

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

http://link.springer.com/article/10.1007%2Fs11075-012-9564-z

http://hdl.handle.net/10251/37323

Springer Verlag (Germany)

Campos González, MC.; Román Moltó, JE. (2012). Strategies for spectrum slicing based
on restarted Lanczos methods. Numerical Algorithms. 60(2):279-295. doi:10.1007/s11075-
012-9564-z.

Strategies for spectrum slicing based on restarted Lanczos

methods∗

Carmen Campos, Jose E. Roman

DSIC, Universitat Politècnica de València, Camı́ de Vera s/n, 46022 València (Spain)

Tel.: +34-963877356, Fax: +34-963877359

carcamgo@upv.es, jroman@dsic.upv.es

Abstract

In the context of symmetric-definite generalized eigenvalue problems, it is often required
to compute all eigenvalues contained in a prescribed interval. For large-scale problems, the
method of choice is the so-called spectrum slicing technique: a shift-and-invert Lanczos method
combined with a dynamic shift selection that sweeps the interval in a smart way. This kind
of strategies were proposed initially in the context of unrestarted Lanczos methods, back in
the 1990’s. We propose variations that try to incorporate recent developments in the field of
Krylov methods, including thick restarting in the Lanczos solver and a rational Krylov update
when moving from one shift to the next. We discuss a parallel implementation in the SLEPc
library and provide performance results.

1 Introduction

Eigenvalue problems lie at the core of many computationally intensive applications in science and
engineering. In this work, we focus on the symmetric-definite generalized eigenvalue problem,

Ax = λBx, (1)

where A and B are real symmetric (or complex Hermitian) matrices of order n, and without loss
of generality we assume that B is positive (semi-)definite. The above equation is satisfied exactly
by n eigenvalue-eigenvector pairs, (λi, xi), where all the eigenvalues are real, λ1 ≤ λ2 ≤ . . . ≤ λn,
and the eigenvectors are mutually B-orthogonal, x∗iBxj = 0 if i 6= j. The case of singular B,
where some of the eigenvalues become infinite, will also be treated in this paper. Note that we
consider only regular pencils, that is, A and B do not share a common null space, so A − σB is
nonsingular unless σ is an eigenvalue. Another aspect that we will take into consideration is when
some eigenvalues are multiple, λi = λj , i 6= j.

In large-scale applications it is prohibitive to compute the whole spectrum, and only a subset of
eigenvalues are sought. Depending on the application, the number of wanted eigenvalues can range
from 1 to a substantial percentage of n. The part of the spectrum of interest is also application-
dependent. In this paper, we are concerned with the case when all eigenvalues contained in a given

∗This work was supported by the Spanish Ministerio de Ciencia e Innovación under grant TIN2009-07519.

1

interval [a, b] are required, where either a or b may be infinite. The classical scenario for this is
when the eigenvalue is directly related to a frequency, and the objective is to analyze a dynamical
system in a given frequency range, e.g., in undamped vibrations of structures. Also, many other
applications in electromagnetism or electronic structure calculations require the use of computa-
tional intervals. In these applications, the matrices are very large and sparse, and eigenvalues may
have very high multiplicity, thus making the accurate computation of all eigenvalues in the interval
a challenging task.

The wanted interval typically lies in the interior of the spectrum, or in a region far away from
the largest eigenvalues in magnitude. Therefore, Krylov subspace methods alone cannot be used
for this purpose. However, the situation changes when used in combination with a shift-and-invert
technique that operates with matrix (A−σB)−1B and maps eigenvalues λ to θ = (λ−σ)−1, since
eigenvalues that are closest to the shift σ become dominant in the transformed spectrum. The
spectral transformation Lanczos method [3, 10] has been used successfully for this task, often with
several shifts within an interval. The motivation for using several shifts is that eigenvalues close to
σ converge very fast because they are mapped to well separated θ’s, but for eigenvalues relatively
far away from the shift the effectiveness of the spectral transformation decays significantly.

A multi-shift spectral transformation Lanczos method must not be implemented naively. The
main reason is that changing to a new shift may imply a high computational cost. Dealing with
the inverse (A− σB)−1 requires solving a linear system of equations every time the Lanczos basis
must be expanded. Typically, this matrix is factored at the beginning and triangular solves are
carried out during the iteration. Therefore, a change of σ forces recomputation of the factorization,
and there is a trade-off between this cost and the savings due to improved convergence. Also, a
smart multi-shift strategy must choose the new shift in a judicious way, not very far away from
the current position, but not too close either. The goal is to discover all eigenvalues, without
any miss (including multiplicities), and avoid wastefully computing the same eigenvalues from
different shifts. For this, a very valuable tool is matrix inertia, that allows the validation of sub-
intervals where all eigenvalues have been computed, extending them until the whole interval has
been covered. This type of elaborated strategies are usually referred to as spectrum slicing.

