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Abstract. New techniques for online adaptation in computer assisted translation
are explored and compared to previously existing approaches. Under the online
adaptation paradigm, the translation system needs to adapt itself to real-world
changing scenarios, where training and tuning may only take place once, when
the system is set-up for the first time. For this purpose, post-edit information,
as described by a given quality measure, is used as valuable feedback within a
dynamic reranking algorithm. Two possible approaches are presented and eval-
uated. The first one relies on the well-known perceptron algorithm, whereas the
second one is a novel approach using the Ridge regression in order to compute
the optimum scaling factors within a state-of-the-art SMT system. Experimen-
tal results show that such algorithms are able to improve translation quality by
learning from the errors produced by the system on a sentence-by-sentence basis.

1 Introduction

Statistical Machine Translation (SMT) systems use mathematical models to describe the
translation task and to estimate the probabilities involved in the process. [1] established
the SMT grounds formulating the probability of translating a source sentence x into a
target sentence ŷ, as

ŷ = argmax
y

Pr(y | x) (1)

In order to capture context information, phrase-based (PB) models [2, 3] were in-
troduced, widely outperforming single word models [4]. PB models were employed
throughout this paper. The basic idea of PB translation is to segment the source sen-
tence x into phrases (i.e. word sequences), then to translate each source phrase x̃k ∈ x
into a target phrase ỹk, and finally reorder them to compose the target sentence y.

Recently, the direct modelling of the posterior probability Pr(y | x) has been widely
adopted. To this purpose, different authors [5, 6] propose the use of the so-called log-
linear models, where the decision rule is given by the expression

ŷ = argmax
y

M∑
m=1

λmhm(x,y)

= argmax
y

λ·h(x,y) = argmax
y

s(x,y) (2)

where hm(x,y) is a score function representing an important feature for the transla-
tion of x into y, M is the number of models (or features) and λm are the weights



of the log-linear combination. s(x,y) represents the score of a hypothesis y given an
input sentence x, and is not treated as a probability since the normalisation term has
been omitted. Common feature functions hm(x,y) include different translation models
(TM), but also distortion models or even the target language model (LM). Typically,
h(·|·) and λ are estimated by means of training and development sets, respectively.

Adjusting both feature functions or log-linear weights leads to one important prob-
lem in SMT: whenever the text to be translated belongs to a different domain than the
training or development corpora, translation quality diminishes significantly [4]. Hence,
the adaptation problem is very common, where the objective is to improve systems
trained on out-of-domain data by using very limited amounts of in-domain data.

Typically, the weights of the log-linear combination in Equation 2 are optimised
by means of Minimum Error Rate Training (MERT) [7] in two basic steps. First, N
best hypotheses are extracted for each one of the sentences of a development set. Next,
the optimum λ is computed so that the best hypotheses in the nbest list, according to
a reference translation and a given metric, are ranked higher within such nbest list.
Then, these two steps are repeated until convergence, where no further changes in λ
are observed. However, such algorithm has an important drawback. Namely, it requires
a considerable amount of time to translate the development (or adaptation) set several
times, and in addition it has been shown to be quite unstable whenever the amount of
adaptation data is small [8]. For these reasons, using MERT in an online environment,
where adaptation data is arriving constantly, is usually not appropriate.

Adapting a system to changing tasks is specially interesting in the Computer As-
sisted Translation (CAT) [9] and Interactive Machine Translation (IMT) paradigms [10,
11], where the collaboration of a human translator is essential to ensure high quality re-
sults. In these scenarios, the SMT system proposes a hypothesis to a human translator,
who may amend the hypothesis to obtain an acceptable target sentence in a post-edition
setup. The system is expected to learn dynamically from its own errors making the best
use of every correction provided by the user by adapting the system online, i.e. without
the need of an expensive complete retraining of the model parameters.

We analyse two online learning techniques to use such information to hopefully
improve the quality of subsequent translations by adapting the scaling factors of the
underlying log-linear model in a sentence-by-sentence basis.

In the next Section, existing online learning algorithms applied to SMT and CAT
are briefly reviewed. In Section 3, common definitions and general terminology are es-
tablished. In Section 4.1, we analyse how to apply the well-known perceptron algorithm
in order to adapt the log-linear weights. Moreover, we propose in Section 4.2 a com-
pletely novel technique relying on the method of Ridge regression for learning the λ of
Eq. 2 discriminatively. Experiments are reported in Section 5, a short study on metric
correlation is done in Section 6 and conclusions can be found in the last Section.

