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A B S T R A C T 

In this paper we propose several methods of constructing the system matrix (SM) of a 
Computed Tomography (CT) scanner with two objectives: (1) to construct SMs in the 
shortest possible time and store them in an ordinary PC without losing quality, (2) to 
analyze the possible applications of the proposed method to 3D, taking into account SMs' 
sizes, computing time and reconstructed image quality. In order to build the SM, we 
propose two new field of view (FOV) pixellation schemes, based on a polar coordinate 
system (polar grid) by taking advantage of the polar rotation symmetries of CT devices. 
Comparisons between the SMs proposed are performed using two phantom and a real 
CT-simulator images. Global error, contrast, noise and homogeneity of the reconstructed 
images are discussed. 
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1. Introduction 

Algebraic Reconstruction Techniques (ART) for CT are based on the construction and resolution of systems of linear 
equations. The resolution of these linear equations, due to their size, is normally carried out using iterative methods, such 
as MLEM, Kaczmarz, OSEM, etc. Most of them produce high image quality, however, this technique type is not used in 
routine clinical computed tomography because of the high computational requirements. Since the SM is the core of the ART 
algorithms, the construction of the SM is crucial to providing accurate reconstruction. Usually, more precise SMs have higher 
computational cost and complexity which may become unfeasible in 3D. 

In order to decrease computational complexity, a number of methods focused on exploiting the symmetries of SM have 
been proposed using polar pixels [1], blob grids [2-4]. Furthermore, several approaches are based on polar pixel grids for 
the Compton-camera [5], SPECT [1], commercial CT [6] and CT for medical imaging [7]. 

To obtain a CT image, many rotations are usually needed. The objective of polar discretization is to arrange the pixels on 
the FOV using a grid that reflects the geometry of the scanner. Thus, the pixel in a polar grid is a more natural discretization 
than square pixels and the quality of polar pixel images is better than in the equivalent Cartesian ones [7]. Moreover, each 
projection can be considered as the repetition of one rotated pattern. 

Exploiting rotation symmetries in CT with a polar grid is a useful new technique which reduces computation time and 
data storage, and has been used for industrial applications [6] where keeping the spatial resolution of the scanner is not an 
essential requirement, and recently for medical applications [7]. 

As has been previously studied [7], pixels in a polar grid involve additional observations in medical applications: 



1. The dimension of the pixels in a polar grid must preserve the intrinsic spatial resolution of the scanner in the 
reconstruction. 

2. The design of pixel shapes in a polar grid must avoid both polar artifacts caused by the oversampling of one polar 
dimension and undersampling of the other. 
Following these ideas, different ways of constructing a SM are presented and compared for a fan-beam CT scanner 

geometry defined by an X-ray source and a I D pixellated array of detectors. The first one is the well-known technique 
FBP [8,9]. FBP does not need the SM to provide image reconstruction. Additionally, six SM are to be studied. Five of them, 
pixellations in a polar grid and the sixth, the classical Cartesian square pixellation. SMs are summarized below: 

Grid Pixellation Shape of pixels 
Cartesian Classical Square (CART-SQ) 

f Polar (URA-P) 
Unitary Relation Aspect I Circular (URA-C) 

[Blob (URA-B) Polar 
Constant Radius f Polar (CR-P) 

JBlob(CR-B). 

In the following, we will identify pixellations with their corresponding pixel shapes and their SM, by their acronyms, i.e., 
classical square pixels in a Cartesian grid and the Cartesian SM will be denoted CART-SQ; polar pixels with unitary relation 
aspect in a polar grid and its SM will be denoted URA-P; the same for circular pixels will be called URA-C; and polar pixels 
with constant radius in a polar grid and its SM will be named CR-P. Blob shaped pixels have been also included in this study: 
on to unitary relation aspect URA-B and on to constant radius CR-B pixellation. 