The 1994 paper by Grimes, Lewis and Simon [4] provides a detailed description of a robust
and efficient spectrum slicing procedure. Their method is based on an unrestarted block Lanczos
method with partial reorthogonalization, together with various heuristics for dynamic shift selec-
tion. At about the same time, the area of Krylov eigensolvers experienced a big leap with the
development of effective restarting mechanisms, beginning with Sorensen’s implicit restart [14],
which was employed by many authors in the context of Lanczos methods, and later with the thick-
restart Lanczos method [17], which is the symmetric equivalent to Stewart’s Krylov-Schur method
[15]. These methods can effectively compute a given number of eigenvalues using a subspace of
bounded dimension. The main idea of these advanced restarting mechanisms is to compress the
built subspace into a subspace of smaller dimension retaining as much useful spectral information
as possible. The compressed subspace must satisfy the Krylov relation so that it can be used as
a starting point to extend the Lanczos factorization. We will see that it is possible to take the
compressed subspace computed from a given shift σ1 and translate it so that it becomes the seed
for the Lanczos recurrence of a different shift σ2. This is not a new idea: it is related to the
well-known rational Krylov method [13], that has been employed, e.g., as a multi-shift Arnoldi
method for model reduction [11], and also in a professional (sequential) implementation of block
Lanczos with variable shifts in the HSL library [9, 8] (EA16 subroutine).

A weakness of the Grimes et al. approach is that they ground their heuristics on a cost model

2

that may no longer be valid. The authors present results on moderately sized problems (up to
15,000) that have very small multiplicities (3 at most). We are now interested in computing
thousands of eigenvalues of problems that can reach millions of degrees of freedom with clusters of
eigenvalues as large as 200. Furthermore, these problem sizes require the use of parallel computing,
and in this context we must reconsider certain decisions such as which operations must be avoided
in favour of others.

We propose an updated spectrum slicing methodology that relies on a thick-restart Lanczos
method, combined with a rational Lanczos update, with a number of strategies for shift selection,
deflation, etc. that aim at optimizing the utilization of resources when solving large problems
on supercomputers. Our intention is to provide an industrial-strength parallel implementation
in SLEPc, the Scalable Library for Eigenvalue Problem Computations [6]. A similar endeavor
was pursued by Zhang et al. [18], also with SLEPc, proposing a strategy for shift selection and
solution bookkeeping mostly tailored for a specific application and focusing mainly on a multi-
communicator parallelization. Another parallel implementation of spectrum slicing customized
for Toeplitz matrices can be found in [16]. Our goal is to provide a general solver that can be
robust enough to be used in any scenario. There is a need for such a tool, since the tests in [18]
revealed that neither the Grimes et al. solution (implemented in the commercial sequential library
BCSLIB-EXT) nor the similar BLZPACK package [7] are robust enough.

The plan of the paper is the following. In §2, we describe the main ingredients required in a
spectrum slicing method, as well as the particular approach advocated by Grimes et al. Section
3 provides a detailed report of the proposed methodology. In §4, we discuss some aspects of our
particular implementation. The evaluation of the implemented algorithm is treated in §5. We
wrap up with some conclusions.

2 Preliminaries and related work

In this section we set up the notation and provide basic facts about Lanczos methods. We also
describe the main features of the method by Grimes et al.

2.1 Spectral transformation Lanczos

The shift-and-invert spectral transformation consists in replacing (1) by

Sx = θx, S = (A− σB)−1B, (2)

for a given shift σ ∈ R, where θ = (λ− σ)−1. Matrix S is not symmetric but it is self-adjoint with
respect to the inner product induced by B, 〈u, v〉B := u∗Bv (the case of singular B is deferred for
later discussion). With this inner product, and the related norm ‖x‖B :=

√
〈x, x〉B , the Lanczos

recurrence

β1v2 = Sv1 − α1v1,

βjvj+1 = Svj − αjvj − βj−1vj−1, j = 2, 3, . . . (3)

where αj = 〈vj , Svj〉B and βj = ‖Svj − αjvj − βj−1vj−1‖B , generates a B-orthonormal basis of
the Krylov subspace spanned by S and an initial vector v1. That is, V ∗j BVj = I where Vj =

3

[v1, v2, . . . , vj] and we assume that v1 has been normalized so that ‖v1‖B = 1. The Lanczos
decomposition

SVj = VjTj + βjvj+1e
∗
j (4)

relates the Lanczos basis Vj to the symmetric tridiagonal matrix

Tj =


α1 β1
β1 α2 β2

. . .
. . .

. . .

βj−2 αj−1 βj−1
βj−1 αj

 , (5)

where ej is the jth coordinate vector. The Krylov subspace contains increasingly accurate approx-
imations of eigenvectors of (2), which can be retrieved by means of a Rayleigh-Ritz procedure. Let
(θ̃i, yi) be an eigenpair of (5), Tjyi = θ̃iyi, then postmultiplying (4) by yi results in

SVjyi = θ̃iVjyi + βjvj+1yji, (6)

where yji = e∗jyi. Since V ∗j Bvj+1 = 0 and Tj = V ∗j BSVj , x̃i = Vjyi is the Ritz vector satisfying

the Galerkin condition that the residual Sx̃i − θ̃ix̃i is B-orthogonal to the Krylov subspace. An
alternative eigenvector approximation is the purified vector,

x̂i = x̃i +
βjyji

θ̃i
vj+1, (7)

whose name is motivated by the case of singular B, see §3.3.
A cheap convergence criterion for an eigenpair is βj |yji| ≤ ε|θ̃i| for a given tolerance ε, which

involves a bound for the B-norm of the residual Sx̃i − θ̃ix̃i.
The Lanczos vectors vj start to lose their mutual B-orthogonality as soon as a Ritz value sta-

bilizes. Therefore, practical implementations must explicitly enforce B-orthogonality by either full
reorthogonalization in each iteration or the cheaper partial reorthogonalization. Another variation
of the method is to use a block Lanczos strategy wherein the recurrence operates on blocks of p
vectors and Tj is a banded matrix, see [4] for details.

