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Abstract

In this paper we present an infinity family of one-step iterative formulas for solving non-linear
equations (Present Method One), from now on PMI, that can be expressed as xn+1 = Fm(xn), with
1 ≤ m < ∞, integer, Fm being functions to be built later, in such a way that the velocity of convergence
of such iterations increases more and more as m goes to infinity; in other words: given an arbitrary
integer m0 ≥ 1, we will proof that the corresponding iteration formula of the family, xn+1 = Fm0(xn),
has order of convergence m0 + 1.

The increment of the velocity of convergence of the sequence of the iterator family xn+1 = Fm+1(xn)
with respect to the previous one xn+1 = Fm(xn) is attained at the expense of one derivative evaluation
more.

Besides, we introduce a new algorithm (Present Method Two), from now on PMII, that plays the
role of seeker for an initial value to guarantee the local convergence of the PMI.

Both of them can be composed as an only algorithm of global convergence, included the case of
singular roots, that does not depend on the chosen initial value, and that allows to find all the roots in a
feasible interval in a general and complete way, these are, in my opinion, the main results of this work.

Keywords Nonlinear equations; root-solver; iterative methods; convergence order; global convergence.

1 Introduction

Solving nonlinear equations is one of the most important problems in numerical analysis, with a great field
of applications in engineering. Within this area, this paper concerns iterative methods to find a simple or
singular root of f(x) = 0, f being a real function.

In recent years, a lot of root-finding methods have been published, with the aim of improving the order of
convergence of the well known classical methods such as Newton’s (NM) of order of convergence two, Euler’s
(EM), Ostrowski’s (OM), Chebyshev’s (CHM) and Hally’s (HM) of order of convergence three, Jarratt’s
(JM) of order of convergence four, etc, most frequently by composing two or more of them (multi-point or
multi-step iterative methods), and using adequate approximations for the derivatives, as it can be seen in
numerous references therein (see [1]-[12]). The increment of the velocity of convergence is usually attained
at the expense of the number of function and derivative evaluations to accomplish each iteration, what
might affect its computational efficiency. This problem is usually solved by Traub’s formula, that says: the
computational efficiency of an iterative method (IM) of order p and λ function evaluations is given by the
so-called efficiency index:

E(IM) = p1/λ (1)



As an alternative, we present a family of one-step iterative methods to increase the velocity of convergence,
introducing convenient modifications in the NM. Next, we are going to motivate the main ideas of our
proposal. NM, EM, OM, CHM, HM, JM and other classical one-step iterations can be expressed under a
common structure, as the reader can easily observe:

xn+1 = xn − f(xn)

f ′(xn)
G(xn) (2)

where G(x) is a different function for each of them. Indeed:

For Newton’s G(xn) takes the form:

GN (xn) = 1;∀ n (3)

For Euler’s G(xn) takes the form:

GE(xn) =
2

1 +
√

1− 4 f(xn−ξ(xn))
f(xn)

, with ξ(xn) = xn − f(xn)

f ′(xn)
(4)

For Ostrowski’s G(xn) takes the form:

G0(xn) = 1 +
f(ξ(xn))

f(xn)− 2 f(ξ(xn))
(5)

For Chebyshev’s G(xn) takes the form:

GCH(xn) = 1 +
f ′′(xn)f(xn)

2f ′(xn)2
(6)

For Hally’s G(xn) takes the form:

GH(xn) = 1 +
M(xn)

1− 1/2M(xn)
; with M(xn) =

f ′′(xn)f(xn)

f ′(xn)2
(7)

For Jarratt’s G(xn) takes the form:

GJ(xn) = 1− 3

2

f ′(ξ1(xn))− f ′(xn)

3f ′(ξ1(xn))− f ′(xn)
, with ξ1(xn) = xn − 2

3

f(xn)

f ′(xn)
(8)

Besides, if r is a root of f , the values of each G(x) and its respective derivatives at x = r bear a relation
to the velocity of convergence, as illustrated in Table 1 where, for the sake of the clarity, bk, k=2, 3, ..., is
defined as:

bk =
f (k)(r)

k!f ′(r)
(9)

As the reader can easily check the following regularities hold: All the iterations of Table 1 of order of
convergence two or more satisfy that G(r) = 1; the ones of order of convergence three or more satisfy that
G(r) = 1 and G′(r) = b2; and, the ones of order of convergence four or more satisfy that G(r) = 1, G′(r) = b2
and G(2)(r) = −2b22 + 4b3.

At sight of such regularities one might ask whether it is possible to find the conditions for G to increase the
convergence order of (2) more and more, even unlimitedly; and whether, once known such conditions, such
a function G could be built in an explicit way.

In order to response these questions, in this paper we are going to build a family of formulas of iteration
given by:

xn+1 = xn − f(xn)

f ′(xn)
Gm(xn), 1 ≤ m < ∞ (10)



Table 1: Regularities of G(x)

G(r) G′(r) G(2)(r) Order of convergence

Jarrat GJ (r) = 1 G′
J(r) = b2 G

(2)
J (r) = −2b22 + 4b3 4

Euler GE(r) = 1 G′
E(r) = b2 G

(2)
E (r) ̸= −2b22 + 4b3 3

Ostrowski GO(r) = 1 G′
O(r) = b2 G

(2)
O (r) ̸= −2b22 + 4b3 3

Hally GH(r) = 1 G′
H(r) = b2 G

(2)
H (r) ̸= −2b22 + 4b3 3

Newton GN (r) = 1 G′
N (r) ̸= b2 G

(2)
N (r) ̸= −2b22 + 4b3 2

where Gm are functions to be determine later, in such a way that the m− th formula of iteration has order
of convergence (m+1) at the expense of only one derivative evaluation more in relation to the previous one.

On the other hand, all the papers in the background literature about this subject, for solving either a
single or a system of nonlinear equations, they all start with a guessed initial approximation, but no global
procedure is provided in order to find such a convenient approximation for guaranteeing the convergence of
the iteration process.

In other to improve this problem we are going to introduce a new algorithm with the role of root-seeker in
an interval as great as needed, that can be composed with iterations (10) as an only algorithm of global
convergence.

This paper is organized as follows. In Section 2, we collect some recent results which the following are based
on. In the next Sections 3 and 4 we introduce the PMI and analyze its order of convergence and its local
convergence. In Section 5 we derive the PMII and analyze its convergence. In Section 6 we compose PMI
and PMII as a new algorithm of global convergence, for solving all the roots of the scalar functions f(x) in a
feasible interval. In Section 7 we carry out a comparison with other methods, finishing with the conclusions
of the last section.

2 Some recent results

Some recent results published by the author in [13] are resumed, that will be needed throughout this writing.

Note 1 Let P (x) be a polynomial function of m degree given by:

y = P (x) = a0 + a1x+ · · ·+ amxm (am ̸= 0) (11)

If the inequality:

m2

m− 1

∣∣∣∣a0a2a21

∣∣∣∣+ m3

(m− 1)2

∣∣∣∣a20a3a31

∣∣∣∣+ · · ·+ mm

(m− 1)m−1

∣∣∣∣am−1
0 am
am1

∣∣∣∣ < 1 (12)

holds, then P (x) has a real root, r, given by the absolutely convergent series:

r =
a0
−a1

∞∑
n=0

∑
q2+...+qm=n

d(q2, ..., qm)

(
a0a2

(−a1)2

)q2

...

(
am−1
0 am
(−a1)m

)qm

(13)

d(q2, ..., qm) being:

d(q2, ..., qm) =
(2q2 + 3q3 + · · ·+mqm)!

(q2 + 2q3 + · · ·+ (m− 1)qm + 1)!q2!q3! · · · qm!
(14)

with q2, ..., qm, non-negative integers.



Note 2 Besides, r is either the smallest positive root, if a0/(−a1) > 0, or the greatest negative root, if
a0/(−a1) < 0.

