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Abstract

One of the most promising approachesrtachine translatiorconsists in formu-

lating the problem by means of a pattern recognition aproBg doing so, there
are some tasks in which online adaptation is needed in oodadldpt the system
to changing scenarios. In the present work, we perform aawestive comparison
of four online learning algorithms when combined with tw@pthtion strategies
for the task of online adaptation in statistical machinagtation. Two of these
algorithms are already well-known in the pattern recognitommunity, such as
the perceptron and passive-aggressive algorithms, betthey are thoroughly
analyzed for their applicability in the statistical maadhimanslation task. In ad-
dition, we also compare them with two novel methods, i.eyeBan predictive

adaptation and discriminative ridge regression. In staéismachine translation,
the most successful approach is based on a log-linear appaban to a poste-

riori distribution. According to experimental results agding the scaling factors

of this log-linear combination of models using discrimimatridge regression or
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Bayesian predictive adaptation yields the best performanc

Keywords: online learning, adaptation, statistical machine traisia

1. Introduction

With the increase of both manually annotated data and catipogl resources,
pattern recognition techniques (PR) have evolved to becstate-of-the-art in
tasks that have been historically reserved for humans doatiog a highly struc-
tured output and a high level of ambiguity. Research fieldf si$ speech recog-
nition, machine translation, or image annotation have e&peed an important
breakthrough as a result of embracing PR. Although thedemsgstypically per-
form well on tasks that are similar to the one that they havenkteained on,
performance decreases abruptly when the task becomestystigterent [1, 2].

In tasks where supervised learning is required, obtainiagually annotated
corpora for every specific domain might not be realistic. §hadaptation tech-
niques are strongly in demand to deal with the lack of donsaieeific data. In
addition, some tasks require the system to adapt itself aftery observation is
presented to the system. Since a complete retraining ia oftéeasible, online
learning techniques [3] are often embraced, leadimgine adaptatiorf4].

Online adaptation is a problem that is currently presentiareety of research
fields like speech recognition [5] or image recognition [@]this work, different
approaches to online adaptation are studied within theifspéask of statistical
machine translatiofSMT). Adapting a system to changing tasks is particularly
interesting in theomputer assisted translatigG@AT) [7] andinteractive machine
translation(IMT) [8] paradigms, where collaboration between humangtators

and machine translation systems is essential in producgigduality results ef-



ficiently. In these scenarios, the SMT system proposes athgpis to a human
translator, who may amend the hypothesis to obtain an aoletarget sentence.
The human translator then expects the system to learn dgafiynfrom its own
errors so that the errors that were corrected once do nottadedcorrected again.
Furthermore, it is often the case that human translatois togeanslate many doc-
uments with different styles and topics in limited time. Tdteallenge is then to
make the best use of every correction provided by the usedagtang the mod-
elsonling i.e., without a complete retraining of the model paranstsince this
retraining might not be feasible with the user actively watfor the system’s out-
put. Experiments show that significant improvements canchesged by means
of online learning, which would lead to a reduction in thediand effort that a
human translator would need to correct the system hypahese

The foundation for modern SMT, the pattern recognition apph to machine
translation, was established in [9], by formulating the Sptfdblem as follows:
given an input sentencein a certain source language, the best translationa
certain target language is to be found, maximizing the pmstprobability:

y = argmaxp(y | x). (1)
y

Current state-of-the-art SMT systems find the best transialf x by model-
ing the posterior probability(y | x) directly by means of the so-called log-linear

models [10], where the decision rule is given by

M
AP (X,
y = argmax P 2 s (x.y)
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Hereh,,(x,y) is a score function that represents an important featutéétrans-
lation ofx intoy, M is the number of models (or features), angare the weights
that act as scaling factors of the score functiof(s, y) represents the score of
a hypothesis given an input sentenceand is not treated as a probability since
the normalization term has been omitted. Common featurifumsh,, (x, y) not
only include different translation models (TM) that deberthe correspondence
in words or sequences of words between languages, theyralkmlée distortion
models that account for necessary reorderings of blocksonfisvand language
models that account for the well-formedness of the traedlaentence. Feature
functions defined as probabilities are usually specifietdéldgarithmic domain,
which is why Eqg. 2 is said to be a log-linear model. Howevems®f the feature
functions used in modern SMT systems do not describe prbteedi(e.g. the
length ofy). Here, we only attempt to adapt a subset of the featureifursthat
describe probabilities, namely those defined at the loaaktation unit level.

Typically,h(x | y) and are estimated by means of training and development
sets, respectively. This leads to one important problenMii:Svhenever this data
belongs to a different domain than the text to be translakedtranslation quality
diminishes significantly [2]. Hence, the adaptation prabis very common in
SMT, where the goal is to improve the performance of systeansdd and tuned
on out-of-domain data by using limited amounts of in-dondata.

Originally, SMT systems relied on word-to-word translasoin which each
source word was translated independently and then reard€hes approach had
the important drawback of not being able to cope with contaxt hence failed
when attempting to translate multi-word expressions. R® teasonphrase-

based(PB) models [9] were introduced, widely outperforming $engord mod-



els [2]. The basic idea of PB translation is to segmeinto phrasegi.e., word se-
guences), then to translate each source phiagex into a target phrasg, € y,
and finally reorder them to compose the target sentgncéypically, bilingual
phrase pairs obtained at training time are stored in a huge taften referred
to asphrase-table along with different features that can be defined at thelloca
phrase level. PB models have been employed throughoutrtlukea

The rest of this paper is structured as follows. Section &grts a short review
of the current work in adaptation and online learning inetéint research fields.
In Section 3, two different strategies for incorporatindjo@learning capabilities
into a CAT system are presented. These strategies adagt tithscaling factors
A or the feature functionk. In Section 4, two online learning algorithms that
are available in the literature are instantiated here ferghrpose of adaptation
in a CAT environment. In addition, two new algorithms arepwsed for the
specific problem dealt with here. The experimental setupengirical results

are presented in Section 5. The last section details canaokiand future work.