In a spectrum slicing method, we have a sequence of shifts, σk, k = 1, 2, . . ., and for each shift
we must compute an indefinite (block-)triangular factorization

A− σkB = LkDkL
∗
k, (8)

whose factors will be used during the Lanczos iteration to effect the action of (A − σkB)−1 on a
vector (Dk is block-diagonal with 1× 1 or 2× 2 diagonal blocks). By Sylvester’s law of inertia, we
get as a byproduct the number of eigenvalues on the left of σk

νk := ν(A− σkB) = ν(Dk), (9)

so if σk < σk+1 then in the interval [σk, σk+1] there are νk+1 − νk eigenvalues, counted with their
multiplicities.

4

2.2 Restarted Lanczos methods

In practical Lanczos implementations, the number of basis vectors vj must be bounded, due to
memory limitations but also because the computational cost increases with j, especially if full
reorthogonalization is employed. Restarting a Lanczos decomposition (4) consists in rebuilding
the decomposition in a way that it contains better approximations compared to the previous one.
To build the decomposition from scratch one should choose an initial vector v1 that contains as
many useful spectral components as possible taken from the first decomposition, but this vector
is very difficult to compute explicitly. Thick-restart Lanczos [17] achieves the same effect in an
implicit way, by keeping a low-dimensional subspace rather than a single vector.

Suppose a Lanczos decomposition of order m has been computed,

SVm =
[
Vm vm+1

] [Tm
b∗m

]
, (10)

where bm = βmem, then the goal is to compress the m-dimensional subspace to a smaller subspace,
of dimension m̂ = m/2, say, and keep the directions associated to the most relevant approximations
(in our case, those corresponding to the largest Ritz values θ̃i in magnitude). For this, compute a
sorted eigendecomposition Y ∗mTmYm = Θ̃m where the Ritz values appear on the diagonal of Θ̃m in
decreasing order of magnitude. The decomposition can be truncated by taking the first m̂ columns
of the decomposition resulting from the similarity transformation with Ym,

SVmŶm =
[
VmŶm vm+1

] [Θ̂m

b̂∗m

]
, (11)

where b̂m = Ŷ ∗mbm, Ŷm represents the first m̂ columns of Ym and Θ̂m is the m̂ × m̂ leading

principal submatrix of Θ̃m. Equation (11) is not strictly a Lanczos decomposition, because b̂m is
full and breaks the tridiagonal shape. It is the more general Krylov decomposition [15], that can
be extended by orthogonalizing Svm+1 with respect to the new basis vectors V̂m = VmŶm and
continuing the Lanczos recurrence.

Restarted methods are effective even for moderate values of m, and this has implications on
different implementation details. For instance, it is sufficient to check for convergence only at
the time of a restart, not at every Lanczos iteration. In the case that one or more eigenpairs
have converged to the requested precision, these eigenvectors are locked, that is, the corresponding
columns of V̂m are extracted from the active basis, so the dimension is effectively reduced even
further, but subsequent Lanczos iterations enforce orthogonality against these locked vectors, to
avoid the appearance of spurious duplicates. The number of locked vectors may become large
compared to the maximum basis size m, and explicit orthogonalization against the first m̂ vectors
of the active basis is also required. For these reasons, restarted methods do not need to bother
about sophisticated schemes such as partial reorthogonalization when expanding the Lanczos basis.

2.3 The Grimes-Lewis-Simon approach

The Grimes-Lewis-Simon (GLS) method [4] performs spectrum slicing of the requested interval
[a, b] by a multi-shift strategy that sweeps the interval computing eigenvalues by chunks, and using
inertia to validate sub-intervals. The GLS approach is based on a block Lanczos method, where
ideally the blocksize p must be chosen to accommodate the maximum eigenvalue multiplicity of the
problem at hand (but no larger than 10), together with an efficient partial and external selective

5

reorthogonalization technique. The Lanczos method used in GLS is unrestarted, i.e., does not
incorporate any of the techniques discussed in §2.2.

The general strategy of GLS is to create an initial trust sub-interval (where it is possible to
assure that all eigenvalues contained therein have been computed), and extend it until the whole
[a, b] interval has been completed. Next we summarize the main distinguishing features of their
strategy.

• At each Lanczos step, convergence of eigenvalues is monitored. When convergence is slower
than desired, or the cost per iteration has grown too much, the Lanczos iteration is interrupted
and the analysis moves to a new shift.

• The selection of the new shift σk+1 tries to leave as many to-be-computed eigenvalues on its
left as eigenvalues were computed to the right of σk. This decision is based on non-converged
Ritz values, if enough of them are available. Otherwise, an alternative criterion is used based
on the distance from σk to the furthest computed eigenvalue to the right.

• The shift selection often leaves gaps, so in order to close the trust interval it is necessary to
place additional shifts in between σk and σk+1.

• A deflation strategy is used to avoid recomputation of eigenvalues already computed from the
previous shift, by enforcing orthogonality against some of the eigenvectors already computed
(see a detailed discussion in §3.1).

