THE ŁOJASIEWICZ EXPONENT OF A SET OF WEIGHTED HOMOGENEOUS IDEALS

C. BIVIÀ-AUSINA AND S. ENCINAS

Abstract. We give an expression for the Łojasiewicz exponent of a set of ideals which are pieces of a weighted homogeneous filtration. We also study the application of this formula to the computation of the Łojasiewicz exponent of the gradient of a semi-weighted homogeneous function \((\mathbb{C}^n, 0) \to (\mathbb{C}, 0)\) with an isolated singularity at the origin.

1. Introduction

Let \(R\) be a Noetherian ring and let \(I\) be an ideal of \(R\). Let \(\nu_I\) be the order function of \(R\) with respect to \(I\), that is, \(\nu_I(h) = \sup \{ r : h \in I^r \}\), for all \(h \in R, h \neq 0\), and \(\nu(0) = \infty\). Let us consider the function \(\nu_I : R \to \mathbb{R}_{\geq 0} \cup \{\infty\}\) defined by \(\nu_I(h) = \lim_{s \to \infty} \frac{\nu_I(h^s)}{s}\), for all \(h \in R\). It was proven by Samuel [17] and Rees [14] that this limit exists and Nagata proved in [12] that, when finite, the number \(\nu_I(h)\) is a rational number. The function \(\nu_I\) is called the asymptotic Samuel function of \(I\). If \(J\) is another ideal of \(R\), then the number \(\nu_I(J)\) is defined analogously and if \(h_1, \ldots, h_r\) is a generating system of \(J\) then \(\nu_I(J) = \min\{\nu_I(h_1), \ldots, \nu_I(h_r)\}\). Let us denote by \(\overline{I}\) the integral closure of \(I\). As a consequence of the theorem of existence of the Rees valuations of an ideal (see for instance [8, p. 192]), it is known that, if \(J\) is another ideal and \(p, q \in \mathbb{Z}_{\geq 1}\), then \(J^q \subseteq \overline{I}^p\) if and only if \(\nu_I(J) \geq \frac{p}{q}\).

Let \(O_n\) denote the ring of analytic function germs \(f : (\mathbb{C}^n, 0) \to \mathbb{C}\) and let \(m_n\) denote its maximal ideal, that will be also denoted by \(m\) if no confusion arises. Let \(I\) be an ideal of \(O_n\) of finite colength. Lejeune and Teissier proved in [10, p. 832] that \(1/\nu_I(m)\) is equal to the Łojasiewicz exponent of \(I\) (in fact, this result was proven in a more general context, that is, for ideals in a structural ring \(O_X\), where \(X\) is a reduced complex analytic space). If \(g_1, \ldots, g_r\) is a generating system of \(I\), then the Łojasiewicz exponent of \(I\) is defined as the infimum of those \(\alpha > 0\) for which there exist a constant \(C > 0\) and an open neighbourhood \(U\) of \(0 \in \mathbb{C}^n\) with

\[\|x\|^\alpha \leq C \sup_i |g_i(x)|\]

for all \(x \in U\). Let us denote this number by \(L_0(I)\) and let \(e(I)\) denote the Samuel multiplicity of \(I\). Therefore we have that \(L_0(I) = \inf\{\frac{p}{q} : m^p \subseteq \overline{I}^q, p, q \in \mathbb{Z}_{\geq 0}\}\) and hence, by the Rees’
multiplicity theorem (see [8, p. 222]) it follows that $\mathcal{L}_0(I) = \inf\{\frac{r}{q} : e(I^q) = e(I^p + m^p), \ p, q \in \mathbb{Z}_{>0}\}$. This expression of $\mathcal{L}_0(I)$ is one of the motivations that lead the first author to introduce the notion of Łojasiewicz exponent of a set of ideals in [4]. This notion is based on the Rees’ mixed multiplicity of a set of ideals (Definition 2.1).

Łojasiewicz exponents have important applications in singularity theory. Here we recall one of them. If $g : (\mathbb{C}^n, 0) \to (\mathbb{C}^n, 0)$ is an analytic map germ such that $g^{-1}(0) = \{0\}$ then we denote by $\mathcal{L}_0(g)$ the Łojasiewicz exponent of the ideal generated by the component functions of g. Let $f : (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ be the germ of a complex analytic function with an isolated singularity at the origin. Then $\nabla f : (\mathbb{C}^n, 0) \to (\mathbb{C}^n, 0)$ denotes the gradient map of f, that is, $\nabla f = (\frac{\partial f}{\partial x_1}, \ldots, \frac{\partial f}{\partial x_n})$. The Jacobian ideal of f, that we will denote by $J(f)$, is the ideal generated by the components of ∇f. The degree of C^0-determinacy of f, denoted by $s_0(f)$, is defined as the smallest integer r such that f is topologically equivalent to $f + g$, for all $g \in \mathcal{O}_n$ with $\nu_m(g) \geq r + 1$. Teissier proved in [19, p. 280] that $s_0(f) = [\mathcal{L}_0(\nabla f)] + 1$, where $[a]$ stands for the integer part of a given $a \in \mathbb{R}$. Despite the fact that this equality connects $\mathcal{L}_0(\nabla f)$ with a fundamental topological aspect of f, the problem of determining whether the Łojasiewicz exponent $\mathcal{L}_0(\nabla f)$ is a topological invariant of f is still an open problem.

The effective computation of $\mathcal{L}_0(I)$ has proven to be a challenging problem in algebraic geometry that, by virtue of the results of Lejeune and Teissier is directly related with the computation of the integral closure of an ideal. In [5] the authors relate the problem of computing $\mathcal{L}_0(I)$ with the algorithms of resolution of singularities. The approach that we give in this paper is based on techniques of commutative algebra.

We recall that, if $w = (w_1, \ldots, w_n) \in \mathbb{Z}_{\geq 1}^n$, then a polynomial $f \in \mathbb{C}[x_1, \ldots, x_n]$ is called weighted homogeneous of degree d with respect to w when f is written as a sum of monomials $x_1^{k_1} \cdots x_n^{k_n}$ such that $w_1 x_1 + \cdots + w_n x_n = d$. This paper is motivated by the main result of Krasiński, Oleksik and Płoski in [9], which says that if $f : \mathbb{C}^3 \to \mathbb{C}$ is a weighted homogeneous polynomial of degree d with respect to (w_1, w_2, w_3) with an isolated singularity at the origin, then $\mathcal{L}_0(\nabla f)$ is given by the expression

$$\mathcal{L}_0(\nabla f) = \frac{d - \min\{w_1, w_2, w_3\}}{\min\{w_1, w_2, w_3\}}$$

provided that $d \geq 2w_i$, for all $i = 1, 2, 3$. That is, $\mathcal{L}_0(\nabla f)$ depends only on the weights w_i and the degree d in this case. Therefore it is concluded that $\mathcal{L}_0(\nabla f)$ is a topological invariant of f, by virtue of the results of Saeki [16] and Yau [21]. In view of the above equality it is reasonable to conjecture that the analogous result holds in general, that is, if $f : (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ is a weighted homogeneous polynomial, or even a semi-weighted homogeneous function (see Definition 4.1), with respect to (w_1, \ldots, w_n) of degree d with an isolated singularity at the origin, and if $d \geq 2w_i$, for all $i = 1, \ldots, n$, then

$$\mathcal{L}_0(\nabla f) = \frac{d - \min\{w_1, \ldots, w_n\}}{\min\{w_1, \ldots, w_n\}}. \tag{1}$$
We point out that inequality \((\leq)\) always holds in (1) for semi-weighted homogeneous functions (see Corollary 4.11).

In this paper we obtain the equality (1) for semi-weighted homogeneous germs \(f : (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)\) under a restriction expressed in terms of the supports of the component functions of \(\nabla f\) (see Corollary 4.11). This result arises as a consequence of a more general result involving the Lojasiewicz exponent of a set of ideals coming from a weighted homogeneous filtration (see Theorem 4.7). Our approach to Lojasiewicz exponents is purely algebraic and comes from the techniques developed in [3] and [4]. This new point of view of the subject has led us to detect a broad class of semi-weighted homogeneous functions where relation (1) holds.

For the sake of completeness we recall in Section 2 the definition of Rees’ mixed multiplicity and basic facts about this notion. In Section 3 we show some results about the notion of Lojasiewicz exponent of a set of ideals that will be applied in Section 4. The main results appear in Section 4.