Pixellations Unitary Relation Aspect URA and Constant Radius CR will be designed taking into account the medical remarks 
above described. On to both pixellations we propose superimposing the simplest shape of a pixel as is the polar pixel (URA-P 
and CR-P). Moreover, on to the pixellation URA we propose superimposing the circular pixel (URA-C), which will leave some 
"holes" in the FOV, but will simplify and reduce drastically the corresponding SM construction time. 

To solve the linear system and therefore, to reconstruct the CT images, we use the iterative algorithm Maximum 
Likelihood Emission Maximization (MLEM) [10]. MLEM can be adapted easily for polar pixellations and takes advantage 
of the sparsity of SMs. 

An issue mentioned before is that pixels in the polar grid require the development of a visualization method to display 
the reconstructed images in such away that the transformation from polar coordinates into Cartesian coordinates ready 
to be displayed does not deteriorate the final visualization. Several visualization methods have been implemented using 
bi-linear interpolations [6], However, bi-linear interpolation affects the quality of the reconstructed images, while the size 
of pre-calculated tables increases with resolution, making them difficult to handle and the basis function transformation 
introduces ring artifacts These drawbacks led us to propose a new visualization method. 

The paper is organized as follows. In Section 2 pixellation designs and SM weight calculations are described. In Section 3, 
the MLEM reconstruction algorithm and the polar visualization method are presented. Data source and quality image 
indicators are described in Section 4. Section 5 is devoted to the performance analysis of the SMs and the results of the quality 
indicators on reconstructed images from simulated phantoms and real scanner measurements. In Section 6, discussion and 
conclusions are presented. 

2. System matrix construction 

The design of the grid has been tackled using the criteria described in Section 1: to preserve the intrinsic spatial resolution 
of the scanner and to take advantage of the system's symmetries. The scanner data obtained can be considered as a sequence 
of measurements taken from each one of the v positions or views of the scanner. Therefore, the geometry of the scanner has 
v symmetric views whose shape is a circular FOV, see Fig. 1. In Fig. 1(a) each rotation of the scanner is used as a symmetry in 
the SM in order to reduce computation time. In Fig. 1 (b) only four symmetries can be implemented to reduce SM in Cartesian 
grid. 

The pixellation in the polar grid uses an innovative configuration that takes advantage of all natural symmetries of scanner 
geometry and allows us a greater reduction of the SM size. The aim of this type of pixellations is to decrease computational 
complexity and to improve reconstruction quality using alternative models, such as polar pixels [1,7]. Over the polar grid, 
we arrange two types of pixellation design: one with constant radius and one with unitary aspect. 

2.2. Pixellation design in the polar grid 

Let us divide the FOV into v equal circular sectors. Thus, the same configuration can been seen from each view and the 
grid design keeps all natural system symmetries. Each circular sector is divided into pixels. Fig. 1(a) shows how to design 
the polar grid taking into account the v symmetries. In order to preserve spatial resolution, pixel division within the circular 
sectors has been arranged using the following rules: 



Fig. 1. Symmetries for a CT scanner with 2P rotations: (a) with polar grid pixellation, (b) with classical Cartesian grid. 

Fig. 2. (a) Example of URA pixellation in a circular sector. Note that circles can be circumscribed inside the polar pixels (URA-C), satisfying rules 1 and 2 
and are used to establish the A8 pixel measure, (b) Example of CR pixellation in a circular sector. Note that A8 is marked w i t h a dashed line. 

Fig. 3. Diagrams of pixel weight calculation: (a) using integral lines and (b) using areas for URA-C. 

1. A circular pixel, whose diameter is half of that of the intrinsic spatial resolution of the scanner, is placed on the center of 
the FOV. 

2. From the central circle the rest of the circular sector is divided into polar pixels that are determined by A r (radial length) 
and AO (angular length). Two criteria are proposed to determine A r and AO. 
(a) Pixellation with URA: 

i. A circle is circumscribed inside all the polar pixels whose diameter is less than or equal to half of that of the spatial 
resolution of the CT. 

ii. All the circumscribed circles whose centers have the same radial coordinate, have the same diameter. 
iii. A r is the diameter of the circumscribed circles this being the largest possible satisfying conditions (i) and (ii). 