• At a new shift, the block Lanczos recurrence is started by a block of vectors obtained by
adding unconverged Ritz vectors available from the previous shift.

3 New strategies for spectrum slicing

The GLS method is effective for many situations but it may have pitfalls in some cases, for instance
when multiplicity is high. The main weakness is probably the assumption that all multiplicities
are of the same order, and using a block Lanczos method that exploits a priori knowledge of the
multiplicity. Also, the block size cannot be arbitrarily large, and difficulties may arise with high
multiplicities.

Another drawback is that GLS tries to avoid orthogonalization as much as possible, even if this
implies more Lanczos iterations due to many repeated eigenvalues being discarded. This assumes
that triangular solves are much cheaper than orthogonalization. But this is no longer true for very
large matrices in the context of parallel computation.

Our method, that uses a restarted Lanczos solver, is based on new assumptions. First, Lanczos
convergence is not a problem because the cost per iteration does not grow too much. Second, the
orthogonalization is relatively cheap and scales very well in parallel. In contrast, performance of
the factorization degrades with n and triangular solves are not scalable in parallel. With these
assumptions, we devise new strategies aiming at obtaining a spectrum slicing technique that can
be robust enough for irregular spectra with high multiplicity, and scalable to 100’s of processors.
These strategies try to reduce the number of factorizations (avoid creating unnecessary shifts) as
well as Lanczos iterations (containing costly triangular solves) by orthogonalizing more.

The basic idea of our method is that, at each shift σi, a fixed number of eigenvalues (nev) is
requested, with a limited number of restarts (maxit). Then, the shift is moved and the factorization
is recomputed.

6

3.1 Shift selection, backtracking and deflation

The first shift σ1 will always be one of the ends of interval (the left one if it is finite, or the right
one otherwise). For choosing each new shift, σi+1, the average distance, δ, between eigenvalues
computed from the two previous shifts (σi and σi−1) is used. Based on some experiments, we
have noticed that for matrices with medium or high multiplicity, this distance seems to be more
appropriate than the average distance calculated from the last shift only, σi. Therefore, when all
eigenvalues between σ1 and σi have been computed, we choose a new σi+1 = λ̃+ ξ nev2 δ, where λ̃ is
the eigenvalue computed from σi furthest away from σ1, the direction ξ is 1 or −1 depending on
the initial shift, and nev is the number of eigenvalues expected for the new shift. To simplify the
description, in the following we assume that ξ = 1 and we have started from the left end of the
interval.

If an irregular distribution of the spectrum results in the chosen shift being too far away, it
might not be possible or appropriate to complete the trust subinterval from such shift. In this case
there will be a number of eigenvalues inside subinterval [σi−1, σi] that would not be calculated.
Also, even in the case of a shift located at the appropriate distance, data from inertia might reveal
that some eigenvalues within [σi−1, σi] are missing, most probably due to incompletely computed
multiplicities. In any case, it will be necessary to place a shift backwards in order to search for
those missing values (backtracking). This new shift will be chosen halfway between σi−1 and σi.
Backtracking will be needed whenever inertia informs about missing eigenvalues.

Since Lanczos methods do not guarantee obtaining the complete multiplicity of computed
eigenvalues, one of the difficulties faced by spectrum slicing is ascertaining whether some particular
values are spurious duplicates or genuine multiples of eigenvalues already computed from previous
shifts. Another problem that spectrum slicing has to address is to ensure orthogonality between
eigenvectors associated to a multiple eigenvalue (or a cluster of eigenvalues) when calculated from
more than one shift. The tool used for solving these problems is deflation, which allows working
in the orthogonal complement of a set of selected vectors.

Deflation involves an additional cost, because one vector has to be orthogonalized against all
vectors selected for deflation for each iteration of the Lanczos method. On the other hand, deflation
can also have a positive effect on cost, since it reduces the possibility of recalculating eigenvalues
already obtained. Those two opposing effects of deflation have been studied in this work in order to
choose the appropriate amount of deflation to be applied for improving performance of our parallel
code. We consider three strategies for selecting the set of vectors for deflation, described below.

Basic strategy The minimum deflation necessary for spectrum slicing is the minimum deflation that
ensures orthogonality between eigenvectors calculated from different shifts. In this first strategy,
the set of eigenvectors selected for deflation correspond to the rightmost eigenvalue and all eigen-
values to its left until two consecutive values are separated by a distance greater than ε̃, where ε̃ is a
fixed tolerance needed for assessing whether two eigenvalues belong to a cluster. When calculating
eigenpairs from the new shift, any value found to the left of the smallest eigenvalue considered for
deflation (plus the defined tolerance) is discarded.

GLS strategy During computation for a given shift σi, it is quite common to leave several uncon-
verged Ritz values to the left of accepted ones, but with the previous strategy these values cannot
be obtained when computing from σi+1 since they will be discarded if they appear. The goal of
this second strategy, used in the GLS method, is to allow the computation of these values from the
new shift, in this way avoiding backtracking. The set of eigenvectors selected for deflation are those
associated to the largest converged eigenvalue lying on the left of any unconverged Ritz value, λ†,

7

together with all converged eigenvalues to its right. As in the basic strategy, it is necessary to take
into account possible eigenvalue clusters around λ† (with a tolerance ε̃). Again, any computed
eigenvalue found to the left of the first eigenvalue in the deflation set is discarded.