2. The Rees’ mixed multiplicity of a set of ideals

Let \((R, m)\) be a Noetherian local ring and let \(I\) be an ideal of \(R\). We denote by \(e(I)\) the Samuel multiplicity of \(I\). Let \(\dim R = n\) and let us fix a set of \(n\) ideals \(I_1, \ldots, I_n\) of \(R\) of finite colength. Then we denote by \(e(I_1, \ldots, I_n)\) the mixed multiplicity of \(I_1, \ldots, I_n\), as defined by Teissier and Risler in [20] (we refer to [8, §17] and [18] for fundamental results about mixed multiplicities of ideals). We recall that, if the ideals \(I_1, \ldots, I_n\) are equal to a given ideal, say \(I\), then \(e(I_1, \ldots, I_n) = e(I)\).

Let us suppose that the residue field \(k = R/m\) is infinite. Let \(a_{i1}, \ldots, a_{is_i}\) be a generating system of \(I_i\), where \(s_i \geq 1\), for \(i = 1, \ldots, n\). Let \(s = s_1 + \cdots + s_n\). We say that a property holds for sufficiently general elements of \(I_1 \oplus \cdots \oplus I_n\) if there exists a non-empty Zariski-open set \(U\) in \(k^s\) verifying that the said property holds for all elements \((g_1, \ldots, g_n) \in I_1 \oplus \cdots \oplus I_n\) such that \(g_i = \sum_j u_{ij}a_{ij}\), \(i = 1, \ldots, n\) and the image of \((u_{11}, \ldots, u_{1s_1}, \ldots, u_{ns_n})\) in \(k^s\) lies in \(U\).

By virtue of a result of Rees (see [15] or [8, p. 335]), if the ideals \(I_1, \ldots, I_n\) have finite colength and \(R/m\) is infinite, then the mixed multiplicity of \(I_1, \ldots, I_n\) is obtained as \(e(I_1, \ldots, I_n) = e(g_1, \ldots, g_n)\), for a sufficiently general element \((g_1, \ldots, g_n) \in I_1 \oplus \cdots \oplus I_n\).

Let us denote by \(\mathcal{O}_n\) the ring of analytic function germs \((\mathbb{C}^n, 0) \to \mathbb{C}\). Let \(g : (\mathbb{C}^n, 0) \to (\mathbb{C}^n, 0)\) be a complex analytic map germ such that \(g^{-1}(0) = \{0\}\) and let \(g_1, \ldots, g_n\) denote the component functions of \(g\). We recall that \(e(I) = \dim_\mathbb{C} \mathcal{O}_n/I\), where \(I\) is the ideal of \(\mathcal{O}_n\) generated by \(g_1, \ldots, g_n\). It turns out that this number is equal to the geometric multiplicity of \(g\) (see [11, p. 258] or [13]).

Now we show the definition of a number associated to a family of ideals that generalizes the notion of mixed multiplicity. This number is fundamental in the results of this paper.

We denote by \(\mathbb{Z}_+\) the set of non-negative integers. Let \(a \in \mathbb{Z}\), we denote by \(\mathbb{Z}_{\geq a}\) the set of integers \(z \geq a\).
Proposition 2.2. [3, p. 393] Let \((R, m)\) be a Noetherian local ring of dimension \(n\). Let \(I_1, \ldots, I_n\) be ideals of \(R\). Then we define the Rees’ mixed multiplicity of \(I_1, \ldots, I_n\) as

\[
\sigma(I_1, \ldots, I_n) = \max_{r \in \mathbb{Z}_+} e(I_1 + m^r, \ldots, I_n + m^r),
\]

when the number on the right hand side is finite. If the set of integers \(\{e(I_1+m^r, \ldots, I_n+m^r) : r \in \mathbb{Z}_+\}\) is non-bounded then we set \(\sigma(I_1, \ldots, I_n) = \infty\).

We remark that if \(I_i\) is an ideal of finite colength, for all \(i = 1, \ldots, n\), then \(\sigma(I_1, \ldots, I_n) = e(I_1, \ldots, I_n)\). The next proposition characterizes the finiteness of \(\sigma(I_1, \ldots, I_n)\).

Proposition 2.2. [3, p. 393] Let \(I_1, \ldots, I_n\) be ideals of a Noetherian local ring \((R, m)\) such that the residue field \(k = R/m\) is infinite. Then \(\sigma(I_1, \ldots, I_n) < \infty\) if and only if there exist elements \(g_i \in I_i\), for \(i = 1, \ldots, n\), such that \((g_1, \ldots, g_n)\) has finite colength. In this case, we have that \(\sigma(I_1, \ldots, I_n) = e(g_1, \ldots, g_n)\) for sufficiently general elements \((g_1, \ldots, g_n) \in I_1 \oplus \cdots \oplus I_n\).

Remark 2.3. It is worth pointing out that, if \(I_1, \ldots, I_n\) is a set of ideals of \(R\) such that \(\sigma(I_1, \ldots, I_n) < \infty\), then \(I_1 + \cdots + I_n\) is an ideal of finite colength. Obviously the converse is not true.

The following result will be useful in subsequent sections.

Lemma 2.4. [4, p. 392] Let \((R, m)\) be a Noetherian local ring of dimension \(n \geq 1\). Let \(J_1, \ldots, J_n\) be ideals of \(R\) such that \(\sigma(J_1, \ldots, J_n) < \infty\). Let \(I_1, \ldots, I_n\) be ideals of \(R\) such that \(J_i \subseteq I_i\), for all \(i = 1, \ldots, n\). Then \(\sigma(I_1, \ldots, I_n) < \infty\) and

\[
\sigma(J_1, \ldots, J_n) \geq \sigma(I_1, \ldots, I_n).
\]

Now we recall some basic definitions. Let us fix a coordinate system \(x_1, \ldots, x_n\) in \(\mathbb{C}^n\). If \(k = (k_1, \ldots, k_n) \in \mathbb{Z}_+^n\), we will denote the monomial \(x_1^{k_1} \cdots x_n^{k_n}\) by \(x^k\). If \(h \in \mathcal{O}_n\) and \(h = \sum_k a_k x^k\) denotes the Taylor expansion of \(h\) around the origin, then the support of \(h\) is the set \(\text{supp}(h) = \{ k \in \mathbb{Z}_+^n : a_k \neq 0 \}\). If \(h \neq 0\), the Newton polyhedron of \(h\), denoted by \(\Gamma_+(h)\), is the convex hull of the set \(\{ k + v : k \in \text{supp}(h), v \in \mathbb{R}_+^n \}\). If \(h = 0\), then we set \(\Gamma_+(h) = \emptyset\). If \(I\) is an ideal of \(\mathcal{O}_n\) and \(g_1, \ldots, g_s\) is a generating system of \(I\), then we define the Newton polyhedron of \(I\) as the convex hull of \(\Gamma_+(g_1) \cup \cdots \cup \Gamma_+(g_r)\). It is easy to check that the definition of \(\Gamma_+(I)\) does not depend on the chosen generating system of \(I\). We say that \(I\) is a monomial ideal of \(\mathcal{O}_n\) when \(I\) admits a generating system formed by monomials.

Definition 2.5. Let \(I_1, \ldots, I_n\) be monomial ideals of \(\mathcal{O}_n\) such that \(\sigma(I_1, \ldots, I_n) < \infty\). Then we denote by \(\mathcal{S}(I_1, \ldots, I_n)\) the family of those maps \(g = (g_1, \ldots, g_n) : (\mathbb{C}^n, 0) \to (\mathbb{C}^n, 0)\) for which \(g^{-1}(0) = \{0\}\), \(g_i \in I_i\), for all \(i = 1, \ldots, n\), and \(\sigma(I_1, \ldots, I_n) = e(g_1, \ldots, g_n)\), where \(e(g_1, \ldots, g_n)\) stands for the multiplicity of the ideal of \(\mathcal{O}_n\) generated by \(g_1, \ldots, g_n\). The elements of \(\mathcal{S}(I_1, \ldots, I_n)\) are characterized in [3, Theorem 3.10].

We denote by \(\mathcal{S}_0(I_1, \ldots, I_n)\) the set formed by the maps \(g = (g_1, \ldots, g_n) \in \mathcal{S}(I_1, \ldots, I_n)\) such that \(\Gamma_+(g_i) = \Gamma_+(I_i)\), for all \(i = 1, \ldots, n\).
3. The Lojasiewicz exponent of a set of ideals

In this section we introduce some results concerning the notion of Lojasiewicz exponent of a set of ideals in a Noetherian ring. These results will be applied in the next section.