2 Related Work

In [12], an online learning application is presented for IMT, where the models involved
in the translation process are incrementally updated by means of an incremental version
of the Expectation-Maximisation algorithm, allowing for the inclusion of new phrase



pairs into the system. The difference between such paper and the present one is that the
techniques proposed here do not depend on how the translation model has been trained,
since it only relies on a dynamic reranking algorithm which is applied to a nbest list,
regardless of its origin. Furthermore, the present work deals with the problem of online
learning as applied to the λ scaling factors, not to the h features. Hence, the work in
[12] and the present one can be seen as complementary.

The perceptron algorithm was used in [13] to obtain more robust estimations of λ,
which is adapted in a batch setup, where the system only updates λ when it has seen a
certain amount of adaptation data. In Section 4.1, a similar algorithm is used to adapt
the model parameters, although in the present work the perceptron algorithm has been
applied in an online manner, i.e. in an experimental setup where new bilingual sentence
pairs keep arriving and the system must update its parameters after each pair.

In [14] the authors propose the use of the Passive-Aggressive framework [15] for
updating the feature functions h, combining both a memory-based MT system and a
SMT system. Improvements obtained were very limited, since adapting h is a very
sparse problem. For this reason, our intention is not to adapt the feature functions,
but to adapt the log-linear weights λ, which is shown in [8] to be a good adaptation
strategy. In [8], the authors propose the use of a Bayesian learning technique in order to
adapt the scaling factors based on an adaptation set. In contrast, in the present work our
purpose is to perform online adaptation, i.e. to adapt the system parameters after each
new sample has been provided to the system. In this paradigm, the SMT system always
proposes a target sentence to the user who accepts or amends the whole sentence. If the
user post-edits the hypothesis, we obtain a reference along with the hypothesis and the
online-learning module is activated.

The contributions of this paper are mainly two. First, we propose a new application
of the perceptron algorithm for online learning in SMT. Second, we propose a new dis-
criminative technique for incrementally learning the scaling factors λ, which relies on
the concept of Ridge regression, and which proves to perform better than the percep-
tron algorithm in all analysed language pairs. Although applied here to phrase-based
SMT, both strategies can be applied to rerank a nbest list, which implies that they do
not depend on a specific training algorithm or a particular SMT system.

3 Online learning in CAT

In general, in an online learning framework, the learning algorithm processes observa-
tions sequentially. After every input, the system makes a prediction and then receives a
feedback. The information provided by this feedback can range from a simple opinion
of how good the system’s prediction was, to the true label of the input in completely
supervised environments. The purpose of online learning algorithms is to modify its
prediction mechanisms in order to improve the quality of future decisions. Specifically,
in a CAT scenario, the SMT system receives a sentence in a source language and then
outputs a sentence in a target language as a prediction based on its models. The user,
typically a professional human translator, post-edits the system’s hypothesis thus pro-
ducing a reference translation yτ . Such a reference can be used as a supervised feed-



back. Our intention is to learn from that interaction. Then, Eq. 2 is redefined as follows

ŷ = argmax
y

M∑
m=1

λtmh
t
m(x,y)

= argmax
y

λt ·ht(x,y) (3)

where both the feature functions ht and the log-linear weights λt vary according to
the samples (x1,y1), . . . , (xt−1,yt−1) seen before time t. We can either apply online
learning techniques to adapt ht, or λt, or both at the same time. In this paper, however,
we will only attempt to adapt λt, since adapting ht is a very sparse problem implying
the adaptation of several million parameters, which is not easily feasible when consid-
ering an on-line, sentence-by-sentence scenario.

Let y be the hypothesis proposed by the system, and y∗ the best hypothesis the
system is able to produce in terms of translation quality (i.e. the most similar sentence
with respect to yτ ). Then, our purpose is to adapt the model parameters (λt in this case)
so that y∗ is rewarded (i.e. achieves a higher score according to Eq. 2).

We define the difference in translation quality between the proposed hypothesis y
and the best hypothesis y∗ in terms of a given quality measure µ(·):

l(y) = |µ(y)− µ(y∗)|, (4)

where the absolute value has been introduced in order to preserve generality, since in
SMT some of the quality measures used, such as TER [16], represent an error rate
(i.e. the lower the better), whereas others such as BLEU [17] measure precision (i.e.
the higher the better). In addition, the difference in probability between y and y∗ is
proportional to φ(x), which is defined as

φ(y) = s(x,y∗)− s(x,y). (5)

Ideally, we would like that increases or decreases in l(·) correspond to increases or
decreases in φ(·), respectively: if a candidate hypothesis y has a translation quality µ(y)
which is very similar to the translation quality provided by µ(y∗), we would like that
such fact is reflected in the translation score s, i.e. s(x,y) is very similar to s(x,y∗).
Hence, the purpose of our online procedure should be to promote such correspondence
after processing sample t.