On the contrary, if P (x) has a real simple root, r, and the series (13) is not convergent, we provided a
solution to this question by shifting the polynomial, P (x), throughout the X-axis, according to the following
Note.

Note 3 We define the function:

CP (x) =
m2

m− 1

∥∥∥∥P (2)(x)P (x)

2!P ′2(x)

∥∥∥∥+ m3

(m− 1)2

∥∥∥∥P (3)(x)P 2(x)

3!P ′3(x)

∥∥∥∥+ ...+
mm

(m− 1)m−1

∥∥∥∥P (m)(x)Pm−1(x)

m!P ′m(x)

∥∥∥∥ (15)

Consider x ∈ R sufficiently close to r to satisfy the inequality:

CP (x) < 1 (16)

Let us write the Taylor’s formula of P (x) around x:

P (y) = P (x) + P ′(x)(y − x) +
P ′′(x)

2!
(y − x)2 + ...+

P (m)(x)

m!
(y − x)m (17)

Changing (y − x) by x in (17) leads to:

Px(x) = P (x+ x) = P (x) + P ′(x)x+
P ′′(x)

2!
x2 + ...+

P (m)(x)

m!
xm (18)

From (16) Px satisfies (12), and we arrive at:

r = x+
P (x)

−P ′(x)

∞∑
p=0

∑
q2+···+qm=p

d(q2 · · · qm)

(
P (x)P ′′(x)

2!(−P ′(x))2

)q2
(
P (x)2P (3)(x)

3!(−P ′(x))3

)q3

· · ·
(
P (x)m−1P (m)(x)

m!(−P ′(x))m

)qm

(19)

Note 4 As in Note 2, r is either the closest root to x on the right (x < r) if P (x)/(−P ′(x)) > 0 or, on the
left (x > r), if P (x)/(−P ′(x)) < 0.

Note 5 If (12) or (16) hold, then in consonance with Proposition 1 of [13], the inequalities:∣∣∣∣ a0
−a1

∣∣∣∣ ∞∑
n=0

∑
q2+...+qm=n

d(q2, ..., qm)

∣∣∣∣ a0a2
(−a1)2

∣∣∣∣q2 ... ∣∣∣∣am−1
0 am
(−a1)m

∣∣∣∣qm ≤ |a0|
|a1|

m

m− 1
; or (20)

∣∣∣∣ P (x)

P ′(x)

∣∣∣∣ ∞∑
p=0

∑
q2+···+qm=p

d(q2 · · · qm)

∣∣∣∣P (x)P ′′(x)

2!P ′2(x)

∣∣∣∣q2 ∣∣∣∣P (x)2P (3)(x)

3!P ′3(x)

∣∣∣∣q3 ... ∣∣∣∣P (x)m−1P (m)(x)

m!P ′m(x)

∣∣∣∣qm
≤
∣∣∣∣ P (x)

P ′(x)

∣∣∣∣ m

m− 1

(21)

are respectively verified.

Having done this, hereafter, we introduce the new results of this work.

3 Convergence velocity study of the PMI

For the clarity of the exposition, given a sufficiently differentiable function f or a polynomial P , let us
denominate:

ak(x) =
f (k)(x)

k!f ′(x)
and bk(x) =

P (k)(x)

k!P ′(x)
(22)

respectively.



Lemma 1 If polynomial (11) has a simple real zero, r, then there exists a neighborhood of r, Ur, where r
is the only root of (11), P ′(x) preserves sign and such that the function given by:

g(x) = x+
P (x)

−P ′(x)

∞∑
p=0

∑
q2+···+qm=p

d(q2 · · · qm)

(
P (x)P ′′(x)

2!(−P ′(x))2

)q2
(
P (x)2P (3)(x)

3!(−P ′(x))3

)q3

· · ·
(
P (x)m−1P (m)(x)

m!(−P ′(x))m

)qm

(23)

satisfies that g(x) = r, ∀ x ∈ Ur.

Proof.

(16) holds at x = r since CP (r) = 0 < 1, therefore there exists a neighborhood of r, Ur, where (16) is
verified; what implies that r is the only root of f in Ur. Indeed, let R1 ∈ Ur be the closest one to r, then
due to Rolle’s Theorem there would be one point α ∈ Ur such that CP (α) = ∞, what is a contradiction.
Consequently P ′(x) preserves sign in Ur.

Now, take any x ∈ Ur. As CP (x) < 1, then g(x) converges to a root of P (x), say R2, but R2 ∈ Ur, because
if P (x)/(−P ′(x)) > 0 r and R2 are greater than x (take into account that P ′(x) preserves sign in Ur) and, in
agreement with Note 4, x < R2 ≤ r, and as a consequence R2 ∈ Ur; on the contrary, if P (x)/(−P ′(x)) < 0
r and R2 are lower than x and, in agreement with Note 4, x > R2 ≥ r, and R2 ∈ Ur. Then we can conclude
that r = R2 and that g(x) = r for all x ∈ Ur.

Lemma 2 In agreement with (22), series (23) can be rearranged as:

g(x) = x− P (x)

P ′(x)

∞∑
p=0

Ap(x)

(
P (x)

P ′(x)

)p

(24)

where

Ap(x) =
∑

q2+2q3+...+(m−1)qm=p

(−1)2q2+...+mqmd(q2, ..., qm)b2(x)
q2b3(x)

q3 ...bm(x)qm ; p = 0, 1, 2, ... (25)

Before proving it, for the sake of clarity in the exposition, we introduce the following Note to this Lemma.

Note 6

A0(x) =
∑

q2+2q3+...+(m−1)qm=0

(−1)2q2+...+mqmd(q2, ..., qm)b2(x)
q2b3(x)

q3 ...bm(x)qm (26)

in such a way that q2 = q3 = · · · = qm = 0, and A0(x) is left as:

A0(x) = 1 (27)

Regarding to A1:

A1(x) =
∑

q2+2q3+...+(m−1)qm=1

(−1)2q2+...+mqmd(q2, ..., qm)b2(x)
q2b3(x)

q3 ...bm(x)qm (28)

therefore q2 = 1, q3 = · · · = qm = 0 and A1(x) is left as:

A1(x) = (−1)2d(1, 0..., 0)b2(x) (29)

Observe that the maximum order of differentiation that appears in A1(x) is P (2)(x).

With respect to A2(x):

A2(x) =
∑

q2+2q3+...+(m−1)qm=2

(−1)2q2+...+mqmd(q2, ..., qm)b2(x)
q2b3(x)

q3 ...bm(x)qm (30)



what means that q4 = · · · = qm = 0 and A2(x) is left as:

A2(x) =
∑

q2+2q3=2

(−1)2q2+3q3d(q2, q3, 0, ..., 0)b2(x)
q2b3(x)

q3 (31)

Observe that the maximum order of differentiation that appears in A2(x) is P (3)(x).

Continuing this process so far Am−2(x):

Am−2(x) =
∑

q2+...+(m−1)qm=m−2

(−1)2q2+...+mqmd(q2, ..., qm)b2(x)
q2b3(x)

q3 ...bm(x)qm (32)

in other words qm must be equal to zero, and Am−2(x) is left as:

Am−2(x) =
∑

q2+...+(m−2)qm−1=m−2

(−1)2q2+...+(m−1)qm−1d(q2, ..., qm−1, 0)b2(x)
q2b3(x)

q3 ...bm−1(x)
qm−1 (33)

Observe that the maximum order of differentiation that appears in Am−2 is P (m−1)(x).

Finally, Am−1(x) is the first term of the series where P (m)(x) appears:

Am−1(x) =
∑

q2+...+(m−1)qm=m−1

(−1)2q2+...+mqmd(q2, ..., qm)b2(x)
q2b3(x)

q3 ...bm(x)qm (34)

Next, we accomplish the proof of the Lemma.

Proof.