Let \(I_1, \ldots, I_n \) be ideals of a local ring \((R,m)\) such that \(\sigma(I_1, \ldots, I_n) < \infty \). Then we define

\[
 r(I_1, \ldots, I_n) = \min \{ r \in \mathbb{Z}_+ : \sigma(I_1, \ldots, I_n) = e(I_1 + m^r, \ldots, I_n + m^r) \}.
\]

Theorem 3.1. [4, p. 398] Let \(I_1, \ldots, I_n \) be monomial ideals of \(\mathcal{O}_n \) such that \(\sigma(I_1, \ldots, I_n) \) is finite. If \(g \in \mathcal{S}_0(I_1, \ldots, I_n) \), then \(L_0(g) \) depends only on \(I_1, \ldots, I_n \) and it is given by

\[
 L_0(g) = \min_{s \geq 1} \frac{r(I^s_1, \ldots, I^s_n)}{s}.
\]

By the proof of the above theorem it is concluded that the infimum of the sequence \(\{ \frac{r(I^s_1, \ldots, I^s_n)}{s} \}_{s \geq 1} \) is actually a minimum. Theorem 3.1 motivates the following definition.

Definition 3.2. Let \((R,m)\) be a Noetherian local ring of dimension \(n \). Let \(I_1, \ldots, I_n \) be ideals of \(R \). Let us suppose that \(\sigma(I_1, \ldots, I_n) < \infty \). We define the *Lojasiewicz exponent of \(I_1, \ldots, I_n \)* as

\[
 L_0(I_1, \ldots, I_n) = \inf_{s \geq 1} \frac{r(I^s_1, \ldots, I^s_n)}{s}.
\]

As we will see in Lemma 3.3, we have that \(r(I^s_1, \ldots, I^s_n) \leq sr(I_1, \ldots, I_n) \), for all \(s \in \mathbb{Z}_{\geq 1} \). Therefore \(L_0(I_1, \ldots, I_n) \leq r(I_1, \ldots, I_n) \).

We can extend Definition 2.1 by replacing the maximal ideal \(m \) by an arbitrary ideal of finite colength, but the resulting number is the same. That is, under the hypothesis of Definition 2.1, let us denote by \(J \) an ideal of \(R \) of finite colength and let us suppose that \(\sigma(I_1, \ldots, I_n) < \infty \). Then we define

\[
 \sigma_J(I_1, \ldots, I_n) = \max_{r \in \mathbb{Z}_+} e(I_1 + J^r, \ldots, I_n + J^r).
\]

An easy computation reveals that \(\sigma_J(I_1, \ldots, I_n) = \sigma(I_1, \ldots, I_n) \). We also define

\[
 r_J(I_1, \ldots, I_n) = \min \{ r \in \mathbb{Z}_+ : \sigma(I_1, \ldots, I_n) = e(I_1 + J^r, \ldots, I_n + J^r) \}.
\]

Let \(I \) be an ideal of \(R \) of finite colength. Then we denote by \(r_J(I) \) the number \(r_J(I, \ldots, I) \), where \(I \) is repeated \(n \) times. We deduce from the Rees’ multiplicity theorem that, if \(R \) is quasi-unmixed, then \(r_J(I) = \min \{ r \geq 1 : J^r \subseteq T \} \).

Lemma 3.3. Let \((R,m)\) be a Noetherian local ring of dimension \(n \). Let \(I_1, \ldots, I_n \) be ideals of \(R \) such that \(\sigma(I_1, \ldots, I_n) < \infty \) and let \(J \) be an \(m \)-primary ideal. Then

\[
 r_J(I^s_1, \ldots, I^s_n) \leq sr_J(I_1, \ldots, I_n)
\]

\[
 r_J(I_1, \ldots, I_n) \geq \frac{1}{s} r_J(I_1, \ldots, I_n)
\]

for all integer \(s \geq 1 \).
Remark 3.5. Let $\epsilon > 0$ and an integer n is repeated m times.

Proof. For the first inequality, set $r = r_J(I_1, \ldots, I_n)$. Thus $\sigma(I_1, \ldots, I_n) = e(I_1 + J^r, \ldots, I_n + J^r)$. It is enough to prove that $\sigma(I_1^n, \ldots, I_n^n) = e(I_1^n + J^{rs}, \ldots, I_n^n + J^{rs})$:

\[
e(I_1^n + J^{rs}, \ldots, I_n^n + J^{rs}) = e(I_1^n + J^{rs}, \ldots, I_n^n + J^{rs}) = e((I_1 + J^r)^s, \ldots, (I_n + J^r)^s) = e(I_1 + J^r, \ldots, I_n + J^r) = s^n \sigma(I_1, \ldots, I_n) = \sigma(I_1^n, \ldots, I_n^n),\]

where last equality comes from [4, Lemma 2.6].

The second inequality comes directly from the definition of $r_J(I_1, \ldots, I_n)$. \qed

It is easy to find examples of ideals I and J such that $r_J(I_1, \ldots, I_n) \neq r(I_1, \ldots, I_n)$ in general. This fact motivates the following definition.

Definition 3.4. Let (R, m) be a Noetherian local ring of dimension n. Let I_1, \ldots, I_n be ideals of R such that $\sigma(I_1, \ldots, I_n) < \infty$. Let J be an m-primary ideal of R. We define the Lojasiewicz exponent of I_1, \ldots, I_n with respect to J, denoted by $L_J(I_1, \ldots, I_n)$, as

\[
L_J(I_1, \ldots, I_n) = \inf_{s \geq 1} \frac{r_J(I_1^n, \ldots, I_n^n)}{s}.
\]

If I is an m-primary ideal of R, then we denote by $L_J(I)$ the number $L_J(I_1, \ldots, I_n)$, where I is repeated n times.

Remark 3.5. Under the conditions of the previous definition, we observe that $L_J(I_1, \ldots, I_n)$ can be seen as a limit inferior:

\[
L_J(I_1, \ldots, I_n) = \liminf_{s \to \infty} \frac{r_J(I_1^n, \ldots, I_n^n)}{s}.
\]

Set $\ell = L_J(I_1, \ldots, I_n)$. In order to prove the equality above, it is enough to see that for all $\epsilon > 0$ and all $p \in \mathbb{Z}_+$, there exists an integer $m \geq p$ such that

\[
\frac{r_J(I_1^m, \ldots, I_n^m)}{m} \leq \ell + \epsilon.
\]

Let us fix an $\epsilon > 0$ and an integer $p \in \mathbb{Z}_+$. By definition, there exists $q \in \mathbb{Z}_+$ such that

\[
\frac{r_J(I_1^q, \ldots, I_n^q)}{q} \leq \ell + \epsilon.
\]

Let $s \in \mathbb{Z}_+$ such that $sq \geq p$. Then, from Lemma 3.3 we obtain that

\[
\frac{r_J(I_1^{sq}, \ldots, I_n^{sq})}{sq} \leq \frac{r_J(I_1^n, \ldots, I_n^n)}{q} \leq \ell + \epsilon.
\]

If $g : (\mathbb{C}^n, 0) \to (\mathbb{C}^n, 0)$ denotes an analytic map germ such that $g^{-1}(0) = \{0\}$ and J is an ideal of \mathcal{O}_n of finite colength, then we denote the number $L_J(I)$, where I is the ideal generated by the component functions of g, by $L_J(g)$. A straightforward reproduction of the argument in the proof of Theorem 3.1 consisting of replacing the powers of the maximal ideal by the powers of a given ideal of finite colength leads to the following result, which is analogous to Theorem 3.1.
Theorem 3.6. Let I_1, \ldots, I_n be monomial ideals of \mathcal{O}_n such that $\sigma(I_1, \ldots, I_n)$ is finite and let J be a monomial ideal of \mathcal{O}_n of finite colength. Then the sequence $\{r_{J^s(I_1, \ldots, I_n)}\}_{s \geq 1}$ attains a minimum and if $g \in S_0(I_1, \ldots, I_n)$ then

(7) \[\mathcal{L}_J(g) = \mathcal{L}_J(I_1, \ldots, I_n) = \min_{s \geq 1} \frac{r_{J^s(I_1, \ldots, I_n)}^s}{s}. \]

Lemma 3.7. Under the hypothesis of Lemma 3.3 we have

\[\mathcal{L}_J(I_1^s, \ldots, I_n^s) = s\mathcal{L}_J(I_1, \ldots, I_n) \]

for all $s \in \mathbb{Z}_{\geq 1}$.

