = s
(k)
0 − 1 then by (36) it

follows that β
(mk)
min /4

s � 4Θmk
. Hence, using (40) it follows that

||Rmk+N+1,s(B)|| �
∞∑

i=mk+N+1

(4Θmk
)i

(2i)!
. (41)

Using Matlab Symbolic Math Toolbox and computing the first 150 terms of
the series in (41) with high precision arithmetic, Table 4 presents the values
of bound (41) for mk, k = 2, 3, . . . , 7, with the corresponding values of qk
proposed in Section 3 for each value of mk ∈ M, and N = qk + 2, qk +
3, . . . , qk + 8. Since error Em,s must verify Em,s � u ≈ 1.11 · 10−16 and
rounding errors of values at least nu are expected in the evaluation of Pmk

where n is the matrix dimension, see [1], the values of bound (41) from Table
4 are satisfactory taking N = qk + 2 for mk � 12, N = qk + 4 for mk = 16,
and N = qk + 7 for mk = 20.

However, in numerical tests we have observed that if (37) or (38) hold

with N = qk + 2, usually the value of β
(mk)
min in (40) is nearer to ΘmM

than
to 4ΘmM

, and bound (40) is usually much lower than bound (41), therefore
N = qk + 2 being a good selection for all m � 20, see Section 7.

On the other hand, note that the values obtained in Table 4 for (41)
with mk = 4 and 6 are much lower than the unit roundoff u. Thus, in
order to test if we can permit values of the final scaling parameter up to
s = s

(k)
0 −2 for those orders, we have taken 42Θmk

instead of 4Θmk
in (41) with
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N = qk + 2, resulting ||R4+q2+2+1,s(B)|| � 1.3e−22 and ||R6+q3+2+1,s(B)|| �
1.2e−18. Thus, for orders mk = 4 and 6 we can take s = s(k) � s

(k)
0 − 2 with

N = qk + 2. Taking this into account Algorithm 2 describes the proposed
scaling algorithm. The complete algorithm costay has been implemented in
MATLAB and made available online in [15]. This version of costay permits
the selection of maximum order mM from 6 to 30 for testing purposes.

Table 4: Values of bound (41).

N
mk, qk qk + 2 qk + 3 qk + 4 qk + 5 qk + 6 qk + 7 qk + 8
4,2 5.0e−28 7.0e−32 8.0e−36 7.7e−40 6.2e−44 4.4e−48 2.6e−52
6,3 6.9e−26 8.1e−29 8.2e−32 7.3e−35 5.6e−38 3.9e−41 2.4e−44
9,3 1.8e−20 1.3e−22 7.9e−25 4.4e−27 2.2e−29 9.8e−32 4.0e−34
12,3 1.0e−16 2.0e−18 3.3e−20 5.0e−22 7.0e−24 8.9e−26 1.0e−27
12,4 2.0e−18 3.3e−20 5.0e−22 7.0e−24 8.9e−26 1.0e−27 1.1e−29
16,4 3.8e−14 1.4e−15 4.8e−17 1.5e−18 4.5e−20 1.2e−21 3.1e−23
20,4 1.4e−10 8.7e−12 5.0e−13 2.7e−14 1.3e−15 6.2e−17 2.7e−18

Algorithm 2 SCALING PHASE: Given matrix B from Step 2 of costay
and maximum ordermM with 12 � mM � 20, it computes m � mM , m ∈ M,
q from Table 1, and the scaling parameter s to be used in Steps 4− 7. This
algorithm uses the values mk and qk from Table 1, and Θmk

from Table 2.

1: b1 = ||B||1, d1 = ||B||∞
2: if min {b1, d1} � Θ1 then � Test m0 = 1
3: return s = 0, m = m0, q = 1
4: end if
5: B2 = B2, b2 = ||B2||1, d2 = ||B2||∞
6: if min {b2 · b1, d2 · d1}1/3 � Θ2 then � Test m1 = 2
7: return s = 0, m = m1, q = 2
8: end if
9: q = q2, k = 1
10: while m < mM do
11: k = k + 1, m = mk

12: if q < qk then
13: q = qk
14: if q = 3 then
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15: B3 = B2B, b3 = ||B3||1
16: else if q = 4 then
17: B4 = B2

2 , b4 = ||B4||1
18: end if
19: end if
20: Estimate bm+1 = ||Bm+1||1.
21: Obtain β

(m)
t from (12) with l = m + 1, t = 2, 3, . . . , q,m2 + 1, m3 +

1, · · · , r where r is the lowest value such that condition (29) is verified,
computing the needed bounds bj for ||Bj||1 using (20).