The circumscribed circles are used to build the pixels. First, when we consider the circles as the pixels we refer 
this pixellation as URA-C, while if we remove the circles and consider only the polar pixel we refer to this pixellation 
as URA-P. The dimensions of A r and AO are similar, due to the use of circles to determine the measurement of the 



Fig. 4. (a) Shepp-Logan phantom of 5 1 2 x 5 1 2 pixels, (b) Phantom of lesions. It has been constructed with three different densities for four different lesion 
sizes. Both models have been generated by means of the open source Computed Tomography Simulator package, CTSim [ 17]. 
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Fig. 5. This graph shows the R M S e a n d the construction t ime (logarithmic scale) for different line densities of URA-P matrix in the iteration 30 of MLEM (for 
CR-P a similar graph is obtained). The accuracy to six decimal places is significant because the RMSe is normalized by the number of pixels, JV = 2 0 4 8 x 2 0 4 8 . 
Note that the RMSe stability is achieved at 30 000 lines whereas computing t ime is still increasing. 
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Fig. 6. Shepp-Logan head reconstructed images using FBP and SMs proposed: (a) FBP, (b) CART-SQ, (c) URA-C , (d) URA-P, (e) CR-P, (f) URA-B, (g) CR-B. 

polar pixels (Fig. 2(a)). Variable polar pixels size depend on the distance to the center of the FOV and consequently, 
an oversampling on the central area of the FOV can be observed, 

(b) Pixellation CR. 
i. The dimensions of A r are the largest possible. This being less than or equal to half of the spatial resolution. 

ii. All the polar pixels at the same distance from the center have the same area. 
iii. A9 is the largest possible. The resolution for the pixel being less than or equal to the half resolution of the CT. 
Fig. 2(b) shows a pixellation CR. For the case of CR-P, it is not possible to circumscribe circles in a efficient way because 
the relation between A r and A9 is not necessarily 1 (see the central pixels in Fig. 2(b)). 

On to these two new pixellations we also have implemented Kaiser-Bessel blobs [3,4], URA-B and CR-B. 

2.1.1. Cartesian pixellation 

Here we only have four rotation symmetries. Fig. 1(b) shows the design of the CART-SQ taking into account the four 
symmetry factor due to reflection. The pixels are squares where the side length is the largest possible, being less than or 
equal to the half of the resolution of the CT. 



pixels 

Fig. 7. (a) Profile of the reconstructed images and the original Shepp-Logan phantom across sectional horizontal central line (marked in Shepp-Logan 
phantom). Note that reconstructed profiles are highly similar, (b) Zoom of central zone marked in Shepp-Logan phantom. Thick line corresponds t o 
indistinguishable lines of CART-SQ, URA-P, URA-C, URA-B and CR-P. 
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(a) RMSE. (b) SNR. 

Fig. 8. RMSe (a) and SNR (b) against iteration number of the reconstructed images for the four S M . Both indicators are similar but SNR shows a less noisy 
reconstruction in the CR-P. 

2.2. Calculation of system matrix weights 

The construction of the SM weights is crucial to providing an accurate reconstruction. Although SM approaches use 
different pixel weight calculations, the process of constructing the SM is the same in all cases. Due to polar grid symmetry, 
only one view has to be calculated and the remaining views can be obtained by means of the rotation of the first view. The 
numbering of the pixels is performed following the scanner rotation direction to make rotated position calculations easier. 
Furthermore, beams of each view are symmetric with respect to the line that goes from the focus to the center of the FOV. 
Therefore, only the first half of beams of the first view need to be calculated because the second half can be obtained by 
reflecting the SM data of the first one. In this way, the complete SM can be represented by one half of the first view of the 
scanner. 

