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Abstract

One of the most promising approaches tomachine translationconsists in formu-

lating the problem by means of a pattern recognition approach. By doing so, there

are some tasks in which online adaptation is needed in order to adapt the system

to changing scenarios. In the present work, we perform an exhaustive comparison

of four online learning algorithms when combined with two adaptation strategies

for the task of online adaptation in statistical machine translation. Two of these

algorithms are already well-known in the pattern recognition community, such as

the perceptron and passive-aggressive algorithms, but here they are thoroughly

analyzed for their applicability in the statistical machine translation task. In ad-

dition, we also compare them with two novel methods, i.e., Bayesian predictive

adaptation and discriminative ridge regression. In statistical machine translation,

the most successful approach is based on a log-linear approximation to a poste-

riori distribution. According to experimental results, adapting the scaling factors

of this log-linear combination of models using discriminative ridge regression or
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Bayesian predictive adaptation yields the best performance.

Keywords: online learning, adaptation, statistical machine translation

1. Introduction

With the increase of both manually annotated data and computational resources,

pattern recognition techniques (PR) have evolved to becomestate-of-the-art in

tasks that have been historically reserved for humans due tohaving a highly struc-

tured output and a high level of ambiguity. Research fields such as speech recog-

nition, machine translation, or image annotation have experienced an important

breakthrough as a result of embracing PR. Although these systems typically per-

form well on tasks that are similar to the one that they have been trained on,

performance decreases abruptly when the task becomes slightly different [1, 2].

In tasks where supervised learning is required, obtaining manually annotated

corpora for every specific domain might not be realistic. Thus, adaptation tech-

niques are strongly in demand to deal with the lack of domain-specific data. In

addition, some tasks require the system to adapt itself after every observation is

presented to the system. Since a complete retraining is often unfeasible, online

learning techniques [3] are often embraced, leading toonline adaptation[4].

Online adaptation is a problem that is currently present in avariety of research

fields like speech recognition [5] or image recognition [6].In this work, different

approaches to online adaptation are studied within the specific task ofstatistical

machine translation(SMT). Adapting a system to changing tasks is particularly

interesting in thecomputer assisted translation(CAT) [7] andinteractive machine

translation(IMT) [8] paradigms, where collaboration between human translators

and machine translation systems is essential in producing high quality results ef-
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ficiently. In these scenarios, the SMT system proposes a hypothesis to a human

translator, who may amend the hypothesis to obtain an acceptable target sentence.

The human translator then expects the system to learn dynamically from its own

errors so that the errors that were corrected once do not needto be corrected again.

Furthermore, it is often the case that human translators need to translate many doc-

uments with different styles and topics in limited time. Thechallenge is then to

make the best use of every correction provided by the user by adapting the mod-

elsonline, i.e., without a complete retraining of the model parameters, since this

retraining might not be feasible with the user actively waiting for the system’s out-

put. Experiments show that significant improvements can be achieved by means

of online learning, which would lead to a reduction in the time and effort that a

human translator would need to correct the system hypotheses.

The foundation for modern SMT, the pattern recognition approach to machine

translation, was established in [9], by formulating the SMTproblem as follows:

given an input sentencex in a certain source language, the best translationŷ in a

certain target language is to be found, maximizing the posterior probability:

ŷ = argmax
y

p(y | x). (1)

Current state-of-the-art SMT systems find the best translation of x by model-

ing the posterior probabilityp(y | x) directly by means of the so-called log-linear

models [10], where the decision rule is given by

ŷ = argmax
y

exp
∑M

m=1 λmhm(x,y)
∑

y′ exp
∑M

m=1 λmhm(x,y′)

= argmax
y

M
∑

m=1

λmhm(x,y)

= argmax
y

λ · h(x,y) = argmax
y

s(x,y). (2)
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Herehm(x,y) is a score function that represents an important feature forthe trans-

lation ofx intoy,M is the number of models (or features), andλm are the weights

that act as scaling factors of the score functions.s(x,y) represents the score of

a hypothesisy given an input sentencex and is not treated as a probability since

the normalization term has been omitted. Common feature functionshm(x,y) not

only include different translation models (TM) that describe the correspondence

in words or sequences of words between languages, they also include distortion

models that account for necessary reorderings of blocks of words and language

models that account for the well-formedness of the translated sentence. Feature

functions defined as probabilities are usually specified in the logarithmic domain,

which is why Eq. 2 is said to be a log-linear model. However, some of the feature

functions used in modern SMT systems do not describe probabilities (e.g. the

length ofy). Here, we only attempt to adapt a subset of the feature functions that

describe probabilities, namely those defined at the local translation unit level.

Typically,h(x | y) andλ are estimated by means of training and development

sets, respectively. This leads to one important problem in SMT: whenever this data

belongs to a different domain than the text to be translated,the translation quality

diminishes significantly [2]. Hence, the adaptation problem is very common in

SMT, where the goal is to improve the performance of systems trained and tuned

on out-of-domain data by using limited amounts of in-domaindata.

Originally, SMT systems relied on word-to-word translations, in which each

source word was translated independently and then reordered. This approach had

the important drawback of not being able to cope with context, and hence failed

when attempting to translate multi-word expressions. For this reason,phrase-

based(PB) models [9] were introduced, widely outperforming single word mod-
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els [2]. The basic idea of PB translation is to segmentx into phrases(i.e., word se-

quences), then to translate each source phrasex̃k ∈ x into a target phrasẽyk ∈ y,

and finally reorder them to compose the target sentencey. Typically, bilingual

phrase pairs obtained at training time are stored in a huge table (often referred

to asphrase-table) along with different features that can be defined at the local

phrase level. PB models have been employed throughout this article.

The rest of this paper is structured as follows. Section 2 presents a short review

of the current work in adaptation and online learning in different research fields.