Augmented deflation strategy The previous strategy does not account for missing eigenvalues that
do not have an associated unconverged Ritz value (located to the left of λ†). This happens, for
instance, in multiple eigenvalues, because it is quite common that not all copies are computed in a
given shift σi and therefore the remaining copies are computed from σi+1 but discarded if the GLS
strategy is used. So for high multiplicity it is necessary to recourse to backtracking often. The
third criterion tries to avoid pending eigenvalues being discarded. We define the left neighbour σ`
of a given shift σi to be the largest used shift which is smaller than σi (not necessarily the previous
one σi−1), and equivalently the right neighbour σr. When computing from σi, the subinterval
[σ1, σ`] is a trust interval (all eigenvalues have been found). The set of deflation vectors for this
criterion consists of all eigenvectors associated to converged eigenvalues between σ` and σi. In this
way, in the event of discarding an eigenvalue it would belong to the trust interval [σ1, σ`], and any
value in [σ`, σi] will be accepted. Even in this case, backtracking may be necessary if the run at
σi terminates (either nev eigenvalues found or maxit restarts done) without having computed all
eigenvalues in [σ`, σi]. A new factorization to compute a few eigenvalues may be wasteful, so if
the number of remaining eigenvalues is very small (e.g., nev/4), we advocate for continuing the
computation with the same shift, rather than forcing backtracking, at least for a few restarts more
(maxit/4 in our implementation). This optimization is possible only in the third strategy, not in
the others.

Irrespective of which deflation strategy is being used, when the current shift σi has been created
for backtracking, we force to use the augmented deflation strategy taking all converged eigenvectors
of values between σ` and σr. In this situation, the Lanczos run can only generate eigenvalues
in the interval [σ`, σr] that were not found before, or eigenvalues outside [σ`, σr]. We assume
that eigenvalues previously computed were the most favourable in terms of convergence, so it is
important to purge them, otherwise the difficult ones have no chance to appear. Also, eigenvalues
with high multiplicity can be computed assuring orthogonality of the associated eigenvectors even
if more that two shifts are required to discover all of them.

3.2 Recycling subspaces during the change of shift

As shown in [12, 8, 11], it is feasible to transform the basis obtained from one shift σ1, into another
one that generates the same Krylov subspace and that can be seen as obtained from another shift
σ2. We intend to test if such procedure could also be of interest in the context of spectrum slicing.
In other words, we wonder if it is beneficial to reuse part of the Krylov relation obtained in the
previous shift to build the new subspace when starting to compute from a new shift, thus avoiding
creating it all anew.

Suppose we have a Krylov-Schur relation (11) obtained by truncating the Lanczos decomposi-
tion computed with S1 = (A− σ1B)−1B,

S1V̂m = V̂m+1

[
Θ̂m

b̂∗m

]
, (12)

where V̂m+1 =
[
V̂m vm+1

]
, and we intend to derive another one for S2 = (A − σ2B)−1B, for

the same space R(V̂m).

8

From (12), and introducing the new shift, we obtain

BV̂m+1Lm = (A− σ2B)V̂m+1

[
Θ̂m

b̂∗m

]
, (13)

with

Lm =

[
Im
0

]
+ (σ1 − σ2)

[
Θ̂m

b̂∗m

]
. (14)

The Krylov relation sought,

S2Wm =
[
Wm wm+1

] [Gm

t∗m

]
, (15)

is obtained using the QR factorization of Lm, Lm = Qm+1

[
Rm

0

]
, updating the basis Wm+1 =

V̂m+1Qm+1 of the Krylov subspace and the projected matrix,[
Gm

t∗m

]
= Q∗m+1

[
Θ̂m

b̂∗m

]
R−1m =

1

σ1 − σ2

(
I −Q∗m+1

[
R−1m

0

])
. (16)

Note that the resulting matrix Gm has no particular nonzero structure.
In our implementation, we employ this technique whenever the Krylov subspace available from

the previous shift is useful for the next one.

3.3 The case of singular B

If B is singular, i.e., semi-definite, the eigenproblem (1) has infinite eigenvalues. We are interested
in computing eigenvectors corresponding to finite eigenvalues, which belong to the range (column
space) of S. It can be shown [10] that the Lanczos vectors belong to R(S) provided that the initial
vector v1 also lies in this subspace, e.g., computing it as v1 = Sv̂1 for some random vector v̂1
and then normalizing it. In finite precision arithmetic this is not sufficient for maintaining all the
computation within R(S), because rounding errors introduce components in the nullspace of B
that do not affect the Lanczos recurrence but contaminate the computed eigenvectors and must
therefore be removed. This purification of eigenvectors can be done in two ways: with the explicit
application of S as in the case of the initial vector, or by using the purified vector (7), which is
equal to Sx̃i/θ̃i. In our implementation we use the latter and compute it at the moment of locking
converged Ritz vectors.

4 Implementation details

The spectrum slicing method described in the previous section has been implemented in SLEPc, the
Scalable Library for Eigenvalue Problem Computations [6], and it has been included in version 3.2
(and later). SLEPc is a freely available software package for the solution of large-scale eigenvalue
problems on parallel computers. It provides solvers for linear eigenvalue problems (standard or
generalized), as well as quadratic eigenproblems and the singular value decomposition. Most of
the linear eigensolvers can address general non-symmetric problems, but internally the algorithm

9

is specialized to possibly exploit symmetry. For instance, there is a Krylov-Schur solver in SLEPc,
that will behave as a thick-restart Lanczos if the problem is known to be symmetric-definite.

