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Abstract

The routing of vehicles on road transportation networks is an area of great im-
portance to transportation planners within scientific literature. This field includes
well known and studied problems like traveling salesman problems or TSP or the
more realistic asymmetric variant or ATSP, whose applications extend to other areas
of transport and operations research. This work studies the effect that the asymme-
try of road transportation networks, geographical location and territory have over
TSP and ATSP methods. We conduct comprehensive experiments in order to as-
sess the effects that these factors have on some of the best known algorithms for the
TSP/ATSP. We demonstrate that all these factors have a significant influence in
solution time and quality. Furthermore, we show that the solutions obtained with

Euclidean matrices and those obtained with real distance matrices differ significantly.
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1 Introduction

The Traveling Salesman Problem, or T'S P for short, is one of the most well known and thoroughly
studied combinatorial optimization problems (Lawler et alJ, |L9§_d) The objective is to find the

minimum cost (usually minimum distance) route visiting a set of n locations, where each location

is visited exactly once. The tour must start and finish at the same location. A solution to the
TSP problem is represented by a permutation of the n locations. The T'SP is a well known
NP-Hard problem.

In routing problems, and more precisely, in the T'SP (symmetric and asymmetric), there is a
distance or cost matrix. Each element in the matrix contains the travel distance, time, or any
other cost function between any two locations o, d, where o,d € n,0 # d. Usually, travel time,
speeds and costs are a function of the distances between locations or nodes.

A wide range of the research work on the T'SP can be applied to other discrete optimization
problems, and to applications in several fields such as genome reconstruction, scheduling opera-
tions, machine movements for hole drilling in circuit boards or other objects, etc. and of course,
its application in the routing problems and transport like the routing of aircrafts, ships, school

buses, etc. d&mamlﬁ]meﬂ, M) As is well known, the Asymmetric Traveling Salesman

Problem (AT SP) where the distance matrix is not necessarily symmetric, is a more general case

than the Symmetric Traveling Salesman Problem (STSP) where the cost or distance matrix is
always assumed to be symmetric. In related scientific literature these two versions of the T'S P are
often investigated independently, with a strong bias towards the second. Apart from the list of n
locations, the input data for the T'S P is just the distance matrix. As a result, carefully estimating
distances between nodes is extremely important. The need for real matrices and distances has
been highlighted several times in the T'S P literature (@ @) and also for Vehicle Routing

Problems (CV RP) dClaLke_a.ndJMUgh.d |19_6_4| or for other variants as well (Toth et alJ |20ﬂl|)

Although in some forms of transportation by air, sea and train the Euclidean distances (sym-

metric T'SP) can be a reasonable approximation; in other cases, the Euclidean distances may
constitute a gross underestimation of reality, especially in urban transportation, where distances
on road networks can be highly asymmetric.

In this work we deal with the issue of asymmetry in the distance matrix from road transportation
networks. The main objective of this research is to measure the effect that the asymmetry of the
road network has in solving the T'S P, both the symmetric as well as the asymmetric variant. As
we will demonstrate and measure, symmetric solutions —those obtained with symmetric and Eu-
clidean distance matrices— have little in common with regard to sequence and total distance with
real solutions (those obtained with asymmetric and real distances). There is usually a very signif-
icant difference between the solution of an asymmetric instance and the solution of a symmetric
one based on an approximation of the real distances. Not only is the total distance significantly
different, but so is the sequence of nodes in the solution. Furthermore, different state-of-the-art
methods for the STSP and AT'SP are shown to differ in effectiveness and in efficacy when tested



against asymmetric real distances, compared against original performance in Euclidean settings.
Some methods even no longer work when faced with asymmetric matrices. However, it is not the
intention of this paper to carry out a comparison about state-of-the-art methods. Some other
interesting factors that also affect the level of asymmetry and the performance of STSP and
ATSP methods, like territory, geographical location and problem size are also studied. More
precisely, this paper addresses the following research questions: What is the effect of the asym-
metry over the effectiveness and efficiency of the main T'SP/ATSP heuristics? Is it feasible to
reduce the Asymmetric Traveling Salesman Problem to a symmetric one? How do all the factors
behave for different problem sizes? What is the most adequate heuristic in each case?

The remainder of this paper is organized as follows; Section Plfurther substantiates the importance
of considering asymmetry in routing problems. Section [Blelaborates on the research questions and
hypotheses, together with the studied factors and variables, experimental design and computa-
tional tests. Section [ presents a thorough analysis of the different results from many perspectives,
like CPU times, quality of the solutions and quantitative and qualitative comparisons. Finally,

the conclusions of this work are presented in Section [Bl

2 The real world is asymmetric

Given a T'S P instance with n locations or nodes, the distance matrix between any possible pair
of nodes o,d, where o,d € n,0 # d, is denoted by Cj,x, and is a square matrix where the
diagonal is usually disregarded. This matrix has n x (n — 1) elements with all the distances.
In the vast majority of the routing literature, the locations or nodes are determined by their
coordinates in a 2D plane and the distances between each pair of nodes are calculated by the
simple Euclidean distance, given by the Pythagorean formula. In this case, it is straightforward
to see that the distance between the nodes o and d is the same as the distance between d
and o, i.e., Cog = Cdo,V0,d € n,0 # d. In this case, the matrix C' can be summarized by an

. . . nX(n—1)
upper or lower triangular matrix with —5—*

elements. A slightly more elaborated approach
for obtaining the matrix C'is to calculate the orthodromic distance between the geolocations of
two nodes. Basically, the orthodromic distance is the shortest distance between any two points
on the surface of a sphere, measured along a straight path on the surface of the sphere itself.
This is often referred to as the great-circle distance. Orthodromic distances are also symmetric in
nature. Note that orthodromic distances are much more accurate than Euclidean distances when
measuring long distances in Earth as Euclidean distances would traverse the Earth nucleus, not
considering the Farth’s curvature.