According to (22), series (23) turns out:

g(x) = x

+
P (x)

−P ′(x)

∞∑
p=0

∑
q2+···+qm=p

(−1)2q2+3q3+...+mqmd(q2, ..., qm)(b2(x))
q2 · · · (bm(x))qm

(
P (x)

P ′(x)

)q2+2q3+···+(m−1)qm (35)

making q2 + 2q3 + · · ·+ (m− 1)qm = n the terms of the series can be rearranged in the way:

g(x) = x+
P (x)

−P ′(x)

∞∑
n=0

∑
i2+2i3+...+(m−1)im=n

(−1)2i2+3i3+...+mimd(i2, ..., im)(b2(x))
i2 · · · (bm(x))im

(
P (x)

P ′(x)

)n

(36)

In fact, each term of the series (35) given by:

A(q2, ..., qm) = (−1)2q2+3q3+...+mqmd(q2, ..., qm)(b2(x))
q2 · · · (bm(x))qm

(
P (x)

P ′(x)

)q2+2q3+···+(m−1)qm

(37)

with q2 + · · ·+ qm = p matches the term of the series (36) given by:

B(i2, ..., im) = (−1)2i2+3i3+...+mimd(i2, ..., im)(b2(x))
i2 · · · (bm(x))im

(
P (x)

P ′(x)

)n

(38)

with i2 = q2, ..., im = qm and i2 + 2i3 + ...+ (m− 1)im = n.

Conversely, each term of the series (36), B(i2, ..., im), with i2 + 2i3 + ...+ (m− 1)im = v, matches the term
of the series A(q2, ..., qm), with q2 = i2, ..., qm = im and q2 + · · ·+ qm = t. And the result follows.

Lemma 3 Under the same hypothesis as Lemma 1, the function:

hm(x) = x−
m−1∑
p=0

Ap(x)

(
P (x)

P ′(x)

)p+1

(39)

satisfies the equalities:

h(i)
m (r) = 0; for i = 1, 2, ..., m (40)



Proof.

Consider the function:

h(x) =

∞∑
p=m

Ap(x)

(
P (x)

P ′(x)

)p+1

(41)

then, (24) becomes:

g(x) = hm(x) + h(x) (42)

In agreement with Lemma 1, g(x) is constant for all x ∈ Ur, therefore:

g(i)(x) = h(i)
m (x) + h(i)(x) = 0 (43)

for all i > 0. As

di

dx

(
P (x)

P ′(x)

)p+1
∣∣∣∣∣
x=r

= 0, ∀ (p+ 1) > i (44)

As in the function h(x), p+ 1 ≥ m+ 1 > m, then h(i)(r) = 0 for all i ≤ m, and from (43) the result follows.

Definition 1 Let f be a sufficient differentiable real function, then we introduce the infinity family of func-
tions Fm as:

Fm(x) = x− f(x)

f ′(x)

m−1∑
p=0

Bp(x)

(
f(x)

f ′(x)

)p

= x−
m−1∑
p=0

Bp(x)

(
f(x)

f ′(x)

)p+1

(45)

with m=1, 2, · · ·

Bp(x) =
∑

q2+2q3+...+(m−1)qm=p

(−1)2q2+...+mqmd(q2, ..., qm)a2(x)
q2a3(x)

q3 ...am(x)qm (46)

and ak(x), 2 ≤ k ≤ m, introduced in (22).

Theorem 1 Given an integer m ≥ 1 and Fm(x), introduced in (45), let r be a simple real root of a sufficiently
differentiable function, f , then each i-th derivative, 1 ≤ i ≤ m, of function (45), valued at r, equals zero.

Proof.

The Taylor polynomial of m degree of the function f around r is:

P1(y) = f(r) + f ′(r)(y − r) +
f (2)(r)

2!
(y − r)2 + ...+

f (m)(r)

m!
(y − r)m+1 (47)

Obviously, r is also a simple root of P1 and consequently Polynomial (47) holds the hypothesis of Lemma 1
and Lemma 3. In order words:

hm(x) = x−
m−1∑
p=0

Ap(x)

(
P1(x)

P ′
1(x)

)p+1

(48)

satisfies the equalities:

h(i)
m (r) = 0; for i = 1, 2, ..., m (49)

Fm(x) and hm(x) have the same rational structure, the one in the variables f(x), f ′(x), ..., f (m)(x) and in the

variables P1(x), P
′
1(x), ..., P

(m)
1 (x), the other one. Therefore, due to derivation rules, its derivatives F ′

m(x)



and h′
m(x), F

(2)
m (x) and h

(2)
m (x), ..., F

(m)
m (x) and h

(m)
m (x) have also the same rational structure respectively:

R1, R2,..., Rm, concretely at x = r and taking into account that:

dj
(
f(x)

f ′(x)

)i

dxj

∣∣∣∣∣∣∣∣∣
x=r

= 0; with i > j (50)

F (j)
m (x)

∣∣∣
x=r

=
dj

dxj

(
x−

m−1∑
p=0

Bp(x)

(
f(x)

f ′(x)

)p+1
)∣∣∣∣∣

x=r

=
dj

dxj
(x)−

m−1∑
p=0

dj

dxj

(
Bp(x)

(
f(x)

f ′(x)

)p+1
)∣∣∣∣∣

x=r

=
dj

dxj
(x)−

m−1∑
p=0

j∑
k=0

(
j
k

)
dj−k

dxj−k
[Bp(x)]

dk

dxk

[(
f(x)

f ′(x)

)p+1
]∣∣∣∣∣

x=r

=
dj

dxj
(x)−

j−1∑
p=0

j∑
k=p+1

(
j
k

)
dj−k

dxj−k
[Bp(x)]

dk

dxk

[(
f(x)

f ′(x)

)p+1
]∣∣∣∣∣∣

x=r

(51)

Each term of sum (51) is in the form:(
j
k

)
dj−k

dxj−k
[Bp(x)]

dk

dxk

[(
f(x)

f ′(x)

)p+1
]∣∣∣∣∣

x=r

; with 0 ≤ p ≤ j − 1; p+ 1 ≤ k ≤ j (52)

which, in agreement with Note 6, either they are equal to zero, or they have j as maximum order of derivation
of f . Therefore:

F (2)
m (x)

∣∣∣
x=r

= R2

(
f(r), f ′(r), f (2)(r)

)
= R2

(
P1(r), P

′
1(r), P

(2)
1 (r)

)
= h(2)

m (r) = 0 (53)

since f(r)=P1(r), f
′(r)=P ′

1(r) and f (2)(r)=P
(2)
1 (r). And in the same way it is proven that:

F (m)
m (x)

∣∣∣
x=r

= Rm

(
f(r), f ′(r), ..., f (m)(r)

)
= Rm

(
P1(r), P

′
1(r), ...., P

(m)
1 (r)

)
= h(m)

m (r) = 0 (54)

since f(r)=P1(r), f
′(r)=P ′

1(r), ..., f
(m)(r)=P

(m)
1 (r). And the result follows.

Corollary 1 Given an integer number m > 0, let r be a simple zero of a sufficiently differentiable function
f . If there exits a close enough α to r, in such a way that the sequence:

x0 = α; xn+1 = Fm(xn),∀ n > 0 (55)

is convergent, where Fm was defined in (45), then it has convergence order m+ 1.

Proof.

The result follows from Taylor’s Formula:

F (xn) = F (r) + F ′(r)(xn − r) + · · ·+ F (m)(r)

(m+ 1)!
(xn − r)m+

F (m+1)(γ)

(m+ 1)!
(xn − r)m+1

⇒ xn+1 = r +
F (m+1)(γ)

(m+ 1)!
(xn − r)m+1

⇒ xn+1 − r

(xn − r)m+1
=

F (m+1)(γ)

(m+ 2)!



