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Abstra
tThe routing of vehi
les on road transportation networks is an area of great im-portan
e to transportation planners within s
ienti�
 literature. This �eld in
ludeswell known and studied problems like traveling salesman problems or TSP or themore realisti
 asymmetri
 variant or ATSP, whose appli
ations extend to other areasof transport and operations resear
h. This work studies the e�e
t that the asymme-try of road transportation networks, geographi
al lo
ation and territory have over
TSP and ATSP methods. We 
ondu
t 
omprehensive experiments in order to as-sess the e�e
ts that these fa
tors have on some of the best known algorithms for the
TSP/ATSP . We demonstrate that all these fa
tors have a signi�
ant in�uen
e insolution time and quality. Furthermore, we show that the solutions obtained withEu
lidean matri
es and those obtained with real distan
e matri
es di�er signi�
antly.Keywords: Asymmetry, Asymmetri
 Traveling Salesman Problem, Algorithms, Geographi
 In-formation Systems, road transportation networks
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1 Introdu
tionThe Traveling Salesman Problem, or TSP for short, is one of the most well known and thoroughlystudied 
ombinatorial optimization problems (Lawler et al., 1985). The obje
tive is to �nd theminimum 
ost (usually minimum distan
e) route visiting a set of n lo
ations, where ea
h lo
ationis visited exa
tly on
e. The tour must start and �nish at the same lo
ation. A solution to the
TSP problem is represented by a permutation of the n lo
ations. The TSP is a well known
NP-Hard problem.In routing problems, and more pre
isely, in the TSP (symmetri
 and asymmetri
), there is adistan
e or 
ost matrix. Ea
h element in the matrix 
ontains the travel distan
e, time, or anyother 
ost fun
tion between any two lo
ations o, d, where o, d ∈ n, o 6= d. Usually, travel time,speeds and 
osts are a fun
tion of the distan
es between lo
ations or nodes.A wide range of the resear
h work on the TSP 
an be applied to other dis
rete optimizationproblems, and to appli
ations in several �elds su
h as genome re
onstru
tion, s
heduling opera-tions, ma
hine movements for hole drilling in 
ir
uit boards or other obje
ts, et
. and of 
ourse,its appli
ation in the routing problems and transport like the routing of air
rafts, ships, s
hoolbuses, et
. (Gutin and Punnen, 2002). As is well known, the Asymmetri
 Traveling SalesmanProblem (ATSP ) where the distan
e matrix is not ne
essarily symmetri
, is a more general 
asethan the Symmetri
 Traveling Salesman Problem (STSP ) where the 
ost or distan
e matrix isalways assumed to be symmetri
. In related s
ienti�
 literature these two versions of the TSP areoften investigated independently, with a strong bias towards the se
ond. Apart from the list of nlo
ations, the input data for the TSP is just the distan
e matrix. As a result, 
arefully estimatingdistan
es between nodes is extremely important. The need for real matri
es and distan
es hasbeen highlighted several times in the TSP literature (Flood, 1956), and also for Vehi
le RoutingProblems (CV RP ) (Clarke and Wright, 1964), or for other variants as well (Toth et al., 2001).Although in some forms of transportation by air, sea and train the Eu
lidean distan
es (sym-metri
 TSP ) 
an be a reasonable approximation; in other 
ases, the Eu
lidean distan
es may
onstitute a gross underestimation of reality, espe
ially in urban transportation, where distan
eson road networks 
an be highly asymmetri
.In this work we deal with the issue of asymmetry in the distan
e matrix from road transportationnetworks. The main obje
tive of this resear
h is to measure the e�e
t that the asymmetry of theroad network has in solving the TSP , both the symmetri
 as well as the asymmetri
 variant. Aswe will demonstrate and measure, symmetri
 solutions �those obtained with symmetri
 and Eu-
lidean distan
e matri
es� have little in 
ommon with regard to sequen
e and total distan
e withreal solutions (those obtained with asymmetri
 and real distan
es). There is usually a very signif-i
ant di�eren
e between the solution of an asymmetri
 instan
e and the solution of a symmetri
one based on an approximation of the real distan
es. Not only is the total distan
e signi�
antlydi�erent, but so is the sequen
e of nodes in the solution. Furthermore, di�erent state-of-the-artmethods for the STSP and ATSP are shown to di�er in e�e
tiveness and in e�
a
y when tested2



against asymmetri
 real distan
es, 
ompared against original performan
e in Eu
lidean settings.Some methods even no longer work when fa
ed with asymmetri
 matri
es. However, it is not theintention of this paper to 
arry out a 
omparison about state-of-the-art methods. Some otherinteresting fa
tors that also a�e
t the level of asymmetry and the performan
e of STSP and
ATSP methods, like territory, geographi
al lo
ation and problem size are also studied. Morepre
isely, this paper addresses the following resear
h questions: What is the e�e
t of the asym-metry over the e�e
tiveness and e�
ien
y of the main TSP/ATSP heuristi
s? Is it feasible toredu
e the Asymmetri
 Traveling Salesman Problem to a symmetri
 one? How do all the fa
torsbehave for di�erent problem sizes? What is the most adequate heuristi
 in ea
h 
ase?The remainder of this paper is organized as follows; Se
tion 2 further substantiates the importan
eof 
onsidering asymmetry in routing problems. Se
tion 3 elaborates on the resear
h questions andhypotheses, together with the studied fa
tors and variables, experimental design and 
omputa-tional tests. Se
tion 4 presents a thorough analysis of the di�erent results from many perspe
tives,like CPU times, quality of the solutions and quantitative and qualitative 
omparisons. Finally,the 
on
lusions of this work are presented in Se
tion 5.2 The real world is asymmetri
Given a TSP instan
e with n lo
ations or nodes, the distan
e matrix between any possible pairof nodes o, d, where o, d ∈ n, o 6= d, is denoted by C[n×n] and is a square matrix where thediagonal is usually disregarded. This matrix has n × (n − 1) elements with all the distan
es.In the vast majority of the routing literature, the lo
ations or nodes are determined by their
oordinates in a 2D plane and the distan
es between ea
h pair of nodes are 
al
ulated by thesimple Eu
lidean distan
e, given by the Pythagorean formula. In this 
ase, it is straightforwardto see that the distan
e between the nodes o and d is the same as the distan
e between dand o, i.e., cod = cdo,∀o, d ∈ n, o 6= d. In this 
ase, the matrix C 
an be summarized by anupper or lower triangular matrix with n×(n−1)