2. Related work

Batch adaptation (as opposed to online) is a very broad hetdas received
a large amount of attention in different fields. In [1], thexamaum likelihood
framework is applied to speaker adaptation. In [11], the imaxn likelihood
framework is expanded, obtaining maximum a posteriornestiors that are aimed
at adapting model parameters. In [12], adaptation is cotdaas a classification
problem by extending the set of features with a domain-$pdeq.

However, there are also cases where there is no adaptateatdd! available

beforehand, and the system needs to adapt itself onlinewtittalling into an



excessive time burden. This problem, among others, hagdethe development
of an incremental version of the Expectation-Maximizatagorithm [13]. This

algorithm has been successfully applied in an IMT scenarifl4], where the
models involved are incrementally updated as the user texdb received.

The perceptron algorithm is probably one of the most poputdine learning
algorithms in the machine learning field [15], where the peters are updated
after the label of the current observation is presenteddcsitstem. Therefore,
this algorithm has been included in the present study forgarieon purposes.

The passive-aggressive (PA) framework [16] is a populailfaof margin-
based online learning algorithms. In [17], the authors psapthe use of the PA
framework to update the feature functions The improvements obtained were
very limited, since adaptinh is a very sparse problem. For this reason, we com-
pare adaptindx with adapting\, which is shown in [18] to be a good adaptation
strategy. In [18], the scaling factors are adapted by mehas adaptation set in
a Bayesian learning fashion. In contrast, our purpose igtfopm online adapta-
tion, i.e., to adapt system parameters after each new sdrapleeen provided.

Several works make use of online learning algorithms fomlieg the scaling
factors in SMT. However, most of them employ these algorglion the purpose
of training phrase-based systems discriminatively andtiog the number of fea-
tures present. This is the case in [19], where a perceptyd@-agorithm is used
to learn\, and in [20, 21], where online large-margin algorithms ased.ifor that
same purpose. Both approaches are then compared in [22].

In this work, we present an in-depth comparison of four anllaptation al-
gorithms, i.e., passive-aggressive, perceptron, discative ridge regression, and

Bayesian predictive adaptation. The passive-aggreskgjgatiim and the percep-



tron algorithm have been applied by other authors to fedturetion and scaling
factor adaptation, respectively. In this work, in order #fprm a meaningful
comparison, the passive-aggressive algorithm has bedie@pp scaling factor
adaptation and the perceptron has also been used for féahateon adaptation.
The authors of the present article have recently appliecd8an predictive adap-
tation and discriminative ridge regression to scalingdaetdaptation. The ap-
plication to feature function adaptation is also shown Hereompleteness. All
these algorithms have been applied to feature function ealthg factor adapta-
tion within a simulated CAT environment, in which the SMT ®ra receives the

correct translation after having produced its own autoortatinslation.

3. Adaptation approaches

In general, in an online learning framework, the learnirgpathm processes
observations sequentially. After every input, the systeakes a prediction and
then receives feedback, which can range from a simple apmitvow good the
system’s prediction was to the true label of the input in clatgby supervised
environments. The purpose of online learning is to modig/pghediction mecha-
nisms in order to improve the quality of future decisionse@pcally, in a CAT
scenario, the SMT system receives a source sentence andutmris a trans-

lation hypothesis. The user then post-edits the systenpsthgsis, producing a

reference translation” that can be used as supervised feedback. The purpose is

to learn from that interaction. Thus, Eq. 2 is redefined ds\i

M

yo = argmaxd A bl (x.,y)

y m=1

= argmax\'-h'(x;,y), (3)

y



where feature functionk’ and log-linear weights\’ vary according to samples
(x1,¥7),- -, (xe-1,¥7_1) Seen before time. In order to simplify notation, we
will omit subindext from input sentenc& and output sentengg although it is
always assumed. We can apply online adaptation to either \’, or to both at
the same time. However, in this paper, we focus on adaptifygoore at a time.

The hypothesig that maximizes the likelihood is not necessarily the hypoth
esis with the highest quality from a human perspective oerms of a certain
quality measure. Ley* be the hypothesis with the highest quality, but which
might have a lower likelihood Our purpose is to adapt the model parameters so
thaty* is rewarded and achieves a higher score according to Eq. 3.

We define thalifferencein translation quality between the proposed hypothe-

sisy and the best hypothegys in terms of a given quality measurg-):

1y) = [uy) = ny")l, (4)
where the absolute value has been introduced in order teqeegenerality, since
in SMT some of the quality measures used, such as TER [23ksept an error
rate (i.e., the lower the better), whereas others such asJ§RE] measure preci-
sion (i.e., the higher the better). The tekf) also depends on the best hypothesis
y* and, in turn, also depends on sentercand reference translatigri. Those
dependencies are not explicitly included in order to kedptian uncluttered. The

score difference betweghandy™ is related tap(y), which is defined as

d)(y) = S<X7 y*) - 8(X7 y)7 (5)
where again the dependencies withy”, andy* have been omitted to simplify

notation. Ideally, we would like differences ift) to correspond to differences in

1y* does not necessarily match the reference translgfiatue to eventual coverage problems.
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¢(-): if hypothesisy has a translation qualify(y) that is very similar to the trans-
lation quality of u(y*), we would like this to be reflected in translation scere
i.e.,s(x,y) is very similar tos(x, y*). Hence, the purpose of our online procedure

should be to promote this correspondence after each sgmphe ).

