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ABSTRACT. The splitting of the field of view (FOV) in polar voxels is grosed in this work in
order to obtain an efficient description of a cone-beam cdetbtomography (CT) scanner. The
proposed symmetric-polar pixelation makes it possiblesl @vith the 3D iterative reconstruction
considering a number of projections and voxel sizes typic@T preclinical imaging.

The performance comparison, between the filtered backgiofe(FBP) and 3D maximum
likelihood expectation maximization (MLEM) reconstruati algorithm for CT, is presented. It
is feasible to achieve the hardware spatial resolutiont limith the considered pixelation. The
image quality achieved with MLEM and FBP have been analyZda: results obtained with both
algorithms in clinical images have been compared too. Aigicthe polar-symmetric pixelation is
presented in the context of CT imaging, it can be applied foaher tomographic technique as
long as the scan comprises the measurement of an object ssx@al projection angles.
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1 Introduction

Analytical methods like filtered backprojection (FBR) have dominated the image reconstruction
in computed tomography (CT) because they produce imagesasanable quality with low costin
terms of computing time. Current advances in computer seienable the use of iterative methods
like maximum likelihood expectation maximization (MLEM2][in CT image reconstruction3|
4]. The improvement of image quality with iterative methodlswas to reduce the dose a patient
receives during a CT examination as much as a 68% |

The main drawback of iterative methods is the large systenmiecaa required for a precise
description of the scanner. The authors have already pexbém [6] a description of the CT
scanner in polar coordinates that allows to reduce drdigtitee number of matrix elements to be
computed. Several approaches were studied]ito] discretize the field of view (FOV) in polar
coordinates in a fan beam CT geometry. The approach propogéthas been extended to cone
beam geometry and its performance is compared in this wotlk thiat obtained with the FBP,
based on measurements of synthetic phantoms and cliniegieisnacquired with a preclinical CT
scanner.

2 System matrix

Iterative methods consider the reconstruction problemlmear systemp = Py. The tomograph
is modeled with the probability matriR which links the reconstructed attenuation mawith
the estimation of the measuremeht Each matrix elemeri®; represents the contribution of the
j-th voxel to the attenuation of the i-th ray. Siddon’s aifon [7] is the most common approach
to determine the system matrix. However, the intersectmome between the voxel and the ray
was considered to calculate the matrix elements, as it isritbesl by Yao et al. in§]. The large
number of projections and high resolutiors@ 1 mm) used in CT lead to huge linear systems. The
description of the scanner in polar coordinates only rexguine calculation of the matrix elements
of the first projection, while the remaining elementdiare obtained by rotating those in the first
projection. The strong reduction in matrix size when coasidy a polar discretization is shown in
tablel. From tablel it can be inferred that the matrix size obtained with a cétediscretization



Table 1. Matrix sizes and reconstruction times using cartesianpatal discretizations of the FOV.

Cartesian Polar
Projections Size Time (s) Size Time (s)
(MB) Generation Iteration (MB) Generation Iteration
40 486 43 0.6 52 5 0.5
80 972 69 1 57 54 1.2
100 1200 88 14 60 5.7 1.8
200 2400 161 3 75 7.1 6.5
400 4800 318 5.8 104 10 25.8

of the FOV rises about 80 times faster with the number of pt@as than that obtained in the
polar case. The increase in the polar case is partly due tovrsampling of the central region
of the FOV, which leads to differences in reconstructionem The values in tablé correspond
to a 80 mm FOV discretized in cubic voxels of 0.8 mm. Considga typical CT scan with 200
projections, the reduction of the voxel size to 0.4 mm rezpiB.5 GB to store the system matrix
when a cartesian discretization of the FOV is considered oBly the 224 MB of the first projection
are required in the polar case, because the full matrix istcacted as a block circulant matrix. The
large system matrices required for a cartesian discrétizétinders the use of iterative algorithms
in typical CT acquisitions having 200 projections and vasiges of 0.4 mm. Such a limitation can
be overcome thanks to the small matrix sizes required wétptilar discretization.

3 Experimental results

Experimental measurements were conducted with the AlpiEa, manufactured by Oncovi-
sion [9]. It consists of a 3jum focal spot size X ray tube, with a variable voltage from 10 kV
to 50kV. The detector is a Csl flat panel with 240@400 pixels of 5qum. X ray tube and de-
tector are mounted in a cone-beam configuration having a HG&@ oom in diameter and 90m
spatial resolution.

The number of iterations considered in the reconstructidtuénces the performance of
MLEM. In order to facilitate the comparison among the scierzaevaluated in this work, a fixed
number of 40 iterations that ensures the convergence ofgbethm, was employed in all recon-
structions.

The spatial resolution performance of the FBP and MLEM aigors has been assessed
through the comparison of the modulation transfer func{idiF) curves. They have been cal-
culated as the Fourier transform of the reconstructed im§f# of a 50um gold wire inside a
cylinder, 20 mm in diameter, polymethyl methacrylate (PMMghantom. The reduction of the
voxel size from 3@um (figure 1(a)) to 5um (figure 1(b)) leads to an improvement in the spatial
frequency at 10% of the MTF from 10.3Ipmrhto 11.2 Ip mnt! when the MLEM algorithm
has been considered, and from 7.0 lpmno 11.2 Ip mnt! if the FBP is chosen. No further en-
hancement of the spatial resolution has been observed whah size’s smaller than Bm were
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Figure 1. Comparison of the performance of spatial resolution fouB80(a) and Jum (b) voxel sizes. The
frequencies at which the MTF curve is 10% of its maximum vaeereported in each plot.

considered, because the contribution of the scannerimsitrspatial resolution~ 90 um) is the
dominant effect.