A coarse-grained technique for tackling with the online learning problem in SMT
implies adapting the log-linear weights λ. The aim is to compute the optimum weight
vector λ̂t for translating the sentence pair observed at time t and then update λ as:

λ = λt−1 + αλ̂t (6)

for a certain learning rate α.
The information that is usually taken into account to compute λ̂t is more general and

imprecise than the information used when adapting feature functions, but the variation
in the score of Eq. 2 can be higher since we will be modifying the scaling factors of the
log-linear model. That is, when adapting the system to a different domain, we are going
to adjust the importance of every single model to a new task in an online manner.



4 Online learning algorithms

4.1 Perceptron in CAT

The perceptron algorithm [18, 19] is an error driven algorithm that estimates the weights
of a linear combination of features by comparing the output y of the system with respect
to the true label yτ of the corresponding input x. It iterates through the set of samples
a certain number of times (epochs), or until a desired convergence is achieved.

The implementation in this work follows the proposed application of a perceptron-
like algorithm in [13]. However, for comparison reasons in our CAT framework, the
perceptron algorithm will not visit a sample again after being processed once.

Using feature vector h(x,y) of the system’s hypothesis y and feature vector h(x,y∗)
of the best hypothesis y∗ from the nbest(x) list, the update term is computed as follows:

λt = λt−1 + ε · sign(h(x,y∗)− h(x,y)) (7)

where ε can be interpreted as the learning rate.

4.2 Discriminative regression

The problem of finding λ̂t such that higher values in s(x,y) correspond to improve-
ments in the translation quality µ(y) as described in Section 3 can be viewed as finding
λ̂t such that differences in scores φ(y) of two hypotheses approximate their difference
in translation quality l(y). So as to formalise this idea, let us first define some matrices.

Let nbest(x) be the list of N best hypotheses computed by our TM for sentence
x. Then, a matrix Hx of size N × M , where M is the number of features in Eq. 2,
containing the feature functions h of every hypothesis can be defined such that

sx = Hx · λt (8)

where sx is a column vector ofN entries with the log-linear score combination of every
hypothesis in the nbest(x) list. Additionally, let H∗x be a matrix with N rows such that

H∗x =

h(x,y∗)
...

h(x,y∗)

 , (9)

and Rx the difference between H∗x and Hx:

Rx = H∗x −Hx (10)

The key idea for scaling factor adaptation is to find a vector λ̂ such that differences
in scores are reflected as differences in the quality of the hypotheses. That is,

Rx · λ̂t ∝ lx (11)



where lx is a column vector ofN rows such that lx = [l(y1) . . . l(yn) . . . l(yN )]′ , ∀yn ∈
nbest(x). The objective is to find λ̂ such that

λ̂ = argmin
λ
|Rx · λ− lx| (12)

= argmin
λ
||Rx · λ− lx||2 (13)

where || · ||2 is the Euclidean norm. Although Eqs. 12 and 13 are equivalent (i.e. the λ
that minimises the first one also minimises the second one), Eq. 13 allows for a direct
implementation thanks to the Ridge regression1, such that λ̂ can be computed as the
solution of the overdetermined system Rx · λ̂ = lx, given by the expression

λ̂ = (R′x · Rx + βI)
−1

R′x · lx (14)

where a small β is used as a regularisation term to ensure R′x · Rx has an inverse.

5 Experiments

5.1 Experimental setup

Given that a true CAT scenario is very expensive for experimentation purposes, since it
requires a human translator to correct every hypothesis, in this paper we will be simulat-
ing such scenario by using the reference present in the test set. However, such reference
will be fed one at a time, given that this would be the case in an online CAT process.

Translation quality will be assessed by means of the BLEU [17] and TER [16]
scores. BLEU measures n-gram precision with a penalty for sentences that are too short,
whereas TER is an error metric that computes the minimum number of edits required to
modify the system hypotheses so that they match the references. Possible edits include
insertion, deletion, substitution of single words and shifts of word sequences. For com-
puting y∗ as described in Section 3, either BLEU or TER will be used, depending on the
evaluation measure reported (i.e. when reporting TER, TER will be used for computing
y∗). However, it must be noted that BLEU is not well defined at the sentence level,
since it implements a geometrical average of n-grams which is zero whenever there is
no common 4-gram between reference and hypothesis, even if the reference has only
three words. Hence, y∗ is not always well defined when considering BLEU. Such sam-
ples will not be considered within the online procedure. Another consideration is that
BLEU and TER might not be correlated, i.e. improvements in TER do not necessarily
mean improvements in BLEU. This is analysed more in detail in Section 6.