SLEPc is built on top of PETSc (Portable, Extensible Toolkit for Scientific Computation [2]),
a parallel framework for the numerical solution of partial differential equations, that provides
object-oriented abstractions of mathematical objects such as matrices and vectors (the underlying
data structures are mostly hidden to the application programmer), together with various classes
of solver objects, including linear, non-linear and time-stepping solvers. For some functionality
such as direct linear solvers and preconditioners, PETSc offers the possibility to interface with
third-party software libraries in a straightforward way, as has been done with MUMPS [1], for
example.

The user can specify many run-time parameters such as the number of eigenvalues to compute,
the convergence tolerance, or the maximum dimension of the built subspace. The thick-restart
Lanczos method implemented in SLEPc is a single-vector version, where in the case of generalized
symmetric-definite problems:

• Each new Lanczos vector is explicitly B-orthogonalized against all previous Lanczos vectors
and any other deflation vectors given by the user. Orthogonalization is done with an iterative
classical Gram-Schmidt method that is both numerically robust and efficient in terms of
memory overhead and parallel communication [5].

• The shift-and-invert spectral transformation (2) is implemented by means of factorizations
and triangular solves via PETSc’s direct linear solvers.

For the implementation of spectrum slicing, we use MUMPS to compute the indefinite (block-
)triangular factorization (8) and get the inertia information. The slicing solver maintains a parallel
data structure containing all eigenvectors computed from the different shifts, and a subset of these
vectors is used for deflation during the Lanczos basis expansion. Our code uses the augmented
deflation strategy, together with rational update and interval completion (we have also implemented
the other alternatives for the experiments in §5). The parameter nev can be selected by the user,
typically in the range 40-120, and may have a significant impact on performance.

Parallelization is based on performing collective operations on distributed matrices and vectors.
The factorization and linear solves are done in parallel (with MUMPS) as well as all operations
required for the Lanczos run. The different shifts are processed one after the other.

5 Evaluation

In this section we provide performance results of the proposed method with a set of test matrices.
We analyze the impact of the different choices of deflation, as well as the use of rational Krylov
updates and the completion of intervals. At the end of the section, we also show results of parallel
executions to analyze scalability of the implementation.

Table 1 shows the test problems that have been used for the experiments. The first five problems
come from the analysis of mechanical structures: fuse5k, fuse1m, fuse2m, and v1v2-31 have been
provided by LMS-SAMTECH company, and bcsst 12 is an ore car from the Harwell-Boeing matrix
collection. The three fuse test cases correspond to a simplified but realistic model of a fuselage,
consisting of a cylinder with skin, frames and stringers, where the frequency range of interest is
[0-60] Hz. This is a parametric model that can scale to an arbitrary dimension, and we use it for
scalability studies. The rest are problems related to materials science: graphene m was provided

10

Table 1: List of problems for the tests, showing the dimension of the matrices, the number of
nonzero entries and whether B is singular or not, as well as the requested computational inter-
val with the number of contained eigenvalues. The last column shows the maximum eigenvalue
multiplicity in the considered interval (*: cluster size with radius 10−6).

name dimension nonzeros sing. B interval # evals multipl.

fuse5k 5,406 138,477 yes [99, 1.5 · 107] 1,145 2
fuse1m 1,036,698 ∼29 mill. yes [0, 1.4 · 105] 1,989 2
fuse2m 2,141,646 ∼59 mill. yes [0, 1.4 · 105] 2,039 2
v1v2-31 6,732 177,966 no [0, 108] 1,444 1
bcsst 12 1,473 17,868 no [100, 108] 578 1

graphene m 1,600 67,200 no [−1, 0] 921 12 (*)
benzenes-2592 23,328 900,720 no]−∞,−0.27] 4,536 200 (*)

by the authors of [18], and benzenes-2592 was generated with the SIESTA code1 for self-consistent
DFT computations.

The executions were carried out on CaesarAugusta, an IBM BladeCenter cluster consisting of
256 JS20 blade nodes, each of them with two 64-bit PowerPC 970+ processors running at 2.2 GHz,
with 4 GB memory per node, interconnected with a low latency Myrinet network. We have used
up to 128 processors, due to account limitations. All tests have been done with a tolerance of 10−10

for acceptance of eigenvalues, a tolerance of 10−5 for cluster detection (used in the basic and GLS
deflation strategies), and a value of 10 for the parameter maxit (maximum number of restarts).

Table 2 shows the results with small test matrices (with 1 processor) for different deflation
strategies. The most remarkable observation is that we can see a significant reduction in the
overall number of Lanczos iterations (directly related to the number of triangular solves) for the
augmented deflation compared to the basic and GLS strategies, and this is due to the fact that
less duplicate eigenvalues are rejected. Thus we foresee a more significant gain in parallel. We also
observe that the option of completing the interval when only a few eigenvalues are missing often
helps in further reducing the number of rejections, and in any case it does not penalize. The last
line in each group of the table also shows how the rational Lanczos update can represent a further
improvement, with a time reduction up to 20% in some cases.