2 elements. A slightly more elaborated approa
hfor obtaining the matrix C is to 
al
ulate the orthodromi
 distan
e between the geolo
ations oftwo nodes. Basi
ally, the orthodromi
 distan
e is the shortest distan
e between any two pointson the surfa
e of a sphere, measured along a straight path on the surfa
e of the sphere itself.This is often referred to as the great-
ir
le distan
e. Orthodromi
 distan
es are also symmetri
 innature. Note that orthodromi
 distan
es are mu
h more a

urate than Eu
lidean distan
es whenmeasuring long distan
es in Earth as Eu
lidean distan
es would traverse the Earth nu
leus, not
onsidering the Earth's 
urvature.It has been known for many de
ades (Daganzo, 1984) that Eu
lidean or orthodromi
 distan
eshave little resemblan
e to real distan
es between nodes or lo
ations that are linked throughtransportation networks or roads. As a matter of fa
t, the Eu
lidean or orthodromi
 distan
e isa very loose and weak lower bound of the shortest path that 
ommuni
ates any two nodes in a3



transportation network. Furthermore, when one 
onsiders the nature of tra�
, one-way streetsand the intri
ate layout of most roads, it is straightforward to see that, to some degree or another,real distan
e matri
es are not symmetri
. This degree of asymmetry 
annot be easily estimatedas it varies widely a

ording to di�erent fa
tors. Long distan
es are likely to be more symmetri
due to two-way highroads. However, 
onne
ting lo
ations in the histori
al 
enters of some big
ities is likely to return asymmetri
 distan
es.The usage of Eu
lidean or orthodromi
 distan
es is simply motivated by the large 
ost anddi�
ulty in obtaining the real distan
es matrix C. Even nowadays, one needs to 
al
ulate n ×

(n− 1) shortest paths, ea
h one 
onstituting an enormous e�ort as real transportation networks,for example inside a 
ountry, typi
ally 
ontain billions of nodes and ar
s. Geographi
 InformationSystems (GIS) and geo-spatial databases, along with their Advan
ed Programming Interfa
es(API) fa
ilitate, to some extent, this her
ulean task. In any 
ase, this possibility is relativelyre
ent as ri
h GIS systems 
apable of doing su
h 
al
ulations have only existed in the mainstreammarket sin
e the mid 1990s. Before this date, and sin
e the early 1970s, resear
hers have triedto 
al
ulate the real distan
e matrix indire
tly from the Eu
lidean or orthodromi
 one. Forexample, some resear
hers tried to estimate real distan
es after multiplying the orthodromi
matrix by a given fa
tor (Christo�des and Eilon, 1969). Other works developed some fun
tionsto estimate real distan
es (Love and Morris, 1972). This idea was further exploited by otherauthors that developed distan
e estimation fun
tions depending not only on the zone wherenodes are lo
ated, but also on total traveled distan
e (Daganzo, 1984). Many problems arisewhen using these fun
tions. The proposed fun
tions have to be adjusted mathemati
ally andempiri
ally (whi
h more or less implies some validation, that in turn needs some real distan
ematri
es). This adjustment pro
ess is obje
tive fun
tion dependent and also depends on thepre
ision desired. Other authors demonstrated that this adjustment pro
ess is also dependent onthe territory and other 
hara
teristi
s like geometry of the zone, type of transportation network,orographi
 a

idents, natural obsta
les and the like (Love and Morris, 1988; Dubois and Semet,1995). Therefore, distan
e estimation 
annot be 
arried out over the basis of a single fun
tion orwithout a deep and 
areful study, in
luding parameter adjustment. While we do not advo
atethat su
h fun
tions are not useful in any environment (some strategi
 de
isions with aggregatedinformation might bene�t from su
h fun
tions, where some degree of approximation is a

epted),we support the idea given in Love and Morris (1988) that su
h fun
tions are not a

eptable inreal operational settings.The fa
t is that the existing literature has usually been 
on
erned more with the symmetri
 TSPthan with its asymmetri
 
ounterpart. It is 
lear that the �rst is a simpler, and more basi
,problem. The best known polynomial-time heuristi
 with a known quality guarantee for theEu
lidean TSP , due to Arora, 1998, is able to guarantee a 1+ε approximation fa
tor with respe
tto the optimal solution, for any �xed error fa
tor ε > 0. In 
ontrast, the best known polynomial-time heuristi
 with a known quality guarantee for the ATSP (given in Asadpour et al., 2010)4




an only guarantee a log n/ log log n approximation fa
tor, where n is the number of lo
ations.It is evident that the ATSP is a mu
h more di�
ult problem, and as 
ommented, a signi�
antportion of the TSP literature 
onsiders Eu
lidean distan
es without even raising the issue ofreal distan
es. There is also a ri
h literature on the ATSP generalization and formulations,as for example, the papers of Gouveia and Pires (1999) and Fis
hetti et al. (2003), among manyothers like Arora (1998), Bontoux et al. (2010) and Germs et al. (2012). However, authors do nota
tually study, to the best of our knowledge, in its full 
omplexity, the e�e
t that di�erent degreesof asymmetry and fa
tors a�e
ting asymmetry have over solution methodologies. In order to 
opewith all these 
omplexities, modern GIS systems must be employed (Good
hild and Kemp, 1990),together with a deep understanding of the e�e
t of the asymmetry and other interesting fa
torsover the 
al
ulation of real distan
e matri
es and TSP resolution.3 Studying the e�e
t of asymmetryAs previously stated, we are interested in either 
on�rming or refuting the following hypothe-ses: 1) Asymmetry strongly e�e
ts the e�e
tiveness and e�
ien
y of the main TSP and ATSPheuristi
s. 2) The lo
ation of the nodes in the real world generates di�erent levels of asymmetryand therefore also 
onditions TSP methods. 3) It is not always feasible to redu
e the ATSP tothe TSP (Jonker and Volgenant, 1983) for solving real ATSP problems with TSP heuristi
s. 4)The size of the problem intera
ts with asymmetry and also a�e
ts TSP algorithms. In order toassess these hypotheses we 
arry out a 
omplete 
omparative study of the di�erent solutions pro-vided by TSP methods, with real 
hara
teristi
s and dimensions as 
ommented in Fis
hetti et al.(2003). A large set of TSP instan
es is generated to this end.A full fa
torial experimental design is employed (Montgomery, 2009), where ea
h generated prob-lem instan
e is de�ned by a series of fa
tors that are further des
ribed in the following.3.1 Fa
tors and instan
es generatedTerritory: It is the geographi
al region where the instan
e is lo
ated. This region is boundedby a quadrant de�ned by two pairs of opposed geographi
al 
oordinates (latitude and longitude).This is a qualitative ordinal fa
tor that has been tested at three variants, of in
reasing size, relatedwith the Iberian peninsula (our area of interest), as shown in the leftmost pi
ture at Figure 1.The three regions are referred to as short, medium and large distan
e, respe
tively.In the short distan
e, lo
ations are pla
ed in the geographi
al area of in�uen
e of a big 
ity. Asa result, the minimum distan
es between pairs of nodes are 
onditioned by urban transportationnetworks (one-way streets, tra�
 
ir
les, 
ity 
enter, et
.). Medium distan
e in
ludes shortdistan
e plus larger distan
es entailing regional transportation through paths, regional roads,
ity 
ommuni
ation rings, et
. Lastly, large distan
e territories are further 
onditioned by largedistan
e roads, highways and inter-
ity 
ommuni
ations.5