In Section 3, two different strategies for incorporating online learning capabilities

into a CAT system are presented. These strategies adapt either the scaling factors

λ or the feature functionsh. In Section 4, two online learning algorithms that

are available in the literature are instantiated here for the purpose of adaptation

in a CAT environment. In addition, two new algorithms are proposed for the

specific problem dealt with here. The experimental setup andempirical results

are presented in Section 5. The last section details conclusions and future work.

2. Related work

Batch adaptation (as opposed to online) is a very broad area that has received

a large amount of attention in different fields. In [1], the maximum likelihood

framework is applied to speaker adaptation. In [11], the maximum likelihood

framework is expanded, obtaining maximum a posteriori estimators that are aimed

at adapting model parameters. In [12], adaptation is confronted as a classification

problem by extending the set of features with a domain-specific tag.

However, there are also cases where there is no adaptation data at all available

beforehand, and the system needs to adapt itself online without falling into an
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excessive time burden. This problem, among others, has leadto the development

of an incremental version of the Expectation-Maximizationalgorithm [13]. This

algorithm has been successfully applied in an IMT scenario in [14], where the

models involved are incrementally updated as the user feedback is received.

The perceptron algorithm is probably one of the most popularonline learning

algorithms in the machine learning field [15], where the parameters are updated

after the label of the current observation is presented to the system. Therefore,

this algorithm has been included in the present study for comparison purposes.

The passive-aggressive (PA) framework [16] is a popular family of margin-

based online learning algorithms. In [17], the authors propose the use of the PA

framework to update the feature functionsh. The improvements obtained were

very limited, since adaptingh is a very sparse problem. For this reason, we com-

pare adaptingh with adaptingλ, which is shown in [18] to be a good adaptation

strategy. In [18], the scaling factors are adapted by means of an adaptation set in

a Bayesian learning fashion. In contrast, our purpose is to perform online adapta-

tion, i.e., to adapt system parameters after each new samplehas been provided.

Several works make use of online learning algorithms for learning the scaling

factors in SMT. However, most of them employ these algorithms for the purpose

of training phrase-based systems discriminatively and boosting the number of fea-

tures present. This is the case in [19], where a perceptron-style algorithm is used

to learnλ, and in [20, 21], where online large-margin algorithms are used for that

same purpose. Both approaches are then compared in [22].

In this work, we present an in-depth comparison of four online adaptation al-

gorithms, i.e., passive-aggressive, perceptron, discriminative ridge regression, and

Bayesian predictive adaptation. The passive-aggressive algorithm and the percep-
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tron algorithm have been applied by other authors to featurefunction and scaling

factor adaptation, respectively. In this work, in order to perform a meaningful

comparison, the passive-aggressive algorithm has been applied to scaling factor

adaptation and the perceptron has also been used for featurefunction adaptation.

The authors of the present article have recently applied Bayesian predictive adap-

tation and discriminative ridge regression to scaling factor adaptation. The ap-

plication to feature function adaptation is also shown herefor completeness. All

these algorithms have been applied to feature function and scaling factor adapta-

tion within a simulated CAT environment, in which the SMT system receives the

correct translation after having produced its own automatic translation.

3. Adaptation approaches

In general, in an online learning framework, the learning algorithm processes

observations sequentially. After every input, the system makes a prediction and

then receives feedback, which can range from a simple opinion of how good the

system’s prediction was to the true label of the input in completely supervised

environments. The purpose of online learning is to modify the prediction mecha-

nisms in order to improve the quality of future decisions. Specifically, in a CAT

scenario, the SMT system receives a source sentence and thenoutputs a trans-

lation hypothesis. The user then post-edits the system’s hypothesis, producing a

reference translationyτ that can be used as supervised feedback. The purpose is

to learn from that interaction. Thus, Eq. 2 is redefined as follows

ŷt = argmax
y

M
∑

m=1

λt
mh

t
m(xt,y)

= argmax
y

λ
t ·ht(xt,y), (3)
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where feature functionsht and log-linear weightsλt vary according to samples

(x1,y
τ
1), . . . , (xt−1,y

τ
t−1) seen before timet. In order to simplify notation, we

will omit subindext from input sentencex and output sentencêy, although it is

always assumed. We can apply online adaptation to eitherht or λt, or to both at

the same time. However, in this paper, we focus on adapting only one at a time.

The hypothesiŝy that maximizes the likelihood is not necessarily the hypoth-

esis with the highest quality from a human perspective or in terms of a certain

quality measure. Lety∗ be the hypothesis with the highest quality, but which

might have a lower likelihood1. Our purpose is to adapt the model parameters so

thaty∗ is rewarded and achieves a higher score according to Eq. 3.

We define thedifferencein translation quality between the proposed hypothe-

sisŷ and the best hypothesisy∗ in terms of a given quality measureµ(·):

l(ŷ) = |µ(ŷ)− µ(y∗)|, (4)

where the absolute value has been introduced in order to preserve generality, since

in SMT some of the quality measures used, such as TER [23], represent an error

rate (i.e., the lower the better), whereas others such as BLEU [24] measure preci-

sion (i.e., the higher the better). The terml(ŷ) also depends on the best hypothesis

y∗ and, in turn, also depends on sentencex and reference translationyτ . Those

dependencies are not explicitly included in order to keep notation uncluttered. The

score difference between̂y andy∗ is related toφ(ŷ), which is defined as

φ(ŷ) = s(x,y∗)− s(x, ŷ), (5)

where again the dependencies withx, yτ , andy∗ have been omitted to simplify

notation. Ideally, we would like differences inl(·) to correspond to differences in

1y∗ does not necessarily match the reference translationyτ due to eventual coverage problems.
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φ(·): if hypothesisy has a translation qualityµ(y) that is very similar to the trans-

lation quality ofµ(y∗), we would like this to be reflected in translation scores,

i.e.,s(x,y) is very similar tos(x,y∗). Hence, the purpose of our online procedure

should be to promote this correspondence after each sample(xt,y
τ
t ).