2.2.1. System matrix weight calculations with integral lines 

SM weight calculations are based on the Siddon weighted line integrals [11,12] applied to CART-SQ, URA-P and CR-P. In 
this case, each beam is defined as the composition of multiple lines equally spaced on the detector surface [13]. Therefore, a 
weight element wy is defined as the normalized sum of the line lengths through the corresponding pixel j , included on the 
beam i (see Fig. 3(a)). The number of lines used for each beam is large enough to satisfy the Nyquist Frequency Condition [14], 
i.e., the smallest distance between lines must be smaller than half of the pixel dimension. However, greater SM weight 
accuracy is obtained increasing the number of lines used for weight computation. 
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Fig. 10. Reconstruction of a real measurement of a CT-simulator using sing FBP and SMs proposed: (a) FBP, (b) CART-SQ, (c) URA-C, (d) URA-P, (e) CR-P, 
(f) URA-B (g) CR-B. 

2.2.2. System matrix weight calculations with blobs 

Kaiser-Bessel window functions described in [3,4,15] have been implemented. Areas have been normalized correcting 
the overlapping blobs. 

2.2.3. System matrix weight calculations with areas for URA-C 

For this innovative approach a beam is defined as the triangular area delimited by the X-ray source and the two lateral 
limits of each detector element. The pixels are circles. Thus, a weight element wy of the matrix is defined as the circular 
pixel j area which intersects a ray beam i (as shows Fig. 3(b)) and normalized dividing by the total area of the pixel. The 
use of circular shape and symmetries make possible the reduction of the calculation of areas to only six different cases for 
all different rays and views of the focus. However, this pixel definition implies an approximation of the areas because this 



shape leaves holes, much smaller than the spatial resolution, not being covered by the pixels. These holes are covered during 
the visualization procedure, described in Section 3, using the nearest neighbor interpolation. 

3. Reconstruction algorithm and visualization techniques 

FBP and MLEM have been chosen to reconstruct images. As mentioned before, FBP does not need SM to obtain the image 
and MLEM is easily adapted to polar grid configuration and takes advantages of SM sparsity. 

The MLEM algorithm is a widely used statistical iterative method [10]. MLEM has been chosen because this algorithm 
easily avoids calculations with zero elements, reducing the computing time in highly sparse matrices. A polar version of the 
MLEM algorithm has been implemented to take advantage of system symmetries. Therefore, as described above, only one 
half of the first view needs to be loaded for the MLEM algorithm. The process for obtaining the rest of the views from the 
first one is the same as for all SM proposed, and consequently, the same algorithm is used for all reconstructions. 

To reconstruct images that are arranged in a polar configuration, it is necessary to design an additional procedure to 
display them. We have implemented a viewer that converts a reconstructed image into polar pixels to another in square 
pixels. The viewer places each polar pixel on a Cartesian-grid thin enough to keep the resolution of the original polar image. 
Experimentation has allowed us to conclude that four times the image resolution size provides a high quality transformation. 
The relation between these two grids is calculated as the intersection between them and the percentage of each intersection 
is the contribution to the Cartesian pixel. For the URA-C, another version of this viewer procedure is implemented because 
the uncovered areas among the pixels need to be filled using the nearest neighbor interpolation. 

The viewer procedure takes only 3 s to convert a polar grid image from 512 beams into a square-pixel image of 
2048 x 2048 pixels and do not need any stored data. 1 After the conversion from polar pixels into Cartesian pixels no post-
filter processes are required. 

4. Assessment of image quality 

4.1. Data source 

Two sets of data sources have been used: 
• Real measurements are used to evaluate reconstructions using the six SMs. These measurements are provided from the 

Radiophysics and Radiological Protection Service of the Hospital Clinico Universitario de Valencia and are made using a 
CT-simulator. The characteristics of this CT-simulator 2 are 400 views over 360°, 128 detectors, fan-beam of 20.25° and 
the radius of the FOV is 17.58 cm. The geometric characteristics produce a tunnel diameter (35.16 cm) larger than those 
of a diagnostic CT. As a result, the quality of these projections are worse than the obtained in a normal CT scanner [16], 
but the purpose of this scanner is to provide suitable images for planning radiotherapy treatments, not for diagnosis. 