3.1. Scaling factor adaptation

A coarse-grained technique for tackling the online leagrproblem in SMT
implies adapting the log-linear scaling factrpresent in Eq. 3. In order to com-
pute the new scaling factod€, the previously learned’™! needs to be combined
with an appropriate update stéf). The aim is to compute an appropriate update
term X' for translating the sentence pair observed at timex;, y7), and then

obtain\’. This is often done as a linear combination [25], where
A= (1— )X+ aX (6)

for a certain learning raie. Computing\’ can be seen as a rudimentary predictor-
corrector step where estimatidfi ' is corrected by an appropriate update §ttep
The information that is taken into account when compuﬁﬁgi;s general and
imprecise, but the variation in score in Eq. 3 can be highesihe scaling factors of
the log-linear model will be modified: when adapting the sgsto a new domain,

the importance of every single model will be adjusted in aimemmanner.

3.2. Feature function adaptation

As discussed in Section 1, state-of-the-art SMT systenmseptea log-linear
combination of feature functions,, (x,y). These feature functions include sev-
eral translation models, such@ | y) andp(y | x). They also include models to

cope with word-reorderings between the source languagéartdrget language,



as well as the target language model which assesses hovionakd the target
sentence is. Typically, the translation models are stamea phrase-table since
they can be defined at the phrase level, he,(x | y) = D>, hm(Zk | Jx) When
working in the logarithmic domain. However, the rest of thedels cannot de-
compose into phrase-specific scores because of their nitstead of attempting
to adapt all of the feature functions, we will only researcé bnline adaptation
of the translation models. For this purpose, we will definéx,y) as the com-
bination of all translation models defined at the phrasel larel adaptation will
be performed only foh,. The reason for adapting only, (and not the individual
models or even the other feature functions) is that, evemscase, the number of
parameters to be adapted is on the order of several millienBlbe the size of the
phrase-table (i.e., several million elements). We willaterbyg(z, 7) a function
returning a vector oB components, whose entries are all zero except for the one
corresponding to phrase pdit, 7), whose value is the score 6f(z, g) for that
specific phrase paig(x,y) will return a vector of size3, with all entries set to
zero except those of all phrase pdifg, 7 ) that build up sentence pdix, y).
Even though parameters within(x, y) could be altered directly, it is techni-
cally more straightforward to introduce an auxiliary veratoc R?, following the
work in [17, 26] and for purposes of comparison. Then, theeafh,(x,y) at

timet can be expressed as a product of two vectors such that

1

hi(X, Y) =u"- g(X7 Y) (7)

Note that the entries of the auxiliary vectoare initially all set tol (at¢ = 0).

As done when updating, u will be updated following a linear combination:

u' = (1 —a)u !+ au'. (8)
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Here u’~! is the vector that has been learned after observing the quevi
(x1,¥7), ..., (x1,y7_1) sentence pairs, and is the online update after observ-
ing thet-th sample(x;, y7). Note thata’ does not need to be the optimumat
timet, but only the update step, which may even be just a gradient.

Since onlyh, varies after each new observation, Eq. 3 can be redefined as

Yo = argmaxd _ Anhin(X,y) + hi(x,y) = argmaxi, (x,y) + ki(x,y), (9)

Y ngs y

wheres denotes here the set of all features which can be defined at the local
phrase level, andl,(x,y) is the combination of all features which are not defined
at the phrase level, i.e., all the features except the sitioalmodels. Note thait,

does not have a super-indekecause it is constant in time.

4. Online methods

In this section, passive-aggressive, perceptron, discaitive ridge regression,
and Bayesian predictive adaptation are introduced. Thergéphilosophy for
each method is described first. Then, the application toyean@aptation strategy
is presented. Sub- and super-indicesight be omitted for clarity if the context is

obvious or stated explicitly when the temporal relatioruiegs a clear distinction.

4.1. Passive-aggressive

Passive-aggressiV @A) [16] is a family of margin-based, on-line learning al-
gorithms that update model parameters after each new @tgerhas been seen.
In this case, PA is applied to a regression problem, wherggattaalue has to be
predicted by the system for the hypothegiat timet by using a linear regression

function where the weights are the parameters that have leabeed.
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After every prediction, the true target value is revealed e system suffers
an instantaneous loss. If the error made falls below a cestasitivity parameter,
the loss suffered by the system is zero and the algorithmirepassivei.e., the
new weight vector is equal to the previous one. Otherwiseldss grows linearly
with the error and the algorithmggressivelyorces an update of the parameters.
The idea behind the PA algorithm is to compute the weightsefégression func-
tion so that it achieves a zero loss function on the currgmitimvhile remaining

as close as possible to the previous weight vector.

4.1.1. Passive-aggressive for scaling factor adaptation

The constrained optimization problem yielding update tAfris stated as [16]:
< .1
A= argmin_ || — XHP 408 st U(3) =0, (10)
A

where¢? is a squared slack variable that is scaled by the aggresfaeiorC, ac-
cording to the so-called PA Type-Ily) is the difference in translation quality be-
tween the hypothesis proposed by the system and the bestlegmas described
in Eq. 4. It is common to add a slack variable into the optiri@raproblem to
achieve more flexibility during the learning process. Or@edptimization prob-
lem is defined, the update term may be obtained by adding tigraint together

with a Lagrangian variable and setting the partial denestito zero [17]:

G G- A ()
A= emET L a1

where®(y) = h(x,y*) — h(x,y), and the update is triggered whah ' &(y) >
V/U(y) is violated. Pluggingit into EQ. 6 results in a generalization of PA that
matches the original work in [16] whem = 1. Figure 1 shows the pseudo-code

for the PA-II online adaptation algorithm when adaptingliscgfactorsA.
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while input sentences x; in stream do

y « argmaxA’!-ht(x,,y)

output ;

if not X' '®(y) > /I(y) then
&(3) < h(xi,y*) — h(x,5)
N e e e
A (1—a)X 4+ aX’

dse A’ « A1

end if

end while

Figure 1: Pseudo-code for PA-Il online learning of the saafactors\ as described in Section 4.1.