Proof. For the first equality

\[\mathcal{L}_J(I_1^s, \ldots, I_n^s) = \inf_{p \geq 1} \frac{r_{J^p(I_1, \ldots, I_n)}}{p} = s \inf_{p \geq 1} \frac{r_{J^p(I_1, \ldots, I_n)}}{sp} \geq s\mathcal{L}_J(I_1, \ldots, I_n). \]

On the other hand, by Lemma 3.3 we obtain

\[\inf_{p \geq 1} \frac{r_{J^p(I_1, \ldots, I_n)}}{p} \leq s \inf_{p \geq 1} \frac{r_{J^p(I_1, \ldots, I_n)}}{p} = s\mathcal{L}_J(I_1, \ldots, I_n). \]

Let us see the second equality. Applying Lemma 3.3 we have

\[\mathcal{L}_{J^s}(I_1, \ldots, I_n) = \inf_{p \geq 1} \frac{r_{J^s(I_1, \ldots, I_n)}}{p} \geq \frac{1}{s} \inf_{p \geq 1} \frac{r_{J^s(I_1, \ldots, I_n)}}{p} = \frac{1}{s} \mathcal{L}_J(I_1, \ldots, I_n). \]

Let us denote the number $r_{J^s}(I_1^p, \ldots, I_n^p)$ by r_p, for all $p \geq 1$. Then

\[\sigma(I_1^p, \ldots, I_n^p) > e(I_1^p + J^{s(r_p-1)}, \ldots, I_n^p + J^{s(r_p-1)}). \]

In particular

\[r_{J^s}(I_1^p, \ldots, I_n^p) > s(r_p - 1) \]

for all $p \geq 1$. Dividing the previous inequality by p and taking $\liminf_{p \to \infty}$ we obtain by Remark 3.5, that

\[\mathcal{L}_J(I_1, \ldots, I_n) = \liminf_{p \to \infty} \frac{r_{J^s(I_1, \ldots, I_n)}}{p} \geq \liminf_{p \to \infty} \left(\frac{r_p - 1}{p} \right) = \mathcal{L}_{J^s}(I_1, \ldots, I_n). \]

\[\square \]

Lemma 3.8. Let (R, m) be a quasi-unmixed Noetherian local ring of dimension n. Let I_1, \ldots, I_n be ideals of R such that $\sigma(I_1, \ldots, I_n) < \infty$. If J_1, J_2 are m-primary ideals of R then

\[\mathcal{L}_{J_1}(I_1, \ldots, I_n) \leq \mathcal{L}_{J_1}(J_2)\mathcal{L}_{J_2}(I_1, \ldots, I_n). \]
Proof. By (5) we have that
\[r_{J_1}(J_2) = \min \{ r \geq 1 : e(J_2) = e(J_2 + J_1^r) \} . \]

Given an integer \(r \geq 1 \), the condition \(e(J_2) = e(J_2 + J_1^r) \) is equivalent to saying that \(J_1^r \subseteq J_2 \), by the Rees’ multiplicity theorem (see [8, p. 222]). Therefore, an elementary computation shows that
\[r_{J_1}(I_1, \ldots, I_n) \leq r_{J_1}(J_2)r_{J_2}(I_1, \ldots, I_n) . \]

By the generality of the previous inequality, we have
\[r_{J_1}(I_1^p, \ldots, I_n^p) \leq r_{J_1}(J_2^p)r_{J_2}(I_1^p, \ldots, I_n^p) \]
for all integers \(p, s \geq 1 \). The inequality (9) shows that
\[\mathcal{L}_{J_1}(I_1, \ldots, I_n) = \inf_{s \geq 1} \frac{r_{J_1}(I_1^s, \ldots, I_n^s)}{s} \leq \inf_{s \geq 1} \frac{r_{J_1}(J_2^s)r_{J_2}(I_1^s, \ldots, I_n^s)}{s} = \]
\[= r_{J_1}(J_2^p)\mathcal{L}_{J_2}(I_1, \ldots, I_n) = r_{J_1}(J_2^p)\frac{1}{p}\mathcal{L}_{J_2}(I_1, \ldots, I_n) \]
for all integer \(p \geq 1 \), where the last equality comes from Lemma 3.7. Then
\[\mathcal{L}_{J_1}(I_1, \ldots, I_n) \leq \left(\inf_{p \geq 1} \frac{r_{J_1}(J_2^p)}{p} \right) \mathcal{L}_{J_2}(I_1, \ldots, I_n) = \mathcal{L}_{J_1}(J_2)\mathcal{L}_{J_2}(I_1, \ldots, I_n) . \]

We recall the following two results, which will be applied in the next section.

Proposition 3.9. [4] Let \((R, m)\) be a Noetherian local ring of dimension \(n \). For each \(i = 1, \ldots, n \) let us consider ideals \(I_i \) and \(J_i \) such that \(I_i \subseteq J_i \). Let suppose that \(\sigma(I_1, \ldots, I_n) < \infty \) and that \(\sigma(I_1, \ldots, I_n) = \sigma(J_1, \ldots, J_n) \). Then
\[\mathcal{L}_0(I_1, \ldots, I_n) \leq \mathcal{L}_0(J_1, \ldots, J_n) . \]

Let us denote the canonical basis in \(\mathbb{R}^n \) by \(e_1, \ldots, e_n \).

Proposition 3.10. [2] Let \(J \) be an ideal of finite colength of \(\mathcal{O}_n \) and set \(r_i = \min \{ r : re_i \in \Gamma_+(J) \} \), for all \(i = 1, \ldots, n \). Then
\[\max\{r_1, \ldots, r_n\} \leq \mathcal{L}_0(J) \]
and equality holds if \(J \) is a monomial ideal.

4. Weighted homogeneous filtrations

Let us fix a vector \(w = (w_1, \ldots, w_n) \in \mathbb{Z}_{\geq 1}^n \). We will usually refer to \(w \) as the vector of weights. Let \(h \in \mathcal{O}_n, h \neq 0 \), the degree of \(h \) with respect to \(w \), or \(w \)-degree of \(h \), is defined as
\[d_w(h) = \min \{ \langle k, w \rangle : k \in \text{supp}(h) \} , \]
where \(\langle \cdot, \cdot \rangle \) stands for the usual scalar product. In particular, if \(x_1, \ldots, x_n \) denotes a system of coordinates in \(\mathbb{C}^n \) and \(x_1^{k_1} \cdots x_n^{k_n} \) is a monomial in \(\mathcal{O}_n \), then \(d_w(x_1^{k_1} \cdots x_n^{k_n}) = w_1k_1 + \)
\[\cdots + w_n k_n. \] By convention, we set \(d_w(0) = +\infty. \) If \(h \in \mathcal{O}_n \) and \(h = \sum_k a_k x^k \) is the Taylor expansion of \(h \) around the origin, then we define the principal part of \(h \) with respect to \(w \) as the polynomial given by the sum of those terms \(a_k x^k \) such that \(\langle k, w \rangle = d_w(h) \). We denote this polynomial by \(p_w(h) \).

Definition 4.1. We say that a function \(h \in \mathcal{O}_n \) is weighted homogeneous of degree \(d \) with respect to \(w \) if \(\langle k, w \rangle = d, \) for all \(k \in \text{supp}(h) \). The function \(h \) is said to be semi-weighted homogeneous of degree \(d \) with respect to \(w \) when \(p_w(h) \) has an isolated singularity at the origin. Note that \(p_w(h) \) is weighted homogeneous with respect to \(w \).

It is well-known that, if \(h \) is a semi-weighted homogeneous function, then \(h \) has an isolated singularity at the origin and that \(h \) and \(p_w(h) \) have the same Milnor number (see for instance [1, §12]). Let \(g = (g_1, \ldots, g_n) : (\mathbb{C}^n, 0) \to (\mathbb{C}^n, 0) \) be an analytic map germ, let us denote the map \((p_w(g_1), \ldots, p_w(g_n)) \) by \(p_w(g) \). The map \(g \) is said to be semi-weighted homogeneous with respect to \(w \) when \((p_w(g))^{-1}(0) = \{0\} \).

If \(I \) is an ideal of \(\mathcal{O}_n \), then we define the degree of \(I \) with respect to \(w \), or \(w \)-degree of \(I \), as

\[
d_w(I) = \min \{d_w(h) : h \in I \}.
\]

If \(g_1, \ldots, g_r \) constitutes a generating system of \(I \), then it is straightforward to see that \(d_w(I) = \min \{d_w(g_1), \ldots, d_w(g_r) \} \).

Let \(r \in \mathbb{Z}_+ \), then we denote by \(\mathcal{B}_r \) the set of all \(h \in \mathcal{O}_n \) such that \(d_w(h) \geq r \) (therefore \(0 \in \mathcal{B}_r \)). We observe that

(a) \(\mathcal{B}_r \) is an integrally closed monomial ideal of finite colength, for all \(r \geq 1 \);

(b) \(\mathcal{B}_r \mathcal{B}_s \subseteq \mathcal{B}_{r+s} \), \(r, s \geq 1 \);

(c) \(\mathcal{B}_0 = \mathcal{O}_n \).