4 Study of the local convergence of the PMI

Lemma 4 Fixed an integer m > 0, let r be a simple real root of f , then there exit an 1 > ϵ > 0 and a
neighborhood of r, V r = [r − ϵ, r + ϵ], such that for all x ∈ [r − ϵ, r + ϵ] the inequalities:

f ′(x) ̸= 0 (56)

m

m− 1

|f(x)|
|f ′(x)|

≤ ϵ (57)

Cf (x) =
m2

m− 1

∣∣∣∣f (2)(x)f(x)

2!f ′2(x)

∣∣∣∣+ m3

(m− 1)2

∣∣∣∣f (3)(x)f2(x)

3!f ′3(x)

∣∣∣∣+ ...+
mm

(m− 1)m−1

∣∣∣∣f (m)(x)fm−1(x)

m!f ′m(x)

∣∣∣∣
= |c2(x)|

∣∣∣∣ f(x)f ′(x)

m

m− 1

∣∣∣∣+ |c3(x)|
∣∣∣∣ f(x)f ′(x)

m

m− 1

∣∣∣∣2 + · · · |cm(x)|
∣∣∣∣ f(x)f ′(x)

m

m− 1

∣∣∣∣m <
1

m

(58)

|F ′
m(x)| < ϵ (59)

hold.

Lemma 5 Under the same hypothesis as Lemma 4, for all α ∈ V r the inequality:∣∣∣∣B1(α)

(
f(α)

f ′(α)

)∣∣∣∣+
∣∣∣∣∣B2(α)

(
f(α)

f ′(α)

)2
∣∣∣∣∣+ ...+

∣∣∣∣∣Bm−1(α)

(
f(α)

f ′(α)

)m−1
∣∣∣∣∣ ≤ 1

m− 1
(60)

holds.

Proof.

Let P be the Taylor polynomial of order m of f around α:

P (x) = f(α) + f ′(α)(x− α) +
f ′′(α)

2!
(x− α)2 + ...+

f (m)(α)

m!
(x− α)m (61)

As Cf (α) < 1, from Notes 3, 5 and Lemma 2 the following series is well defined and satisfies:∥∥∥∥ f(α)f ′(α)

∥∥∥∥ ∞∑
p=0

∥∥∥∥Bp(α)

(
f(α)

f ′(α)

)p∥∥∥∥
=

∥∥∥∥ f(α)f ′(α)

∥∥∥∥ ∞∑
p=0

∑
q2+···+qm=f

d(q2 · · · qm)

∥∥∥∥f(α)f ′′(α)

2!f ′2(α)

∥∥∥∥q2 ∥∥∥∥f(α)2f (3)(α)

3!f ′3(α)

∥∥∥∥q3 ...∥∥∥∥f(α)m−1f (m)(α)

m!f ′m(α)

∥∥∥∥qm
≤
∥∥∥∥ f(α)f ′(α)

∥∥∥∥ m

m− 1

(62)

Therefore:

m−1∑
p=1

∥∥∥∥Bp(α)

(
f(α)

f ′(α)

)p∥∥∥∥ ≤
∞∑
p=1

∥∥∥∥Bp(α)

(
f(α)

f ′(α)

)p∥∥∥∥ ≤ 1

m− 1
(63)

Lemma 6 Under the same hypothesis as Lemma 4

Fm(V r) ⊂ V r (64)

is verified.



Proof.

Suppose, without loss of generality, that ∀ x ∈ V r such that x < r is f(x) > 0 and, on the contrary, ∀ x ∈ V r

such that x > r is f(x) < 0. We take:

Fm(x) = x− f(x)

f ′(x)

m−1∑
p=0

Bp(x)

(
f(x)

f ′(x)

)p

= x− f(x)

f ′(x)
− f(x)

f ′(x)

m−1∑
p=1

Bp(x)

(
f(x)

f ′(x)

)p

(65)

First. Assume that x < r then, on the one hand, (65) becomes:

Fm(x) = x− f(x)

f ′(x)

m−1∑
p=0

Bp(x)

(
f(x)

f ′(x)

)p

≤ x+

∣∣∣∣ f(x)f ′(x)

∣∣∣∣m−1∑
p=0

∣∣∣∣Bp(x)
f(x)

f ′(x)

∣∣∣∣p ≤ x+

∣∣∣∣ f(x)f ′(x)

∣∣∣∣ m

m− 1
≤ r+ϵ (66)

and on the other hand:

Fm(x) = x− f(x)

f ′(x)
− f(x)

f ′(x)

m−1∑
p=1

Bp(x)

(
f(x)

f ′(x)

)p

= x+

∣∣∣∣ f(x)f ′(x)

∣∣∣∣+ ∣∣∣∣ f(x)f ′(x)

∣∣∣∣m−1∑
p=1

Bp(x)

(
−
∣∣∣∣ f(x)f ′(x)

∣∣∣∣)p

≥ x+

∣∣∣∣ f(x)f ′(x)

∣∣∣∣− ∣∣∣∣ f(x)f ′(x)

∣∣∣∣m−1∑
p=1

∣∣∣∣Bp(x)
f(x)

f ′(x)

∣∣∣∣p ≥ x+

∣∣∣∣ f(x)f ′(x)

∣∣∣∣− ∣∣∣∣ f(x)f ′(x)

∣∣∣∣ 1

m− 1
≥ x

(67)

Second. Assume that x > r then, on the one hand, (65) becomes:

Fm(x) = x− f(x)

f ′(x)
− f(x)

f ′(x)

m−1∑
p=1

Bp(x)

(
f(x)

f ′(x)

)p

= x−
∣∣∣∣ f(x)f ′(x)

∣∣∣∣− ∣∣∣∣ f(x)f ′(x)

∣∣∣∣m−1∑
p=1

Bp(x)

∣∣∣∣ f(x)f ′(x)

∣∣∣∣p

≤ x−
∣∣∣∣ f(x)f ′(x)

∣∣∣∣+ ∣∣∣∣ f(x)f ′(x)

∣∣∣∣m−1∑
p=1

∣∣∣∣Bp(x)
f(x)

f ′(x)

∣∣∣∣p ≤ x−
∣∣∣∣ f(x)f ′(x)

∣∣∣∣+ ∣∣∣∣ f(x)f ′(x)

∣∣∣∣ 1

m− 1
≤ x

(68)

and on the other hand:

Fm(x) = x− f(x)

f ′(x)

m−1∑
p=0

Bp(x)

(
f(x)

f ′(x)

)p

= x−
∣∣∣∣ f(x)f ′(x)

∣∣∣∣m−1∑
p=0

Bp(x)

∣∣∣∣ f(x)f ′(x)

∣∣∣∣p

≥ x−
∣∣∣∣ f(x)f ′(x)

∣∣∣∣m−1∑
p=0

∣∣∣∣Bp(x)
f(x)

f ′(x)

∣∣∣∣p ≥ x−
∣∣∣∣ f(x)f ′(x)

∣∣∣∣ m

m− 1
≥ r − ϵ

(69)

Theorem 2 The sequence:

xn+1 = Fm(xn) (70)

converges to r, x0 being any x ∈ V r.

Proof.

In agreement with Lemma 6 xn ∈ V r, ∀ n ≥ 0, and the result follows from Lipschitz condition, since ∀ n ≥ 0
sequence (70) satisfies:

|xn − r| = |Fm(xn−1)− Fm(r)| = |F ′
m(βn)| |xn−1 − r| ≤ L |xn−1 − r| (71)

with βn ∈ V r and, therefore, with L < 1

As a consequence of all these results, we introduce the following note, which only aims to introduce a
reflection to be developed in future works:

Note 7 Take m = ∞ in (45) and consider x0 and f in such a way that the series:

r = F∞(x0) = x0 −
∞∑
p=0

Bp(x0)

(
f(x0)

f ′(x0)

)p+1

(72)

makes sense, then is r a root of f , as in the case of polynomial functions, according to (23) and (24)?



5 The PMII and the analyze of its convergence

As well known, one of the main problems dealing with iterative methods for solving nonlinear equations is
the initialization of the iteration. In this section we introduce the PMII to initialize the search of solutions
in a given interval, in such a way that the convergence does not depend on the chosen initial value. The
PMII can be used not only for starting the process, but also as a root-solver by its own.