4.1.2. Passive-aggressive for feature function adaptatio
The constrained optimization can be similarly formulatedféature function

adaptation as:
1
N:ammmdm—u“WF+Cﬁ s.t. I(y) =0, (12)

and the solution to this problem is given by the expressiagh@lupdate term
1) — a1 (¥
ﬁt — @(y) (Y) _ 1‘12 1()’)’
1)1+ &
whered(y) = g(x,y*) — g(x,y), with g(-, -) being defined in Eq. 7. Asin [17],

(13)

the update is triggered only whenviolates the constraint’ ' ®(y) > /I(¥).

4.1.3. Heuristic variation

Another update condition that is different to the one déstiin the previous
section has been explored in this work. In this variationypdate always has to
be performed whenever the quality of a predicted hypothesisvorse than the

quality of the best possible hypothesis in terms of quality measurne(-):
" uly”) — u(¥)] > 0. (14)
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In this way, parameter estimations that lead to better hgs®s are rewarded.

Symmetrically, estimations that produce lower quality tiyyeses are penalized.

4.2. Perceptron

A standard single-layer perceptron has a number of inputse/kdimension-
ality depends on the dimension of the observations. Evenahig of a given
observation is weighted and combined in its hidden layeh lie rest of the
variables to produce a single output. As an error-driveoréigm, the output pro-
duced is compared with the ideal target value and the paesmeftthe perceptron
are adjusted to reduce the difference between the targg¢haralitput values.

Although the perceptron algorithm [15, 27] is very poputesjmple variation,
the perceptron-like algorithm (PCL), is also widely use,[29, 30]. Among the
algorithms studied in this work, PCL is the simplest anddsstmethod since it
involves only three operations on vectors. PCL was useeéaalsbf the standard
perceptron for comparison reasons since PCL was sucdgsgiplied in [28] and
outperformed the regular perceptron in preliminary expentation. Specifically,
the PCL algorithm makes a fixed-length shift of the previowsght vector in
the direction of the difference (gradient) between the ouppoduced¥) and the
output that the system should have produged.(

4.2.1. Perceptron for scaling factor adaptation

To adapt the scaling factors, the input sample for the pérees the value of
h(x;,y;) at each time¢. These samples ard-dimensional, wherd/ is the total
number of models (typically arountt). Those vectors are combined linearly

with the scaling factora so that the shift term’ is computed for PCL as [28]

A =sign(h(x,y") — h(x,y)). (15)

14



while input sentences x; in stream do
y « argmaxA’!-ht(x,,y)
y
returny

t . . o
A+ sign(h(xs, y*) — h(x¢,y))
A (1= A 4+

end while

Figure 2: Pseudo-code for PCL online learning of the scdlistprs\ as described in Section 4.2.

In this perceptron-like algorithm, th&ezn operator implies that fixed-size steps
will be taken when adapting the parameters. This can be seanvatered-down
version of the standard and widely used perceptron whogs stéght be, in its
most general form, calibrated by the difference betweenetbsutput and actual

output. Figure 2 shows the pseudo-code for PCL when adapting

4.2.2. Perceptron for feature function adaptation

To adapth, the necessary perceptron will be much larger since the sgu-
ples are feature vectogs(x, -), which are then combined linearly in the single
layer of the perceptron with the weights of the auxiliarydtion u’—*.

Using the feature vectq(x, y) of the system’s hypothesjsand the feature
vectorg(x, y*) of the best possible hypothesis from the system, the PCL shift

term for adaptindh is computed in the same way as for the casA'of

' = sign(g(x,y") — 8(x,¥))- (16)

4.3. Discriminative ridge regression

PA and PCL algorithms try to find a configuration of the weigéttors such
that good hypotheses tend to scohggher. Discriminative regression, however,

also enforces thatad hypotheses scorewer, by using all hypotheses within a

15



givenN-best list. Here, we present a method which we have natisedminative
ridge regressiorfDRR) [31], which uses the ridge regression technique teldgv

a discriminative online adaptation algorithm.

4.3.1. DRR for scaling factor adaptation

The DRR algorithm requires aN-best list of hypotheses in decreasing order
of likelihood. Letnbest(x) be such a list computed by our models for sentence
To adapt\, we define anV x M matrix H, that contains the feature functiohs

of every hypothesis, wher& is the number of features in Eq. 3:
Hx = [h(X, }’1)> R h(X7 YN)]/ . (17)
Additionally, letH} be a matrix such that

H = [h(x.y"), ... h(x.y")] | (18)

X

where all rows are identical and equal to the feature vedttreobest hypothesis

y* within the N-best list. ThenRy is defined as

Ry = H: — H, . (19)