The family of ideals \(\{\mathcal{B}_r\}_{r \geq 1} \) is called the weighted homogeneous filtration induced by \(w \). We denote by \(A_r \) the ideal of \(\mathcal{O}_n \) generated by the monomials \(x^k \) such that \(d_w(x^k) = r \). If there is not any monomial \(x^k \) such that \(d_w(x^k) = r \) then we set \(A_r = 0 \). Given an integer \(r \geq 1 \), we observe that \(A_{r-s} \subset \mathcal{B}_r \) and that \(A_r \neq \mathcal{B}_r \) in general. Moreover it follows easily that \(A_r = \mathcal{B}_r \) if and only if \(A_r \) is an ideal of finite colength of \(\mathcal{O}_n \).

If \(r_1, \ldots, r_n \in \mathbb{Z}_{\geq 1} \), then it is not true in general that \(\sigma(A_{r_1}, \ldots, A_{r_n}) < \infty \), even if \(A_{r_i} \neq 0 \), for all \(i = 1, \ldots, n \). However \(\sigma(\mathcal{B}_{r_1}, \ldots, \mathcal{B}_{r_n}) < \infty \), since \(\mathcal{B}_{r_i} \) has finite colength, for all \(i = 1, \ldots, n \). For instance, let us consider the vector \(w = (3, 1) \). Then we have

\[
A_4 = \langle xy, y^4 \rangle, \quad A_5 = \langle xy^2, y^5 \rangle.
\]

We observe that the ideal \(A_4 + A_5 \) does not have finite colength, therefore \(\sigma(A_4, A_5) \) is not finite (see Remark 2.3).

Proposition 4.2. Let \(r_1, \ldots, r_n \in \mathbb{Z}_{\geq 1} \). If \(\sigma(A_{r_1}, \ldots, A_{r_n}) < \infty \) then \(\sigma(\mathcal{B}_{r_1}, \ldots, \mathcal{B}_{r_n}) < \infty \) and

\[
\sigma(A_{r_1}, \ldots, A_{r_n}) = \sigma(\mathcal{B}_{r_1}, \ldots, \mathcal{B}_{r_n}) = \frac{r_1 \cdots r_n}{w_1 \cdots w_n}.
\]
Then the result follows. □

Proof. By Proposition 2.2, there exists a sufficiently general element \((h_1, \ldots, h_n) \in \mathcal{B}_{r_1} \oplus \cdots \oplus \mathcal{B}_{r_n} \) such that

\[
\sigma(\mathcal{B}_{r_1}, \ldots, \mathcal{B}_{r_n}) = e(h_1, \ldots, h_n).
\]

The condition \(\sigma(\mathcal{A}_{r_1}, \ldots, \mathcal{A}_{r_n}) < \infty \) implies that \(\mathcal{A}_{r_i} \neq 0 \), for all \(i = 1, \ldots, n \). The ideal \(\mathcal{A}_{r_i} \) is generated by the monomials of \(w \)-degree \(r_i \), for all \(i = 1, \ldots, n \), then \(h_i \) can be written as \(h_i = g_i + g'_i \), for all \(i = 1, \ldots, n \), where \((g_1, \ldots, g_n) \) is a sufficiently general element of \(\mathcal{A}_{r_1} \oplus \cdots \oplus \mathcal{A}_{r_n} \) and \(g'_i \in \mathcal{O}_n \) verifies that \(d_w(g'_i) > r_i \), for all \(i = 1, \ldots, n \). Therefore \(p_w(h_i) = g_i \), for all \(i = 1, \ldots, n \).

Let \(g \) denote the map \((g_1, \ldots, g_n) : (\mathbb{C}^n, 0) \to (\mathbb{C}^n, 0) \). The condition \(\sigma(\mathcal{A}_{r_1}, \ldots, \mathcal{A}_{r_n}) < \infty \) and the genericity of \(g \) imply that \(g \) is finite, that is, \(g^{-1}(0) = \{0\} \) and \(\sigma(\mathcal{A}_{r_1}, \ldots, \mathcal{A}_{r_n}) = e(g_1, \ldots, g_n) \). Consequently the map \(h : (\mathbb{C}^n, 0) \to (\mathbb{C}^n, 0) \) is semi-weighted homogeneous with respect to \(w \). By [1, §12] (see also [7] for a more general phenomenon), this implies that

\[
e(h_1, \ldots, h_n) = e(g_1, \ldots, g_n) = \frac{r_1 \cdots r_n}{w_1 \cdots w_n}.
\]

Then the result follows.

Definition 4.3. Let \(J_1, \ldots, J_n \) be a family of ideals of \(\mathcal{O}_n \) and let \(r_i = d_w(J_1) \), for all \(i = 1, \ldots, n \). We say that \(J_1, \ldots, J_n \) admits a \(w \)-matching if there exists a permutation \(\tau \) of \(\{1, \ldots, n\} \) and an index \(i_0 \in \{1, \ldots, n\} \) such that

(a) \(w_{i_0} = \min\{w_1, \ldots, w_n\} \),
(b) \(r_{\tau(i_0)} = \max\{r_1, \ldots, r_n\} \) and
(c) the pure monomial \(x_i^{r_{\tau(i)}/w_i} \) belongs to \(J_{\tau(i)} \), for all \(i \neq i_0 \).

Remark 4.4. If \(r \in \mathbb{Z}_{\geq 1} \) then we observe that \(\mathcal{A}_r \) has finite colength if and only if \(w_i \) divides \(r \), for all \(i = 1, \ldots, n \). Let \(r_1, \ldots, r_n \in \mathbb{Z}_{\geq 1} \) such that \(\mathcal{A}_{r_i} \) has finite colength, for all \(i = 1, \ldots, n \). Then condition (c) of the above definition is not a restriction in this case and therefore \(\mathcal{A}_{r_1}, \ldots, \mathcal{A}_{r_n} \) admits a \(w \)-matching.

Let us consider the case \(n = 2 \) of the previous definition. Therefore, let \(r_1, r_2 \in \mathbb{Z}_{\geq 1} \) with \(r_1 \succ r_2 \) and let us suppose that \(w_1 < w_2 \). Let \(J_1, J_2 \) be ideals of \(\mathcal{O}_2 \) such that \(d_w(J_i) = r_i \), \(i = 1, 2 \). Then \(J_1, J_2 \) admits a \(w \)-matching if and only if \(y^{r_2/w_2} \in J_2 \).

Example 4.5. Set \(w = (1, 2, 3, 4) \) and \(r_1 = 10, r_2 = 9, r_3 = 8, r_4 = 6 \). The family of ideals given by

\[
J_1 = \langle x_1 x_3^3 \rangle, \quad J_2 = \langle x_3^3, x_1 x_4^2 \rangle, \quad J_3 = \langle x_4^2, x_1^2 x_3^2 \rangle, \quad J_4 = \langle x_2^3, x_2 x_4 \rangle,
\]

admits a \(w \)-matching. Observe that here \(i_0 = 1 \) and the permutation \(\tau \) is defined by \(\tau(1) = 1, \tau(2) = 4, \tau(3) = 2, \tau(4) = 3 \).

Let us observe that, if \(J_1, \ldots, J_n \) admits a \(w \)-matching, then it is always possible to reorder the ideals \(J_i \) in such a way that \(\tau(i_0) = i_0 \), and therefore one could restrict to the case \(\tau = \text{id} \) after a permutation of the ideals \(J_i \). But the permutation \(\tau \) is specially relevant when considering ideals coming from the gradient of a function \(f \) (see Example 4.12).
Lemma 4.6. Let \(r_1, \ldots, r_n \in \mathbb{Z}_{\geq 1} \) and let \(I_1, \ldots, I_n \) be monomial ideals of \(\mathcal{O}_n \) such that \(d_w(I_i) = r_i \), for all \(i = 1, \ldots, n \), and \(\sigma(I_1, \ldots, I_n) = \frac{r_1 \cdots r_n}{w_1 \cdots w_n} \). Let \(J \) be an ideal of \(\mathcal{O}_n \) such that \(J = (x_1^{\alpha_1}, \ldots, x_n^{\alpha_n}) \), for some \(r \geq 1 \), where \(\alpha_i = \frac{r - 1}{w_i} \) and \(w = w_1 \cdots w_n \). Then

\[
e(I_1 + J, \ldots, I_n + J) = \min\{r_1, \overline{wr}\} \cdots \min\{r_n, \overline{wr}\}
\]

where the first equality comes from [1, §12] (see also [6, Theorem 3.3]). Let \(e(I_1 + J, \ldots, I_n + J) = e(I_1 + J), \ldots, I_n + J) \).