Figure 1: Di�erent territories in the Iberian peninsula (left). Example of an instan
e withlo
ations following a radial distribution in a large distan
e territory (right).Lo
ation: It is the pla
ement of the nodes inside the territory. This 
an be random or mightfollow a given pattern. Three variants are de�ned for this nominal qualitative fa
tor: random,grid and radial. Figure 2 shows some examples over a given territory. In the grid lo
ationdistribution, the territory is divided into square zones. The node is pla
ed at the 
enter of ea
hzone, albeit slightly displa
ed by a random ve
tor. Radial distribution has a 
entral lo
ationthat servi
es the remaining n−1 nodes, whi
h are radially distributed at an angular equidistan
eequal to α = 2π/(n− 1). Figure 1 (right) shows a map with 500 radially distributed lo
ations ina large territory.
Figure 2: Examples of lo
ations in random (left), grid (middle) and radial (right) distri-butions.Number of nodes: This number n determines the size n × (n − 1) of the matrix or, 2n ×

2(n − 1) if it is transformed (the transformation pro
ess is detailed next). It is a quantitativefa
tor with 10 levels: n = {50, 100, 150, . . . , 500}.Symmetry: For ea
h generated instan
e, the distan
e matrix C is 
al
ulated in di�erentways. This qualitative nominal fa
tor 
onsiders stri
tly symmetri
 or asymmetri
 matri
es withthe following studied variants: 6



• Orthodromi
: It is the symmetri
 matrix with great-
ir
le distan
es.
• Asymmetri
: Asymmetri
 matrix where the distan
es have been 
al
ulated with the aid ofa GIS, i.e., distan
es are a
tually the shortest distan
es between lo
ations as per the realnetwork of roads and streets.
• Minimum ar
 from ea
h pair: It is a symmetri
 matrix where distan
es have been extra
tedfrom the asymmetri
 matrix in a spe
ial way. Given any two distin
t nodes o and d,the distan
e for the matrix is the minimum of the two ways, i.e., the distan
e satis�es

min(cod, cdo). This results in a symmetri
 matrix.
• Maximum ar
 from ea
h pair. Similar to the previous one but taking the maximum of thetwo ways: max(cod, cdo).
• Transformed: A symmetri
 matrix is 
onstru
ted from the asymmetri
 one using a wellknown mathemati
al transformation due to Jonker and Volgenant (1983). This transfor-mation is 
orrelated with the number of nodes in the instan
e as the transformation mul-tiplies the size of the distan
e matrix by a fa
tor of four. Ea
h lo
ation or node is splitinto two nodes, one real, and a se
ond virtual node. The distan
e between a real nodeand its 
orresponding virtual sibling is set to a very small favorable 
ost (usually −∞).This results in real and virtual nodes to be 
onse
utively pla
ed in the �nal TSP tour.The original asymmetri
 �from�-�to� ways are assigned to distan
es between real nodes inthe transformed matrix whereas original asymmetri
 �to�-�from� distan
es (i.e., the wayba
k distan
es) are assigned to the virtual nodes. All other possible distan
es are assigneda very unfavorable value (+∞). A simple 3 × 3 symmetri
 matrix and its 
orrespondingtransformation are given in expression (1) below:







0 c12 c13

c21 0 c23

c31 c32 0






⇔























0 ∞ ∞ −∞ c21 c31

∞ 0 ∞ c12 −∞ c32

∞ ∞ 0 c13 c23 −∞

−∞ c12 c13 0 ∞ ∞

c21 −∞ c23 ∞ 0 ∞

c31 c32 −∞ ∞ ∞ 0























(1)
All four fa
tors, together with their 
orresponding levels or variants are gathered in Table 1.As we 
an see, the last row of Table 1 
ontains the total number of levels or variants forea
h fa
tor. Sin
e we employ a full fa
torial experimental design, we have 3× 3 × 10 × 5 = 450treatments after 
ombining all levels or variants. For ea
h treatment, �ve di�erent instan
es aregenerated, for a grand total of 2, 250 TSP/ATSP instan
es. All these instan
es are publi
lyavailable at http://soa.iti.es/problem-instan
es.7

http://soa.iti.es/problem-instances


Territory (T) Lo
ation (L) Number of nodes (n) Symmetry (M)Short distan
e Random 50 Orthodromi
 (O)Medium distan
e Grid 100 Asymmetri
 (A)Large distan
e Radial 150 Minimum ar
 (P)
. . . Maximum ar
 (G)500 Transformed (T)3 3 10 5Table 1: Fa
tors for the instan
es along with their levels and variants.3.2 Response variablesA we will detail later, several state-of-the-art TSP methods are used for solving the proposedinstan
es. Using Design of Experiments allows to study the e�e
t that ea
h 
onsidered fa
tor(in
luding the di�erent algorithms) have over one or more response variables.Solutions obtained after solving ea
h instan
e are analyzed mainly at two levels: quantitative(mainly tour length) and qualitative (sequen
e of nodes or lo
ations in the tour). As regardsthe last qualitative assessment, the literature is marred with papers that propose indi
atorsfor measuring the di�eren
es between solution obje
ts, as for example S
hiavinotto and Stützle(2007). In our 
ase, measuring the di�eren
es between two TSP tours is 
ommonly 
arried out by
ounting the number of k− opt movements that are needed to transform one tour s into another

s′. This needs a non-polynomial CPU time as a fun
tion of n. Therefore, we employ simplermeasures of a distan
e d between two tours or d(s, s′):Relative per
entage deviation from the best solution found ∆S∗
i : It is the relativedeviation (in per
entage) of the tour length obtained after solving a given TSP instan
e i withalgorithm A (Si,A) from the lowest known tour length for that instan
e (S∗

i ). It is 
al
ulated asfollows:
∆S∗

i =
Si,A − S∗

i

S∗
i

· 100 (2)Hamming distan
e dH: It is a well known indi
ator that measures the di�eren
es betweenve
tors, proposed by Hamming (1950). Basi
ally, it takes two tours s and s′ and adds 1 to theindi
ator 
ounter ea
h time a position in the tour is o

upied by di�erent nodes at both tours.For example, given s = [2, 5, 3, 1, 4, 6] and s′ = [1, 2, 3, 4, 5, 6], the Hamming distan
e is 4. Thereis a problem as regards the TSP sin
e the relative order of nodes in the tour is as important astheir absolute positions. Take a se
ond example s = [6, 1, 2, 3, 4, 5] and s′ = [1, 2, 3, 4, 5, 6]. In this
ase, the Hamming distan
e is 6, even though the route is almost the same (the only di�eren
ebeing the starting/ending node. However, this indi
ator is simple to 
al
ulate (it just requires
O(n) steps) it is easy to understand and to interpret.Adja
en
y distan
e dA: Together with the Hamming distan
e, it makes sense to measurealso the number of equal adja
ent nodes between two routes s and s′, where the nodes need not8