3.1. Scaling factor adaptation

A coarse-grained technique for tackling the online learning problem in SMT

implies adapting the log-linear scaling factorsλ present in Eq. 3. In order to com-

pute the new scaling factorsλt, the previously learnedλt−1 needs to be combined

with an appropriate update stepλ̌
t
. The aim is to compute an appropriate update

term λ̌
t

for translating the sentence pair observed at timet, (xt,y
τ
t ), and then

obtainλt. This is often done as a linear combination [25], where

λ
t = (1− α)λt−1 + αλ̌

t
, (6)

for a certain learning rateα. Computingλt can be seen as a rudimentary predictor-

corrector step where estimationλt−1 is corrected by an appropriate update stepλ̌
t
.

The information that is taken into account when computingλ̌
t

is general and

imprecise, but the variation in score in Eq. 3 can be high since the scaling factors of

the log-linear model will be modified: when adapting the system to a new domain,

the importance of every single model will be adjusted in an online manner.

3.2. Feature function adaptation

As discussed in Section 1, state-of-the-art SMT systems present a log-linear

combination of feature functionshm(x,y). These feature functions include sev-

eral translation models, such asp(x | y) andp(y | x). They also include models to

cope with word-reorderings between the source language andthe target language,
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as well as the target language model which assesses how well-formed the target

sentence is. Typically, the translation models are stored in a phrase-table since

they can be defined at the phrase level, i.e.,hm(x | y) =
∑

k hm(x̃k | ỹk) when

working in the logarithmic domain. However, the rest of the models cannot de-

compose into phrase-specific scores because of their nature. Instead of attempting

to adapt all of the feature functions, we will only research the online adaptation

of the translation models. For this purpose, we will definehs(x,y) as the com-

bination of all translation models defined at the phrase level, and adaptation will

be performed only forhs. The reason for adapting onlyhs (and not the individual

models or even the other feature functions) is that, even in this case, the number of

parameters to be adapted is on the order of several million. LetB be the size of the

phrase-table (i.e., several million elements). We will denote byg(x̃, ỹ) a function

returning a vector ofB components, whose entries are all zero except for the one

corresponding to phrase pair(x̃, ỹ), whose value is the score ofhs(x̃, ỹ) for that

specific phrase pair.g(x,y) will return a vector of sizeB, with all entries set to

zero except those of all phrase pairs(x̃k, ỹk) that build up sentence pair(x,y).

Even though parameters withinhs(x,y) could be altered directly, it is techni-

cally more straightforward to introduce an auxiliary vector u ∈ R
B, following the

work in [17, 26] and for purposes of comparison. Then, the value ofhs(x,y) at

time t can be expressed as a product of two vectors such that

ht
s(x,y) = ut−1 · g(x,y). (7)

Note that the entries of the auxiliary vectoru are initially all set to1 (at t = 0).

As done when updatingλ, u will be updated following a linear combination:

ut = (1− α)ut−1 + αǔt. (8)
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Hereut−1 is the vector that has been learned after observing the previous

(x1,y
τ
1), . . . , (xt−1,y

τ
t−1) sentence pairs, anďut is the online update after observ-

ing thet-th sample(xt,y
τ
t ). Note thatǔt does not need to be the optimumu at

time t, but only the update step, which may even be just a gradient.

Since onlyhs varies after each new observation, Eq. 3 can be redefined as

ŷt = argmax
y

∑

m/∈s

λmhm(x,y) + ht
s(x,y) = argmax

y

hr(x,y) + ht
s(x,y), (9)

wheres denotes here the set of all featureshm which can be defined at the local

phrase level, andhr(x,y) is the combination of all features which are not defined

at the phrase level, i.e., all the features except the translation models. Note thathr

does not have a super-indext because it is constant in time.

4. Online methods

In this section, passive-aggressive, perceptron, discriminative ridge regression,

and Bayesian predictive adaptation are introduced. The general philosophy for

each method is described first. Then, the application to every adaptation strategy

is presented. Sub- and super-indicest might be omitted for clarity if the context is

obvious or stated explicitly when the temporal relation requires a clear distinction.

4.1. Passive-aggressive

Passive-aggressive(PA) [16] is a family of margin-based, on-line learning al-

gorithms that update model parameters after each new observation has been seen.

In this case, PA is applied to a regression problem, where a target value has to be

predicted by the system for the hypothesisy at timet by using a linear regression

function where the weights are the parameters that have to belearned.
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After every prediction, the true target value is revealed and the system suffers

an instantaneous loss. If the error made falls below a certain sensitivity parameter,

the loss suffered by the system is zero and the algorithm remains passive, i.e., the

new weight vector is equal to the previous one. Otherwise, the loss grows linearly

with the error and the algorithmaggressivelyforces an update of the parameters.

The idea behind the PA algorithm is to compute the weights of the regression func-

tion so that it achieves a zero loss function on the current input while remaining

as close as possible to the previous weight vector.

4.1.1. Passive-aggressive for scaling factor adaptation

The constrained optimization problem yielding update termλ̌
t
is stated as [16]:

λ̌
t
= argmin

λ

1

2
||λ− λ

t−1||2 + Cξ2 s.t. l(ŷ) = 0, (10)

whereξ2 is a squared slack variable that is scaled by the aggressivity factorC, ac-

cording to the so-called PA Type-II.l(ŷ) is the difference in translation quality be-

tween the hypothesis proposed by the system and the best hypothesis as described

in Eq. 4. It is common to add a slack variable into the optimization problem to

achieve more flexibility during the learning process. Once the optimization prob-

lem is defined, the update term may be obtained by adding the constraint together

with a Lagrangian variable and setting the partial derivatives to zero [17]:

λ̌
t
= Φ(ŷ)