• CTSim is a software package [17] that simulates the transmission ofX-rays through phantom objects. CTSim reconstructs 
the original phantom image from the projections using a variety of algorithms. CTSim simulates a phantom from X -
ray linear attenuation coefficients, dimensions and positions of materials we want to simulate. Then, it calculates the 
exponential attenuation and the line integrals. We have configured CTSim with the same geometrical measures as the 
CT-simulator of the Hospital Clinico Universitario de Valencia, described above. 

FBP reconstruction and the six SM approaches (CART-SQ, URA-P, URA-C, URA-B, CR-P and CR-B) were compared by 
reconstructing simulated projections and real measurements supposing a 2D scanner system of similar characteristics. The 
simulated projection was the 2D Shepp-Logan head phantom [18] showed in Fig. 4(a) and a phantom with circles of different 
densities and sizes showed in Fig. 4(b), which will be called in the following "lesion phantom". 

4.2. Quality indicators 

Several indicators are calculated from the reconstructed images of the Shepp-Logan and the lesion phantom. The 
original phantom is compared to reconstructed images without any filtering procedure. The following quality indicators 
are selected: 
• Root Mean Square Error (RMSe), 

where N is the number of pixels, x° is the original phantom image a n d x r is the reconstructed image. 

All the computational t imes of this paper have been measured using a Pentium 4 CPU 3.2 G H z and 2 GB R A M . 
The CT-simulator is a Metaserto with a Kermath tomography system attached. 



• Signal to Noise Ratio (SNR), 
N 

E I K H 2 

SNR = — — 
N 

E I K - ^ I P 
i = l 

where the noise component (denominator) is calculated as the square of the differences between the original phantom 
and the reconstructed image. 

• Contrast Recovery Coefficient (CRC), which is defined on each ROI by, 
reconstructed 1 LKL = 

(^•Les ^ B a c k ) p h a n t o n 1 

where L L e s is the average pixel value in the ROI and LBac|< is the average value pixel in the background zone. 

5. Performance analysis and results 

5.1. Evaluating different line densities for SMs 

Since the density of lines used in the SM generation affects the accuracy of the matrix, a comparative study is performed 
by constructing 18 matrices with several density of lines per beam, from 1000 to 100 000. Then, each matrix is employed to 
reconstruct the Shepp-Logan phantom of 512 beams and the RMSe between the original phantom and each reconstructed 
image is calculated on several iterations. As described above, the viewer procedure places each polar pixel on a Cartesian 
grid thinner than the equivalent Cartesian one to keep the resolution of the original polar image in order to avoid polar pixel 
artifacts. Therefore, the reconstruction of Shepp-Logan phantom of 512 beams provides a polar-pixel image that becomes a 
Cartesian image of 2048 x 2048 after the visualization procedure. Thus, comparison is carried out with a magnified version of 
Shepp-Logan phantom 5 1 2 x 5 1 2 (Fig. 4(a)). Fig. 5 shows the RMSe for the MLEM iteration number 30 against the time of SM 
construction. There we can see that RMSe becomes stable at 30 000 lines and a matrix constructed using more than 30 000 
lines provides reconstructions with similar accuracy with higher SM construction time. In fact, the difference between the 
RMSe value for matrices obtained with 100 000 lines and 50 000 lines is about 10~ 7 . The 30 000 lines per ray density is 
chosen because this represents a suitable trade-off between computational time and accuracy. Therefore, in the following, 
let us consider CART-SQ, URA-P, URA-B, CR-P and CR-B SMs constructed with 30 000 lines. 