Definition 2 Let f be a function in C2((c, d)), and [a, b] ⊂ (c, d), with f(a), f(b) ̸= 0; let C1, C2 ∈ R be
real numbers different to zero and such that the inequalities C1 ≤ f ′′(x) ≤ C2 hold for all x ∈ [a, b]; and let
x0 ∈ [a, b] be such that f(x0), f

′(x0) ̸= 0.

Then we define:

1. the real number m:

m = min

{
C1f(x0)

2!(−f ′(x0))2
,

C2f(x0)

2!(−f ′(x0))2

}
̸= 0; (73)

2. the parabola:

L : R → R; L(z) = mz2 − z + 1; (74)

3. and the open interval:

Jx0 =



(
a− ϵ, x0 − f(x0)

f ′(x0)
r1

)
; if f(x0)

f ′(x0)
< 0 and 0 < m ≤ 1/4(

x0 − f(x0)
f ′(x0)

r1, b+ ϵ
)
; if f(x0)

f ′(x0)
> 0 and 0 < m ≤ 1/4(

x0 − f(x0)
f ′(x0)

r1, x0 − f(x0)
f ′(x0)

r2

)
; if f(x0)

f ′(x0)
< 0 and 0 > m(

x0 − f(x0)
f ′(x0)

r2, x0 − f(x0)
f ′(x0)

r1

)
; if f(x0)

f ′(x0)
> 0 and 0 > m

(75)

where r1 and r2 are the real roots of L, when m ≤ 1/4, with r1 ≤ r2; and ϵ > 0, small enough to
guarantee that f(x) ̸= 0 ∀ x ∈ (a− ϵ, a) ∪ (b, b+ ϵ) ⊂ (c, d).

Theorem 3 If the hypothesis of Definition 2 hold, then:

1. Jx0 ̸= ∅;

2. if m > 1
4 , there is not any root of f in [a, b];

3. if 1
4 ≥ m > 0, there is not any root of f in the interval Jx0 ∩ [a, b] ̸= ∅;

4. if m < 0, there is not any root of f in the interval Jx0 ∩ [a, b] ̸= ∅.

Proof.

First: It is obvious, since r1, r2 ̸= 0, x0 ∈ [a, b] and f(x0)
f ′(x0)

̸= 0

Second: We proceed by absurd reduction method. Suppose that there is a root, r, in (a, b), then there
exists a real number zr that satisfies:

r = x0 +
f(x0)

−f ′(x0)
zr (76)

Using Taylor’s Formula:

0 = f(r) = f(x0) + f ′(x0)
f(x0)

−f ′(x0)
zr +

f ′′(β)

2!

(
f(x0)

−f ′(x0)

)2

z2r

= f(x0)

(
1− zr +

f ′′(β)

2!

f(x0)

(−f ′(x0))2
z2r

) (77)



y= f HxL

r

f Hx0L

a=x0

f Hx0L

H- f Hx0LL

f Hx0L

H- f Hx0LL
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Figure 1: Case: 0 ≤ m ≤ 1
4

where β ∈ (x0, r), if x0 < r or β ∈ (r, x0) on the contrary. Therefore the parabola:

Pa(z) = 1− z + az2

with

a =
f ′′(β)

2!

f(x0)

(−f ′(x0)2
≤ 1

4
(78)

has a zero, zr, and hence inequality (78) holds. Now, taking into account the parabola L(z), introduced in
(74), that satisfies the inequality:

L(z) = 1− z +mz2 ≤ Pa(z) = 1− z + az2; ∀ z ∈ R (79)

m > 1/4 being, we can deduce that L(z) > 0 and Pa(z) > 0 ∀ z ∈ R; contradiction that proves the second
point of the theorem.

Third: First, we are going to prove that there is not any root in the subinterval of Jx0 :(
x0, x0 −

f(x0)

f ′(x0)
r1

)
;

(
x0 −

f(x0)

f ′(x0)
r1, x0)

)
(80)

If there is not any root the result is obviously true. On the contrary, suppose that there is one root of f
in [a, b] then, in agreement with (77), Pa(z) has the root zr, introduced in (76); and in consonance with
inequality (78):

L(z) = 1− z +mz2 ≤ Pa(z) = 1− z + az2 ≤ U(z) = 1− z +
1

4
z2 (81)

U(z) has the double root s1 = s2 = 2, and as 0 < m ≤ 1/4, L(z) has two positive roots that satisfy the
inequalities 1 < r1 ≤ s1 = 2 ≤ r2; thus, from (81), zr ≥ r1 > 1 and one arrives at:

if
f(x0)

f ′(x0)
< 0, r = x0 −

f(x0)

f ′(x0)
zr ≥ x0 −

f(x0)

f ′(x0)
r1 > x0 → r /∈

(
x0, x0 −

f(x0)

f ′(x0)
r1

)
̸= ∅

if
f(x0)

f ′(x0)
> 0, r = x0 −

f(x0)

f ′(x0)
zr ≤ x0 −

f(x0)

f ′(x0)
r1 < x0 → r /∈

(
x0 −

f(x0)

f ′(x0)
r1, x0

)
̸= ∅

(82)

In order to show that there is not any root in the rest of the open interval Jx0 , we distinguish the following
parts:



1. If f(x0)/f
′(x0) < 0 and f(x0) > 0, then f(x) > 0, ∀ x ∈ [a, x0].

2. If f(x0)/f
′(x0) < 0 and f(x0) < 0, then f(x) < 0, ∀ x ∈ [a, x0].

3. If f(x0)/f
′(x0) > 0 and f(x0) > 0, then f(x) > 0, ∀ x ∈ [x0, b].

4. If f(x0)/f
′(x0) > 0 and f(x0) < 0, then f(x) < 0, ∀ x ∈ [x0, b].

Regarding the first one, from Taylor’s Formula, for any x ∈ [a, x0], we arrive at:

f(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(η)

2
(x− x0)

2, η ∈ (x, x0) (83)

dividing by (−f ′(x0)) > 0:

f(x)

−f ′(x0)
=

f(x0)

−f ′(x0)
+

f ′(x0)

−f ′(x0)
(x− x0) +

f ′′(η)

2(−f ′(x0)
(x− x0)

2

=
f(x0)

−f ′(x0)
+ x0 − x+

f ′′(η)

2(−f ′(x0))
(x− x0)

2

(84)

From (73), as m > 0 and f(x0) > 0, then f ′′(x) > 0 ∀ x ∈ [a, b] and from (84) follows that f(x) > 0, ∀ x ∈
[a, x0]. The other three parts can be proven in a similar way, and to repeat the same reasoning is not worth.

Fourth: As in the previous case, if there is not any root of f in [a, b], the result is obviously true. On the
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Figure 2: Case: 0 > m

contrary, suppose that there is a root then, as 0 > m, L(z) has two real roots that satisfy the inequalities
r1 < 0 < r2 < 1; thus zr ≥ r2 or zr ≤ r1 and one arrives at:

r /∈
(
x0 −

f(x0)

f ′(x0)
r1, x0 −

f(x0)

f ′(x0)
r2

)
̸= ∅ if

f(x0)

f ′(x0)
< 0, or

r /∈
(
x0 −

f(x0)

f ′(x0)
r2, x0 −

f(x0)

f ′(x0)
r1

)
̸= ∅ if

f(x0)

f ′(x0)
> 0

(85)

And the Theorem follows.

Definition 3 Let f be a function in C2((c, d)), [a, b] ⊂ (c, d), and C1, C2, m ∈ R introduced in Theorem 3.

Consider a sequence of points x1, · · · , xn ∈ [a, b] such that f(xi), f
′(xi) ̸= 0, 1 ≤ i ≤ n, with its intervals

Jxi ̸= ∅, 1 ≤ i ≤ n, respectively, in agreement with (75).