√

l(ŷ)− λ
t−1Φ(ŷ)

||Φ(ŷ)||2 + 1
C

, (11)

whereΦ(ŷ) = h(x,y∗)− h(x, ŷ), and the update is triggered whenλt−1Φ(ŷ) ≥
√

l(ŷ) is violated. Plugginǧλ
t

into Eq. 6 results in a generalization of PA that

matches the original work in [16] whenα = 1. Figure 1 shows the pseudo-code

for the PA-II online adaptation algorithm when adapting scaling factorsλ.
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while input sentences xt in stream do

ŷ← argmax
y

λ
t−1 ·ht(xt,y)

output ŷ

if not λt−1Φ(ŷ) ≥
√

l(ŷ) then

Φ(ŷ)← h(xt,y
∗)− h(xt, ŷ)

λ̌
t ← Φ(ŷ)

√
l(ŷ)−λ

t−1Φ(ŷ)

||Φ(ŷ)||2+ 1

C

λ
t ← (1− α)λt−1 + αλ̌

t

else λ
t ← λ

t−1

end if

end while

Figure 1: Pseudo-code for PA-II online learning of the scaling factorsλ as described in Section 4.1.

4.1.2. Passive-aggressive for feature function adaptation

The constrained optimization can be similarly formulated for feature function

adaptation as:

ǔt = argmin
u

1

2
||u− ut−1||2 + Cξ2 s.t. l(ŷ) = 0, (12)

and the solution to this problem is given by the expression ofthe update term

ǔt = Φ(ŷ)

√

l(ŷ)− ut−1Φ(ŷ)

||Φ(ŷ)||2 + 1
C

, (13)

whereΦ(ŷ) = g(x,y∗)− g(x, ŷ), with g(·, ·) being defined in Eq. 7. As in [17],

the update is triggered only when̂y violates the constraintut−1Φ(ŷ) ≥
√

l(ŷ).

4.1.3. Heuristic variation

Another update condition that is different to the one described in the previous

section has been explored in this work. In this variation, anupdate always has to

be performed whenever the quality of a predicted hypothesisŷ is worse than the

quality of the best possible hypothesisy∗, in terms of quality measureµ(·):

∃y∗ : |µ(y∗)− µ(ŷ)| > 0. (14)
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In this way, parameter estimations that lead to better hypotheses are rewarded.

Symmetrically, estimations that produce lower quality hypotheses are penalized.

4.2. Perceptron

A standard single-layer perceptron has a number of inputs whose dimension-

ality depends on the dimension of the observations. Every variable of a given

observation is weighted and combined in its hidden layer with the rest of the

variables to produce a single output. As an error-driven algorithm, the output pro-

duced is compared with the ideal target value and the parameters of the perceptron

are adjusted to reduce the difference between the target andthe output values.

Although the perceptron algorithm [15, 27] is very popular,a simple variation,

the perceptron-like algorithm (PCL), is also widely used [28, 29, 30]. Among the

algorithms studied in this work, PCL is the simplest and fastest method since it

involves only three operations on vectors. PCL was used instead of the standard

perceptron for comparison reasons since PCL was successfully applied in [28] and

outperformed the regular perceptron in preliminary experimentation. Specifically,

the PCL algorithm makes a fixed-length shift of the previous weight vector in

the direction of the difference (gradient) between the output produced (̂y) and the

output that the system should have produced (y∗).

4.2.1. Perceptron for scaling factor adaptation

To adapt the scaling factors, the input sample for the perceptron is the value of

h(xt, ŷt) at each timet. These samples areM-dimensional, whereM is the total

number of models (typically around14). Those vectors are combined linearly

with the scaling factorsλ so that the shift term̌λ
t
is computed for PCL as [28]

λ̌
t
= sign(h(x,y∗)− h(x, ŷ)). (15)

14



while input sentences xt in stream do

ŷ← argmax
y

λ
t−1 ·ht(xt,y)

return ŷ

λ̌
t ← sign(h(xt,y

∗)− h(xt, ŷ))

λ
t ← (1− α)λt−1 + αλ̌

t

end while

Figure 2: Pseudo-code for PCL online learning of the scalingfactorsλ as described in Section 4.2.

In this perceptron-like algorithm, thesign operator implies that fixed-size steps

will be taken when adapting the parameters. This can be seen as a watered-down

version of the standard and widely used perceptron whose steps might be, in its

most general form, calibrated by the difference between desired output and actual

output. Figure 2 shows the pseudo-code for PCL when adaptingλ.

4.2.2. Perceptron for feature function adaptation

To adapth, the necessary perceptron will be much larger since the input sam-

ples are feature vectorsg(x, ·), which are then combined linearly in the single

layer of the perceptron with the weights of the auxiliary functionut−1.

Using the feature vectorg(x, ŷ) of the system’s hypothesiŝy and the feature

vectorg(x,y∗) of the best possible hypothesisy∗ from the system, the PCL shift

term for adaptingh is computed in the same way as for the case ofλ̌
t
:

ǔt = sign(g(x,y∗)− g(x, ŷ)). (16)

4.3. Discriminative ridge regression

PA and PCL algorithms try to find a configuration of the weight vectors such

that goodhypotheses tend to scorehigher. Discriminative regression, however,

also enforces thatbad hypotheses scorelower, by using all hypotheses within a

15



givenN-best list. Here, we present a method which we have nameddiscriminative

ridge regression(DRR) [31], which uses the ridge regression technique to develop

a discriminative online adaptation algorithm.

4.3.1. DRR for scaling factor adaptation

The DRR algorithm requires anN-best list of hypotheses in decreasing order

of likelihood. Letnbest(x) be such a list computed by our models for sentencex.