As baseline system, we trained a SMT system on the Europarl training data, in the
partition established in the Workshop on SMT of the NAACL 20092. Specifically, we
will train our initial SMT system by using the training and development data provided
that year. The Europarl corpus [20] is built from the transcription of European Parlia-
ment speeches published on the web. Statistics are provided in Table 1.

1 Also known as Tikhonov regularisation in statistics.
2 http://www.statmt.org/wmt10/



Table 1. Characteristics of Europarl corpus. Dev. stands for Development, OoV for “Out of Vo-
cabulary” words, K for thousands of elements and M for millions of elements.

Es En Fr En De En

Training
Sentences 1.3M 1.2M 1.3M
Running words 27.5M 26.6M 28.2M 25.6M 24.9M 26.2M
Vocabulary 125.8K 82.6K 101.3K 81.0K 264.9K 82.4K

Development
Sentences 2000 2000 2000
Running words 60.6K 58.7K 67.3K 48.7K 55.1K 58.7K
OoV. words 164 99 99 104 348 103

Table 2. Characteristics of NC test sets. OoV stands for “Out of Vocabulary” words w.r.t. the
Europarl training set. Data statistics were again collected after tokenizing and lowercasing.

Es En Fr En De En

Test 08
Sentences 2051 2051 2051
Running words 52.6K 49.9K 55.4K 49.9K 55.4K 49.9K
OoV. words 1029 958 998 963 2016 965

Test 09
Sentences 2525 2051 2051
Running words 68.1K 65.6K 72.7K 65.6K 62.7K 65.6K
OoV. words 1358 1229 1449 1247 2410 1247

The open-source MT toolkit Moses3 [21] was used in its default setup, and the 14
weights of the log-linear combination were estimated using MERT [22] on the Eu-
roparl development set. Additionally, a 5-gram LM with interpolation and Kneser-Ney
smoothing [23] was estimated using the SRILM [24] toolkit.

To test the adaptation performance of different online learning strategies, we also
considered the use of two News Commentary (NC) test sets, from the 2008 and 2009
ACL shared tasks on SMT. Statistics of these test sets can be seen in Table 2.

Experiments were performed on the English–Spanish, English–German and English–
French language pairs, in both directions and for NC test sets of 2008 and 2009. How-
ever, for space reasons, we only report results for the 2009 test set from the English–
foreign pair, since this year’s SMT shared task of the ACL focused on translating from
English into other languages. Nevertheless, the results presented here were found to be
coherent in all the experiments conducted, unless stated otherwise.

As for the different parameters adjustable in the algorithms described in Section 4,
they were all set according to preliminary investigation as follows:

– Section 4.1: ε = 0.001
– Section 4.2: α = 0.005, β = 0.01

For Section 4.1, instead of using the true best hypothesis, the best hypothesis within
a given nbest(x) list was selected.

5.2 Experimental results

The result of applying the different online learning algorithms described in Section 4
can be seen in Fig. 1. percep. stands for the technique described in Section 4.1,

3 Available from http://www.statmt.org/moses/
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Fig. 1. BLEU/TER evolution and learning curves for English→French translation, considering all
2525 sentences within the NC 2009 test set. For clarity, only 1 every 15 points has been drawn.
percep. stands for perceptron and Ridge for the technique described in Section 4.2.

and Ridge for the one described in Section 4.2. In the plots shown in this figure, the
translation pair was English→French, the test set was the NC 2009 test set, and the size
of the considered nbest list was 1000. The two plots on the left display the BLEU and
TER scores averaged up to the considered t-th sentence. The reason for plotting the
average BLEU/TER is that plotting individual sentence BLEU and TER scores would
result in a very chaotic, unreadable plot given that differences in translation quality
between two single sentences may be very big; in fact, such chaotic behaviour can still
be seen in the first 100 sentences. The two plots on the right display the difference in
translation quality between the two online learning techniques and the baseline.

The analysed online learning procedures perform better in terms of TER than in
terms of BLEU (Fig. 1). Again, since BLEU is not well defined at the sentence level,
learning methods that depend on BLEU being computed at the sentence level may be
severely penalised. Although it appears that the learning curves peak at about 1500
sentences, this finding is not coherent throughout all experiments carried out, since such
peak ranges from 300 to 2000 in other cases. This means that the particular shape of the
learning curves depends strongly on the chosen test set, and that the information that can
be extracted is only whether or not the implemented algorithms provide improvements.
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Fig. 2. Final BLEU and TER scores for the NC 2009 test set, for all language pairs considered.
percep. stands for perceptron and Ridge for the technique described in Section 4.2.