It has been known for many decades , ) that Euclidean or orthodromic distances
have little resemblance to real distances between nodes or locations that are linked through
transportation networks or roads. As a matter of fact, the Euclidean or orthodromic distance is

a very loose and weak lower bound of the shortest path that communicates any two nodes in a



transportation network. Furthermore, when one considers the nature of traffic, one-way streets
and the intricate layout of most roads, it is straightforward to see that, to some degree or another,
real distance matrices are not symmetric. This degree of asymmetry cannot be easily estimated
as it varies widely according to different factors. Long distances are likely to be more symmetric
due to two-way highroads. However, connecting locations in the historical centers of some big
cities is likely to return asymmetric distances.

The usage of Euclidean or orthodromic distances is simply motivated by the large cost and
difficulty in obtaining the real distances matrix C'. Even nowadays, one needs to calculate n x
(n — 1) shortest paths, each one constituting an enormous effort as real transportation networks,
for example inside a country, typically contain billions of nodes and arcs. Geographic Information
Systems (GIS) and geo-spatial databases, along with their Advanced Programming Interfaces
(API) facilitate, to some extent, this herculean task. In any case, this possibility is relatively
recent as rich GIS systems capable of doing such calculations have only existed in the mainstream
market since the mid 1990s. Before this date, and since the early 1970s, researchers have tried
to calculate the real distance matrix indirectly from the Euclidean or orthodromic one. For

example, some researchers tried to estimate real distances after multiplying the orthodromic

matrix by a given factor (Christofides and Eilon, |_9ﬁ_d) Other works developed some functions

to estimate real distances (Love and MansJ 922 This idea was further exploited by other

not only on the zone where

authors that developed distance estimation functions depending

nodes are located, but also on total traveled distance (Daganzd, ) Many problems arise
when using these functions. The proposed functions have to be adjusted mathematically and
empirically (which more or less implies some validation, that in turn needs some real distance
matrices). This adjustment process is objective function dependent and also depends on the
precision desired. Other authors demonstrated that this adjustment process is also dependent on
the territory and other characteristics like geometry of the zone, type of transportation network,

oroiraphic accidents, natural obstacles and the like (Ilmaa_a.nd_MQLriA, |L98§j; |Ih1lxﬁ.s_and_Sﬂmaﬂ,

). Therefore, distance estimation cannot be carried out over the basis of a single function or

without a deep and careful study, including parameter adjustment. While we do not advocate
that such functions are not useful in any environment (some strategic decisions with aggregated
information might benefit from such functions, where some degree of approximation is accepted),

we support the idea given in [Love and Merisj (Il%é) that such functions are not acceptable in

real operational settings.

The fact is that the existing literature has usually been concerned more with the symmetric T'S P
than with its asymmetric counterpart. It is clear that the first is a simpler, and more basic,
problem. The best kno polynomial-time heuristic with a known quality guarantee for the
Euclidean T'S P, due to @

to the optimal solution, for any fixed error factor € > 0. In contrast, the best known polynomial-

is able to guarantee a 14¢ approximation factor with respect

time heuristic with a known quality guarantee for the ATSP (given in ) )



can only guarantee a logn/loglogn approximation factor, where n is the number of locations.
It is evident that the AT'SP is a much more difficult problem, and as commented, a significant
portion of the T'SP literature considers Euclidean distances without even raising the issue of

real distances. There is also a rich literature on the ATSP generalization and formulations,

as for example, the papers ofk}mma._amLRiLed (Ili)ﬂ.d) and [Fischetti et al.l (IZDQZJ), among many
others like|A.mr_a| (|19_9ﬁ), [Bm.tmmﬂ_alj (|2111d) andk}ﬂmuj;_aﬂ (|211]_d). However, authors do not

actually study, to the best of our knowledge, in its full complexity, the effect that different degrees

of asymmetry and factors affecting asymmetry have over solution methodologies. In order to cope

with all these complexities, modern GIS systems must be employed (IGQQd_Qbﬂ_d_a.nd_&;mpl, |L9_9_d),

together with a deep understanding of the effect of the asymmetry and other interesting factors

over the calculation of real distance matrices and T'SP resolution.

3 Studying the effect of asymmetry

As previously stated, we are interested in either confirming or refuting the following hypothe-
ses: 1) Asymmetry strongly effects the effectiveness and efficiency of the main TSP and AT'SP
heuristics. 2) The location of the nodes in the real world generates different levels of asymmetry
and therefore also conditions T'S P methods. 3) It is not always feasible to reduce the AT'SP to

the TSP (LMr_ami_Mgmam], |L9§;J) for solving real AT'SP problems with T'S P heuristics. 4)

The size of the problem interacts with asymmetry and also affects T'SP algorithms. In order to

assess these hypotheses we carry out a complete comparative study of the different solutions pro-

vided by T'S' P methods, with real characteristics and dimensions as commented in
). A large set of T'SP instances is generated to this end.

A full factorial experimental design is employed (MQnLnger;LI, |20D_d), where each generated prob-

lem instance is defined by a series of factors that are further described in the following.

3.1 Factors and instances generated

Territory: It is the geographical region where the instance is located. This region is bounded
by a quadrant defined by two pairs of opposed geographical coordinates (latitude and longitude).
This is a qualitative ordinal factor that has been tested at three variants, of increasing size, related
with the Iberian peninsula (our area of interest), as shown in the leftmost picture at Figure [Tl
The three regions are referred to as short, medium and large distance, respectively.

In the short distance, locations are placed in the geographical area of influence of a big city. As
a result, the minimum distances between pairs of nodes are conditioned by urban transportation
networks (one-way streets, traffic circles, city center, etc.). Medium distance includes short
distance plus larger distances entailing regional transportation through paths, regional roads,
city communication rings, etc. Lastly, large distance territories are further conditioned by large

distance roads, highways and inter-city communications.