Then we define the sets J and A as follows:

J =

n∪
i=1

Jxi ; A = [a, b] \ J (86)

Theorem 4 Consider the sequence x1, · · · , xn and the set J , introduced in Definition 3. Let us introduce
I1, ... Il, with 1 ≤ l ≤ n, as the convex and separate components of J , in other words:

J =
l∪

i=1

Ii and
l∩

i=1

Ii = ∅ (87)

Then there are M , M ≥ 1, l − 1 ≤ M ≤ l + 1, convex and separate closed intervals: [s1, t1], · · · , [sM , tM ]
such that:

A =
M∪
i=1

[si, ti] ⊂ [a, b] ⊂

(
M∪
i=1

[si, ti]

)∪(
l∪

i=1

Ii

)
, (88)

with (
M∪
i=1

[si, ti]

)∩(
l∪

i=1

Ii

)
= ∅ (89)

Proof.

First of all, we introduced the sequence of real numbers: p1 < q1 ≤ p2 < q2 ≤ · · · ≤ pl < ql to satisfy:
Ii = (pi, qi), and that will be used next.

For the sake of clarity, we distinguish four cases:

1. a ∈ I1 and b ∈ Il;

2. a ∈ I1 and b /∈ Il;

3. a /∈ I1 and b ∈ Il;

4. a /∈ I1 and b /∈ Il.

I1 I2 I3@ D
a bp1 t1= p2 t2= p3s1=q1 s2=q2 q3

@ @D D

Figure 3: First case: a ∈ I1 and b ∈ Il; l = 3

First: a and b do not belong to A, so a ∈ (p1, q1) and b ∈ (pl, ql), then:

[a, b] ⊂

(
l−1∪
i=1

[si, ti]

)∪(
l∪

i=1

Ii

)
, with s1 = q1, t1 = p2, · · · , sl−1 = ql−1, tl−1 = pl (90)

A being:

A = [a, b] \ J =

l−1∪
i=1

[si, ti] ⊂ [a, b] (91)

Second: a does not belong to A, but b does, so a ∈ (p1, q1) y b /∈ (pl, ql), then:



I1 I2 I3@ D
a t3=bp1 t1= p2 t2= p3s1=q1 s2=q2 s3=q3

@ @D D @

Figure 4: Second case: a ∈ I1 and b /∈ Il; l = 3

[a, b] ⊂

(
l∪

i=1

[si, ti]

)∪(
l∪

i=1

Ii

)
, with s1 = q1, t1 = p2, · · · , sl = ql, tl = b (92)

A being:

A = [a, b] \ J =

l∪
i=1

[si, ti] ⊂ [a, b] (93)

Third: a belongs to A, but b does not, so a /∈ (p1, q1) y b ∈ (pl, ql) then

I1 I2 I3@ D
s1=a bt1= p1 t2= p2 t3= p3s2=q1 s3=q2 q3

@ @D DD

Figure 5: Third case: a /∈ I1 and b ∈ Il; l = 3

[a, b] ⊂

(
l∪

i=1

[si, ti]

)∪(
l∪

i=1

Ii

)
, with s1 = a, t1 = p1, · · · , sl = ql−1, tl = pl (94)

A being:

A = [a, b] \ J =
l∪

i=1

[si, ti] ⊂ [a, b] (95)

Fourth: a and b belong to A, so a /∈ (p1, q1) y b /∈ (pl, ql), then:

I1 I2 I3@ D
s1=a t4=bt1= p1 t2= p2 t3= p3s2=q1 s3=q2 s4=q3

@ @D DD @

Figure 6: Fourth case: a /∈ I1 and b /∈ Il; l = 3

[a, b] ⊂

(
l+1∪
i=1

[si, ti]

)∪(
l∪

i=1

Ii

)
, with s1 = a, t1 = p1, · · · , sl+1 = ql, tl+1 = b (96)

A being:

A = [a, b] \ J =
l+1∪
i=1

[si, ti] ⊂ [a, b] (97)

The result follows.



Definition 4 Under the same hypothesis as Theorem 3 and Definition 2, we define the sequence An n ≥ 0,
proceeding as follows:

First step

We apply Definition 3 and Theorem 4 to the sequence W1, making J = J1, A = A1, and M = M1, obtaining:

W1 = {w1; w1 ∈ (a, b); with f(w1); f
′(w1) ̸= 0}

J1 = Jw1 , in agreement with (75)

A1 = [a, b] \ J1 =

M1∪
k=1

[sk1 , t
k
1 ], in agreement with (88)

(98)

See Example 1 as a illustration.

Second step:

If A1 = ∅ (stop criterion of the iteration), then [a, b] ⊂ J1 and there is not any root in [a, b]. On the contrary,
if A1 ̸= ∅, then we construct A2 by applying again Definition 3 and Theorem 4 to the sequence W2, making
J = J2, A = A2, and M = M2, obtaining:

W2 =
{
wk

2 ; w
k
2 ∈ [sk1 , t

k
1 ]; f(wk

2 ), f
′(wk

2 ) ̸= 0; 1 ≤ k ≤ M1

}
J2 =

M1∪
k=1

Jwk
2

∪
J1, in agreement with (75)

A2 = [a, b] \ J2 = A1 \
M1∪
k=1

Jwk
2
=

M2∪
k=1

[sk2 , t
k
2 ], in agreement with (88)

(99)

If A2 ̸= ∅ we continue the process. See example 1 as an illustration.

Third step

Reasoning in the same way, given Wn, Jn and An, let us set An+1 as follows:

Wn+1 =
{
wk

n+1; w
k
n+1 ∈ [skn, t

k
n]; f(w

k
n+1); f

′(wk
n+1) ̸= 0; 1 ≤ k ≤ Mn

}
Jn+1 =

Mn∪
k=1

Jwk
n+1

∪
Jn, in agreement with (75)

An+1 = [a, b] \ Jn+1 = An \
Mn∪
k=1

Jwk
n+1

=

Mn+1∪
k=1

[skn+1, t
k
n+1], in agreement with (88)

(100)

See example 1 as an illustration.

Note 8 We recall the following statements:

1. Given the sequence of sets Mn, n ≥ 0, the upper (respectively lower) limit of Mn, denoted by lim
(respectively lim) is defined as:

limn→∞Mn =
∞∩
k=0

∞∪
n=k

Mn, limn→∞Mn =
∞∪
k=0

∞∩
n=k

Mn (101)



2. The sequence Mn is convergent if limn→∞Mn = limn→∞Mn

3. The sequence Mn is no increasing if Mn+1 ⊂ Mn, ∀ n ≥ 0.

4. If the sequence Mn is no increasing, then it is convergent, with limn→∞ Mn =
∩∞

n=0 Mn

The following Lemma is obvious due to the construction of the sequence An.

Lemma 7 The sequence An, introduced in Definition 4, is strictly no increasing. In other words: If An+1 ̸=
∅, then An+1 ⊂ An and An ̸= An+1.

Theorem 5 Let limn→∞ An = R, then or R = ∅ or R = {xk; xk ∈ [a, b]; k = 1,2,...}.

Proof.

If there is n0 such that An0 = ∅, obviously R = ∅.

On the contrary, If An ̸= ∅ ∀ n ≥ 1, then from Lemma 7 we can choose x0 ∈ [a, b] \ A1, x1 ∈ A1 \ A2, with
x0 ̸= x1, ..., xn ∈ An \An+1.

In this way we can construct an infinite sequence xn, n ≥ 0 in [a, b], of different points, that has at least one
accumulation point x1; as [a, b] is a closed set, then x1 ∈ [a, b].

Consider now an arbitrary k0, the sequence xn, n ≥ k0 is in Ak0 and for the same reason x1 ∈ Ak0 .

The result follows.

The following Corollary is a immediately consequence of the previous Theorem and Lemma.