Table 3 shows also a comparison of deflation strategies, but in parallel (with 16 processes,
which is the minimum number required for fuse1m). The results in terms of reduction of iterations
by augmented deflation and rational update are very similar to Table 2. Here we also show split
times for the main operations, where we can see that the time of the numerical factorizations and
triangular solves is proportional to the number of shifts and iterations, respectively. Regarding the
time of orthogonalization, although one would expect an increase with the augmented deflation
strategy, we cannot observe wide variations. This is due to the fact that most of this cost is
associated to full orthogonalization and locking within a Lanczos run, not to deflation against
vectors from other shifts.

In Table 4 we present results with varying number of processes, starting with 16 for fuse1m
and 32 for fuse2m. We can observe a sustained decrease in execution time, up to 128 processes.
The time breakdown reveals that, as expected, the part of the computation that hinders scalability

1http://www.icmab.es/siesta

11

Table 2: Results for small test matrices: def=deflation strategy (1=basic, 2=GLS, 3=augmented),
comp=interval completion activated, rt=rational update, time=total execution time in seconds,
nshift=number of shifts (in parenthesis the number of backtracks), rest=number of restarts,
its=total number of Lanczos iterations, rej=number of rejected duplicates. These runs were done
with nev=40.

name rt def comp time nshift rest its rej

0 1 0 166 86 (40) 141 8276 874
0 2 0 139 66 (20) 118 6602 430

fuse5k 0 3 0 137 60 (16) 115 6128 280
0 3 1 125 51 (8) 116 5548 157
1 3 1 115 52 (8) 111 4867 141

0 1 0 120 23 (2) 36 4212 488
0 2 0 117 22 (1) 35 4049 429

v1v2-31 0 3 0 120 18 (0) 30 3340 90
0 3 1 121 18 (0) 30 3340 90
1 3 1 114 18 (0) 31 2825 78

0 1 0 36.7 30 (17) 51 3517 392
0 2 0 38.2 30 (17) 50 3464 278

graphene m 0 3 0 32.6 27 (13) 46 3157 228
0 3 1 30.6 22 (9) 48 2967 173
1 3 1 24.0 19 (6) 42 2364 158

0 1 0 15.6 49 (11) 90 4901 468
0 2 0 17.0 49 (11) 90 4885 385

bcsst 12 0 3 0 15.7 41 (5) 81 4222 119
0 3 1 15.0 36 (1) 85 4001 73
1 3 1 13.6 36 (2) 80 3307 54

Table 3: Results for the fuse1m test case with 16 processes, using nev=80: [rt, def, comp, time,
nshift, rest, its]=same meaning as in Table 2, tNF=time of numerical factorization, tTS=time of
triangular solves, tOrt=time of orthogonalization.

rt def comp time nshift rest its tNF tTS tOrt

0 1 0 12286 34 (14) 51 6149 4012 5656 2179
0 2 0 10778 29 (9) 45 5283 3475 4863 2012
0 3 0 10339 27 (7) 43 4989 3181 4594 2144
0 3 1 9928 25 (6) 47 4892 2937 4508 2071
1 3 1 8691 24 (4) 39 3876 2841 3572 1830

12

Table 4: Parallel results for varying number of processes (np) with fuse1m (nev=80) and fuse2m
(nev=120). These tests were run with augmented deflation strategy, interval completion and
rational update.

name np time nshift rest its tNF tTS tOrt

16 8691 24 (4) 39 3876 2841 3572 1830
fuse1m 32 5181 24 (4) 42 4046 1147 2757 845

64 3951 25 (6) 48 4340 725 2430 376
128 3333 25 (5) 41 4084 524 2228 166

32 11744 17 (4) 27 4080 2378 5323 2872
fuse2m 64 8060 18 (4) 25 4111 1275 4423 1211

128 6931 18 (4) 26 4228 981 4407 535

Table 5: Results for test case benzenes-2592 to illustrate the capability of the code to compute
eigenvalues with high multiplicity (using the same options as Table 4 and nev=100).

np time nshift rest its tNF tTS tOrt

2 3328 51 (31) 301 33978 15.6 641 2433
4 1720 52 (28) 302 34292 9.1 493 1093
8 1038 54 (30) 305 34679 6.0 408 551

16 698 52 (28) 304 34412 3.8 360 291

the most is the application of (A− σB)−1, that is, triangular solves done by MUMPS. This is the
main motivation in our proposed method for trying to minimize this operation by reducing the
number of Lanczos iterations as much as possible. The remaining time (total time minus the three
operation times shown in the table) corresponds to the symbolic factorization, which is reused from
one shift to the next. We have performed this factorization sequentially (since the option of doing
it in parallel resulted in worse time for these particular matrices), so the time is constant for all
numbers of processes: around 400 seconds for fuse1m and 1000 seconds for fuse2m.

To complete our analysis, we present parallel execution times for a test problem with large
eigenvalue clusters, the largest one containing 200 eigenvalues (considering a radius of 10−6).
In such cases, any of the deflation strategies involves orthogonalization against many vectors to
guarantee eigenvector orthogonality in the clusters, but in the basic and GLS strategies there is the
added difficulty of selecting an appropriate value for the ε̃ tolerance, since a bad choice can imply
unnecessary deflation (for instance, ε̃ = 10−5 would yield clusters of 400 values). Table 5 shows
executions with the augmented deflation, using a value of nev equal to 100. This problem is very
favorable for parallel execution because the factorization is extremely cheap (the nonzero pattern
is concentrated in a very narrow band), and therefore most of the cost is in the orthogonalization,
which scales well.