be lo
ated in the same absolute positions at the two tours. More spe
i�
ally, this is a
hieved by
he
king if the ar
 between nodes e and e + 1 at solution s �s(e, e + 1)� exists in any pla
e ofsequen
e s′. As a result, the adja
en
y distan
e 
ounts the number of distin
t ar
s between twotours, with the maximum possible distan
e being n + 1. For example, given s = [1, 2, 3, 4, 5, 6]and s′ = [1, 6, 2, 3, 4, 5], dA = 3, sin
e ar
s (1, 6) (6, 2) (5, 1) of s′ are not present at s. Usinge�
ient data stru
tures, dA 
an be 
al
ulated in O(n) steps.Note that in our measurements, both sequen
es are shifted so that vertex 1 is the �rst vertex inthe sequen
e, in order to have a more pre
ise measure of the distan
es (Hamming and Adja
en
y).CPU time: It is the real elapsed CPU time that was needed when solving a given instan
ewith an algorithm. This ex
ludes input/output operations as well as all other system overheads,as detailed in Alba (2006).Asymmetry in distan
e matri
es: We are parti
ularly interested in measuring the asym-metry degree of matri
es. Stri
tly speaking, a matrix is asymmetri
 if it exists at least one pair o,
d su
h that cod 6= cdo, where o, d ∈ n, o 6= d. Furthermore, this is even true if cod = cdo+ε, for anyarbitrarily low value of ε. Obviously, this binary asymmetry indi
ator is not very informative andmore pre
ise indi
ators are needed. We employ the following alternatives: Alfa (α): It indi
atesthe asymmetry degree by 
ounting the number of asymmetri
 pairs of distan
es (pairs o, d thatsatisfy cod 6= cdo, o, d ∈ n, o 6= d) over the total number of pairs n, using the xa(o, d) de�nition andexpression (3) below, where a is a pair of ar
s (od, do). α takes values in the [0%, 100%] interval.Delta (δ): It measures the asymmetry degree in more detail by a
tually looking at how di�erentare asymmetri
 pairs (in distan
e). It is 
al
ulated with expression (4) below. Weight: It justsums all the distan
es of the C matrix, i.e., ∑n

o=1

∑n
d=1,o6=d cod. Average weight (Weight): Itrelates the weight with the number of ar
s.

xa(o, d) =

{

0 if cod = cdo

1 if cod 6= cdo

α =
2
∑n

a=1(xa)

n2 − n
· 100 (3)

δa =
| cod − cdo |

min(cod, cdo)
· 100 ∀o, d ∈ n, o 6= d (4)3.3 Solution pro
essFor solving all instan
es, we employ a high performan
e 
omputing 
luster with 30 blades, ea
hone 
ontaining 16 GBytes of RAM memory and two Intel XEON E5420 pro
essors running at 2.5GHz. Note that ea
h pro
essor has 4 physi
al 
omputing 
ores (8 per blade). At this stage, it isworth mentioning the sheer 
omputation e�ort needed for 
al
ulating real distan
e matri
es (allinstan
es where M=A as per Table 1), espe
ially when 
ompared against orthodromi
 matri
es.

450 instan
es in the set of 2, 250 
ontain real distan
es. These have been 
al
ulated by doing a9



humongous number of shortest route requests between pairs of nodes to Google Maps. This took
196.5 single blade equivalent CPU days. This is in stark 
ontrast with the 21 se
onds needed for
al
ulating the same matri
es but with orthodromi
 distan
es.A dire
t out
ome of this 
omputational e�ort is a large set of 450 ATSP instan
es where distan
esare a
tually real, 
orresponding to 
urrent transportation networks in Spain, following all previousfa
tors already mentioned in earlier se
tions. This set is 
omplementary to the well knownTSPLIB95 dataset where only 19 syntheti
 ATSP instan
es 
an be found. These ATSP instan
eshave random integer distan
es at ea
h ar
 with n sizes between 17 and 443. As indi
ated, theseinstan
es are publi
ly available. Ea
h instan
e is solved with a wide range of TSP heuristi
s:

• Nearest neighbor algorithm (A=NN) as des
ribed in Flood (1956). A simple heuristi
, yetwith reasonable performan
e.
• 2-Opt heuristi
 (Croes, 1958) (A=2O). A well known simple lo
al sear
h method.
• Con
orde TSP solver1 (A=CO). A very powerful state-of-the-art exa
t bran
h-and-
utalgorithm for the TSP . It is des
ribed in Applegate et al. (2002). Parameters: defaultoptions.
• Lin-Kernighan heuristi
 of Lin and Kernighan (1973) (A=LK). One of the most well knownpowerful and well-known heuristi
s.
• Improved Lin-Kernighan of Helsgaun (2000) (A=HE). This is 
urrently 
onsidered as one ofthe state-of-the-art methods for solving the TSP . Parameters: author's re
ommendations.
• Memeti
 algorithm of Nagata and Kobayashi (1997) and Nagata (2006) (A=NA). Alsoone of the most important and adaptive heuristi
s. Parameters: 10 trials, population size

= 100, 30 
hildren, 2 parents.
• Bran
h-and-
ut method of Fis
hetti et al. (2003) (A=FI). In our experiments, only forproblem size n = 50. Parameters: optimized 
ompilation, internal limit of 150, 000 bran
h-ing nodes.
• Improved GKS/TBCOP heuristi
s of Goldengorin et al. (2006) (A=GO), based on theHelsgaun 
ode. Parameters: author's re
ommendations.As we 
an see, the sele
tion of TSP heuristi
s is motivated either by simpli
ity, asymme-try adaptation or by 
urrent state-of-the-art performan
e. Note that not all studied heuristi
sare 
apable of working over asymmetri
 matri
es. For example, the LK and CO methods arespe
i�
ally designed for the TSP and not for the ATSP (Applegate et al., 2006). In these 
ases,the transformed matrix (M=T) is employed instead of the real asymmetri
 one. This results in