Corollary 2 If An ̸= ∅ ∀n ≥ 1, then limn→∞ ∥tkn − skn∥ = 0, ∀k, where

An =

Mn∪
k=1

[skn, t
k
n] (102)

Theorem 6 The following statements are true:

1. If R = ∅, then there is not any root of f in [a, b].

2. If R = {xk; xk ∈ [a, b]; k = 1,2,...}, then f(xk) = 0, ∀xk ∈ R.

3. In [a, b] \R there is not any root of f .

Proof.

First: There exists n0 such that An0 = ∅, therefore [a, b] ⊂ Jn0 and the result follows from Theorem 3.

Second:

Consider m, r1 and r2 as in Definition 2.

Suppose that f(xk) ̸= 0, then there is e1 > 0, such that ∥f(x)∥ > 0 ∀ x ∈ [xk − ϵ1, xk + ϵ1].

Let r be a real number, given by r = max{∥r1∥, ∥r2∥}; let b1, b2 and M1 be real numbers to satisfy:
(∥f(x)∥ r) > b1 > 0, ∥f ′(x)∥ < b2, ∀ x ∈ [xk − ϵ1, xk + ϵ1], with M1 = b1/b2; and finally let ϵ > 0 be a real
number to satisfy ϵ = min{ϵ1,M1}. Then, we can conclude that:

∥f(x)∥ r

∥f ′(x)∥
≥ b1

b2
= M1 ≥ ϵ > 0 (103)

hods for all x ∈ [xk − ϵ, xk + ϵ].



As xk ∈ R, xk ∈ An, ∀ n ≥ 1. In agreement with Corollary 2, consider n0, k0 ∈ Z+ such that:

An0 =

Mn0∪
k=1

[skn0
, tkn0

]; ∥tkn0
− skn0

∥ < ϵ/2, ∀ k; xk ∈ [sk0
n0
, tk0

n0
] (104)

As a consequence of all of this, given any z ∈ [sk0
n0
, tk0

n0
], such that f ′(z) ̸= 0, on the one hand, if m < 0:

[sk0
n0
, tk0

n0
] ⊂ [z − ϵ/2, z + ϵ/2] ⊂ Jz (105)

since [z − ϵ/2, z + ϵ/2] ⊂ [xk − ϵ, xk + ϵ] and inequality (103) holds and, in particular, if we take z = wk0
n0+1,

then:

[sk0
n0
, tk0

n0
] ⊂ J

w
k0
n0+1

⇒ [sk0
n0
, tk0

n0
] ∩An0+1 = ∅ ⇒ xk /∈ R (106)

And, on the other hand, if m > 0:

[sk0
n0
, tk0

n0
] ⊂ [a, z + ϵ/2] ⊂ Jz or

[sk0
n0
, tk0

n0
] ⊂ [z − ϵ/2, b] ⊂ Jz

(107)

obtaining the same conclusion: xk /∈ R, contradiction that proves the result.

Third: It follows from the fact that there is not any root of f in Jn for all n.

Note 9 Observe that the set R contains as much simple as singular roots of f(x).

6 Composed algorithm from PMI and PMII

Before presenting the algorithm itself, we introduce the following example as a illustration of the main ideas.

Example 1 Find all the roots of f(x) = 2 cos(x)− 0.5x = 0 in the interval [−2π, 2π], with five exact digits.

According to Definition 4, we accomplish the solution in the following steps:

First step:

W1 = {1}
J1 = (−1.68614, 1.18614)

A1 = [−2π,−1.68614] ∪ [1.18614, 2π] = [s11, t
1
1] ∪ [s21, t

2
1]

(108)

According to Theorem 3, in J1 there is not any root, so if there are some roots, they are in A1. Taking
x0 ∈ [s11, t

1
1] (for example, its half point) as initial value and applying the iteration formula (70), with m = 1:

x0 = −3.98466

x1 = F1(x0) = −3.61577

x2 = F1(x1) = −3.59531

(109)

the root of f(x), r1 = −3.59531, is obtained. We proceed in a similar way taking y0 ∈ [s21, t
2
1] (for example,

its half point):

y0 = 3.73466

y1 = F1(y0) = −34.2718
(110)

As y1 /∈ [s21, t
2
1] and A1 has not any else subinterval, we go to the second step.



Second step:

W2 = {−3.98466, 3.73466}
J2 = (−6.26797,−3.69474) ∪ (−1.68614, 1.18614) ∪ (1.5228, 5.3287)

A2 = [−2π,−6.26797] ∪ [−3.69474,−1.68614] ∪ [1.18614, 1.5228] ∪ [5.3287, 2π]

= [s12, t
1
2] ∪ [s22, t

2
2] ∪ [s32, t

3
2] ∪ [s42, t

4
2]

(111)

W2 is the set of the half points of the intervals of A1. In J2 there is not any root. If there are some else
roots, there are in A2. Reasoning as in the previous step, we take x0 ∈ [s12, t

1
2] (for example, its half point):

x0 = −6.27558

x1 = F1(x0) = −189.312
(112)

As x1 /∈ [s12, t
1
2] and r1 ∈ [s22, t

2
2], we take y0 ∈ [s32, t

3
2] (for example, its half point):

y0 = 1.35447

y1 = F1(y0) = 1.25251

y2 = F1(y1) = 1.25235

(113)

obtaining the second root of f(x), r2 = 1.25235. Next we take z0 ∈ [s42, t
4
2] (for example, its half point):

z0 = 5.80594

z1 = F1(z0) = 23.855
(114)

As z1 /∈ [s42, t
4
2] and A2 has not any else subinterval, we go to the third step.

Third step:

W3 = {−6.27558,−2.69044, 1.35447, 5.80594}
J3 = (−8.81443,−3.69474) ∪ (−3.57592,−2.17697) ∪ (−1.68614, 1.18614) ∪ (1.25726, 6.6784)

A3 = [−3.69474,−3.57592] ∪ [−2.17697,−1.68614] ∪ [1.18614, 1.25726]

= [s13, t
1
3] ∪ [s23, t

2
3] ∪ [s33, t

3
3]

(115)

W3 is the set of the half points of the intervals of A2. In J3 there is not any root. If there are some else
roots, there are in A3. Reasoning as in the previous step, as r1 ∈ [s13, t

1
3], we take x0 ∈ [s23, t

2
3] (for example,

its half point):

x0 = −1.93155

x1 = F1(x0) = −2.13026

x2 = F1(x1) = −2.13333

(116)

and the third root of f(x), r3 = −2.13333, is reached. As r2 ∈ [s33, t
3
3] we go to the fourth step.

Fourth step:

W4 = {−3.63533,−1.93155, 1.2217}
J4 = (−8.81443,−3.59729) ∪ (−3.57592,−2.17697) ∪ (−2.10027, 1.2521) ∪ (1.25726, 6.6784)

A4 = [−3.59729,−3.57592] ∪ [−2.17697,−2.10027] ∪ [1.2521, 1.25726]

= [s14, t
1
4] ∪ [s24, t

2
4] ∪ [s34, t

3
4]

(117)

As r1 ∈ [s14, t
1
4], r3 ∈ [s24, t

2
4] and r2 ∈ [s34, t

3
4] we go to the fifth step.

Fifth step:

W5 = {−3.5866,−2.13862, 1.25468}
J5 = (−8.81443,−3.59729) ∪ (−3.5953,−2.13334) ∪ (−2.10027, 1.2521) ∪ (1.25236, 6.6784)

A5 = [−3.59729,−3.5953] ∪ [−2.13334,−2.10027] ∪ [1.2521, 1.25236]

= [s15, t
1
5] ∪ [s25, t

2
5] ∪ [s35, t

3
5]

(118)



As r1 ∈ [s15, t
1
5], r3 ∈ [s25, t

2
5] and r2 ∈ [s35, t

3
5] we go to the sixth step.