13

6 Conclusions

We have developed a parallel spectrum slicing method, that has been inspired by the work by
Grimes et al., but incorporates recent algorithm techniques such as thick-restart Lanczos and
rational Krylov update, on one hand, and modifications aiming at improving parallel performance,
on the other. Our approach provides the robustness and flexibility necessary to be used in general
situations without any restriction associated with concrete types of problems. In particular, our
solver can be used in problems with high multiplicity or large eigenvalue clusters. We have devised
a deflation strategy that aims at reducing the number of factorizations and triangular solves, which
typically scale very badly, even if this requires orthogonalizing more.

Our numerical experiments show that our code is able to solve problems with millions of
unknowns, with good parallel behaviour at least up to 128 processes. We have also checked that
our proposed strategy of augmented deflation combined with interval completion and rational
update provides a significant time reduction in all cases.

As a future work, we are interested in exploring strategies with two levels of parallelism, where
the interval is divided in several subintervals, each of them being assigned to a different subgroup
of processes, similarly to [18].

Acknowledgements

We are grateful to Masha Sosonkina and Hong Zhang for helpful suggestions of an early draft of
the paper, and for providing test matrices. We acknowledge the computer resources provided by
the Barcelona Supercomputing Center (BSC).

References

[1] P. R. Amestoy, I. S. Duff, and J.-Y. L’Excellent. Multifrontal parallel distributed symmetric
and unsymmetric solvers. Comput. Methods Appl. Mech. Engrg., 184(2–4):501–520, 2000.

[2] Satish Balay, Jed Brown, Kris Buschelman, Victor Eijkhout, William Gropp, Dinesh Kaushik,
Matt Knepley, Lois Curfman McInnes, Barry Smith, and Hong Zhang. PETSc users manual.
Technical Report ANL-95/11 - Revision 3.2, Argonne National Laboratory, 2011.

[3] T. Ericsson and A. Ruhe. The spectral transformation Lanczos method for the numerical solu-
tion of large sparse generalized symmetric eigenvalue problems. Math. Comp., 35(152):1251–
1268, 1980.

[4] Roger G. Grimes, John G. Lewis, and Horst D. Simon. A shifted block Lanczos algorithm for
solving sparse symmetric generalized eigenproblems. SIAM J. Matrix Anal. Appl., 15(1):228–
272, 1994.

[5] V. Hernandez, J. E. Roman, and A. Tomas. Parallel Arnoldi eigensolvers with enhanced
scalability via global communications rearrangement. Parallel Comput., 33(7–8):521–540,
2007.

[6] V. Hernandez, J. E. Roman, and V. Vidal. SLEPc: A scalable and flexible toolkit for the
solution of eigenvalue problems. ACM Trans. Math. Softw., 31(3):351–362, 2005.

14

[7] O. A. Marques. BLZPACK: Description and user’s guide. Technical Report TR/PA/95/30,
CERFACS, Toulouse, France, 1995.

[8] K. Meerbergen. Changing poles in the rational Lanczos method for the Hermitian eigenvalue
problem. Numer. Linear Algebra Appl., 8(1):33–52, 2001.

[9] K. Meerbergen and J. Scott. The design of a block rational Lanczos code with partial re-
orthogonalization and implicit restarting. Technical Report RAL-TR-2000-011, Rutherford
Appleton Laboratory, 2000.

[10] Bahram Nour-Omid, Beresford N. Parlett, Thomas Ericsson, and Paul S. Jensen. How to
implement the spectral transformation. Math. Comp., 48(178):663–673, 1987.

[11] K. H. A. Olsson and A. Ruhe. Rational Krylov for eigenvalue computation and model order
reduction. BIT, 46:99–111, 2006.

[12] A. Ruhe. Rational Krylov subspace method. In Z. Bai, J. Demmel, J. Dongarra, A. Ruhe,
and H. van der Vorst, editors, Templates for the Solution of Algebraic Eigenvalue Problems: A
Practical Guide, pages 246–249. Society for Industrial and Applied Mathematics, Philadelphia,
2000.

[13] Axel Ruhe. Rational Krylov sequence methods for eigenvalue computation. Linear Algebra
Appl., 58:391–405, 1984.

[14] D. C. Sorensen. Implicit application of polynomial filters in a k-step Arnoldi method. SIAM
J. Matrix Anal. Appl., 13:357–385, 1992.

[15] G. W. Stewart. A Krylov–Schur algorithm for large eigenproblems. SIAM J. Matrix Anal.
Appl., 23(3):601–614, 2001.

[16] A. M. Vidal, V. M. Garcia, P. Alonso, and M. O. Bernabeu. Parallel computation of the
eigenvalues of symmetric Toeplitz matrices through iterative methods. J. Parallel and Distrib.
Comput., 68(8):1113–1121, 2008.

[17] Kesheng Wu and Horst Simon. Thick-restart Lanczos method for large symmetric eigenvalue
problems. SIAM J. Matrix Anal. Appl., 22(2):602–616, 2000.

[18] Hong Zhang, Barry Smith, Michael Sternberg, and Peter Zapol. SIPs: Shift-and-invert parallel
spectral transformations. ACM Trans. Math. Softw., 33(2):1–19, 2007.

15