In addition, it can be seen that the best performing method, both in terms of TER
and in terms of BLEU, is the one described in Section 4.2. However, in order to assess
these differences, further experiments were conducted. Furthermore, and in order to
evidence the final improvement in translation quality that can be obtained after seeing
a complete test set, the final translation quality obtained with varying sizes of nbest(x)
was measured. The results of such experiments can be seen in Fig. 2. Although the
differences are sometimes scarce, they were found to be coherent in all the considered
cases, i.e. for all language pairs, all translation directions, and all test sets.

Although the final BLEU and TER scores are reported for the whole considered
test set, all of the experiments described here were performed following an online CAT
approach: each reference sentence was used for adapting the system parameters after
such sentence has been translated and its translation quality has been assessed. For this



source in the first round , half of the amount is planned to be spent .
reference au premier tour , la moitié de cette somme va être dépensée .
baseline dans la première phase , la moitié de la somme prévue pour être dépensé . 8

ridge au premier tour , la moitié de la somme prévue pour être dépensé . 4
perceptron dans un premier temps , la moitié de la somme prévue pour être dépensé . 7

source it enables the probes to save a lot of fuel .
reference ainsi , les sondes peuvent économiser beaucoup de carburant .
baseline il permet à la probes de sauver une quantité importante de carburant . 10

ridge il permet aux probes à économiser beaucoup de carburant . 5
perceptron il permet à la probes à économiser beaucoup de carburant . 6

Fig. 3. Example of translations found in the corpus. The third column corresponds to the number
of necessary editions to convert the string into the reference.

reason, the final reported translation score corresponds to the average over the complete
test set, even though the system was still not adapted at all for the first samples.

In Fig. 2 it can be observed how Ridge seems to provide better translation quality
when the size of nbest(x) increases, which is a desirable behaviour.

Fig. 3 shows specific examples of the performance of the presented methods. For
the first sentence, the baseline produces a phrase that, although being correct, does not
match the reference; in this case, the discriminative Ridge regression finds the correct
phrase in one of the sentences of the nbest list. In the second example, discriminative
regression and perceptron are able to find more accurate translations than the baseline.

One last consideration involves computation time. When adapting λ, the procedures
implemented take about 100 seconds to rerank the complete test set. We consider this
fact important, since in a CAT scenario the user is waiting actively for the system to
produce a hypothesis.

6 Metric correlation

From the experiments, it was observed that online learning strategies that optimise a
certain quality measure do not necessarily optimise other measures.

To analyse such statement, 100.000 weight vectors λ of the log-linear model were
randomly generated and a static rerank of a fixed nbest(x) list of hypotheses was per-
formed for every sentence in a test set. For every weight vector configuration, BLEU
(B) and TER (T) were evaluated for the test set of NC 2008 Spanish→ English.

The correlation as defined by the covariance (cov) divided by the product of stan-
dard deviations (σ)

ρB,T =
cov(B, T )

σBσT
(15)

returned a value ρB,T = −0.23798. This result suggests that even if such correlation
is not specially strong, one can expect to optimise TER (as an error metric) only to
certain extent when optimising BLEU (as a precision metric), and vice-versa. A plot
of the translation quality yielded by the random weight configurations is presented in
Fig.4. It can be observed that it is relatively frequent to obtain low BLEU scores after
optimising TER (high density area in the bottom left part of the graph). On the other
hand, if BLEU is optimised, TER scores are reasonably good (right side of the plot).
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7 Conclusions and future work

In this paper, two different online learning algorithms have been applied to SMT. The
first one is a well-known algorithm, namely the perceptron algorithm, whereas the sec-
ond one is completely novel and relies on the concept of discriminative regression. Both
of these strategies have been applied to adapt the log-linear weights of a state-of-the-art
SMT system, providing interesting improvements.

From the experiments conducted, it emerges that discriminative regression, as im-
plemented for SMT in this paper, provides a larger gain than the perceptron algorithm,
and is able to provide improvements from the very beginning and in a consistent man-
ner, in all language pairs analysed.

Although BLEU is probably the most popular quality measure used in MT, it has
been shown that its use within online, sentence-by-sentence learning strategies may not
be very adequate. In order to cope with the discrepancies between optimising BLEU
and TER, we plan to analyse the effect of combining both measures, and also consider
other measures such as NIST which are also well defined at the sentence level.

We plan to analyse the application of these learning algorithms to feature functions
to study how the behaviour of such techniques evolves in much sparser problems.
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