22: β
(m)
min = min{β(m)

t , t = 2, 3, . . . , q,m2 + 1, m3 + 1, · · · , r}.
23: s(k) = s

(k)
0 = max

{
0, �1/2 log2(β(m)

min/Θm)�
}
.

24: if s
(k)
0 > 0 then

25: if (m � 6 AND s
(k)
0 � 2) OR (m < mM−1 AND s

(k)
0 = 1) then

26: if (37) is verified with s = 0 then
27: s(k) = 0
28: else if (39) is not verified with s = 0 then
29: if (38) is verified with s = 0 then
30: s(k) = 0
31: end if
32: end if
33: else if m � mM−1 then

34: if (37) is verified with s
(k)
0 − 1 then

35: s(k) = s
(k)
0 − 1

36: else if (39) is not verified with s
(k)
0 − 1 then

37: if (38) is verified with s
(k)
0 − 1 then

38: s(k) = s
(k)
0 − 1

39: end if
40: end if
41: end if
42: end if
43: if s(k) = 0 then � If s(k) = 0 order m is selected directly
44: return s(k), m, q
45: end if
46: end while
47: if s(M−1) � s(M) + 1 then � Select the combination with the lowest cost
48: return s = s(M), m = mM , q = qM
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49: else
50: return s = s(M−1), m = mM−1, q = qM−1 � qM−1 = qM
51: end if

6. Rounding error analysis

The analysis of rounding errors in Algorithm 1 is based on the results
given in [7] and [1, p. 293-294]. In [7] it was justified that rounding errors
in the evaluation of Pm(B) are balanced with rounding errors in the double

angle phase. If we define Ci = cos (2i−sA) and Ĉi = fl
(
2Ĉ2

i−1 − I
)
, where

fl is the floating operator [17, p. 61], and we assume that‖Ei‖1 � 0.05||Ĉi||1,
then rounding error in Step 6 of Algorithm 1 verifies

||Ei||1 = ||Ci − Ĉi||1 � (4.1)i||E0||1||C0||1||C1||1 · · · ||Ci−1||1+

γ̃n+1

i−1∑
j=0

(4.1)i−j−1 (2.21||Cj||21 + 1
) ||Cj+1||1 · · · ||Ci−1||1,

where γ̃n+1 is defined by γ̃n+1 =
c(n+1)u

1−c(n+1)u
[1, p. 332]. Hence the error ||Ei||1

fundamentally depends on the norms of the matrices ||C0||1 and ||E0||1. From
(11), values of mk and s are chosen such that ‖E0‖1 � u. Since ||4−sA2|| is
not bounded with the new proposed scaling algorithm, it follows that ||C0|| is
not bounded. Taking into account that the values of Θmk

increase with mk,
it follows that the values of the scaling parameter s with high values of mk

will be typically lower, giving higher values of ||4−sA2||, and then ||C0|| will
usually be higher when permitting the use of higher orders. Hence, despite
the error balancing between the evaluation of Pm(B) and the double angle
phase, orders not much higher than the approximately optimal mM = 12
should be used in the proposed scaling algorithm.

7. Numerical experiments

In this section we compare MATLAB implementation costay with func-
tions cosm and cosher. cosm is a MATLAB implementation of Algorithm
5.1 proposed in [5] which uses Padé approximants of cosine function and it is
available online at http://www.maths.manchester.ac.uk/ higham/mftoolbox.
cosher is a MATLAB function based on Hermite series proposed in [6]
and available at http://personales.upv.es/∼jorsasma/cosher.m. Similarly to
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costay, cosher also allows different maximum orders mM for the Hermite
approximation, recommending mM = 16 for best performance in numerical
tests, see [6]. All MATLAB implementations (R2011a) were tested on an
Intel Core 2 Duo processor at 2.52 GHz with 4 GB main memory. Algorithm
accuracy was tested by computing the relative error

E =
‖ cos(A)− Ỹ ‖1

‖cos(A)‖1
,

where Ỹ is the computed solution and cos(A) the exact solution. We used
101 of the 102 test matrices from [7]. Test matrix 61 was removed due
to very large rounding errors produced when computing the powers of that
matrix, making all the tested algorithms fail. The “exact” matrix cosine
was calculated analytically when possible, and otherwise using MATLAB’s
Symbolic Math Toolbox with high precision arithmetic.

In the tests we did not use any preprocessing/postprocessing in the im-
plemented algorithms. Analogously to the experiments in [16], we found that
turning on preprocessing provided similar results to those presented in this
section without preprocessing.