5.2. Assessing reconstruction quality 

The reconstructed phantom in iteration number 30 using CART-SQ is shown in Fig. 6(a), URA-C in Fig. 6(b), URA-P in 
Fig. 6(c), URA-B in 6 and CR-P in Fig. 6(d). Fig. 7(a) shows superposed profiles of all the reconstructed images. Notice that 
in Fig. 7(b) it have been superposed FBP, CART-SQ (512 x 512 images) and polar images (2024 x 2024 magnificated by the 
visor). 

Differences in Figs. 6 and 7 among reconstructed images are barely perceptible. Fig. 8 shows the average RMSe and SNR as 
a function of iteration number. Fig. 8(a) shows that there are very small differences for RMSe. On the contrary, Fig. 8(b) shows 
that pixellations with blobs have smaller SNR than the others, which decrease and tend monotonically to 7 dB, except in the 
case of the CR-P where the results are slightly better in all the iterations. Despite the usefulness of spherically symmetrical 
windowed Kaiser-Bessel Functions (blobs) for iterative image reconstruction being been well validated [3,4], when used for 
polar pixellation, the results obtained are not as good as expected. 

Figs. 8(b) and 9(b) depict slightly better behavior for URA-P. In fact, when the iteration number increases URA-P provides 
less noisy reconstructions. 

The most important contribution of CT to imaging reconstruction is the information on contrast and contour. To study 
these characteristics, we have used the lesion phantom Fig. 4(b). The size of the lesions have been measured and the 
resolution of the CT is showed in Table 1. Measurements are similar for all reconstructions. Note that the results of low 
density lesion radii are slightly worse because a greater number of MLEM iterations is necessary for convergence in low 
density zones. 

Fig. 9 shows CRC for the ROI A (lesion 1 in Fig. 4(b)) and ROI B (lesion 5 in Fig. 4(b)) as a function of the number of MLEM 
iterations for the six SMs. ROIs have been calculated using the inside region of lesions as is described in [15,19]. 

As is shown in Fig. 9(a) and (b), CRC tends quickly to 1, this being desirable except in the case of blobs in CR-B. This is 
produced by the artifact located in the center of the images (Figs. 6(c) and 10(c)). Therefore, the CR-B SM is not a suitable 
SM for CT reconstructions. 

Note a change in the growth of the CRC iteration 30 in all cases. In the reconstructed images beyond iteration 30 a 
speckle effect appears due to the iterative algorithm which increases the variance and produces errors in the near edges 
of the higher density areas. This means that even though the MLEM algorithm converges, the calculation errors are greater 
than the improvement to the image reconstruction. 



Table 1 
Measurements size in centimeters of the radius of the lesions obtained from the full width half m a x i m u m of the reconstructed matrices for the S M studied. 
Lesions are numbered from 1 to 8 for the phantom of Fig. 4(b). Lesions 1-4 correspond to white circles, w e assign 1 to the largest one (ROI A), and so on, 
until 4 for the smallest white circle. The same criterion has been used for black circles, w e assign 5 to the largest one (ROI B), and so on, until 8 to the 
smallest black circle, rbacit corresponds with the background zone. 

Lesion FBP CART-SQ URA-C URA-P URA-B CR-C CR-B 

r l e s l = 2.000 1.930 1.931 1.932 1.932 1.932 1.932 1.788 
r t e s 5 = 2.000 2.081 2.081 2.081 2.081 2.081 2.081 2.075 
r l e s 2 = 1.000 0.985 0.987 0.987 0.987 0.987 0.987 0.961 
r l e s 6 = 1.000 0.905 0.909 0.909 0.909 0.923 0.933 0.875 
r t e s 3 = 0.500 0.420 0.438 0.460 0.444 0.460 0.465 0.420 
r l e s 7 = 0.500 0.424 0.430 0.455 0.430 0.455 0.455 0.419 
r l e s 4 = 0.250 0.210 0.223 0.220 0.215 0.223 0.223 0.200 
r l e s 8 = 0.250 0.209 0.215 0.215 0.215 0.215 0.215 0.197 
r b a c k = 17.000 16.967 16.970 16.970 16.950 16.901 16.972 16.901 

Table 2 
Characteristics of the system matrices. 