By Proposition 2.2, there exist an element \((g_1, \ldots, g_n) \in I_1 + \cdots + I_n \) such that \(d_w(g_i) = r_i \), for all \(i = 1, \ldots, n \), and

\[
e(g_1, \ldots, g_n) = \sigma(I_1, \ldots, I_n) = \frac{r_1 \cdots r_n}{w_1 \cdots w_n}.
\]

Let us denote by \(R \) the quotient ring \(\mathcal{O}_n/(p_w(g_1), \ldots, p_w(g_n)) \) and let \(H \) denote the ideal of \(\mathcal{O}_n \) generated by \(x_1^{\alpha_1}, \ldots, x_n^{\alpha_n} \).

Relation (13) implies, by [6, Theorem 3.3], that the ideal generated by \(p_w(g_1), \ldots, p_w(g_n) \) has finite colength. In particular, these elements form a regular sequence and then \(\dim(R) = n - s \). Hence there exists a sufficiently general element \((h_1, \ldots, h_{n-s}) \in H + \cdots + H \) such that the images of the \(h_i \) in \(R \) generate a reduction of the image of \(J \) in \(R \), by the theorem of existence of reductions (see [8, p. 166]). In particular, the ideal \(K = \langle p_w(g_1), \ldots, p_w(g_n), h_1, \ldots, h_{n-s} \rangle \) has finite colength.

Since \(h_i \) is a generic \(\mathcal{O} \)-linear combination of \(x_1^{\alpha_1}, \ldots, x_n^{\alpha_n} \), for all \(i = 1, \ldots, n \), we have that \(p_w(h_i) = h_i \), for all \(i = 1, \ldots, n \). Then \(K = \langle p_w(g_1), \ldots, p_w(g_n), p_w(h_1), \ldots, p_w(h_{n-s}) \rangle \).

Therefore

\[
e(K) = \frac{r_1 \cdots r_n (\overline{wr})^{n-s}}{w_1 \cdots w_n} = \frac{\min\{r_1, \overline{wr}\} \cdots \min\{r_n, \overline{wr}\}}{w},
\]

where the first equality comes from [1, §12] (see also [6, Theorem 3.3]).

Since \(I_i \) is a monomial ideal, for all \(i = 1, \ldots, n \), we have that \(p_w(g_i) \in I_i \), for all \(i = 1, \ldots, n \). In particular we have \(e(K) \geq e(I_1 + J, \ldots, I_n + J) \), by Lemma 2.4. Then

\[
e(K) \geq e(I_1 + H, \ldots, I_n + H) \geq \frac{\min\{r_1, \overline{wr}\} \cdots \min\{r_n, \overline{wr}\}}{w},
\]

where the second inequality follows from [6, Theorem 3.3].

The hypothesis \(J = \overline{J} \) implies that

\[
e(I_1 + J, \ldots, I_n + J) = e(I_1 + H, \ldots, I_n + H).
\]

Then the result follows by joining (14), (15) and (16).

\[\square\]

Theorem 4.7. Let \(r_1, \ldots, r_n \in \mathbb{Z}_{\geq 1} \) such that \(\sigma(A_{r_1}, \ldots, A_{r_n}) < \infty \). Let \(J_1, \ldots, J_n \) be a set of ideals of \(\mathcal{O}_n \) with \(d_w(J_i) = r_i \), for all \(i = 1, \ldots, n \), and \(\sigma(J_1, \ldots, J_n) = \sigma(A_{r_1}, \ldots, A_{r_n}) \).

Then

\[
\mathcal{L}_0(J_1, \ldots, J_n) \leq \mathcal{L}_0(B_{r_1}, \ldots, B_{r_n}) \leq \frac{\max\{r_1, \ldots, r_n\}}{\min\{w_1, \ldots, w_n\}}
\]
and the above inequalities turn into equalities if \(J_1, \ldots, J_n \) admit a \(w \)-matching.

Proof. The condition \(\sigma(A_{r_1}, \ldots, A_{r_n}) < \infty \) and the equality \(\sigma(J_1, \ldots, J_n) = \sigma(A_{r_1}, \ldots, A_{r_n}) \) imply that

\[
\sigma(J_1, \ldots, J_n) = \sigma(B_{r_1}, \ldots, B_{r_n}) = \frac{r_1 \cdots r_n}{w_1 \cdots w_n},
\]

by Proposition 4.2. Then we can apply Proposition 3.9 to deduce that

\[
\mathcal{L}_0(J_1, \ldots, J_n) \leq \mathcal{L}_0(B_{r_1}, \ldots, B_{r_n}).
\]

Let us denote max\(\{r_1, \ldots, r_n\} \) and min\(\{w_1, \ldots, w_n\} \) by \(p \) and \(q \), respectively. Let us see that \(\mathcal{L}_0(B_{r_1}, \ldots, B_{r_n}) \leq \frac{p}{q} \).

Let us denote by \(\overline{w} \) the product \(w_1 \cdots w_n \) and let us consider the ideal \(J = (x_1^{\alpha_1}, \ldots, x_n^{\alpha_n}) \), where \(\alpha_i = \frac{p}{w_i} \), for all \(i = 1, \ldots, n \). Since \(\sigma(B_{r_1}, \ldots, B_{r_n}) < \infty \), it makes sense to compute the number \(r_J(B_{r_1}^s, \ldots, B_{r_n}^s) \), for all \(s \geq 1 \):

\[
r_J(B_{r_1}^s, \ldots, B_{r_n}^s) = \min \left\{ r \geq 1 : r \sigma(B_{r_1}^s, \ldots, B_{r_n}^s) = e(B_{r_1}^s + J', \ldots, B_{r_n}^s + J') \right\}
\]

\[
= \min \left\{ r \geq 1 : \frac{sr_1 \cdots sr_n}{\overline{w}} = \frac{\min\{sr_1, \overline{w}r\} \cdots \min\{sr_n, \overline{w}r\}}{\overline{w}} \right\}
\]

\[
= \min \left\{ r \geq 1 : r \geq \frac{\max\{sr_1, \ldots, sr_n\}}{\overline{w}} \right\} = \left\lceil \frac{\max\{sr_1, \ldots, sr_n\}}{\overline{w}} \right\rceil,
\]

where \(\lceil a \rceil \) denotes the least integer greater than or equal to \(a \), for any \(a \in \mathbb{R} \), and the second equality is a direct application of Lemma 4.6. Therefore

\[
\mathcal{L}_J(B_{r_1}, \ldots, B_{r_n}) = \inf_{s \geq 1} \frac{r_J(B_{r_1}^s, \ldots, B_{r_n}^s)}{s} \leq \inf_{a \geq 1} \frac{r_J(B_{r_1}^{a\overline{w}}, \ldots, B_{r_n}^{a\overline{w}})}{a\overline{w}}
\]

\[
= \inf_{a \geq 1} \frac{1}{a\overline{w}} \left(\max\{a\overline{w}r_1, \ldots, a\overline{w}r_n\} \right) = \max\{r_1, \ldots, r_n\} / \overline{w}.
\]

Moreover, by Proposition 3.10 we have

\[
\mathcal{L}_0(J) = \max\{\alpha_1, \ldots, \alpha_n\} = \frac{\overline{w}}{\min\{w_1, \ldots, w_n\}},
\]

since \(J \) is a monomial ideal. Therefore, by Lemma 3.8 we obtain

\[
\mathcal{L}_0(B_{r_1}, \ldots, B_{r_n}) \leq \mathcal{L}_0(J) \mathcal{L}_J(B_{r_1}, \ldots, B_{r_n})
\]

\[
\leq \frac{\overline{w}}{\min\{w_1, \ldots, w_n\}} \max\{r_1, \ldots, r_n\} / \overline{w} = \max\{r_1, \ldots, r_n\} / \min\{w_1, \ldots, w_n\}.
\]

Let us prove that \(\mathcal{L}_0(J_1, \ldots, J_n) \geq \frac{p}{q} \) supposing that \(J_1, \ldots, J_n \) admit a \(w \)-matching. This inequality holds if and only if

\[
\frac{r(J_1^s, \ldots, J_n^s)}{s} \geq \frac{p}{q}
\]
for all \(s \geq 1 \). By Lemma 3.3 we have that \(qr(J_1^n, \ldots, J_n^n) \geq r(J_1^{sq}, \ldots, J_n^{sq}) \), for all \(s \geq 1 \). Therefore it suffices to show that
\[
(18) \quad r(J_1^{sq}, \ldots, J_n^{sq}) > sp - 1,
\]
for all \(s \geq 1 \). Let us fix an integer \(s \geq 1 \), then relation \(18 \) is equivalent to saying that
\[
(19) \quad \sigma(J_1^{sq}, \ldots, J_n^{sq}) > e(J_1^{sq} + m^{sp-1}, \ldots, J_n^{sq} + m^{sp-1}).
\]

Since \(J_1, \ldots, J_n \) admits a \(w \)-matching, let us consider a permutation \(\tau \) of \(\{1, \ldots, n\} \) such that
(a) \(w_{i_0} = \min\{w_1, \ldots, w_n\} \),
(b) \(r_{\tau(i_0)} = \max\{r_1, \ldots, r_n\} \) and
(c) the pure monomial \(x_{r_{\tau(i_0)}}^{w_{i_0}} \) belongs to \(J_{\tau(i)} \) for all \(i \neq i_0 \).