To adaptλ, we define anN ×M matrixHx that contains the feature functionsh

of every hypothesis, whereM is the number of features in Eq. 3:

Hx = [h(x,y1), . . . ,h(x,yN)]
′ . (17)

Additionally, letH∗
x

be a matrix such that

H∗

x
= [h(x,y∗), . . . ,h(x,y∗)]′ , (18)

where all rows are identical and equal to the feature vector of the best hypothesis

y∗ within theN-best list. Then,Rx is defined as

Rx = H∗

x
− Hx . (19)

The key idea is to find a vectořλ
t
such that differences in scores are reflected

as differences in the quality of the hypotheses. That is,

Rx · λ̌t ∝ lx , (20)

wherelx is a column vector ofN rows such thatlx = [l(y1) . . . l(yi) . . . l(yN)]
′,

∀yi ∈ nbest(x). The objective is to finďλ
t
such that

λ̌
t

= argmin
λ

|Rx · λ− lx| (21)

= argmin
λ

||Rx · λ− lx||2, (22)
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while input sentences xt in stream do

ŷ← argmax
y

λ
t−1 ·ht(xt,y)

output ŷ

Hxt
← [h(xt,y1), . . . ,h(xt,yN )]

′
, ∀yi ∈ nbest(xt)

H∗
xt
← [h(xt,y

∗), . . . ,h(xt,y
∗)]′

Rxt
← H∗

xt
−Hxt

λ̌
t ←

(

R′
xt
· Rxt

+ βI
)−1

R′
xt
· lxt

λ
t ← (1− α)λt−1 + αλ̌

t

end while

Figure 3: Pseudo-code for DRR online learning of the scalingfactorsλ as described in Section 4.3.

where|| · ||2 is the Euclidean norm. Although Eqs. 21 and 22 are equivalent(i.e.,

the λ̂ that minimizes the first one also minimizes the second one), Eq. 22 allows

for a direct implementation thanks to the ridge regression2. λ̌
t

can be computed

as the solution to the overdetermined systemRx · λ̌t
= lx, which is given by

λ̌
t
= (R′

x
· Rx + βI)

−1
R′

x
· lx , (23)

where a smallβ is used as a regularization term to stabilizeR′
x
·Rx and to ensure

that it is invertible. Figure 3 shows the pseudo-code for DRRwhen adaptingλ.

4.3.2. DRR for feature function adaptation

To adapth, the rows of matrixHx are the feature vectorsg that correspond to

the combination of TMs for every hypothesis. Hence, we will denoteHx asGx:

Gx = [g(x,y1), . . . , g(x,yN)]
′ . (24)

Note that the dimension ofGx can get very large in this case since it is aN × B

matrix, withB being in the range of millions of elements.

2Also known as Tikhonov regularization.
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Then, the score for all hypotheses is represented by the column vector

sx = Hr · λm +Gx · ut−1 , (25)

where, following the notation in Eq. 9,Hr is anN × |m /∈ TM | matrix that con-

tains all models that are not part of the TMs, i.e., language or reordering models,

for everyy ∈ nbest(x). λm are the corresponding scaling factors forHr.

The definition ofG∗
x

for feature function adaptation is

G∗

x
= [g(x,y∗), . . . , g(x,y∗)]′ , (26)

where all rows are identical and equal to the features of hypothesisy∗. Then, the

solution to the overdetermined systemRx · ǔt = lx is given by the equation:

ǔt = (R′

x
· Rx + βI)

−1
R′

x
· lx , (27)

with Rx = G∗
x
−Gx in this case.

4.4. Bayesian Predictive Adaptation

All three methods presented above rely on a single-best point estimation of the

model parameters. In contrast, in Bayesian adaptation, themodel parameters are

considered to be random variables that have some kind of a priori distribution. Ob-

serving these random variables leads to a posterior density, which typically peaks

at the optimal values of these parameters. Since the marginal likelihood where the

model parameters have been marginalized is often intractable, inBayesian predic-

tive adaptation(BPA), this likelihood is approximated by sampling directly from

the posterior distribution of the data given the model parameters. This leads to

an approximation of the real distribution, rather than a point estimate, and usually

entails more robust estimates. In this article, BPA is applied in an online scenario.
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In BPA, Eq. 1 is reformulated as follows (see [18] for the fullderivation):

ŷ= argmax
y

∫

p(y, θ | x;T,A)dθ ≈ argmax
y

∫

p(θ | T,A)p(y | x, θ)dθ (28)

≈argmax
y

∫

p(A | θ;T )p(θ | T )p(y | x, θ)dθ, (29)

whereT represents the complete training set,A the adaptation data, andθ the

model parameters. (i.e., eitherh or λ). In the approximation in Eq. 28, several

assumptions have been made. The first assumption is that output sentencey only

depends on the model parameters and the current input sentencex, and not on the

complete training and adaptation data. The second one is that model parameters

can be assumed to be independent of the current input sentencex. From Eq. 28 to

Eq. 29, the termp(θ | T,A) has been decomposed according to the Bayes theorem,

where the normalization denominator can be neglected giventhat it has no influ-

ence on the maximization. This leads to a very intuitive decomposition: the last

term,p(y | x, θ) is the same term that appears in Eq. 1; the middle term,p(θ | T )
is a prior distribution over model parameters, which will account for rewarding

those parameter sets that are similar to our prior knowledge; finally, p(A | θ;T )
will account for biasing the final marginal likelihood towardsA. Performing the

integral over the complete parametric space forces the model to take into account

all possible values ofθ, thereby yielding more robust estimations ofp(y | x).
Although computing the above integral is the correct thing to do from a theo-

retical point of view, in Bayesian learning, it is quite common to have intractable

integrals. Hence, a random samplingS(θT ) is considered, withθT being the es-

timation of θ obtained at training time. In this work, this sampling will be per-

formed by alternatively perturbing each one of the components ofθT by a random

amount, since such heuristic procedure is shown in [18] to perform well in SMT.

19



ConsideringAt (i.e., the lastAt sentences validated by the user at timet) as

the adaptation sample leads to an online variant of BPA, where

ŷ = argmax
y

∑

∀θ∈S(θT )

p(At | θ;T )p(θ | T )p(y | xt, θ). (30)

Here, it has been assumed thatθT remains invariable in time. Hence,p(θ | T ) does

not vary in time either andS(θT ) remains constant. Therefore, the online nature

of Eq. 30 relies only onAt, but it allows an efficient implementation, given that:

• p(θ | T ) can be precomputed.