Figure 1: Different territories in the Iberian peninsula (left). Example of an instance with
locations following a radial distribution in a large distance territory (right).

Location: It is the placement of the nodes inside the territory. This can be random or might
follow a given pattern. Three variants are defined for this nominal qualitative factor: random,
grid and radial. Figure [2] shows some examples over a given territory. In the grid location
distribution, the territory is divided into square zones. The node is placed at the center of each
zone, albeit slightly displaced by a random vector. Radial distribution has a central location
that services the remaining n — 1 nodes, which are radially distributed at an angular equidistance
equal to o = 2w /(n — 1). Figure[ll (right) shows a map with 500 radially distributed locations in

a large territory.

B e
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Figure 2: Examples of locations in random (left), grid (middle) and radial (right) distri-
butions.

Number of nodes: This number n determines the size n x (n — 1) of the matrix or, 2n x
2(n — 1) if it is transformed (the transformation process is detailed next). It is a quantitative
factor with 10 levels: n = {50,100, 150, ... ,500}.

Symmetry: For each generated instance, the distance matrix C' is calculated in different
ways. This qualitative nominal factor considers strictly symmetric or asymmetric matrices with

the following studied variants:



Orthodromic: It is the symmetric matrix with great-circle distances.

Asymmetric: Asymmetric matrix where the distances have been calculated with the aid of
a GIS, i.e., distances are actually the shortest distances between locations as per the real

network of roads and streets.

e Minimum arc from each pair: It is a symmetric matrix where distances have been extracted
from the asymmetric matrix in a special way. Given any two distinct nodes o and d,
the distance for the matrix is the minimum of the two ways, i.e., the distance satisfies

min(coq, €4o)- This results in a symmetric matrix.

e Maximum arc from each pair. Similar to the previous one but taking the maximum of the

two ways: max(Cod, Cdo)-

e Transformed: A symmetric matrix is constructed from the asymmetric one using a well

known mathematical transformation due to \Jonker and Yngﬁnand (Il%j) This transfor-

mation is correlated with the number of nodes in the instance as the transformation mul-
tiplies the size of the distance matrix by a factor of four. Each location or node is split
into two nodes, one real, and a second virtual node. The distance between a real node
and its corresponding virtual sibling is set to a very small favorable cost (usually —oo).
This results in real and virtual nodes to be consecutively placed in the final T'SP tour.
The original asymmetric “from”-“to” ways are assigned to distances between real nodes in
the transformed matrix whereas original asymmetric “to”-“from” distances (i.e., the way
back distances) are assigned to the virtual nodes. All other possible distances are assigned
a very unfavorable value (+00). A simple 3 x 3 symmetric matrix and its corresponding

transformation are given in expression () below:

0 00 0O —00  C91 C31
00 0 o0 Clg2 —O0 (32
0 ci2 c3 0
o0 o0 C13 Co23 —0o0
c 0 ¢ 4 (1)
21 23
—00 C12 €13 0 00 00
c31 cz2 0
C21 —00 (23 00 0 00
€31 €33 —00 00 00 0

All four factors, together with their corresponding levels or variants are gathered in Table [
As we can see, the last row of Table [I] contains the total number of levels or variants for
each factor. Since we employ a full factorial experimental design, we have 3 x 3 x 10 x 5 = 450
treatments after combining all levels or variants. For each treatment, five different instances are
generated, for a grand total of 2,250 T'SP/ATSP instances. All these instances are publicly

available at http://soa.iti.es/problem-instances.


http://soa.iti.es/problem-instances

Territory (T) Location (L) Number of nodes (n) Symmetry (M)

Short distance Random 50 Orthodromic (O)
Medium distance Grid 100 Asymmetric (A)
Large distance Radial 150 Minimum arc (P)
e Maximum arc (G)
500 Transformed (T)
3 3 10 )

Table 1: Factors for the instances along with their levels and variants.

3.2 Response variables

A we will detail later, several state-of-the-art T'SP methods are used for solving the proposed
instances. Using Design of Experiments allows to study the effect that each considered factor
(including the different algorithms) have over one or more response variables.

Solutions obtained after solving each instance are analyzed mainly at two levels: quantitative
(mainly tour length) and qualitative (sequence of nodes or locations in the tour). As regards
the last qualitative assessment, the literature is marred with papers that propose indicators
for measuring the differences between solution objects, as for example |Schiavinotto and Stiitzle
(2007). In our case, measuring the differences between two T'S P tours is commonly carried out by
counting the number of k — opt movements that are needed to transform one tour s into another
s’. This needs a non-polynomial CPU time as a function of n. Therefore, we employ simpler
measures of a distance d between two tours or d(s, s'):

Relative percentage deviation from the best solution found AS}: It is the relative
deviation (in percentage) of the tour length obtained after solving a given T'SP instance i with
algorithm A (S; 4) from the lowest known tour length for that instance (S}). It is calculated as
follows:

% -100 (2)

7

AS; =

Hamming distance dH: It is a well known indicator that measures the differences between
vectors, proposed by Hamming (1950). Basically, it takes two tours s and s’ and adds 1 to the
indicator counter each time a position in the tour is occupied by different nodes at both tours.
For example, given s = [2,5,3,1,4,6] and s’ = [1,2,3,4,5,6], the Hamming distance is 4. There
is a problem as regards the T'SP since the relative order of nodes in the tour is as important as
their absolute positions. Take a second example s = [6,1,2,3,4,5] and s’ = [1,2,3,4,5,6]. In this
case, the Hamming distance is 6, even though the route is almost the same (the only difference
being the starting/ending node. However, this indicator is simple to calculate (it just requires
O(n) steps) it is easy to understand and to interpret.