Figures 1a and 1b show the comparisons costay-cosm and costay-cosher
for maximum orders mM ∈ {9, 12, 16, 20} in both costay and cosher. The
first three rows show the percentages of times that the relative error of the
first function is lower, equal or greater than the relative error of the second
function. The fourth row shows the ratio of matrix products needed for com-
puting the matrix cosine for over all the test matrices with costay divided
by the number of matrix products for the compared function. The asymp-
totic cost in terms of matrix products for solving the multiple right-hand side
linear system appearing in Padé algorithm has been taken 4/3, see [9].

As shown in Figures 1a and 1b, function costay presented more accurate
results than cosm and cosher in the significant majority of tests, especially
for mM = 16 (in 91.09% of cases with respect to cosm function and 44.55%
with respect to cosher). Moreover, costay has lower computational costs
than the functions cosm and cosher. Note that the cost gains of using
mM = 12 and mM = 16 are the same. Table 3 shows that both orders
provide the same cost in almost all cases in the first stage of the scaling
algorithm providing justification for that. However, Θ16 > Θ12 > Θ9 and
then the values of s with mM = 16 are lower in many cases than those with
mM = 12 and mM = 9, see Table 3, reducing the number of double angle
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steps in Algorithm costay. Numerical results show that mM = 16 provided
the highest accuracy with similar cost to mM = 12, being the best choice for
mM in tests.

We have observed that in a 94.50% of cases the final value of the scaling
parameter is directly s

(k)
0 given by (36), and that bounds (37) and (38) reduce

the scaling parameter in the majority of cases where β
(mk)
min 4−(s

(k)
0 −1)/Θmk

is

slightly greater than 1. There were only two matrices where β
(mk)
min 4−(s

(k)
0 −1)/Θmk

was not approximately 1, taking values 2.72 with order mk = 12, and 5.86
with mk = 4. With respect to the selection of the number of terms N to be
considered in bounds (37) and (38) we have observed that taking N = qk+2,

the greatest value of the remainder (40) using the values of β
(mk)
min obtained in

numerical tests with mM = 12, 16, 20, was 1.3 · 10−21, thus confirming that
the selection N = qk + 2 is enough in practice for all orders mk � 20.

mM : 9 12 16 20
L 59.41 83.17 91.09 77.23
E 0 0 0 0
G 40.59 16.83 8.91 22.77
R 0.84 0.83 0.83 0.84

(a) Comparative costay-cosm.

9 12 16 20
55.45 46.53 44.55 44.55
30.69 28.71 20.59 19.80
13.86 24.76 34.66 35.65
0.88 0.90 0.90 0.92

(b) Comparative costay-cosher.

Figure 1: Comparatives costay-cosm and costay-cosher. The first three rows show the
percentage of times that relative error of costay is lower (L), equal (E) or greater (G)
than relative error of cosm or cosher. The last row shows the ratio (R) of cost in terms
of matrix products between costay divided by the cost of cosm in 1a, and cosher in 1b.

To test the numerical stability of functions we plotted the normwise rela-
tive errors of functions cosm, cosher and costay formM = 12, 16, 20. Figure
2a shows the relative errors of all implementations, and a solid line that rep-
resents the unit roundoff multiplied by the relative condition number of the
cosine function at X [1, p. 55]. Relative condition number was computed
using the MATLAB function funm condest1 from the Matrix Function Tool-
box [1, Appendix D] (http://www.ma.man.ac.uk/ ˜higham/mftoolbox). For
a method to perform in a backward and forward stable manner, its error
should lie not far above this line on the graph [16, p. 1188]. Figure 2a shows
that in general the functions performed in a numerically stable way apart
from some exceptions.
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Figure 2: Normwise relative errors and perfomance profile of cosm, cosher(16) and
costay for mM = 12, 16, 20.

Figure 2b shows the performances [18] of the functions compared, where
α coordinate varies between 1 and 5 in steps equal to 0.1, and p coordinate
is the probability that the considered algorithm has a relative error lower
than or equal to α-times the smallest error over all the methods, where
probabilities are defined over all matrices, showing that the most accurate
function is costay with mM = 16 followed by cosher with mM = 16.

8. Conclusions

In this work an accurate Taylor algorithm to compute matrix cosine is
proposed. The new algorithm uses a scaling technique based on the dou-
ble angle formula and sharp bounds for the forward absolute error, and the
Horner and Paterson-Stockmeyer’s method for computing the Taylor approx-
imation. A MATLAB implementation of this algorithm has been compared
with MATLAB function cosher, based on Hermites series [6], and the MAT-
LAB function cosm, based on the Padé algorithm given in [5]. Numerical
experiments show that the new algorithm has lower computational costs and
higher accuracy than both functions cosher and cosm in the majority of test
matrices. The new proposed Taylor algorithm provided the highest accuracy
and lowest cost when maximum order mM = 16 was used in tests, and this
maximum order is therefore recommended.
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