• p(y|x, θ) needs to be computed for every hypothesis and every test sentence.

• p(At |θ;T ) =
∏

∀a∈At

p(xa,ya |θ;T ) only requires one division and one mul-

tiplication in order to incorporate the last sentence, since each one of the

components within the product have already been computed when this com-

ponent was the actual test sentence (see Figure 4 for the caseof adaptingλ).

It is also shown in [18] that it is beneficial to consider a leveraging termα:

ŷ = argmax
y

∑

∀θ∈S(θT )

(

p(At | θ;T )p(y | xt, θ)
)α

p(θ | T ), (31)

whose role is similar to theα described in Section 3. Note that, in the case of BPA,

there is no linear interpolation between the old parametersand the newly obtained

ones since BPA does not compute a single point estimate of these parameters.

4.4.1. BPA for scaling factor adaptation

Plugging in the log-linear model in Eq. 3, assuming thatp(θ|T ) ∼ N (θT , I ·σ),
and considering as parameters the scaling factorsλ of the log-linear model, yields:

p(y|xt)≈
∑

∀λ∈S(λT )

∏

∀a∈At

expλ · h(xa,ya)
∑

y′expλ·h(xa,y′)
N (λT ,I ·σ)

expλ · h(xt,y)
∑

y′expλ·h(xt,y′)
. (32)
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initialize S(λT )

for all λs ∈ S(λT ) do p(λs)← N (λs;λT , σ) end for

while input sentences xt in stream do

for all y ∈ nbest(xt); λs ∈ S(λT ) do

By,s ←
expλs · h(xt,y)

∑

y′∈nbest(xt)

expλs · h(xt,y
′)

end for

ŷ← argmax
y

∑

λs∈S(λT )

(

p(At | λ) · Ty,s

)α · p(λs)

output ŷ

for all λs ∈ S(λT ) do p(At | λ)← p(At | λ) · By∗,s

At
1,s

end for

dequeue(At)

enqueue(At, By∗)

end while

Figure 4: Pseudo-code for BPA online learning of the scalingfactorsλ. B is aN × S matrix,

whereN is the size ofnbest(x) andS is the size ofS(λT ). By∗ is the row ofB that corresponds

to the best output hypothesisy∗. In turn,At
a stands for termBy∗ , but for adaptation samplea,

which has been previously seen. Operationdequeue (At) removes the first column ofAt (i.e.,

discards the oldest adaptation sample,At
1) andenqueue (At, By∗) addsBy∗ as the last column

of At.

Figure 4 shows the pseudo-code for adaptingλ with BPA. At is treated as a

C × S matrix, with C being the number of sentences seen before timet to be

considered within BPA, andS = |S(θT )|.

4.4.2. BPA for feature function adaptation

Considering the feature functionhs as the model parameters (Section 3) yields

p(y | xt) ≈
∑

∀u∈S(uT )

∏

∀a∈At

exp (hr(xa,ya) + u · g(xa,ya))
∑

y′ exp (hr(xa,y′) + u · g(xa,y′))

N (uT ,I ·σ)
exp (hr(xt,y) + u · g(xt,y))

∑

y′ exp (hr(xt,y) + u · g(xt,y′))
. (33)
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Although Eq. 33 formulates how to obtain an adequate featurefunction adaptation

by means of BPA, implementing this formula is, in practice, too costly. For this

reason, in the case of BPA, experiments are only conducted toadaptλ.

5. Experiments

5.1. Experimental setup

Given that a true CAT scenario is very expensive for experimentation purposes

since it requires a human translator to correct every hypothesis, we will simulate

this scenario by using the reference sentences that are present in the test set. These

sentences are fed one at a time, as would normally occur in an online CAT process.

Even though the final TER scores are reported for the whole test set considered,

each reference sentence was used for adaption only after thesource sentence had

been translated and its translation quality had been assessed. Hence, the transla-

tion quality reported corresponds to the average over the complete test set, even

though the system had not been adapted at all for the first samples.

The most popular translation quality metrics are TER [23] and BLEU [24].

TER is an error metric that computes the minimum number of edits required to

modify the system hypotheses so that they match the references. Possible edits

include insertion, deletion, substitution of single words, and shifts of word se-

quences. BLEU is an accuracy metric that measuresn-gram precision, with a

penalty for sentences that are too short. For coherence, thequality metric used for

assessing translation quality is also the one used for computingy∗ (see Section 3).

In this paper, we favor the use of TER, since BLEU implements ageometrical

average which is zero whenever reference and hypothesis do not share a common

4-gram. Hence, BLEU is not appropriate for measuring translation quality at the
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Table 1: Characteristics of the Europarl corpus and NC09 test set. OoV stands for “Out of Vocab-

ulary” words, k stands for thousands of elements, and M stands for millions of elements.

Spanish English French English

Training

Sentences 1.3M 1.2M

Run. words 27.5M 26.6M 28.2M 25.6M

Vocabulary 125.8k 82.6k 101.3k 81.0k

Development

Sentences 2000 2000

Run. words 60.6k 58.7k 67.3k 48.7k

OoV. words 164 99 99 104

sentence level andy∗ may not be appropriately defined.

As baseline system, we trained an SMT system on the Europarl training data,

in the partition established in the Workshop on SMT of the ACL20103. Initially,

the SMT system was trained using the training and development data provided that

year. The Europarl corpus [32] is built from the transcription of European Parlia-

ment speeches published on the web. The data was collected bycrawling the web

between 1996 and 2010 in the 11 official languages of the European Union. Then

it was aligned at the document level, split into sentences, normalized, tokenized,

and aligned at the sentence level. This corpus has found a very widespread use in

the SMT community, having been used for numerous SMT evaluation campaigns.

We focus on the Spanish–English (Es–En) and French–English(Fr–En) language

pairs. Corpus statistics are shown in Table 1.