Adjacency distance dA: Together with the Hamming distance, it makes sense to measure

also the number of equal adjacent nodes between two routes s and s’, where the nodes need not



be located in the same absolute positions at the two tours. More specifically, this is achieved by
checking if the arc between nodes e and e + 1 at solution s —s(e, e + 1)— exists in any place of
sequence s’. As a result, the adjacency distance counts the number of distinct arcs between two
tours, with the maximum possible distance being n + 1. For example, given s = [1,2,3,4,5, 6]
and s’ = [1,6,2,3,4,5], dA = 3, since arcs (1,6) (6,2) (5,1) of s’ are not present at s. Using
efficient data structures, dA can be calculated in O(n) steps.

Note that in our measurements, both sequences are shifted so that vertex 1 is the first vertex in
the sequence, in order to have a more precise measure of the distances (Hamming and Adjacency).

CPU time: It is the real elapsed CPU time that was needed when solving a given instance
with an algorithm. This excludes input/output operations as well as all other system overheads,
as detailed in m M)

Asymmetry in distance matrices: We are particularly interested in measuring the asym-
metry degree of matrices. Strictly speaking, a matrix is asymmetric if it exists at least one pair o,
d such that c,q # cqo, where 0,d € n,0 # d. Furthermore, this is even true if ¢, = ¢4o +¢, for any
arbitrarily low value of €. Obviously, this binary asymmetry indicator is not very informative and
more precise indicators are needed. We employ the following alternatives: Alfa («): It indicates
the asymmetry degree by counting the number of asymmetric pairs of distances (pairs o, d that
satisfy cog # Cdo,0,d € m,0 # d) over the total number of pairs n, using the z, (0, d) definition and
expression (B]) below, where a is a pair of arcs (od, do). « takes values in the [0%, 100%)] interval.
Delta (§): It measures the asymmetry degree in more detail by actually looking at how different
are asymmetric pairs (in distance). It is calculated with expression (@) below. Weight: It just
sums all the distances of the C' matrix, i.e., 350 > 1) ;24 Cod- Average weight (Weight): Tt

relates the weight with the number of arcs.

(0,d) 0 if cog = cgo
LalO, =
1 if coq 7& Cdo

3.3 Solution process

For solving all instances, we employ a high performance computing cluster with 30 blades, each
one containing 16 GBytes of RAM memory and two Intel XEON E5420 processors running at 2.5
GHz. Note that each processor has 4 physical computing cores (8 per blade). At this stage, it is
worth mentioning the sheer computation effort needed for calculating real distance matrices (all
instances where M=A as per Table[I]), especially when compared against orthodromic matrices.

450 instances in the set of 2,250 contain real distances. These have been calculated by doing a



humongous number of shortest route requests between pairs of nodes to Google Maps. This took
196.5 single blade equivalent CPU days. This is in stark contrast with the 21 seconds needed for
calculating the same matrices but with orthodromic distances.

A direct outcome of this computational effort is a large set of 450 AT'S P instances where distances
are actually real, corresponding to current transportation networks in Spain, following all previous
factors already mentioned in earlier sections. This set is complementary to the well known
TSPLIB95 dataset where only 19 synthetic AT'S P instances can be found. These AT'S P instances
have random integer distances at each arc with n sizes between 17 and 443. As indicated, these

instances are publicly available. Each instance is solved with a wide range of T'SP heuristics:

e Nearest neighbor algorithm (A=NN) as described in (@) A simple heuristic, yet

with reasonable performance.

e 2-Opt heuristic (@, ) (A=20). A well known simple local search method.

e Concorde TSP solverEl (A=CO). A very powerful state-of-the-art exact branch-and-cut
algorithm for the T'SP. It is described in |A.pplﬂga.mj_t_al.| (|21le) Parameters: default

options.

e Lin-Kernighan heuristic of|Li11_a.nd_I;£emigh.a.n| (I.L‘)l{‘i) (A=LK). One of the most well known

powerful and well-known heuristics.

e Improved Lin-Kernighan of [Helsgaun (Iﬂ)ﬂd) (A=HE). This is currently considered as one of

the state-of-the-art methods for solving the T'S P. Parameters: author’s recommendations.

e Memetic algorithm of [Nagata and Kobayashi (|L9Bj) and (IM) (A=NA). Also

one of the most important and adaptive heuristics. Parameters: 10 trials, population size
= 100, 30 children, 2 parents.

e Branch-and-cut method of |F_IS_QheIJLlj_t_al.| (IZDQ{J) (A=FI). In our experiments, only for

problem size n = 50. Parameters: optimized compilation, internal limit of 150,000 branch-

g nodes.

e Improved GKS/TBCOP heuristics ofk}d_d_en.ggu'.n_e_t_a.]_] (IZDQGI) (A=GO), based on the

Helsgaun code. Parameters: author’s recommendations.

As we can see, the selection of T'SP heuristics is motivated either by simplicity, asymme-
try adaptation or by current state-of-the-art performance. Note that not all studied heuristics
are capable of working over asymmetric matrices. For example, the LK and CO methods are
specifically designed for the T'SP and not for the AT SP dAp;ﬂ_ega.Lﬁj_t_a.Ll, |2Q0_d) In these cases,
the transformed matrix (M=T) is employed instead of the real asymmetric one. This results in
2,250 instances x8 algorithms —450 asymmetric matrices x2 non-AT'SP heuristics (LK and CO)

Thttp://www.tsp.gatech.edu /concorde.html
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—450 (M=T unsupported on GO) —2,025 (instances n > 50 size on FI) = 14, 625 computational
experiments. All these experiments needed 830 single blade equivalent CPU hours. No CPU
time limit was imposed to any algorithm. The algorithms were implemented and ran following

the instructions of their respective authors.

4 Analysis of results

All results are supported by statistical analyses. We mainly use the multifactor Analysis of
Variance (ANOVA) technique where we control all studied factors. Three different groups of
response variables are considered: CPU times needed by the algorithms, quantitative and quali-
tative comparison of symmetric (7'S P) and asymmetric (AT'SP) tours. All results are detailed in
the following sections. Since the ANOVA is a parametric technique, one needs to check the three
main hypotheses which are normality, homoscedasticity and independence of the residuals. The

residuals resulting from the experiment were analyzed and no serious deviations were observed.