X

The key ideais to find a vectdl such that differences in scores are reflected

as differences in the quality of the hypotheses. That is,

Xt

Rx - A oy, (20)

wherel, is a column vector ofV rows such that, = [I(y1)...l(y:) ... l(y~)],

Vy; € nbest(x). The objective is to find\" such that

Xt

A = argminRy - A — 1 (22)
b\

= argmin||Ry - XA — L ||, (22)
b\
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while input sentences x; in stream do
y < argmaxA’!-hi(x;,y)
output ;
Hy, < [h(x¢,y1),... . h(xe,yn)] , Vyi € nbest(x)
Hy, < [h(xt,y7),.. ., h(x;,y")]
Rx, < Hy, — Hx,
A (RL, R, +81) 'R, -1,
AN (@—a)A !+ aX’

t

end while

Figure 3: Pseudo-code for DRR online learning of the scdntprsA as described in Section 4.3.

where|| - || is the Euclidean norm. Although Egs. 21 and 22 are equivéient
the X that minimizes the first one also minimizes the second org) 22 allows
for a direct implementation thanks to the ridge regre§sic§ﬁ can be computed

as the solution to the overdetermined system A\ = 1., which is given by
A = (RL-Re+ D) R, - L, (23)

where a smalb is used as a regularization term to stabiliZe- R and to ensure

that it is invertible. Figure 3 shows the pseudo-code for DiAfen adapting\.

4.3.2. DRR for feature function adaptation
To adapth, the rows of matrixi, are the feature vectopsthat correspond to

the combination of TMs for every hypothesis. Hence, we walhdteH, asG:

GX = [g(X,y1),...,g(X, YN)]/- (24)

Note that the dimension @k, can get very large in this case since it i%ax B

matrix, with B being in the range of millions of elements.

2Also known as Tikhonov regularization.
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Then, the score for all hypotheses is represented by thencolector
sx = H, - A + Gy -ul™t | (25)

where, following the notation in Eq. 9, is anN x |m ¢ TM| matrix that con-
tains all models that are not part of the TMs, i.e., languageardering models,
for everyy € nbest(x). A, are the corresponding scaling factors for.

The definition ofG}, for feature function adaptation is

Gy =[g(xy"),....8xy"], (26)

where all rows are identical and equal to the features of thgsisy*. Then, the

solution to the overdetermined systép - u’ = 1, is given by the equation:
i = (R - Ry + A1) Ry -y, (27)
with Rx = G} — G in this case.

4.4. Bayesian Predictive Adaptation

All three methods presented above rely on a single-best psimation of the
model parameters. In contrast, in Bayesian adaptatiormtitel parameters are
considered to be random variables that have some kind oba gistribution. Ob-
serving these random variables leads to a posterior dengitgh typically peaks
at the optimal values of these parameters. Since the malgeldhood where the
model parameters have been marginalized is often intriactatBayesian predic-
tive adaptation(BPA), this likelihood is approximated by sampling dirgdilom
the posterior distribution of the data given the model patams. This leads to
an approximation of the real distribution, rather than anpestimate, and usually

entails more robust estimates. In this article, BPA is aupiin an online scenario.
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In BPA, Eq. 1 is reformulated as follows (see [18] for the fidrivation):
y :argmayp(y, 0|x;T,A)dd ~ argmayp(e | T, A)p(y | x,0)d0 (28)
y y
~argmax| p(4 | 6:T)p(6 | T)ply | . 0)db, (29)
y
whereT represents the complete training s@tthe adaptation data, aridthe
model parameters. (i.e., eithkror A). In the approximation in Eq. 28, several
assumptions have been made. The first assumption is thatt@etptencg only
depends on the model parameters and the current input sestegind not on the
complete training and adaptation data. The second onetisnib@el parameters
can be assumed to be independent of the current input senteRcom Eq. 28 to
Eq. 29, the termp(6 | T', A) has been decomposed according to the Bayes theorem,
where the normalization denominator can be neglected ghetrit has no influ-
ence on the maximization. This leads to a very intuitive dggosition: the last
term,p(y | x, ) is the same term that appears in Eq. 1; the middle tg(th| 7")
is a prior distribution over model parameters, which wiltagnt for rewarding
those parameter sets that are similar to our prior knowlefilggly, p(A | 0;7T)
will account for biasing the final marginal likelihood towdsrA. Performing the
integral over the complete parametric space forces the hotkke into account
all possible values df, thereby yielding more robust estimationgo§ | x).
Although computing the above integral is the correct thimga from a theo-
retical point of view, in Bayesian learning, it is quite cormmto have intractable
integrals. Hence, a random sampli§{fr) is considered, witl; being the es-
timation of ¢ obtained at training time. In this work, this sampling wié per-
formed by alternatively perturbing each one of the comptsefv; by a random

amount, since such heuristic procedure is shown in [18] tiopa well in SMT.
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ConsideringA? (i.e., the lastA’ sentences validated by the user at tithas

the adaptation sample leads to an online variant of BPA, &vher

= argmax Z (A" 0;T)p(0 | T)p(y | x¢,0). (30)

Y ves(or)

T) does
not vary in time either an&(6) remains constant. Therefore, the online nature

of Eq. 30 relies only o, but it allows an efficient implementation, given that:

p(6 | T') can be precomputed.
p(y|x, #) needs to be computed for every hypothesis and every testrsemt

o p(A'6;T) H p(Xa4,ya|0; T) only requires one division and one mul-
Vae At
tiplication in order to incorporate the last sentence, sieach one of the

components within the product have already been computed ttiis com-

ponent was the actual test sentence (see Figure 4 for thefcadapting)).

It is also shown in [18] that it is beneficial to consider a kaggng termo:

_argmax > (A" 6:T)ply | x4,0)) (6| T), (31)

v0eS(67)

whose role is similar to the described in Section 3. Note that, in the case of BPA,
there is no linear interpolation between the old parametedshe newly obtained

ones since BPA does not compute a single point estimate &¢ therameters.