2, 250 instan
es ×8 algorithms −450 asymmetri
 matri
es ×2 non-ATSP heuristi
s (LK and CO)1http://www.tsp.gate
h.edu/
on
orde.html 10
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−450 (M=T unsupported on GO) −2, 025 (instan
es n > 50 size on FI) = 14, 625 
omputationalexperiments. All these experiments needed 830 single blade equivalent CPU hours. No CPUtime limit was imposed to any algorithm. The algorithms were implemented and ran followingthe instru
tions of their respe
tive authors.4 Analysis of resultsAll results are supported by statisti
al analyses. We mainly use the multifa
tor Analysis ofVarian
e (ANOVA) te
hnique where we 
ontrol all studied fa
tors. Three di�erent groups ofresponse variables are 
onsidered: CPU times needed by the algorithms, quantitative and quali-tative 
omparison of symmetri
 (TSP ) and asymmetri
 (ATSP ) tours. All results are detailed inthe following se
tions. Sin
e the ANOVA is a parametri
 te
hnique, one needs to 
he
k the threemain hypotheses whi
h are normality, homos
edasti
ity and independen
e of the residuals. Theresiduals resulting from the experiment were analyzed and no serious deviations were observed.4.1 CPU timesSome of the most interesting results are observed when analyzing the CPU times needed by thealgorithms 
apable of solving ATSP problems. The resulting ANOVA table is given in Table 2.Sour
e Sum Degrees Mean F -Ratio p-Valueof squares of freedom squareMain E�e
tsA:Territory 2900.6 2 1450.3 17.7 0.0000B:Lo
ation 1028.8 2 514.4 6.3 0.0019C:Symmetry 2502.2 3 834.1 10.2 0.0000D:n 753030 8 94128.8 1148.7 0.0000E:Algorithm 1.546E6 6 257723 3145.2 0.0000Intera
tionsAB 351.6 4 87.9 1.1 0.3681AC 1221.9 6 203.7 2.5 0.0210AD 2664.9 16 166.6 2.1 0.0086AE 11786.4 12 982.2 12 0.0000BC 236.5 6 39.4 0.5 0.8229BD 1788.7 16 111.8 1.4 0.1491BE 4835 12 402.9 4.9 0.0000CD 3348.8 24 139.5 1.7 0.0174DE 1.038E6 48 21638.7 264.1 0.0000Residual 849253 10364 81.9Total (
orre
ted) 4.269E6 10529Table 2: Analisys of Varian
e (ANOVA) for CPU time response variable and ATSPalgorithms (M 6=T, A 6=CO and A6=LK).11



At a 95% 
on�den
e level (α = 0.05), all single fa
tors and 6 double fa
tor intera
tions arestatisti
ally signi�
ant. Among signi�
ant fa
tors, importan
e is observed by the magnitude ofthe F -Ratio. For example, the F -Ratio of the fa
tor �Algorithm� is no less than 3, 145.2. Thismeans that the di�eren
es among the di�erent algorithms generate 3, 145.2 more varian
e thanthe varian
e obtained within ea
h algorithm. Therefore, the type of algorithm has a very strongand statisti
ally signi�
ant in�uen
e over the CPU time.The ANOVA te
hnique mainly points out statisti
al signi�
an
e. For a further understanding ofthe behavior of any studied fa
tor, we need des
riptive plots. We have in
luded plots with pointsand smoothed lines for 
omparing the CPU time as a fun
tion of the size of the matri
es for all
ombinations of Symmetry (types of matri
es) and Algorithms fa
tors. All these plots are shownin Figure 3 where the X-axis gives the size of the matrix (n) and the Y-axis the CPU time inse
onds, with a logarithmi
 s
ale. Ea
h row in the plot 
orresponds to a type of matrix and ea
h
olumn to an algorithm. Note that there are no plots for algorithms LK and CO for asymmetri
matri
es, and GO for transformed matri
es (M=T).
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Figure 3: CPU time behavior for algorithms (CO, LK, HE, NA, FI, GO), types and sizesof matri
es.We 
on�rm that the type of algorithm has a strong in�uen
e over CPU time. As expe
ted,the improved Lin-Kernighan method of Helsgaun (HE) and Con
orde (CO) are the most 
om-putationally demanding algorithms. The size of the matrix also a�e
ts CPU time dire
tly andexponentially and this is the 
ase for all types of matri
es, symmetri
 and asymmetri
 and for allalgorithms. Also expe
ted is the matrix transformation pro
ess of matri
es (M=T), whi
h results12



in enormous CPU time in
reases. This is a logi
al result that validates the whole experiment,as the size of the original asymmetri
 matrix is multiplied by two in the transformation pro
ess.However, and as shown in Figure 3 with symmetri
 matri
es, HE is a
tually slower than CO(about three times slower). This is an unexpe
ted result as CO is an exa
t pro
edure and HE, al-beit extremely e�e
tive, 
annot guarantee optimality. The matrix transformation (M=T) a�e
tsmu
h more CO than HE as the CPU time in
reases approximately by a fa
tor of 7. The problemis that CO only works with symmetri
 matri
es and the transformation is the only possible wayof dealing with asymmetri
 problems. The 
orollary is that CO is far more sensible to the size ofthe TSP to solve.As regards the other studied fa
tors, the lo
ation a�e
ts the CPU time for all methods. Themeans plot of Figure 4 
ontains the intera
tion between Algorithm and Lo
ation fa
tors forasymmetri
 matri
es only. The means are plotted in the middle of Tukey's Honest Signi�
antDi�eren
e (HSD) 95% 
on�den
e intervals. Overlapping intervals denote that the means 
on-tained within them are not statisti
ally di�erent. Grid lo
ations result in slightly higher CPUtimes for all methods 
ompared to the Random and Radial lo
ations; ex
ept for the FI algorithmas it 
onsumes more CPU time for Random lo
ation (n = 50). In the 
ase of symmetri
 matri
es(not shown in the �gure), CPU times in
rease sharply (20%) for the CO method for Grid lo
a-tions and this di�eren
e is statisti
ally signi�
ant. To the best of our knowledge, there are noreported studies that analyze how the distribution of the nodes or 
lients and road transportationnetworks a�e
t the CPU times of state-of-the-art methods.

T
im
e

Algorithm

2O

FI
GO

HE
NA

NN

Location

-10

10

30

50

70

Random Grid RadialFigure 4: Means plot with Tukey's Honest Signi�
ant Di�eren
e (HSD) 95% 
on�den
eintervals for the intera
tion between Lo
ation and Algorithm fa
tors, where the responsevariable is CPU time (M=A).Other interesting �ndings a�e
t the Territory fa
tor. Figure 5 shows the intera
tion betweenAlgorithms and the Territory fa
tor for asymmetri
 matri
es only. In general, and espe
ially forFI, there is a preferen
e of algorithms for short distan
es territories. A possible explanation is thatin short distan
es there is more variability in the distan
es between nodes and possibly this helpsin the pro
ess of �nding a solution. In 
ase of symmetri
 matri
es (not shown in the �gure), CPU13



time in
reases up to 37% for CO in 
ases of long and medium distan
es 
ompared with the shortdistan
es territories. A 
ontribution of this work is to demonstrate that the di�erent degree ofasymmetry (and di�eren
es between distan
es) of the road transportation network a�e
t studiedmethods a