Sixth step:

W6 = {−3.59629,−2.1168, 1.25223}
J6 = (−8.81443,−3.59531) ∪ (−3.5953,−2.13334) ∪ (−2.133, 1.25235) ∪ (1.25236, 6.6784)

A6 = [−3.59531,−3.5953] ∪ [−2.13334,−2.1333] ∪ [1.25235, 1.25236]

= [s16, t
1
6] ∪ [s26, t

2
6] ∪ [s36, t

3
6]

(119)

As r1 ∈ [s16, t
1
6], r3 ∈ [s26, t

2
6] and r2 ∈ [s36, t

3
6] we stop because of s16 = t16, s

2
6 = t26 and s36 = t36 with five equal

digits as required, and in J6 there are not roots anymore.

The procedure of Example 1 can be generalized by the following algorithm, whose proof is based on the
previous results.

Algorithm 1 Algorithm for finding all the roots of the scalar equation f(x) = 0 in an arbitrary interval
[a, b], with f sufficiently differentiable to apply the iteration xn+1 = Fm(xn), introduced in (70).

First Step

Introduce the interval extremes a and b, the constants C1 and C2 (see Definition 2) and the iteration function
Fm. Besides define the iterators k, i, q and n and continue.

Second Step

Take k = 1 and continue.

Third step

Compute W1 and J1 (see Definition 4)

1. If [a, b] ⊂ J1
Then, end the Algorithm (there is not any root in [a,b])
Else, compute A1 (see Definition 4) and j1=number of subintervals of A1 and go to the following step
end If

Fourth Step

Take i = 1 and continue.

Fifth Step

1. If i ≤ j1
take x0 ∈ [si1, t

i
1]

Then, compute x1 = Fm(x0) and go to the point 2 of the fifth step
Else, go to the sixth step
end If

2. Take n=2 and continue

3. Compute xn = Fm(xn−1)
If xn ∈ [si1, t

i
1] and there is not xp = xn, with n− p > 1 (there is not a loop)

Then, compute xn+1 = Fm(xn)

If xn+1 = xn, with the required number of digits
Then, take q=1, compute rq = xn, take i=i+1 and go to the point 1 of the fifth step
Else, take n = n+ 1 and go to initialize again the point 3 of the fifth step
end If

Else, take i=i+1 and go to the point 1 of the fifth step
end If



Sixth step

Take k = k + 1 and continue.

Compute Wk and Jk

1. If [a, b] ⊂ Jk
Then, end the Algorithm (there is not any root in [a,b])
Else, compute Ak and jk=number of subintervals of Ak

If sik = tik with the number of required digits, 1 ≤ i ≤ jk
Then, end the Algorithm
Else, go to the seventh step

end If

Seventh Step

Take i = 1 again and continue.

Eighth Step

1. If i ≤ jk

If rh ∈ [sik, t
i
k], 1 ≤ h ≤ q

Then, i = i+ 1 and go to initialize again the point 1 of the eighth step
Else, take x0 ∈ [sik, t

i
k], compute x1 = Fm(x0) and go to the point 2 of the eighth step

end If

Else, go to the sixth step
end If

2. Take n=2

3. Compute xn = Fm(xn−1)
If xn ∈ [sik, t

i
k] and there is not xp = xn, with n− p > 1 (there is not a loop)

Then compute xn+1 = Fm(xn)

If xn+1 = xn, with the required number of digits
Then, take q = q + 1, compute rq = xn, take i=i+1 and go to the point 1 of the eighth step
Else, take n=n+1 and go to initialize the point 3 of the eighth step again
end If

Else take i=i+1 and go to the point 1 of the eighth step
end If

7 Comparison with other methods

Find all the roots of the function:

f(x) = e3x − 12ex + 16 (120)

in the feasible region −10 ≤ x ≤ 2, with five decimal digits. How many real roots are there in this region?



First step:

C1 = −6

c2 = 3543

a = −10

b = 2

W1 = {−4}
J1 = (−6.33041,−1.74285)

A1 = [−10,−6.33041] ∪ [−1.74285, 2] = [s11, t
1
1] ∪ [s21, t

2
1]

(121)

According to Theorem 3, in J1 there is not any root, so if there are some roots, they are in A1. Taking
x0 ∈ [s11, t

1
1] (for example, its half point) as initial value and applying the iteration formula (70), with m = 2:

x0 == −8.1652

x1 = F1(x0) = 3.4323 1010
(122)

As x1 /∈ [s21, t
2
1], we take y0 ∈ [s21, t

2
1] (for example, its half point):

y0 = 0.128575

y1 = F2(y0) = 0.572365

y2 = F2(y1) = 0.658323

y3 = F2(y2) = 0.682514

y4 = F2(y3) = 0.689848

y5 = F2(y4) = 0.692118

y6 = F2(y5) = 0.692826

y7 = F2(y6) = 0.693047

y8 = F2(y7) = 0.693116

y9 = F2(y8) = 0.693137

y10 = F2(y9) = 0.693144

y11 = F2(y10) = 0.693146

y12 = F2(y11) = 0.693147

(123)

obtaining the root of f(x), r1 = 0.693147. As A1 has not any else subinterval, we go to the following step.

Second step:

W2 = {1.24915}
J2 = (−10.4749, 0.498292) ∪ (1.05647, 29.9046)

A2 = [0.498292, 1.05647] = [s12, t
1
2]

(124)

W2 is the set of the half points of the intervals of A1. In J2 there is not any root. If there are some else
roots, there are in A2. As r1 ∈ [s12, t

1
2], we go to the following step:

Third step:

W3 = {0.777379}
J3 = (−10.4749, 0.498292) ∪ (0.738502, 29.9046)

A3 = [0.498292, 0.738502] = [s13, t
1
3]

(125)

W3 is the set of the half points of the intervals of A2. In J3 there is not any root. If there are some else
roots, there are in A3. As r1 ∈ [s13, t

1
3], we go to the following step. And going on, we arrive at:



Fourth step:

W16 = {0, 693147}
J16 = (−10.4749, 0.693147) ∪ (0.693147, 29.9046)

A16 = [0.693147, 0.693147]

(126)

As r1 ∈ A16, we stop because of in J16 there are not roots anymore. Therefore in the feasible region there
is only one root.

Taking the same initial value x0 = −4 as in the previous algorithm, the midpoint of the feasible region, we
have:

1. Bisection method fails as much to locate smaller intervals as to calculate the roots (observe it is a
singular root).

2. Chebishev’s method diverges.

3. Euler’s method, after 20 iterations preserves the initial value x20 = x0 = −4.00000

4. Halley’s method diverges.

5. Jarrat’s method diverges.

6. Ostrowski’s method, after 20 iterations, takes the value x20 = 96,0297

Similar results would be obtained using the multi-steps algorithms based on them.

Observe that PMII had calculated the roots, using any other initial value in the feasible region.

Regarding the number of roots in the feasible region, nowadays there is not a general procedure to determine
it, except in the case of polynomials (Sturm’s method).

8 Conclusions

As known, given a scalar equation or a system of nonlinear equations, there is not a general procedure to
locate and calculate all its real roots, including the singular ones. The existent algorithms need a guess
initial value to initialize the process for each of their roots, without providing how to calculate them in the
general case. As proven throughout this article, Algorithm 1 solves this problem in the case of the scalar
equations, locating and solving all their real roots, included the singular ones, without needing initial values.

Most of the times in engineering fields you need to solve f(x) = 0 within a feasible region a ≤ x ≤ b, and
to know the total number of roots in such a region, then the presented algorithm provides a general and
complete procedure to do it, as proven and illustrated throughout this work.

Furthermore, we are obtaining hopeful results to generalize this method in order to locate and solve all the
real roots of nonlinear systems, by improving and generalizing the ideas expressed in [13] for polynomial
systems.

As also proven, the PMI improves the velocity of convergence in an unlimited way, but besides, obviously,
its computational efficiency can also be improved by using the well known technics of acceleration of the
multi-step methods, nevertheless this issue is left for future works, since this paper is already extensive
enough.
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