4.4.1. BPA for scaling factor adaptation
Plugging in the log-linear model in Eq. 3, assuming #{@t7") ~ N (61, [-0),

and considering as parameters the scaling factafshe log-linear model, yields:

exp A h Xaa Ya) €xXp A ) h(Xta y)
p(y|x;) ~ Z H N(Ar,I-0) .(32)
VYAES(Ar) VaeAtz /xp A-h(x,, y') Zy/exp A-h(xq,y’)
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initialize S(Ar)
for all Ay € S(Ar) dop(As) « N(As; A, o) end for
while input sentences x; in stream do

for all y € nbest(x;); As € S(Ar) do
By, exp s - h(x, y)
> expAs-hxy)

y'Enbest(x:)

end for

yargmax Y (p(A'[N)-Ty)" - ()
Y eSO
output y
B * o
for all A, € S(A7) dop(Af | A) < p(A | X) - Ay * end for

t
1,s

dequeue(A?)
enqueue(A’, By~)

end while

Figure 4. Pseudo-code for BPA online learning of the scallaggorsA. B is a N x S matrix,
whereN is the size ofibest(x) andS is the size ofS(Ar). By~ is the row of B that corresponds
to the best output hypothegi$. In turn, A, stands for termBy., but for adaptation sampte,
which has been previously seen. Operati@gueue (A*) removes the first column of? (i.e.,
discards the oldest adaptation samplé) andenqueue (A?, By-) addsBy- as the last column
of At.

Figure 4 shows the pseudo-code for adaptingith BPA. A’ is treated as a
C x S matrix, with C' being the number of sentences seen before tintebe

considered within BPA, and = |S(6r)|.

4.4.2. BPA for feature function adaptation

Considering the feature functidn as the model parameters (Section 3) yields

exp (hy (X4, ¥a) + 0 - 8(X4,¥a))
yix)~ Y ]I . o :

YueS(ur) VacA?t (Xa’ y ) +u g(Xaa y ))

. €xXp (hr(xtay)+u'g(xt7y)>
Mr o) o Tl y) F gl y)) . o)
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Although Eq. 33 formulates how to obtain an adequate fedimnetion adaptation
by means of BPA, implementing this formula is, in practias tostly. For this

reason, in the case of BPA, experiments are only conductadapt\.

5. Experiments

5.1. Experimental setup

Given that a true CAT scenario is very expensive for expemiaién purposes
since it requires a human translator to correct every hygsmhwe will simulate
this scenario by using the reference sentences that aenprashe test set. These
sentences are fed one at a time, as would normally occur inlarecCAT process.
Even though the final TER scores are reported for the whotesésconsidered,
each reference sentence was used for adaption only afteotiee sentence had
been translated and its translation quality had been asteblence, the transla-
tion quality reported corresponds to the average over thgptaie test set, even
though the system had not been adapted at all for the firstisamp

The most popular translation quality metrics are TER [23] 8LEU [24].
TER is an error metric that computes the minimum number akeeiquired to
modify the system hypotheses so that they match the refeserfRossible edits
include insertion, deletion, substitution of single wqrdsd shifts of word se-
guences. BLEU is an accuracy metric that measurgsam precision, with a
penalty for sentences that are too short. For coherencqutigy metric used for
assessing translation quality is also the one used for congpy* (see Section 3).
In this paper, we favor the use of TER, since BLEU implemenggametrical
average which is zero whenever reference and hypothesistdiare a common

4-gram. Hence, BLEU is not appropriate for measuring tegtist quality at the
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Table 1: Characteristics of the Europarl corpus and NCQ3ts OoV stands for “Out of Vocab-

ulary” words, k stands for thousands of elements, and M st&ordnillions of elements.
Spanish  English French English
Sentences 1.3M 1.2M
Training Run. words| 27.5M  26.6M | 28.2M 25.6M
Vocabulary | 125.8k  82.6k | 101.3k  81.0k
Sentences 2000 2000
Development| Run. words| 60.6k 58.7k | 67.3k  48.7k
OoV.words| 164 99 99 104

sentence level ang* may not be appropriately defined.

As baseline system, we trained an SMT system on the Europanirtg data,
in the partition established in the Workshop on SMT of the AZT1E. Initially,
the SMT system was trained using the training and developdaga provided that
year. The Europarl corpus [32] is built from the transcoptof European Parlia-
ment speeches published on the web. The data was collectzdwiyng the web
between 1996 and 2010 in the 11 official languages of the Eampnion. Then
it was aligned at the document level, split into sentencesnalized, tokenized,
and aligned at the sentence level. This corpus has found/aweespread use in
the SMT community, having been used for numerous SMT evialuaampaigns.
We focus on the Spanish—English (Es—En) and French—En@lisiEn) language
pairs. Corpus statistics are shown in Table 1.

The baseline system was built according to recent SMT etralueampaigns
[2, 33] by means of the open-source MT toolkit Moses [34], ahhwas used
in its default setup. In this setup, the trained SMT systeatuies a statisti-