ordingly.
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Figure 5: Means plot with Tukey's Honest Signi�
ant Di�eren
e (HSD) 95% 
on�den
eintervals for the intera
tion between Territory and Algorithm fa
tors, where the responsevariable is CPU time (M=A).Finally, CPU time is a�e
ted, on average, by the Symmetry fa
tor (type of distan
e matrix).If we remove the transformed matrix (M=T) whi
h we have already seen in
reases CPU times byorders of magnitude, the result obtained is shown at Figure 6. We see that there are no statis-ti
ally signi�
ant di�eren
es between the M=P and M=G matri
es. Re
all that these representsymmetri
 matri
es where the distan
es are the minimum and maximum distan
es, respe
tively,between the from-to and to-from asymmetri
 distan
es in the matrix. This means that the dif-feren
es in CPU time 
annot be attributed to the magnitude of the distan
es, but rather to thedi�eren
es in the distan
es themselves. We also observe how asymmetri
 matri
es (M=A) needsigni�
antly more CPU time than regular orthodromi
 matri
es (M=O).4.2 Quality of solutionsIt has to be reminded that the obje
tive at this step is not to measure whi
h algorithm, amongthe tested ones, is the best. The fo
us is rather on studying how the 
onsidered fa
tors a�e
tthe quality of the solutions provided by the algorithms. Table 3 provides the number of timesthat ea
h algorithm provides the best solution (N. S∗), and the 
orresponding rate (% S∗) underthree di�erent settings. The se
ond and third 
olumns indi
ate matri
es M=(O, P, G) (1, 350experiments per algorithm). The fourth, �fth, sixth and seventh 
olumns indi
ate asymmetri
(M=A) and transformed (M=T) 
ases, respe
tively, with 450 experiments per algorithm. Notethat in the 
ase of A=GO there is no data for M=T, and for A=FI there is only data for n = 50problem size. 14
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Figure 6: Means plot with Tukey's Honest Signi�
ant Di�eren
e (HSD) 95% 
on�den
eintervals for the Symmetry fa
tor (type of matrix), where the response variable is CPUtime (M 6=T, A 6=CO and A6=LK).

M=(O,P,G) M=A M=TAlgorithm N. S∗ % S∗ N. S∗ % S∗ N. S∗ % S∗NN 0 0.0% 0 0.0% 0 0.0%2O 3 0.2% 0 0.0% 0 0.0%LK 627 46.4% - - 70 15.6%CO 1350 100% - - 391 86.9%HE 930 68.9% 414 92.0% 33 7.3%NA 463 34.3% 155 34.4% 30 6.7%FI 83 61.5% 45 100% 0 0.0%GO 252 18.7% 66 14.7% - -Table 3: Number of best solutions and su

ess rates for the studied algorithms and typesof matri
es.
15



As expe
ted, CO always produ
es the optimum solution for the 1, 350 symmetri
 instan
es.Expe
tedly, HE's su

ess rate is high at almost a 69% and mu
h better han LK's at 46%. Thesimple heuristi
s NN and 2O are rarely su

essful. For asymmetri
 matri
es (M=A), FI is 
learlydominant on small sized problems (n = 50). For other asymmetri
 
ases, HE is 
learly dominantand no further results 
an be drawn from our 
omparison sin
e LK and CO do not a

eptasymmetri
 matri
es. Most surprisingly, CO does not obtain the optimum solutions in all 
asesfor M=T. An obvious explanation is that in the transformation pro
ess, some values in thematrix are −∞ or +∞ and this 
reates numeri
al instability problems inside CO that result insmall deviations from the true optimum solution. These ∞ values were also the reason for notexperimenting with M=T for the GO method. With these results, we 
an now 
on
lude that notonly CO needs an exponentially greater CPU time for transformed matri
es, but also that theresults 
annot be trusted. Naturally, with modi�
ations inside the CO 
ode, there is the possibilitythat transformed matri
es 
ould be 
onsidered without glit
hes. Another interesting out
ome isthat for transformed matri
es, NA and LK outperform HE. However, the transformation pro
essis a
tually not needed for HE or NA and we 
annot 
on
lude that LK or NA are preferred overHE for transformed matri
es.Numerous statisti
al analyses were performed in order to 
he
k the in�uen
e of the studied fa
torsover the quality of the solutions. Multiple ANOVA experiments were performed, whi
h are notfully detailed due to spa
e restri
tions. It has to be noted that sin
e no maximum CPU timewas given to all tested algorithms, the e�e
t of the di�erent studied fa
tors over solution qualityis about 1% or less (
ontrary to the previous observed e�e
ts on CPU time). While this mightbe seen as a marginal e�e
t, it has to be reminded that in the TSP state-of-the-art literature,publi
ations and new results are often disputed with improvements of less than 2% in solutionquality (Helsgaun, 2000). However, almost all fa
tors resulted statisti
ally signi�
ant in all tests
arried out. Table 4 shows average ∆S∗
i values, de�ned by expression (2) in previous se
tions, forthe di�erent tested algorithms as a fun
tion of the type of matrix (symmetry fa
tor). Again, wesee the large deterioration in FI, HE, NA and CO with transformed matri
es (M=T). For largeasymmetri
 matri
es, HE, NA and GO are good 
hoi
es. Whereas for all other matri
es, eitherCO or HE 
learly dominate. On
e again we see that for transformed matri
es, it is even betterto use LK than HE.After studying the di�erent matri
es' asymmetry degree and all other studied fa
tors, wefound that the asymmetry degree of a matrix (δ) and the Territory fa
tor are strongly related.In our experiments we have observed and demonstrated that the asymmetry of the ar
s on shortdistan
es territories is mu
h higher than medium or large distan
es territories, whi
h is relevantand interesting for the 
ase of 
ity logisti
s problems. It is logi
al to think that these di�eren
esin the degree of asymmetry a�e
t the behavior of algorithms, as shown at Table 5.It is relevant and interesting to observe how depending on the type of algorithm, there arepreferen
es for more symmetri
al or asymmetri
al environments, or what is equivalent: long16



O A T P G AverageNN 23.78 23.63 22.88 22.12 21.10 22.702O 8.34 17.11 631.33 6.49 5.93 133.84LK 0.04 − 1.56 0.05 0.05 0.42CO 0.00 − 1.19 0.00 0.00 0.30HE 0.02 0.01 9.10 0.02 0.02 1.83NA 0.04 0.01 7.07 0.04 0.04 1.45FI 0.18 0.00 25.84 0.07 0.03 5.23GO 0.45 0.26 − 0.38 0.36 0.36Average 4.11 6.84 99.85 3.64 3.44Table 4: Average ∆S∗
i values a

ording to Algorithm and Symmetry (type of matrix)fa
tors.

Short Medium Large AverageNN 24.28 21.88 21.95 22.702O 119.02 136.98 145.51 133.84LK 0.42 0.41 0.44 0.42CO 0.41 0.30 0.18 0.30HE 3.40 1.09 1.00 1.83NA 2.92 0.76 0.65 1.45FI 4.79 5.50 5.39 5.23GO 0.31 0.38 0.40 0.36Average 19.44 20.91 21.93Table 5: Average ∆S
∗
i values a

ording to Algorithm and Territory fa
tors.