4.1 CPU times

Some of the most interesting results are observed when analyzing the CPU times needed by the
algorithms capable of solving AT'SP problems. The resulting ANOVA table is given in Table 21

Source Sum Degrees Mean F-Ratio p-Value
of squares of freedom square

Main Effects

A:Territory 2900.6 2 1450.3 17.7 0.0000
B:Location 1028.8 2 514.4 6.3 0.0019
C:Symmetry 2502.2 3 834.1 10.2 0.0000
D:n 753030 8 94128.8 1148.7 0.0000
E:Algorithm 1.546 E6 6 257723 3145.2 0.0000
Interactions

AB 351.6 4 87.9 1.1 0.3681
AC 1221.9 6 203.7 2.5 0.0210
AD 2664.9 16 166.6 2.1 0.0086
AE 11786.4 12 982.2 12 0.0000
BC 236.5 6 39.4 0.5 0.8229
BD 1788.7 16 111.8 1.4 0.1491
BE 4835 12 402.9 4.9 0.0000
CD 3348.8 24 139.5 1.7 0.0174
DE 1.038E6 48 21638.7 264.1 0.0000
Residual 849253 10364 81.9

Total (corrected) 4.269F6 10529

Table 2: Analisys of Variance (ANOVA) for CPU time response variable and AT'SP
algorithms (M#£T, A#CO and A#£LK).
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At a 95% confidence level (a = 0.05), all single factors and 6 double factor interactions are
statistically significant. Among significant factors, importance is observed by the magnitude of
the F-Ratio. For example, the F-Ratio of the factor “Algorithm” is no less than 3,145.2. This
means that the differences among the different algorithms generate 3,145.2 more variance than
the variance obtained within each algorithm. Therefore, the type of algorithm has a very strong
and statistically significant influence over the CPU time.

The ANOVA technique mainly points out statistical significance. For a further understanding of
the behavior of any studied factor, we need descriptive plots. We have included plots with points
and smoothed lines for comparing the CPU time as a function of the size of the matrices for all
combinations of Symmetry (types of matrices) and Algorithms factors. All these plots are shown
in Figure Bl where the X-axis gives the size of the matrix (n) and the Y-axis the CPU time in
seconds, with a logarithmic scale. Each row in the plot corresponds to a type of matrix and each
column to an algorithm. Note that there are no plots for algorithms LK and CO for asymmetric

matrices, and GO for transformed matrices (M=T).

co LK HE NA Fl GO

10 1

10" 1 o

1] M
10—1 4

ommco ©
%

N
AR
:

100 200 300 400 500100 200 300 400 500100 200 300 400 500100 200 300 400 500100 200 300 400 500100 200 300 400 500
n

Figure 3: CPU time behavior for algorithms (CO, LK, HE, NA, FI, GO), types and sizes
of matrices.

We confirm that the type of algorithm has a strong influence over CPU time. As expected,
the improved Lin-Kernighan method of Helsgaun (HE) and Concorde (CO) are the most com-
putationally demanding algorithms. The size of the matrix also affects CPU time directly and
exponentially and this is the case for all types of matrices, symmetric and asymmetric and for all

algorithms. Also expected is the matrix transformation process of matrices (M=T), which results

1
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in enormous CPU time increases. This is a logical result that validates the whole experiment,
as the size of the original asymmetric matrix is multiplied by two in the transformation process.
However, and as shown in Figure [] with symmetric matrices, HE is actually slower than CO
(about three times slower). This is an unexpected result as CO is an exact procedure and HE, al-
beit extremely effective, cannot guarantee optimality. The matrix transformation (M=T) affects
much more CO than HE as the CPU time increases approximately by a factor of 7. The problem
is that CO only works with symmetric matrices and the transformation is the only possible way
of dealing with asymmetric problems. The corollary is that CO is far more sensible to the size of
the T'SP to solve.

As regards the other studied factors, the location affects the CPU time for all methods. The
means plot of Figure [ contains the interaction between Algorithm and Location factors for
asymmetric matrices only. The means are plotted in the middle of Tukey’s Honest Significant
Difference (HSD) 95% confidence intervals. Overlapping intervals denote that the means con-
tained within them are not statistically different. Grid locations result in slightly higher CPU
times for all methods compared to the Random and Radial locations; except for the FI algorithm
as it consumes more CPU time for Random location (n = 50). In the case of symmetric matrices
(not shown in the figure), CPU times increase sharply (20%) for the CO method for Grid loca-
tions and this difference is statistically significant. To the best of our knowledge, there are no
reported studies that analyze how the distribution of the nodes or clients and road transportation
networks affect the CPU times of state-of-the-art methods.

70 i ] Algorithm
L < NN
r 1 — 20
50 o HE
o s 1 NA
g T 1 FI
= 30 7 -* GO
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-10 & I
Random Grid Radial
Location

Figure 4: Means plot with Tukey’s Honest Significant Difference (HSD) 95% confidence
intervals for the interaction between Location and Algorithm factors, where the response
variable is CPU time (M=A).

Other interesting findings affect the Territory factor. Figure [l shows the interaction between
Algorithms and the Territory factor for asymmetric matrices only. In general, and especially for
FI, there is a preference of algorithms for short distances territories. A possible explanation is that
in short distances there is more variability in the distances between nodes and possibly this helps

in the process of finding a solution. In case of symmetric matrices (not shown in the figure), CPU
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time increases up to 37% for CO in cases of long and medium distances compared with the short
distances territories. A contribution of this work is to demonstrate that the different degree of
asymmetry (and differences between distances) of the road transportation network affect studied

methods accordingly.
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Figure 5: Means plot with Tukey’s Honest Significant Difference (HSD) 95% confidence
intervals for the interaction between Territory and Algorithm factors, where the response
variable is CPU time (M=A).