Shttp://www.statmt.org/wmt10/
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cal log-linear model that includes a PB translation moddgreguage model, a
distortion model, and word and phrase penalties. The PBlaaan model pro-
vides direct and inverse frequency-based and lexicalebpsmbabilities for each
phrase pair in the phrase-table. Phrase pairs are extiaotedymmetrized word
alignments generated by GIZA++ [35]. To model reorderingaddition to a
negative-exponential on reordering distance, a modelitondd on phrases was
estimated, namely the “orientation-bidirectional-festdirtion model [36]. A 5-
gram language model was estimated on the target side ofdiméniy data using
Kneser-Ney smoothing [37] by means of SRILM [38]. The rasgltLl4 weights
in Eq. 2 were estimated using MERT [39] on the Europarl dgualent set.
Since our purpose is to analyze the performance of diffeyelitie adaptation
strategies and methods, in addition to Europarl, we alssidered different test
sets that do not belong to the parliamentary domain and ta been used in
SMT evaluation campaigns, such as the News Commeh(ii@) 2009 and the
TED® test sets. In addition, the learning ratefor every online adaptation al-
gorithm was optimized on the NC 2008 test set. The News Cortanenorpus
was obtained from different news feeds and was used as tdst size 2010 ACL
shared task on SMT [2]. For reasons of brevity, we only repha@tresults with the
NC 2009 test set and in English—Spanish translation, ewvaugthresults involv-
ing other language pairs and test sets from other years wenelto be consistent
with the results presented here. The TED corpus is a compenali public talks
belonging to different domains, which was used as test s&#tar2010 IWSLT

shared task [33]. This corpus is only available for Englisteach translation and

4This corpus is available from http://www.statmt.org/wiht1
5This corpus is available from http://iwslt2010.fok.eu/
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Table 2: Characteristics of News Commentary 2008, 2009, TafMd test sets. OoV stands for
“Out of Vocabulary” words with respect to the Europarl tiaimp set, k stands for thousands of

elements, and M stands for millions of elements.

NCO08 NC09 TED
Spanish English Spanish English English French
Sentences 2051 2525 1704

Run. words| 52.6k 49.9k 65.6k 68.1k | 32.0k 33.9k
OoV. words| 1029 958 1229 1358 278 692

was designed for translatianto French. See Table 2 for NC and TED test set
statistics. The performance of the different methods mtesEis compared on the
NCO09 set, and the TED test set is used to verify the conclssioawn.

The aggressivity parameter C within PA was sebto(4 = 0 was used)
following the work in [17]. The size ofi* in BPA was set to 100 ané was set to
0.01 for DRR, according to the preliminary experimentation igatrout on other
language pairs and other corpora. For PA, PCL, and BPA,adsté using the
true best hypothesis, the best hypothesis withinthkest list was selected. The
experiments that include the PA heuristic (see Sectionefparreported since this

heuristic did not bring significant improvements over thigioal PA algorithm.

5.2. Experimental results

As a first step, we analyzed the effect of varying the learmatg « in all
studied online adaptation algorithms, as described in BB)s(6), and (31). The
final TER score after processing all of the samples preseheiNCO08 test set is
shown in Figure 5. Note that, in Figure 5, the scale of featumnetion adaptation
is different to the one in scaling factor adaptation so thiates can be clearly dis-

tinguished. Interestingly, it was found that the optimuarieng rates are rather
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Figure 6: Final TER scores when adaptingr A for NCO9 test set in ER-Es direction.

consistent{ 0.01) for all language pairs in the News Commentary test data.
Under the assumption that the quality of hypotheses is nm#s®arily corre-
lated with their likelihood, largeN-best lists may include better hypotheses with
a very low likelihood. Online predictors should be able talfthese good hy-
potheses even if they appear deep in Mbest list. After setting the optimum
«a, the final translation quality obtained with varying sizésbest(x) was mea-

sured on unseen test sets, i.e., the NC09 and TED test setgesuits of these
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Figure 7: Final TER scores when adaptingr A for the TED test set in ErFr direction.

experiments are shown in Figure 6 for NC09 and in Figure 7 t6DT

When adapting\, the improvements obtained with DRR and BPA proved to
be statistically significant at a 95% confidence level. Alitlo the difference be-
tween BPA and DRR was not statistically significant, thisestdnce was found to
be consistent in all of the experiments. Moreover, it wasitbthat DRR achieved
a performance that was close to the maximum in a linear caatibimwhen the
size of theN-best list was large enougR(00 hypotheses). Other differences,
such as the one between PCL and PA were neither significabmsistent.

When adaptind, there was no algorithm that clearly outperformed the ather
Differences were not found to be statistically significaven though the methods
studied did achieve consistent improvements in all of th@earments conducted.

All online learning algorithms performed better in scalfiagtor than in fea-
ture function adaptation, most probably due to the spacéitiye latter in compar-
ison to the former: when adapting the scaling factors, oolyteen parameters
needed to be adapted, versus around four million when adpite feature func-

tionsh. When adapting, there were as many parameters as bilingual phrases.
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Table 3: Example of phrases that were used more than once udieg the PCL algorithm.
“Count” is the number of times that this phrase was used forgiating the NC09 test set. The

phrases that were seen more tRanimes mainly included punctuation marks and prepositions.

source phrase target phrase count
american los 4
american norteamericano 4
financial financiera 2
financial financieros 3
the financial crisis| la crisis financiera 9
the company la empresa 20

To give a rough idea of the sparsity of the problem, it is warténtioning the
following: out of four million bilingual phrases, onl®0, 000 were used to build
the hypothesis used by the best system, ar@undo bilingual phrases were used
more than once, ant 500 were used more than twice. Table 3 shows examples
of bilingual phrases that were used more than once. The nuofleentences
affected by the feature function adaptation was also scdrce, 525 sentences
from the NCOQ9 test sef9 had an improvement in the TER score agdksuffered

a decrease in translation quality, as measured by the TEfR sdoen compared
with the baseline. A positive example of the effect of promgtdemoting bilin-
gual phrases when adaptihgs shown in Figure 8 for PCL, which is the one that
displays the best behavior in Figure 6. Those two sentenpesaa consecutively
in the input stream. In the first sentence, “whip” is incotigtranslated by both
the baseline and the PCL. However, the post-edited sentesext as reference
indicates that the best translation for “whip” is “latigorhis bilingual phrase can
be found in the phrase-table and PCL promotes it. The reanlbe observed in

the next sentence, where PCL found the hypothesis withghébilingual phrase.
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source sugar and whip for drivers
baseline el azlicar y oportunidades para los conductores 2
PCL el azlicar y oportunidades para los conductores 2
reference azlcar y latigo para los conductores
source the drivers are influenced by the sugar and whip system .
baseline los conductores estan influidos por el azlcar y la distéptiel sistema | 9
PCL los conductores estan influidos por el azlcar y latigo . 5
reference para los conductores vale el sistema de azlcary latigo .