17



distan
es (CO, HE, NA) and medium distan
es (LK) versus short distan
es (FI, GO, NN, 2O).Furthermore, an although not shown, this e�e
t is observed for all matrix sizes and spe
iallyfor transformed matri
es. We now analyze the behavior of the di�erent algorithms against theLo
ation fa
tor in Table 6. As shown, no overly strong e�e
ts are observed (albeit all di�eren
esare statisti
ally signi�
ant for Lo
ation fa
tor). It is interesting to note that although the roadnetwork in the Iberian Peninsula is 
hara
terized by a radial stru
ture 
entered in the 
apitalMadrid, the degree of asymmetry in
reases slightly in su
h lo
ations. Other road networks inother 
ountries 
ould be an important relationship between lo
ation and asymmetry of the ar
sthat 
onditions more the behavior of algorithms.Random Grid Radial AverageNN 23.49 22.52 22.10 22.702O 150.47 124.90 126.14 133.84LK 0.45 0.31 0.50 0.42CO 0.25 0.53 0.12 0.30HE 1.98 1.52 1.99 1.83NA 1.54 1.06 1.73 1.45FI 5.56 6.73 3.38 5.23GO 0.44 0.27 0.39 0.36Average 23.02 19.73 19.54Table 6: Average ∆S∗
i values a

ording to Algorithm and Lo
ation fa
tors.Lastly, it is worth mentioning that matrix size has a very small impa
t on ∆S∗

i values. Thee�e
t is less than 0.06% in the worst 
ase. Figure 7 shows the averages of the Symmetry andAlgorithms fa
tors (ex
luding M=T). The horizontal axis shows the size of the matrix n and theverti
al axis (di�erent s
ale for ea
h symmetry fa
tor) shows the per
entage deviation ∆S∗
i overthe best solution. Note the verti
al s
ale and values for M=T matri
es, where the e�e
t of thistype of matrix and size n on ∆S∗

i is higher.4.3 Quantitative and qualitative assessmentAfter studying the di�erent matri
es' asymmetry degree and all other studied fa
tors, we foundthat the asymmetry degree of a matrix (δ) and the average weight (Weight) of the di�erent dis-tan
es in the matrix are strongly related. If there is a relation between symmetri
 and asymmetri
matri
es in the form of an in
reased average weight, it is logi
al to think that the symmetri
 so-lution of the TSP 
ould be �augmented� in order to 
arefully estimate the real ATSP solution(as regards the total tour length). This is needed sin
e, as we have already stated, the TSP tourlength is a loose lower bound of the real ATSP tour length. Similarly, it is important to 
he
kthe tour length of the TSP solution, when 
al
ulated with the ATSP matrix and vi
eversa. Inorder to 
he
k all these questions we use the following indi
ators, whi
h are strongly based onthe previously de�ned response variables. 18
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Figure 7: Average ∆S∗
i values a

ording to the size of the matrix n, algorithms (CO, LK,HE, NA, FI, GO) and Symmetry fa
tors.

∆ATSP : It is the per
entage in
rease of the tour length of the ATSP solution as regards the
TSP solution:

∆ATSP =
ATSP − TSP

TSP
· 100 (5)

TSP is the tour length of the symmetri
 problem, 
al
ulated with symmetri
 orthodromi
matri
es. ATSP is the asymmetri
 problem tour length, 
al
ulated with real distan
ematri
es (M=A). Note that algorithms LK and CO 
annot solve the ATSP . In these 
asesthe transformed matrix (M=T) is used instead.
TSPA: The TSP solution is 
al
ulated with asymmetri
 matri
es. i.e., we take the solution ofa TSP problem and re
al
ulate it with the real distan
es. Obviously, the tour length willin
rease (TSPA ≥ TSP ).
ATSPO: It is the opposite 
ase as TSPA. The ATSP solution is 
al
ulated with the symmetri
matrix.
∆TSPA: It is the per
entage in
rease of TSPA against ATSP . It 
ould be positive or negative.
∆ATSPO: It is the per
entage in
rease or de
rease of ATSPO against TSP .
∆dH: It is the per
entage of di�eren
es in the TSP solution against ATSP . Values 
lose to100% qualitatively indi
ate that the TSP solution is very di�erent from the ATSP . It is19



based on the previously de�ned Hamming distan
e dH :
∆dH =

dH

n
· 100 (6)

∆dA: It is the per
entage of di�erent ar
s, over the total ar
s, that the TSP sequen
e has overthe ATSP solution. It is based on the previous adja
en
y distan
e dA:
∆dA =

dA

n+ 1
· 100 (7)We 
al
ulate all previous indi
ators for all experiments, namely 3 territories ×3 lo
ations

×10 di�erent matrix sizes ×8 di�erent algorithms ×5 repli
ates whi
h results in 3, 195 data. Theresults are good. The average ∆ATSP indi
ator rea
hes a value of 80.1%. This indi
ates a hugedi�eren
e between the ATSP and TSP solutions. Note that the minimum observed value for thisindi
ator is an already large 32.9% (the maximum being an impressive 196.9%). The frequen
ydistributions of the ∆ATSP values are given as an histogram in Figure 8 (left). It is observedthat in a large per
entage of the 
ases, the in
rease is between 50% and 100%. Figure 8 (right)shows a se
ond histogram, this time for ∆TSPA. The distribution is 
learly skewed towardspositive values, with an average of 13.6%. Exa
tly, 39.8% of the 
ases show di�eren
es equal orlarger than 10%.
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0Figure 8: Histograms with the ∆ATSP (left) and ∆TSPA (right) frequen
y distributions.A very strong result, espe
ially with the se
ond histogram, is that there is a large di�eren
ebetween solving symmetri
 and asymmetri
 problems. The idea that orthodromi
 or Eu
lideandistan
es for solving the TSP are valid (seen in some 
ommer
ial routing software) and thatafter all, one 
an later 
al
ulate real distan
es with the solution is utterly wrong. As shown, onaverage, there are di�eren
es that amount to a 13.6%. Note that these di�eren
es are extremely20



large for TSP problems where algorithms �ght in the state-of-the-art segment for less than 2%improvements. As regards ∆ATSPO, the distribution (not shown) is again positive, with anaverage of 14.3%. In a 50.02% of the 
ases, the di�eren
es are equal or greater than 10%. On
eagain, it is shown that it is not the same solving an asymmetri
 ATSP and measuring the tourlength of the sequen
e with symmetri
 distan
es.In our opinion, this is the main 
ontribution of this resear
h work. From our perspe
tive, the
ommonly a