Finally, CPU time is affected, on average, by the Symmetry factor (type of distance matrix).
If we remove the transformed matrix (M=T) which we have already seen increases CPU times by
orders of magnitude, the result obtained is shown at Figure [fl. We see that there are no statis-
tically significant differences between the M=P and M=G matrices. Recall that these represent
symmetric matrices where the distances are the minimum and maximum distances, respectively,
between the from-to and to-from asymmetric distances in the matrix. This means that the dif-
ferences in CPU time cannot be attributed to the magnitude of the distances, but rather to the
differences in the distances themselves. We also observe how asymmetric matrices (M=A) need

significantly more CPU time than regular orthodromic matrices (M=0).

4.2 Quality of solutions

It has to be reminded that the objective at this step is not to measure which algorithm, among
the tested ones, is the best. The focus is rather on studying how the considered factors affect
the quality of the solutions provided by the algorithms. Table Bl provides the number of times
that each algorithm provides the best solution (N. S$*), and the corresponding rate (% S*) under
three different settings. The second and third columns indicate matrices M=(O, P, G) (1,350
experiments per algorithm). The fourth, fifth, sixth and seventh columns indicate asymmetric
(M=A) and transformed (M=T) cases, respectively, with 450 experiments per algorithm. Note
that in the case of A=GO there is no data for M=T, and for A=FTI there is only data for n = 50

problem size.
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Figure 6: Means plot with Tukey’s Honest Significant Difference (HSD) 95% confidence
intervals for the Symmetry factor (type of matrix), where the response variable is CPU
time (M#£T, A#CO and A#LK).

M=(0,P,G) M=A M=T
Algorithm N. S* % S* N.S* % S* N.S* % S*
NN 0 0.0% 0 0.0% 0 0.0%
20 3 0.2% 0 0.0% 0 0.0%
LK 627 46.4% - - 70 15.6%
CcO 1350  100% - - 391 86.9%
HE 930 68.9% 414 92.0% 33 7.3%
NA 463  34.3% 155 34.4% 30 6.7%
FI 83 61.5% 45  100% 0 0.0%
GO 252  18.7% 66 14.7% - -

Table 3: Number of best solutions and success rates for the studied algorithms and types
of matrices.
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As expected, CO always produces the optimum solution for the 1,350 symmetric instances.
Expectedly, HE’s success rate is high at almost a 69% and much better han LK’s at 46%. The
simple heuristics NN and 20 are rarely successful. For asymmetric matrices (M=A), FI is clearly
dominant on small sized problems (n = 50). For other asymmetric cases, HE is clearly dominant
and no further results can be drawn from our comparison since LK and CO do not accept
asymmetric matrices. Most surprisingly, CO does not obtain the optimum solutions in all cases
for M=T. An obvious explanation is that in the transformation process, some values in the
matrix are —oo or +00 and this creates numerical instability problems inside CO that result in
small deviations from the true optimum solution. These oo values were also the reason for not
experimenting with M=T for the GO method. With these results, we can now conclude that not
only CO needs an exponentially greater CPU time for transformed matrices, but also that the
results cannot be trusted. Naturally, with modifications inside the CO code, there is the possibility
that transformed matrices could be considered without glitches. Another interesting outcome is
that for transformed matrices, NA and LK outperform HE. However, the transformation process
is actually not needed for HE or NA and we cannot conclude that LK or NA are preferred over
HE for transformed matrices.

Numerous statistical analyses were performed in order to check the influence of the studied factors
over the quality of the solutions. Multiple ANOVA experiments were performed, which are not
fully detailed due to space restrictions. It has to be noted that since no maximum CPU time
was given to all tested algorithms, the effect of the different studied factors over solution quality
is about 1% or less (contrary to the previous observed effects on CPU time). While this might
be seen as a marginal effect, it has to be reminded that in the T'SP state-of-the-art literature,
publications and new results are often disputed with improvements of less than 2% in solution
quality (IH_elsga.u.nL |2Q0d) However, almost all factors resulted statistically significant in all tests

carried out. Table [ shows average AS} values, defined by expression () in previous sections, for

the different tested algorithms as a function of the type of matrix (symmetry factor). Again, we
see the large deterioration in FI, HE, NA and CO with transformed matrices (M=T). For large
asymmetric matrices, HE, NA and GO are good choices. Whereas for all other matrices, either
CO or HE clearly dominate. Once again we see that for transformed matrices, it is even better
to use LK than HE.

After studying the different matrices’ asymmetry degree and all other studied factors, we
found that the asymmetry degree of a matrix (¢) and the Territory factor are strongly related.
In our experiments we have observed and demonstrated that the asymmetry of the arcs on short
distances territories is much higher than medium or large distances territories, which is relevant
and interesting for the case of city logistics problems. It is logical to think that these differences
in the degree of asymmetry affect the behavior of algorithms, as shown at Table Bl

It is relevant and interesting to observe how depending on the type of algorithm, there are

preferences for more symmetrical or asymmetrical environments, or what is equivalent: long
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o A T P G Average

NN 23.78 23.63 2288 2212 21.10 22.70
20 834 17.11 631.33 6.49 593 133.84
LK 0.04 — 1.56 0.06 0.05 042
CO 0.00 — 1.19 0.00 0.00 0.30
HE 0.02 0.01 9.10 0.02 0.02 1.83
NA 0.04 0.01 7.07 0.04 0.04 145
FI 0.18 0.00 25.84 0.07 0.03 5.23
GO 045 026 — 0.38 0.36 0.36

Average 4.11 6.84 99.85 3.64 3.44

Table 4: Average AS] values according to Algorithm and Symmetry (type of matrix)
factors.