Let us define the ideal
\[
H = \left\langle x_i^{r_{\tau(i)}}^{w_i} : i \neq i_0 \right\rangle + \langle x_{i_0}^{sp-1} \rangle.
\]
Then
\[
e(H) = e\left(x_1^{w_1}, \ldots, x_{i_0-1}^{w_{i_0-1}}, x_{i_0}^{sp-1}, x_{i_0+1}^{w_{i_0+1}}, \ldots, x_n^{w_n}\right)
= (sq)^{n-1}r_1\cdots r_n \frac{w_{i_0}}{w_1\cdots w_n}(sp - 1).
\]

Since \(x_i^{w_i} \in J_{\tau(i)} \) for all \(i \in \{1, \ldots, n\} \setminus \{i_0\} \), and \(x_{i_0}^{sp-1} \in m^{sp-1} \), we can apply Lemma 2.4 to conclude that
\[
(20) \quad e(H) \geq e(J_1^{sq} + m^{sp-1}, \ldots, J_n^{sq} + m^{sp-1}) = e(J_1^{sq} + m^{sp-1}, \ldots, J_n^{sq} + m^{sp-1}).
\]

Hence, if we prove that \(\sigma(J_1^{sq}, \ldots, J_n^{sq}) > e(H) \) then the result follows.

By [4, Lemma 2.6], we have that \(\sigma(J_1^{sq}, \ldots, J_n^{sq}) = (sq)^n \sigma(J_1, \ldots, J_n) \). Then, using the hypothesis \(\sigma(J_1, \ldots, J_n) = \sigma(\mathcal{A}_{r_1}, \ldots, \mathcal{A}_{r_n}) \) and Proposition 4.2, we obtain that
\[
(21) \quad \sigma(J_1^{sq}, \ldots, J_n^{sq}) = (sq)^n \frac{r_1\cdots r_n}{w_1\cdots w_n}.
\]

Thus, since we assume that \(r_{\tau(i_0)} = p \) and \(w_{i_0} = q \), we have that \(\sigma(J_1^{sq}, \ldots, J_n^{sq}) > e(H) \) if and only if
\[
sq > \frac{q}{p}(sp - 1),
\]
which is to say that \(sq > spq - q \). Therefore relation \(19 \) holds for all integer \(s \geq 1 \) and consequently the inequality \(L_0(J_{r_1}, \ldots, J_{r_n}) \geq \frac{p}{q} \) follows. Thus relation \(17 \) is proven. \(\square \)

Remark 4.8. We observe that the condition that \(J_1, \ldots, J_n \) admits a \(w \)-matching can not be removed from the hypothesis of the previous theorem. Let us consider now the weighted homogeneous filtration in \(\mathcal{O}_2 \) induced by the vector of weights \(w = (1, 4) \) and let \(J_1, J_2 \) be the ideals of \(\mathcal{O}_2 \) given by \(J_1 = \langle x^4 \rangle, J_2 = \langle y^2 \rangle \). We observe that \(d_w(x^4) = 4, d_w(y^2) = 8 \) and consequently the right hand side of \(17 \) would lead to the conclusion that \(L_0(J_1, J_2) = 8, \)
which is not the case, since clearly $L_0(x^4, y^2) = 4$. We also observe that the system of ideals J_1, J_2 does not admit a w-matching.

In order to simplify the exposition, we need to introduce the following definition.

Definition 4.9. If $f \in \mathcal{O}_n$, $f(0) = 0$, then f is termed convenient when $\Gamma_+(f)$ intersects each coordinate axis. Let J_i denote the ideal of \mathcal{O}_n generated by all monomials x^k such that $k \in \Gamma_+(\partial f/\partial x_i)$, $i = 1, \ldots, n$. Let us fix a vector of weights $w = \mathbb{Z}_{\geq 1}^n$. Then we say that f admits a w-matching when the family of ideals J_1, \ldots, J_n admits a w-matching (see Definition 4.3).

If a function $f \in \mathcal{O}_n$ is convenient and quasi-homogeneous, then f admits a w-matching. Observe that in this case the monomials $x^{d_i w_i}$ are in the support of f, for $i = 1, \ldots, n$. Then there is a pure monomial in x_i belonging to the support of the partial derivative $\partial f/\partial x_i$ and one could take $\tau = \text{id}$ in the definition of w-matching (see Definition 4.3).

Let us fix a vector of weights $w = (w_1, \ldots, w_n) \in \mathbb{Z}_{\geq 1}^n$ and an integer $d \geq 1$. Then we denote by $\mathcal{O}(w; d)$ the set of all functions $f \in \mathcal{O}_n$ such that f is semi-weighted homogeneous with respect to w of degree d.

Remark 4.10. From Definition 4.3 we observe that a function $f \in \mathcal{O}(w; d)$ admits a w-matching if and only if $p_w(f)$ admits a w-matching, since the ideals J_i introduced in Definition 4.9 have the same w-degree as the analogous ideals defined for $p_w(f)$.

Corollary 4.11. Let $f : (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ be a semi-weighted homogeneous function of degree d with respect to the weights w_1, \ldots, w_n. Then
\begin{equation}
L_0(\nabla f) \leq \frac{d - \min\{w_1, \ldots, w_n\}}{\min\{w_1, \ldots, w_n\}}
\end{equation}
and equality holds if f admits a w-matching.

Proof. Let J_i denote the ideal of \mathcal{O}_n generated by all monomials x^k such that $k \in \Gamma_+(\partial f/\partial x_i)$, $i = 1, \ldots, n$. Since f has an isolated singularity at the origin (that is, the ideal $J(f)$ has finite colength) then $\sigma(J_1, \ldots, J_n) < \infty$, by Proposition 2.2. Then Theorem 3.1 shows that $L_0(\nabla f) = L_0(J_1, \ldots, J_n)$. We observe that $d_w(J_i) = d - w_i$, for all $i = 1, \ldots, n$. Then the result arises as a direct application of Theorem 4.7.

It has been proven recently by Płoski et al. [9] that equality holds in (22) for all weighted homogeneous functions $f : (\mathbb{C}^3, 0) \to (\mathbb{C}, 0)$ such that f has an isolated singularity at the origin, under the hypothesis that $2w_i \leq d$ for all i.

The result of Corollary 4.11 holds for any number of variables.

Example 4.12. Let us consider the vector of weights $w = (1, 2, 3, 5)$ and the polynomial $f : (\mathbb{C}^4, 0) \to (\mathbb{C}, 0)$ given by $f(x_1, x_2, x_3, x_4) = x_3^3 - x_2^{11} x_4 + x_2^6 x_3^3 + x_1^{27}$. Then f is weighted homogeneous with w-degree 27 and f has an isolated singularity at the origin. The ideals J_i introduced in Definition 4.9 are given by
\begin{align*}
J_1 &= \langle x_1^{20} \rangle & J_2 &= \langle x_2^{10} x_4, x_4^5 \rangle & J_3 &= \langle x_3^8 \rangle & J_4 &= \langle x_2^{11}, x_2 x_4^4 \rangle.
\end{align*}
Then we observe that the polynomial \(f \) admits \(w \)-matching. Here the permutation \(\tau \) of Definition 4.3 is \(\tau(1) = 1, \tau(2) = 4, \tau(3) = 3, \tau(4) = 2 \). Then it follows from Corollary 4.11 that \(L_0(\nabla f) = 26 \).

Given a vector of weights \(w = (w_1, \ldots, w_n) \) and a degree \(d \), then it is not always possible to find a weighted homogeneous function \(f : (\mathbb{C}^n, 0) \to (\mathbb{C}, 0) \) of degree \(d \) with respect to \(w \) such that \(f \) admits a \(w \)-matching, as the following example shows.