epted assumption of 
onsidering Eu
lidean distan
es does not hold when solutionsare 
al
ulated with real asymmetri
 distan
es. The TSP solutions deteriorate enormously when
al
ulated with real matri
es. Furthermore, there is little guarantee that good algorithms forthe TSP will work equally good for the ATSP . Often, the degradation in performan
e willbe signi�
antly greater than the observed di�eren
es between 
ompeting methods. Anothersigni�
ant result is to qualitatively observe the big di�eren
es between the sequen
es obtainedwith symmetri
 TSP and asymmetri
 ATSP problems. The average ∆dA, with a value of 71.0%indi
ates that the symmetri
 sequen
es are almost entirely di�erent from the asymmetri
 ones.Values are even greater if one uses the Hamming distan
e ∆dH. The minimum value for the ∆dAvalue is as high as 6%. This means that, in the best 
ase, a full 6% of the sequen
e is di�erent.Figure 9 (left) shows the frequen
y distribution of ∆dH. Note how it is heavily skewed towardsvalues very 
lose to 100%. Figure 9 (right) shows the 
orresponding histogram for ∆dA.
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Figure 9: Histograms with the ∆dH (left) and ∆dA (right) frequen
y distributions.4.4 Some examplesIn this se
tion we depi
t two examples. The purpose is to graphi
ally show the large di�eren
esbetween symmetri
 and asymmetri
 solutions. Only two examples have been randomly sele
teddue to obvious spa
e 
onstraints. 21



CC-0503HE. The �rst example 
orresponds to instan
e CC-0503. A total of 50 nodes are gridlo
ated in a short distan
e territory. We 
ompare the best solution obtained with algorithmHE. There are huge di�eren
es between the symmetri
 optimal tour length of 244.2 km. versusthe 423.3 km. of the di�erent optimal tour length 
al
ulated with the asymmetri
 distan
es.Therefore, ∆ATSP = 73.32%. Additionally, we have that ∆dA = 90.20%. Figure 10 (left) hasthe two optimum solutions superimposed. The symmetri
 in blue and the real one in red.MR-0504CO. In this se
ond example we show the results of the instan
e MR-0504 solved withCO algorithm. We have again 50 nodes radially distributed in a medium distan
e territory. Thetotal tour length in the symmetri
 tour is 1, 369.7 km. versus 2, 097.9 km. for the asymmetri
tour length. This results in a ∆ATSP of 53.17%, with a ∆dA of 98.04%. Figure 10 (right) showsthe details.

Figure 10: TSP (blue) and ATSP (red) solutions for A=HE on instan
e CC-0503 (left)and A=CO on instan
e MR-0504 (right) .
5 Con
lusions and further workIn this work we have studied the e�e
t that the asymmetry has over the solution pro
ess of the
TSP/ATSP . We have shown that solving the TSP di�ers mu
h from solving the ATSP at somany levels: tour length, adja
en
y of nodes, hamming distan
e and CPU time. Furthermore,all these di�eren
es are strongly a�e
ted by other and new studied fa
tors: degree of symmetry,territory and lo
ation of the nodes in the road transportation network. During the resear
h,thousands of instan
es have been solved with some of the best well known (in
luding some state-of-the-art) algorithms for the TSP and ATSP .We have been able to 
on�rm, as expe
ted, that the algorithm used strongly a�e
ts the CPUtime. HE and CO are the most 
omputationally demanding methods, mu
h more than the othersimplisti
 heuristi
s or modern meta-heuristi
s. We have also shown that the Territory, Lo
ation22



and size of the problem fa
tors all a�e
t the di�erent methods in a sound and statisti
ally signif-i
ant way. As is known, the problem size in
reases the CPU time exponentially. An interestingand novel 
ontribution of this paper is the study of the e�e
t on CPU time and quality of solu-tions due to the fa
tors of territory, lo
ation and their relationship with the asymmetry degreeof the road transportation network. Parti
ularly for symmetri
 matri
es, lo
ations in grid havea signi�
ant e�e
t on CPU times, resulting in harder to solve problems. This e�e
t is ampli�edwith transformed matri
es. It has been demonstrated that the Territory has an impa
t on CPUtime, espe
ially for short distan
e territories. For symmetri
 transformed matri
es, the Territoryfa
tor is relevant as regards the quality of the solution. This e�e
t is observed for all matrixsizes. Another 
on
lusion of this study is that the transformation pro
ess has a profound e�e
tover CPU times. Furthermore, this transformation pro
ess has shown not to be entirely feasiblefor algorithms HE and, espe
ially, for CO. If one 
losely 
ompares HE and CO for symmetri
matri
es, we observe that HE is about three times slower than CO. This is unexpe
ted, sin
e COis an exa
t bran
h-and-
ut method and HE a (powerful) heuristi
. However, the transformationpro
ess in
reases the 
omputation time more than sevenfold, and a�e
ts CO mu
h more. Theresult is that asymmetry has a deep impa
t over algorithms, either from the quality of the solu-tions standpoint, or from the CPU time whenever matrix transformation is needed.Comprehensive statisti
al experiments further demonstrate that there is an inverse relation be-tween the Territory fa
tor and the average ∆ATSP indi
ator value. This 
on�rms that there arequantitative di�eren
es between the TSP and ATSP solutions. The di�eren
es between the twosolutions are smaller for large distan
es than for short distan
es. Furthermore, we found relationsbetween the Lo
ation fa
tor and the ∆ATSP indi
ator. In this 
ase, the existing di�eren
es aregreater as the size of the problems grows and they are greater for radially and randomly pla
edlo
ations than for grid ones. The size of the matrix also 
onditions the di�eren
es between the
TSP and ATSP solutions. In any 
ase, solving a TSP and later 
al
ulating the real tour lengthwith real distan
es is not a viable solution pro
ess.The asymmetry is not just a binary 
ondition of the problem. There are di�erent degrees ofasymmetry as the territory and the lo
ation of the nodes in the road transportation network.This results in di�erent degrees of 
omplexity, and the e�e
t on CPU time and solution quality.Some algorithms (HE, FI, NA, GO) are better equipped to solve problems with a high degreeof asymmetry or short distan
es, and in 
ertain lo
ation patterns. Others (LK, CO, HE, NA)provide better performan
e in symmetri
al environments or long distan
es. This paper hopes toinspire future resear
h on the development and testing of new and improved algorithms, not onlytaking into a

ount the asymmetry 
ondition, but also new fa
tors studied here. New instan
eshave been made available to the s
ienti�
 
ommunity. Further work stems from the possibilityof providing e�e
tive methods for 
al
ulating real asymmetri
 travel matri
es, as this imposestoday a 
lear entry barrier for those resear
hers not willing to use the typi
al Eu
lidean matri-
es. Extending this study to more 
omplex problems, like for the Capa
itated Vehi
le Routing23



Problem CVRP or for the Heterogeneous Fleet variant (HFCV RP ) is of interest to see if morerealisti
 routing problems are equally a�e
ted by asymmetry.A
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