Short Medium Large Average

NN 24.28  21.88 21.95  22.70
20 119.02 136.98 145.51 133.84
LK 0.42 0.41 0.44 0.42
CO 0.41 0.30 0.18 0.30
HE 3.40 1.09 1.00 1.83
NA 2.92 0.76 0.65 1.45
FI 4.79 5.50 5.39 5.23
GO 0.31 0.38 0.40 0.36
Average 1944 2091 21.93

Table 5: Average AS} values according to Algorithm and Territory factors.
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distances (CO, HE, NA) and medium distances (LK) versus short distances (FI, GO, NN, 20).
Furthermore, an although not shown, this effect is observed for all matrix sizes and specially
for transformed matrices. We now analyze the behavior of the different algorithms against the
Location factor in Table[ll As shown, no overly strong effects are observed (albeit all differences
are statistically significant for Location factor). It is interesting to note that although the road
network in the Iberian Peninsula is characterized by a radial structure centered in the capital
Madrid, the degree of asymmetry increases slightly in such locations. Other road networks in
other countries could be an important relationship between location and asymmetry of the arcs

that conditions more the behavior of algorithms.

Random Grid Radial Average

NN 23.49 22.52  22.10 22.70
20 150.47 124.90 126.14  133.84
LK 0.45 0.31 0.50 0.42
CcO 0.25 0.53 0.12 0.30
HE 1.98 1.52 1.99 1.83
NA 1.54 1.06 1.73 1.45
FI 5.56 6.73 3.38 5.23
GO 0.44 0.27 0.39 0.36
Average 23.02 19.73  19.54

Table 6: Average AS; values according to Algorithm and Location factors.

Lastly, it is worth mentioning that matrix size has a very small impact on AS; values. The
effect is less than 0.06% in the worst case. Figure [7 shows the averages of the Symmetry and
Algorithms factors (excluding M=T). The horizontal axis shows the size of the matrix n and the
vertical axis (different scale for each symmetry factor) shows the percentage deviation AS* over
the best solution. Note the vertical scale and values for M=T matrices, where the effect of this

type of matrix and size n on AS} is higher.

4.3 Quantitative and qualitative assessment

After studying the different matrices’ asymmetry degree and all other studied factors, we found
that the asymmetry degree of a matrix (§) and the average weight (Weight) of the different dis-
tances in the matrix are strongly related. If there is a relation between symmetric and asymmetric
matrices in the form of an increased average weight, it is logical to think that the symmetric so-
lution of the T'SP could be “augmented” in order to carefully estimate the real AT'SP solution
(as regards the total tour length). This is needed since, as we have already stated, the T'SP tour
length is a loose lower bound of the real ATSP tour length. Similarly, it is important to check
the tour length of the T'SP solution, when calculated with the AT'SP matrix and viceversa. In
order to check all these questions we use the following indicators, which are strongly based on

the previously defined response variables.
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Figure 7: Average AS; values according to the size of the matrix n, algorithms (CO, LK,
HE, NA, FI, GO) and Symmetry factors.

AATSP: Tt is the percentage increase of the tour length of the AT'SP solution as regards the

TSP solution:
ATSP - TSP

AATSP =
5 TSP

100 (5)

TSP is the tour length of the symmetric problem, calculated with symmetric orthodromic
matrices. ATSP is the asymmetric problem tour length, calculated with real distance
matrices (M=A). Note that algorithms LK and CO cannot solve the AT'SP. In these cases

the transformed matrix (M=T) is used instead.

TSPy: The T'SP solution is calculated with asymmetric matrices. i.e., we take the solution of
a T'SP problem and recalculate it with the real distances. Obviously, the tour length will
increase (T'SP4 > T'SP).

ATSPp: 1t is the opposite case as T'SP4. The AT 'SP solution is calculated with the symmetric

matrix.
ATSPy: It is the percentage increase of T'S P4 against ATSP. It could be positive or negative.
AATSPp: It is the percentage increase or decrease of AT'SPp against T'SP.

AdH: Tt is the percentage of differences in the T'SP solution against AT'SP. Values close to
100% qualitatively indicate that the T'SP solution is very different from the AT'SP. It is
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based on the previously defined Hamming distance dH:

dH
AdH = — - 100 (6)
n
AdA: Tt is the percentage of different arcs, over the total arcs, that the T'SP sequence has over

the AT'SP solution. It is based on the previous adjacency distance dA:

dA

n—+1

AdA =

-100 (7)

We calculate all previous indicators for all experiments, namely 3 territories x3 locations
x 10 different matrix sizes x8 different algorithms x5 replicates which results in 3,195 data. The
results are good. The average AAT'SP indicator reaches a value of 80.1%. This indicates a huge
difference between the AT'SP and T'S P solutions. Note that the minimum observed value for this
indicator is an already large 32.9% (the maximum being an impressive 196.9%). The frequency
distributions of the AATSP values are given as an histogram in Figure [ (left). It is observed
that in a large percentage of the cases, the increase is between 50% and 100%. Figure [§ (right)
shows a second histogram, this time for AT SP4. The distribution is clearly skewed towards
positive values, with an average of 13.6%. Exactly, 39.8% of the cases show differences equal or
larger than 10%.
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Figure 8: Histograms with the AAT'SP (left) and AT'SP, (right) frequency distributions.

A very strong result, especially with the second histogram, is that there is a large difference
between solving symmetric and asymmetric problems. The idea that orthodromic or Euclidean
distances for solving the T'SP are valid (seen in some commercial routing software) and that
after all, one can later calculate real distances with the solution is utterly wrong. As shown, on

average, there are differences that amount to a 13.6%. Note that these differences are extremely
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large for T'SP problems where algorithms fight in the state-of-the-art segment for less than 2%
improvements. As regards AATSPp, the distribution (not shown) is again positive, with an
average of 14.3%. In a 50.02% of the cases, the differences are equal or greater than 10%. Once
again, it is shown that it is not the same solving an asymmetric AT'SP and measuring the tour
length of the sequence with symmetric distances.