The baseline system was built according to recent SMT evaluation campaigns

[2, 33] by means of the open-source MT toolkit Moses [34], which was used

in its default setup. In this setup, the trained SMT system features a statisti-

3http://www.statmt.org/wmt10/
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cal log-linear model that includes a PB translation model, alanguage model, a

distortion model, and word and phrase penalties. The PB translation model pro-

vides direct and inverse frequency-based and lexical-based probabilities for each

phrase pair in the phrase-table. Phrase pairs are extractedfrom symmetrized word

alignments generated by GIZA++ [35]. To model reordering, in addition to a

negative-exponential on reordering distance, a model conditioned on phrases was

estimated, namely the “orientation-bidirectional-fe” distortion model [36]. A 5-

gram language model was estimated on the target side of the training data using

Kneser-Ney smoothing [37] by means of SRILM [38]. The resulting 14 weights

in Eq. 2 were estimated using MERT [39] on the Europarl development set.

Since our purpose is to analyze the performance of differentonline adaptation

strategies and methods, in addition to Europarl, we also considered different test

sets that do not belong to the parliamentary domain and that have been used in

SMT evaluation campaigns, such as the News Commentary4 (NC) 2009 and the

TED5 test sets. In addition, the learning rateα for every online adaptation al-

gorithm was optimized on the NC 2008 test set. The News Commentary corpus

was obtained from different news feeds and was used as test set for the 2010 ACL

shared task on SMT [2]. For reasons of brevity, we only reportthe results with the

NC 2009 test set and in English–Spanish translation, even though results involv-

ing other language pairs and test sets from other years were found to be consistent

with the results presented here. The TED corpus is a compendium of public talks

belonging to different domains, which was used as test set inthe 2010 IWSLT

shared task [33]. This corpus is only available for English–French translation and

4This corpus is available from http://www.statmt.org/wmt11/
5This corpus is available from http://iwslt2010.fbk.eu/
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Table 2: Characteristics of News Commentary 2008, 2009, andTED test sets. OoV stands for

“Out of Vocabulary” words with respect to the Europarl training set, k stands for thousands of

elements, and M stands for millions of elements.

NC08 NC09 TED

Spanish English Spanish English English French

Sentences 2051 2525 1704

Run. words 52.6k 49.9k 65.6k 68.1k 32.0k 33.9k

OoV. words 1029 958 1229 1358 278 692

was designed for translationinto French. See Table 2 for NC and TED test set

statistics. The performance of the different methods presented is compared on the

NC09 set, and the TED test set is used to verify the conclusions drawn.

The aggressivity parameter C within PA was set to∞ ( 1
C

= 0 was used)

following the work in [17]. The size ofAt in BPA was set to 100 andβ was set to

0.01 for DRR, according to the preliminary experimentation carried out on other

language pairs and other corpora. For PA, PCL, and BPA, instead of using the

true best hypothesis, the best hypothesis within theN-best list was selected. The

experiments that include the PA heuristic (see Section 4) are not reported since this

heuristic did not bring significant improvements over the original PA algorithm.

5.2. Experimental results

As a first step, we analyzed the effect of varying the learningrateα in all

studied online adaptation algorithms, as described in Eqs.(8), (6), and (31). The

final TER score after processing all of the samples present inthe NC08 test set is

shown in Figure 5. Note that, in Figure 5, the scale of featurefunction adaptation

is different to the one in scaling factor adaptation so that curves can be clearly dis-

tinguished. Interestingly, it was found that the optimum learning rates are rather
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Figure 5: Influence ofα on algorithm performance for NC08.N -best size was fixed to500.
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Figure 6: Final TER scores when adaptingh orλ for NC09 test set in En→Es direction.

consistent (∼ 0.01) for all language pairs in the News Commentary test data.

Under the assumption that the quality of hypotheses is not necessarily corre-

lated with their likelihood, largerN-best lists may include better hypotheses with

a very low likelihood. Online predictors should be able to find these good hy-

potheses even if they appear deep in theN-best list. After setting the optimum

α, the final translation quality obtained with varying sizes of nbest(x) was mea-

sured on unseen test sets, i.e., the NC09 and TED test sets. The results of these
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Figure 7: Final TER scores when adaptingh orλ for the TED test set in En→Fr direction.

experiments are shown in Figure 6 for NC09 and in Figure 7 for TED.

When adaptingλ, the improvements obtained with DRR and BPA proved to

be statistically significant at a 95% confidence level. Although the difference be-

tween BPA and DRR was not statistically significant, this difference was found to

be consistent in all of the experiments. Moreover, it was found that DRR achieved

a performance that was close to the maximum in a linear combination when the

size of theN-best list was large enough (2000 hypotheses). Other differences,

such as the one between PCL and PA were neither significant norconsistent.

When adaptingh, there was no algorithm that clearly outperformed the others.

Differences were not found to be statistically significant,even though the methods

studied did achieve consistent improvements in all of the experiments conducted.

All online learning algorithms performed better in scalingfactor than in fea-

ture function adaptation, most probably due to the sparsityof the latter in compar-

ison to the former: when adapting the scaling factors, only fourteen parameters

needed to be adapted, versus around four million when adapting the feature func-

tionsh. When adaptingh, there were as many parameters as bilingual phrases.
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Table 3: Example of phrases that were used more than once whenusing the PCL algorithm.