Example 4.13. Let \(w = (1, 2, 3) \) and \(d = 16 \). Let \(f \) be a weighted homogeneous function of degree \(d \) with respect to \(w \). Let \(J_i \) denote the ideal of \(\mathcal{O}_3 \) generated by all monomials \(x^k \) such that \(k \in \Gamma_+ (\partial f / \partial x_i) \), for all \(i = 1, 2, 3 \). As a direct consequence of Definition 4.3, if \(J_1, J_2, J_3 \) admits a \(w \)-matching, then \(J_3 \) contains a pure monomial of \(x_2 \) or a pure monomial of \(x_3 \), which is impossible since \(d_w(J_3) = 13 \) and neither 2 nor 3 are divisors of 13.

However we observe that \(\mathcal{O}(w; d) \neq \emptyset \), since the function \(f(x_1, x_2, x_3) = x_1^4 + x_2^8 + x_1 x_3^5 \) belongs to \(\mathcal{O}(w; d) \).

Proposition 4.14. Let \(d, w_1, \ldots, w_n \) be non-negative integers such that \(w_i \) divides \(d \) for all \(i = 1, \ldots, n \). Let \(f : (\mathbb{C}^n, 0) \to (\mathbb{C}, 0) \) be a weighted homogeneous function of degree \(d \) with respect to the weights \(w_1, \ldots, w_n \). Let us assume that \(f \) has an isolated singularity at the origin. Then there exists a change of coordinates \(x \) in \((\mathbb{C}^n, 0) \) of the form \(x_i = y_i + h_i(y_1, \ldots, y_n) \), where \(h_i \) is a polynomial in \(y_1, \ldots, y_n, i = 1, \ldots, n \), such that:

1. the function \(f \circ x \) is convenient;
2. if \(h_i \neq 0 \), then the polynomial \(h_i \) is weighted homogeneous of degree \(w_i \) with respect to \(w \) and therefore \(f \circ x \) is weighted homogeneous of degree \(d \) with respect to \(w \).

Proof. Since \(f \) has an isolated singularity at the origin, for any \(i = 1, \ldots, n \) we can fix an index \(k_i \in \{1, \ldots, n\} \) such that \(x_i^{m_i} \) appears in the support of \(\frac{\partial f}{\partial x_k} \), where \(m_i = \frac{d-w_k}{w_i} \), which is to say that the monomial \(x_{k_i} x_i^{m_i} \) appears in the support of \(f \). Then \(w_i \) divides \(d - w_k \) and consequently \(w_i \) divides \(w_k \), since \(w_i \) divides \(d \) by assumption.

For all \(j = 1, \ldots, n \), we set \(L_j = \{i : k_i = j, i \neq j\} \). Let us define

\[
(23) \quad h_j = \begin{cases}
\sum_{i \in L_j} a_{j,i} y_i^{w_i/w_i} & \text{if } L_j \neq \emptyset \\
0 & \text{otherwise},
\end{cases}
\]

where we suppose that \(\{a_{j,i}\}_{j,i} \) is a generic choice of coefficients in \(\mathbb{C} \). It is straightforward to see that, given an index \(j \in \{1, \ldots, n\} \) such that \(h_j \neq 0 \), the polynomial \(h_j \) is weighted homogeneous of degree \(w_j \).

Let us consider the map \(x : (\mathbb{C}^n, 0) \to (\mathbb{C}^n, 0), x(y_1, \ldots, y_n) = (x_1, \ldots, x_n) \), given by

\[
x_j = y_j + h_j(y) \quad \text{for all } j = 1, \ldots, n.
\]

We conclude that \(x \) is a local biholomorphism, the function \(f \circ x \) is weighted homogeneous with respect to \(w \) of degree \(d \) and, by the genericity of the coefficients \(a_{j,i} \) in (23), the pure monomial \(y_i^{d/w_i} \) appears in the support of \(f \circ x \), for all \(i = 1, \ldots, n \). Hence the function \(f \circ x \) is convenient. \(\square \)
Example 4.15. Set \(w = (1, 2, 3, 4, 6) \) and \(d = 12 \). The polynomial \(f = x_1^3 + x_2^3 x_4 + x_3^3 + x_3^2 x_5 + x_3^2 \) is weighted homogeneous of degree 12. Let \(J_i \) denote the ideal of \(\mathcal{O}_5 \) generated by all monomials \(x^k \) such that \(k \in \Gamma_+(\partial f/\partial x_i), i = 1, \ldots, 5 \). A straightforward computation shows that

\[
J_1 = \langle x_1^3 \rangle, \quad J_2 = \langle x_2^3 x_4 \rangle, \quad J_3 = \langle x_3 x_5 \rangle, \quad J_4 = \langle x_4^3, x_4^2 \rangle, \quad J_5 = \langle x_5^3, x_5 \rangle.
\]

Since the ideals \(J_2 \) and \(J_3 \) do not contain any pure monomial, the family of ideals \(\{ J_i : i = 1, \ldots, 5 \} \) does not admit a \(w \)-matching.

Following the proof of Proposition 4.14, we consider the coordinate change \(x : (\mathbb{C}^5, 0) \to (\mathbb{C}^5, 0) \), given by: \(x_1 = y_1, \ x_2 = y_2, \ x_3 = y_3, \ x_4 = y_4 + y_5^2, \ x_5 = y_5 + y_3^2 \). Let \(g = f \circ x \) and let \(J'_i \) denote the ideal of \(\mathcal{O}_5 \) generated by all monomials \(y^k \) such that \(k \in \Gamma_+ (\partial g/\partial y_i), i = 1, \ldots, 5 \). Then, as shown in that proof, the function \(g \) is convenient and therefore the family of ideals \(\{ J'_i : i = 1, \ldots, 5 \} \) admits a \(w \)-matching.

Corollary 4.16. Let \(d, w_1, \ldots, w_n \) be non-negative integers such that \(w_i \) divides \(d \) for all \(i = 1, \ldots, n \). Let \(f : (\mathbb{C}^n, 0) \to (\mathbb{C}, 0) \) be a semi-weighted homogeneous function of degree \(d \) with respect to the weights \(w_1, \ldots, w_n \). Then

\[
\mathcal{L}_0 (\nabla f) = \frac{d - \min\{w_1, \ldots, w_n\}}{\min\{w_1, \ldots, w_n\}}
\]

Proof. Since \(f \) is semi-weighted homogeneous, the principal part \(p_w(f) \) has an isolated singularity at the origin. Let \(x : (\mathbb{C}^n, 0) \to (\mathbb{C}^n, 0) \) denote the analytic coordinate change obtained in Proposition 4.14 applied to \(p_w(f) \). The function \(p_w(f) \circ x \) is weighted homogeneous of degree \(d \) with respect to \(w \). Therefore

\[
p_w(f) \circ x = p_w(f \circ x),
\]

which implies that \(f \circ x \) is a semi-weighted homogeneous function. Then, by Proposition 4.14 and Remark 4.10, the function \(f \circ x \) admits a \(w \)-matching. Thus we obtain, by Corollary 4.11, that

\[
\mathcal{L}_0 (\nabla (f \circ x)) = \frac{d - \min\{w_1, \ldots, w_n\}}{\min\{w_1, \ldots, w_n\}}
\]

Then the result follows, since the local Lojasiewicz exponent is a bianalytic invariant.

We remark that in Corollary 4.16 we do not assume \(2w_i \leq d \) as in [9]. This assumption cannot be eliminated from the main result of [9], as the following example shows. The result in 4.16 holds for any number of variables, but the assumptions are also restrictive, since we are assuming that the weights \(w_i \) divide \(d \).

Example 4.17. Let us consider the polynomial \(f \) of \(\mathcal{O}_3 \) given by \(f = x_1 x_3 + x_2^2 + x_1^2 x_2 \). We observe that \(f \) is weighted homogeneous of degree 4 with respect to the vector of weights \(w = (1, 2, 3) \). The Jacobian ideal is \(\langle x_1, x_2, x_3 \rangle \) so that \(\mathcal{L}_0(\nabla f) = 1 \neq 3 \). We remark that it is easy to check that \(f \) does not admit a \(w \)-matching.
REFERENCES

Institut Universitari de Matemàtica Pura i Aplicada, Universitat Politècnica de València, Camí de Vera, s/n, 46022 València, Spain

E-mail address: carbivia@mat.upv.es

Departamento de Matemática Aplicada, Universidad de Valladolid, Avda. Salamanca s/n, 47014 Valladolid, Spain

E-mail address: sencinas@maf.uva.es