In our opinion, this is the main contribution of this research work. From our perspective, the
commonly accepted assumption of considering Fuclidean distances does not hold when solutions
are calculated with real asymmetric distances. The T'S P solutions deteriorate enormously when
calculated with real matrices. Furthermore, there is little guarantee that good algorithms for
the T'SP will work equally good for the AT'SP. Often, the degradation in performance will
be significantly greater than the observed differences between competing methods. Another
significant result is to qualitatively observe the big differences between the sequences obtained
with symmetric TSP and asymmetric AT'SP problems. The average AdA, with a value of 71.0%
indicates that the symmetric sequences are almost entirely different from the asymmetric ones.
Values are even greater if one uses the Hamming distance AdH. The minimum value for the AdA
value is as high as 6%. This means that, in the best case, a full 6% of the sequence is different.
Figure [0 (left) shows the frequency distribution of AdH. Note how it is heavily skewed towards
values very close to 100%. Figure [ (right) shows the corresponding histogram for AdA.
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Figure 9: Histograms with the AdH (left) and AdA (right) frequency distributions.

4.4 Some examples

In this section we depict two examples. The purpose is to graphically show the large differences
between symmetric and asymmetric solutions. Only two examples have been randomly selected

due to obvious space constraints.
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CC-0503HE. The first example corresponds to instance CC-0503. A total of 50 nodes are grid
located in a short distance territory. We compare the best solution obtained with algorithm
HE. There are huge differences between the symmetric optimal tour length of 244.2 km. versus
the 423.3 km. of the different optimal tour length calculated with the asymmetric distances.
Therefore, AATSP = 73.32%. Additionally, we have that AdA = 90.20%. Figure [I0 (left) has
the two optimum solutions superimposed. The symmetric in blue and the real one in red.
MR-0504CO. In this second example we show the results of the instance MR-0504 solved with
CO algorithm. We have again 50 nodes radially distributed in a medium distance territory. The
total tour length in the symmetric tour is 1,369.7 km. versus 2,097.9 km. for the asymmetric
tour length. This results in a AATSP of 53.17%, with a AdA of 98.04%. Figure[I{ (right) shows
the details.

Figure 10: TSP (blue) and AT'SP (red) solutions for A=HE on instance CC-0503 (left)
and A=CO on instance MR-0504 (right) .

5 Conclusions and further work

In this work we have studied the effect that the asymmetry has over the solution process of the
TSP/ATSP. We have shown that solving the T'SP differs much from solving the AT'SP at so
many levels: tour length, adjacency of nodes, hamming distance and CPU time. Furthermore,
all these differences are strongly affected by other and new studied factors: degree of symmetry,
territory and location of the nodes in the road transportation network. During the research,
thousands of instances have been solved with some of the best well known (including some state-
of-the-art) algorithms for the 'SP and ATSP.

We have been able to confirm, as expected, that the algorithm used strongly affects the CPU
time. HE and CO are the most computationally demanding methods, much more than the other

simplistic heuristics or modern meta-heuristics. We have also shown that the Territory, Location
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and size of the problem factors all affect the different methods in a sound and statistically signif-
icant way. As is known, the problem size increases the CPU time exponentially. An interesting
and novel contribution of this paper is the study of the effect on CPU time and quality of solu-
tions due to the factors of territory, location and their relationship with the asymmetry degree
of the road transportation network. Particularly for symmetric matrices, locations in grid have
a significant effect on CPU times, resulting in harder to solve problems. This effect is amplified
with transformed matrices. It has been demonstrated that the Territory has an impact on CPU
time, especially for short distance territories. For symmetric transformed matrices, the Territory
factor is relevant as regards the quality of the solution. This effect is observed for all matrix
sizes. Another conclusion of this study is that the transformation process has a profound effect
over CPU times. Furthermore, this transformation process has shown not to be entirely feasible
for algorithms HE and, especially, for CO. If one closely compares HE and CO for symmetric
matrices, we observe that HE is about three times slower than CO. This is unexpected, since CO
is an exact branch-and-cut method and HE a (powerful) heuristic. However, the transformation
process increases the computation time more than sevenfold, and affects CO much more. The
result is that asymmetry has a deep impact over algorithms, either from the quality of the solu-
tions standpoint, or from the CPU time whenever matrix transformation is needed.
Comprehensive statistical experiments further demonstrate that there is an inverse relation be-
tween the Territory factor and the average AATSP indicator value. This confirms that there are
quantitative differences between the T'SP and AT'SP solutions. The differences between the two
solutions are smaller for large distances than for short distances. Furthermore, we found relations
between the Location factor and the AAT'SP indicator. In this case, the existing differences are
greater as the size of the problems grows and they are greater for radially and randomly placed
locations than for grid ones. The size of the matrix also conditions the differences between the
TSP and ATSP solutions. In any case, solving a 7'S P and later calculating the real tour length
with real distances is not a viable solution process.

The asymmetry is not just a binary condition of the problem. There are different degrees of
asymmetry as the territory and the location of the nodes in the road transportation network.
This results in different degrees of complexity, and the effect on CPU time and solution quality.
Some algorithms (HE, FI, NA, GO) are better equipped to solve problems with a high degree
of asymmetry or short distances, and in certain location patterns. Others (LK, CO, HE, NA)
provide better performance in symmetrical environments or long distances. This paper hopes to
inspire future research on the development and testing of new and improved algorithms, not only
taking into account the asymmetry condition, but also new factors studied here. New instances
have been made available to the scientific community. Further work stems from the possibility
of providing effective methods for calculating real asymmetric travel matrices, as this imposes
today a clear entry barrier for those researchers not willing to use the typical Euclidean matri-

ces. Extending this study to more complex problems, like for the Capacitated Vehicle Routing
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Problem C'V RP or for the Heterogeneous Fleet variant (HFCV RP) is of interest to see if more

realistic routing problems are equally affected by asymmetry.
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