CART-SQ URA-C URA-P URA-B CR-C CR-B 

Size 8 Gb 3 2 M b 35 M b 41 Mb 40 M b 51 M b 
Non-zero elements 5 1 0 s 1.5 10 6 1.7 10 6 2.0 10 6 1.4 10 6 2.7 10 6 

Sparse e l e m e n t s 3 0.97% 0.27% 0.30% 0.35% 0.31% 0.58% 
Symmetry reduction' 4 800 800 800 800 800 
Time of generation 109 h 55 min 4 s 9 h 36 min 27 h 13 min 5 h 47 min 26 h 41 min 
Time of reconstruction' 2 min 58 s 2 min 30 s 2 min 36 s 2 min 30 s 2 min 48 s 2 min 20 s 
a Sparse elements are calculated as the percentage of the non-zero elements. 
b Complete size matrix = size x symmetry reduction. 
c Time per iteration. It has been computed 30 iterations for reconstructions showed in this paper. 

Figs. 8(b) and 9(b) depict slightly better behavior of CR-P. This would be the only alternative to compete with URA-C, 
taking into account the good results in CRC (Fig. 8(b)) and the not bad results in time generation (Table 2). 

Table 2 shows the main characteristics of the six SMs. The most outstanding features are that all polar SMs have similar 
sparsity for the same size and a size reduction of the whole matrix of 800 times using symmetries. Furthermore, generation 
time is much longer in URA-P and CR-P than in URA-C. CART-SQ provides the worst results in all the items studied, 
demonstrating the usefulness of improving calculations with symmetries, which implies not only a reduction in time and 
in storage but an improvement in image reconstruction quality. 

Finally, Fig. 10 shows results for a real CT-simulator measurement. Seven reconstructed images of a transversal section 
of a human head focused on delimiting the jaw region. The images are reconstructed by means of FBP, CART-SQ URA-C, 
URA-P, URA-B, CR-B and CR-P. Even though the projections provided by the CT-simulator are very noisy, all images perform 
well in the contour of interest. The images reconstructed have similar contrast and homogeneity. 

6. Conclusions 

The pixel arrangement on to a polar grid causes variable resolution which implies oversampling of the central area of the 
FOV. Therefore, the resolution of the central pixels are higher than required. This effect leads to an increase in the number 
of pixels in comparison to the equivalent Cartesian grid for a given resolution. Despite the increase in the number of pixels, 
the SM is reduced as many times as the number of scanner rotations. Consequently, the polar pixel grid is more efficient 
computationally than Cartesian pixel grid without loss of quality, as demonstrated. 

The polar grid allows us a reduction of 800 times in the SM size, but needs a displaying procedure. Also a fast viewer 
procedure which provides quality images without polar artifacts is developed. Six different SMs have been compared 
using different quality indicators with a simulated phantom and with real data. As discussed above all SMs provide a 
valid reconstruction of similar quality, slightly better for CR-P and slightly worse for URA-B and CR-B. Normally, SMs are 
constructed only once and therefore, the SM generation time is not crucial. Nevertheless, SM generation is only 4 s for URA-C 
approach. Therefore, the URA-C system matrix seems to be a good option because it provides greater reduction of generation 
time with good quality in reconstructed images. The proposed URA-C make the calculation of the matrix elements feasible 
"on-the-go" without the storage of the matrix and the searching for these elements during reconstruction process. We are 
considering the possibility of calculating the SM elements on-the-go only when they are necessary. 

The satisfactory results of the SM implementation for URA-C and CR-P in a 2D system would recommend their extension 
to 3D in the near future, stacking the 2D grids. 
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