Figure 8: Translation examples from NC09 when using PCL apatkature functionsource
stands for inpuk, baseline  corresponds to the output of the non-adaptive sysi@i, is the
technique described in Sec. 4.2, anterence  is the user post-edited translation. PCL found a
more appropriate translation after promoting the bilingraase(whip ,| atigo ) observed pre-

viously. The number of editions required to post-edit thpdtheses is shown in the last column.

TER evolution Learning curves

DRR - :
N BPA —— -
MERT200 -~~~ -

baseline
PA

TER difference

0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
Sentences Sentences

Figure 9: TER evolution and learning curves when adaphngithin the NCQ9 test set. Only 1

every 15 points has been drawn so that the plots are cleatingiuishable.

It can be observed that BPA and DRR tended to obtain betteltseshen the
size of the/N-best list was increased. We consider this to be importamtest
means that, when these algorithms are provided with mocerndtion, they are

able to deal with it properly, without tending to yield oveained estimations.
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The evolution of the different online adaptation algoriththroughout the
whole NCO09 test set is shown in Figure 9. In this plot, the sikéhe N-best
list was set td>00. The plot on the left shows the TER score averaged up to the
t-th sentence considered, since plotting individual sesgestores would result
in a very chaotic, unreadable plot given that the differsringranslation quality
between two single sentences may be very large; in fact,ctiastic behavior
can still be seen in the firdh0 sentences. The plot on the right shows the differ-
ence in translation quality between the online learning@@lgms and the base-
line. For comparison purposes, both plots also display ditiadal curve named
MERT20Q which is the result of performing a full re-estimation»by optimiz-
ing TER on the previoug00 sentences seen using the Z-MERT toolkit [40]. For
computational reasons\ was only re-estimated evef)0 sentences. We ana-
lyzed the effect of re-estimatiny every200 sentences on all the data seen up to
that point, but the result is omitted here because thisegfyadccumulated many
errors between sentenc2@) and 800 and resulted int TER points worse than
the baseline. Although the learning curves peaked at aligusentences, this
was not consistent throughout all experiments since thak penged fron300 to
1500 in other language pairs. Since the particular shape of tmileg curves
depends strongly on the test set chosen, the only inform#tat can be extracted
is whether or not the implemented algorithms provide improgents.

To gain some insight about what happens during the adaptatid, different
statistics computed after processing the whole NC09 seslzoen in Table 4.
Note that DRR, BPA, angt* try to minimize TER, which does not explicitly take
into account sentence length, as in the case of BLEU. Thisatssmbe observed

when looking at the BLEU scores: both BPA and DRR are sevgehalized by
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Table 4: Different statistics obtained from the online feag methods.|y| stands for average

sentence lengtt2{.0 for the references). Brev. pen. is the brevity penalty witBLEU.
setup ly| | BLEU n-gram precision brev. pen.
baseline| 26.6 | 22.0 57.9/28.3/16.0/9.4 0.985
DRR 251 214 59.5/29.2/16.6/9.8 0.929
BPA 256 | 21.7 59.1/29.0/16.4/9.7 0.950
yv* 26.2| 26.6 | 62.6/34.1/20.7/12.9 0.968

the brevity penalty, leading to slightly lower BLEU scorbam the baseline. Since
n-gram precision is notably higher, we understand that ivgments achieved in
TER are due to a better lexical choice of the phrases involved

One last consideration involves computation time. Whermptd@ A\, the im-
plemented procedures take about 100 seconds to re-rankti@ete test sed()
minutes forMERT20Q, whereas in the case of adaptihghe time consumed is
about 25 minutes by a single-threaded implementation imgsl Core 2 Quad
CPU at 2.66GHz. We consider this to be important, since, i\& €&enario, the

user is actively waiting for the system to produce a hypoghes

6. Conclusions and future work

Two important aspects of pattern recognition have beerfudbrestudied in
their instantiation to machine translation. The first onassts in finding the
best possible representation of the observations (sesgetitat leads to different
adaptation strategies. The second one involves the stuthedppropriateness
of several online learning algorithms to adjust the prediictnechanisms after
every sample is presented to the system. Thus, four onlarailey algorithms

were used on a sentence-by-sentence basis for featuréofuactd scaling factor
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adaptation, achieving a different level of success. Whesdlalgorithms were
applied to feature function adaptation, improvementseaad were not consis-
tent. One possible reason was that the amount of correctivemation provided

by the user is relatively small when compared to the numbéeatiire function

parameters. In scaling factor adaptation, both discrithieaidge regression and
Bayesian predictive adaptation provided significant pessitesults, and transla-
tion quality increased with the size of thé-best list. In our opinion, this is a
desirable behavior since it implies that additional infation has a positive effect
on the performance of the applied algorithm. Based on thdeexee, we intend to
implement Bayesian predictive adaptation and discrimieatdge regression as
applied to scaling factor adaptation into the decoderfitsehe hope of achieving
even greater improvements. We also plan to study the effembrabining both

feature function and scaling factor adaptation.
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