Contrast and noise performance achieved with FBP and MLEM wempared with a PMMA
phantom 55mm in diameter with five holes of 8 mm axially ddllat 16 mm off the center.
The holes were filled with inserts of synthetic materials el fat (polyethylene), soft tissue
(PMMA), organs (polyoxymethylene) and soft bone (ploya#troroethylene). The last hole was
left empty in order to model air regions inside the body. Therage 4) and standard deviation
(ay) values in five 4.5 mm in diameter and 20 mm height cylindrnicdlimes of interest (VOI) cen-
tered in each insert were considered to calculate the figfragerit described in3.1) and @.2).
The percent standard deviation (STD) and contrast to nat&e(CNR) have been considered in the
assessment of image noise and the ability in the identificadf each material, respectively. The
average Ag) and standard deviatiomg) in the background in3.2) correspond to those measured
in the soft tissue insert.

sTD = 2100 3.1)
A
2. |A — Ag|
CNR, = 3.2
R 0| + 0B 3-2)

The noise performance of the MLEM (0.8 mm), using cubic vex#l0.8 mm, was compared
with the FBP considering 0.8 mm and 0.4 mm voxel sizes. The EB#mm) configuration was
chosen because yields to images with spatial resolutiorpacable to MLEM (0.8 mm). Noise
(STD) dependence on the number of projections has beenagedlin the fat (figure(a)) and
organs (figure2(b)) equivalent tissues. Whatever the considered tissuelasi®i D values were
obtained with the MLEM and FBP when using 0.8 mm voxels. ThérGMdlues of air, fat, organs
and soft bone respect to soft tissue obtained with the MLEMN rftm) and FBP (0.4 mm) are
compared in figur@(c). As we consider the absolute difference in CNR, the valuethioair and
soft bone respect to soft tissue are similar, this explainclbseness of the curves in figlzé).
The same occurs with the fat and the organs curves. The sn&dlle values achieved with the
MLEM algorithm lead to an improvement in CNR values in conigam to those measured with
the FBP. The CNR curves of the air and soft bone intersect wteMLEM reconstruction is
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Figure 2. Noise (STD) and CNR performance versus the number of giofex STD in the (a) fat and (b)
organs tissue equivalent inserts. (c) CNR measured witMttieEM using voxels of 0.8 mm (solid) and the
FBP considering voxels of 0.4 mm (dashed).

considered, causing that CNR values measured in the airettier bhan those in soft bone when
a small number of projections is employed, while the oppositenario is observed if the number
of projections rises. This exchange in the CNR of air and kofte is due to the lack of ability
of the MLEM to produce sharp transitions between the airriresed its surrounding background,
that leads to an overestimation of the STD in the air insener&fore, limiting the improvement of
CNR values as the number of projections increases.

The performance of the FBP and the MLEM algorithms has alsm levaluated in actual
acquisitions of a mouse, shown in figuBe Structures are better defined in the MLEM image
(figure 3(b)) than in the FBP one (figurg(a)) despite the same voxel size has been considered in
both cases. The MLEM (figurd(b)) achieves an image detail comparable to that obtained with
the FBP, but using a smaller voxel size (fig@{)). Similar behavior is appreciated in the three
attenuation profiles shown in figude In all three profiles is observed that the MLEM using a
voxel size of 0.8 mm reproduces the small structures in thgagis and backbone as accurately as



(a) FBP (0.8 mm) (b) MLEM (0.8 mm) (c) FBP (0.4mm)

Figure 3. Transverse view of the abdomen of a mouse reconstructedajithe FBP algorithm and a voxel
size of 0.8 mm, (b) the MLEM using a 0.8 mm voxel size and (c)RB& with a 0.4 mm voxel size.
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Figure 4. Comparison of the attenuation profiles obtained with th® EBd the MLEM algorithms along
the lines in yellow in figure8. (a) Attenuation profiles along a uniform region of the abéar{yellow line
in figure 3(a)), (b) profiles along the abdominal region with two air regigpellow line in figure3(b)), (c)
attenuation profiles crossing the backbone of the micedydihe in figure3(c)).

the FBP using a 0.4 mm voxel size, while maintaining the lessynproperties of the FBP using a
0.8 mm in uniform regions like the abdominal tissue.

4 Conclusion

Polar symmetry reduces the size of the system matrix in ceamlCT, and overcomes the limita-
tion of a cartesian approach in the iterative reconstraabioclinical images of small animals with

voxel sizes smaller than 0.4 mm using custom computing ressuThe MTF curves obtained with
the MLEM outperform those measured with the FBP, unlessc¢hareer’s intrinsic spatial resolu-
tion represents the major contribution. The MLEM (0.8 mnelgs to images with noise properties
similar to the FBP (0.8 mm). The noisier images in the FBP 1tn) lead to lower CNR respect
to MLEM (0.8 mm), despite they both produce images with corapke spatial resolution. Thus,
MLEM outperforms FBP as long as reconstruction time is niticel. The results obtained with

synthetic phantoms have been reproduced with clinical @saxf a small mouse. Iterative recon-
struction improves the image detail without compromising image noise for a given voxel size.
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