“Count” is the number of times that this phrase was used for translating the NC09 test set. The

phrases that were seen more than20 times mainly included punctuation marks and prepositions.

source phrase target phrase count

american los 4

american norteamericano 4

financial financiera 2

financial financieros 3

the financial crisis la crisis financiera 9

the company la empresa 20

To give a rough idea of the sparsity of the problem, it is worthmentioning the

following: out of four million bilingual phrases, only20, 000 were used to build

the hypothesis used by the best system, around3, 500 bilingual phrases were used

more than once, and1, 500 were used more than twice. Table 3 shows examples

of bilingual phrases that were used more than once. The number of sentences

affected by the feature function adaptation was also scarce. In 2, 525 sentences

from the NC09 test set,59 had an improvement in the TER score and38 suffered

a decrease in translation quality, as measured by the TER score when compared

with the baseline. A positive example of the effect of promoting/demoting bilin-

gual phrases when adaptingh is shown in Figure 8 for PCL, which is the one that

displays the best behavior in Figure 6. Those two sentences appear consecutively

in the input stream. In the first sentence, “whip” is incorrectly translated by both

the baseline and the PCL. However, the post-edited sentenceused as reference

indicates that the best translation for “whip” is “látigo”. This bilingual phrase can

be found in the phrase-table and PCL promotes it. The result can be observed in

the next sentence, where PCL found the hypothesis with the right bilingual phrase.
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source sugar and whip for drivers

baseline el azúcar y oportunidades para los conductores 2

PCL el azúcar y oportunidades para los conductores 2

reference azúcar y látigo para los conductores

source the drivers are influenced by the sugar and whip system .

baseline los conductores están influidos por el azúcar y la disciplina del sistema . 9

PCL los conductores están influidos por el azúcar y látigo . 5

reference para los conductores vale el sistema de azúcar y látigo .

Figure 8: Translation examples from NC09 when using PCL to adapt feature functions.source

stands for inputx, baseline corresponds to the output of the non-adaptive system,PCL is the

technique described in Sec. 4.2, andreference is the user post-edited translation. PCL found a

more appropriate translation after promoting the bilingual phrase(whip ,l átigo ) observed pre-

viously. The number of editions required to post-edit the hypotheses is shown in the last column.
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Figure 9: TER evolution and learning curves when adaptingλ within the NC09 test set. Only 1

every 15 points has been drawn so that the plots are clearly distinguishable.

It can be observed that BPA and DRR tended to obtain better results when the

size of theN-best list was increased. We consider this to be important, since it

means that, when these algorithms are provided with more information, they are

able to deal with it properly, without tending to yield over-trained estimations.
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The evolution of the different online adaptation algorithms throughout the

whole NC09 test set is shown in Figure 9. In this plot, the sizeof theN-best

list was set to500. The plot on the left shows the TER score averaged up to the

t-th sentence considered, since plotting individual sentence scores would result

in a very chaotic, unreadable plot given that the differences in translation quality

between two single sentences may be very large; in fact, thischaotic behavior

can still be seen in the first100 sentences. The plot on the right shows the differ-

ence in translation quality between the online learning algorithms and the base-

line. For comparison purposes, both plots also display an additional curve named

MERT200, which is the result of performing a full re-estimation ofλ by optimiz-

ing TER on the previous200 sentences seen using the Z-MERT toolkit [40]. For

computational reasons,λ was only re-estimated every200 sentences. We ana-

lyzed the effect of re-estimatingλ every200 sentences on all the data seen up to

that point, but the result is omitted here because this strategy accumulated many

errors between sentences200 and800 and resulted in4 TER points worse than

the baseline. Although the learning curves peaked at about750 sentences, this

was not consistent throughout all experiments since this peak ranged from300 to

1500 in other language pairs. Since the particular shape of the learning curves

depends strongly on the test set chosen, the only information that can be extracted

is whether or not the implemented algorithms provide improvements.

To gain some insight about what happens during the adaptation ofλ, different

statistics computed after processing the whole NC09 set areshown in Table 4.

Note that DRR, BPA, andy∗ try to minimize TER, which does not explicitly take

into account sentence length, as in the case of BLEU. This canalso be observed

when looking at the BLEU scores: both BPA and DRR are severelypenalized by
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Table 4: Different statistics obtained from the online learning methods.|y| stands for average

sentence length (27.0 for the references). Brev. pen. is the brevity penalty within BLEU.

setup |y| BLEU n-gram precision brev. pen.

baseline 26.6 22.0 57.9/28.3/16.0/9.4 0.985

DRR 25.1 21.4 59.5/29.2/16.6/9.8 0.929

BPA 25.6 21.7 59.1/29.0/16.4/9.7 0.950

y∗ 26.2 26.6 62.6/34.1/20.7/12.9 0.968

the brevity penalty, leading to slightly lower BLEU scores than the baseline. Since

n-gram precision is notably higher, we understand that improvements achieved in

TER are due to a better lexical choice of the phrases involved.

One last consideration involves computation time. When adaptingλ, the im-

plemented procedures take about 100 seconds to re-rank the complete test set (90

minutes forMERT200), whereas in the case of adaptingh the time consumed is

about 25 minutes by a single-threaded implementation in an Intel Core 2 Quad

CPU at 2.66GHz. We consider this to be important, since, in a CAT scenario, the

user is actively waiting for the system to produce a hypothesis.

6. Conclusions and future work

Two important aspects of pattern recognition have been carefully studied in

their instantiation to machine translation. The first one consists in finding the

best possible representation of the observations (sentences) that leads to different

adaptation strategies. The second one involves the study ofthe appropriateness

of several online learning algorithms to adjust the prediction mechanisms after

every sample is presented to the system. Thus, four online learning algorithms

were used on a sentence-by-sentence basis for feature function and scaling factor
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adaptation, achieving a different level of success. When these algorithms were

applied to feature function adaptation, improvements achieved were not consis-

tent. One possible reason was that the amount of corrective information provided

by the user is relatively small when compared to the number offeature function

parameters. In scaling factor adaptation, both discriminative ridge regression and

Bayesian predictive adaptation provided significant positive results, and transla-

tion quality increased with the size of theN-best list. In our opinion, this is a

desirable behavior since it implies that additional information has a positive effect

on the performance of the applied algorithm. Based on this evidence, we intend to

implement Bayesian predictive adaptation and discriminative ridge regression as

applied to scaling factor adaptation into the decoder itself in the hope of achieving

even greater improvements. We also plan to study the effect of combining both

feature function and scaling factor adaptation.
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