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Abstract

In the last decade, machine learning (ML) techniques have been used for devel-
oping classifiers for automatic brain tumour diagnosis. However, the development
of these ML models rely on a unique training set and learning stops once this set
has been processed. Training these classifiers requires a representative amount of
data, but the gathering, preprocess, and validation of samples is expensive and
time-consuming. Therefore, for a classical, non-incremental approach to ML, it is
necessary to wait long enough to collect all the required data. In contrast, an incre-
mental learning approach may allow us to build an initial classifier with a smaller
number of samples and update it incrementally when new data are collected. In
this study, an incremental learning algorithm for Gaussian Discriminant Analysis
(iGDA) based on the Graybill and Deal weighted combination of estimators is intro-
duced. Each time a new set of data becomes available, a new estimation is carried
out and a combination with a previous estimation is performed. iGDA does not re-
quire access to the previously used data and is able to include new classes that were
not in the original analysis, thus allowing the customization of the models to the dis-
tribution of data at a particular clinical center. An evaluation using five benchmark
databases has been used to evaluate the behaviour of the iGDA algorithm in terms
of stability-plasticity, class inclusion and order effect. Finally, the iGDA algorithm
has been applied to automatic brain tumour classification with magnetic resonance
spectroscopy, and compared with two state-of-the-art incremental algorithms. The
empirical results obtained show the ability of the algorithm to learn in an incre-
mental fashion, improving the performance of the models when new information is
available, and converging in the course of time. Furthermore, the algorithm shows
a negligible instance and concept order effect, avoiding the bias that such effects
could introduce.

Key words: machine learning, incremental learning, Graybill-Deal estimator,
automatic brain tumour diagnosis, magnetic resonance
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1 Introduction

During the last decade, three European projects (INTERPRET (2000-2002) [1,2],
eTUMOUR (2004-2009) [3], and HEALTHAGENTS (2005-2008) [4]) have en-
deavoured to develop a non-invasive diagnostic tool using machine learning
(ML) techniques applied to proton magnetic resonance spectroscopy (\H MRS)
data from brain tumours. A major aim was to minimize the need for an inva-
sive histological diagnosis of a brain tumour biopsy as is currently required for
the diagnosis and management of brain tumours. Non-invasive brain tumour
diagnosis using 'H MRS has shown considerable promise in aiding patient
management but is not in widespread clinical use due mainly to the difficulties
of data interpretation. Machine learning (ML) has been successfully applied
to this problem providing automated analysis of 'H MRS [2,5,6]. However,
the development of robust brain tumour classifiers requires a large number of
cases to be acquired for each tumour type and at present the approach has only
been used for a few common tumours. Cases are accrued from a large number
of hospitals over many years and data transferred to a centralised database.
This approach has several disadvantages, ethical approval and patient consent
needs to be obtained to send and store data. In order to expand the applica-
bility of ML techniques to MRS of a wider range of tumours, more cases need
to be collected over a more prolonged period of time and the logistics of using
a centralised database to provide this have so far proved insurmountable. Dis-
tributed databases where the data is held at the data collecting hospitals have
major advantages [4] and such a system in which classifiers can be trained
without moving the data from the hospital at which it was collected would
provide a practical solution. The ability to retrain the classifiers as new data
accumulates is also an important requirement and to meet these needs, an
incremental learning algorithm is required.

Until now, the different Clinical Decision Support Systems (CDSS) developed
for automatic brain tumour diagnosis have only used non-incremental classifi-
cation models [2-4]. Non-incremental classifiers entail an implicit assumption
that learning stops when the training set has been processed. Hence, the per-
formance of a non-incremental automatic classifier strongly depends on the
availability of a representative training set for each class. However, the gath-
ering of these data is often expensive and time-consuming, and a strategy to
wait long enough as to gather enough data all in one set may be undesirable
and/or impractical. Furthermore, there are situations where the access to pre-
vious data may be forbidden. There are also types of data sources where the
underlying distributions may evolve over time rather than be stationary. In
particular, this happens in the concept drift [7-9], where the target distribution
p(c|z) may change in the course of time, and in the covariate shift [7,10], where
the data distribution p(x) changes continously. Under these circumstances an
incremental learning algorithm might be a practical and more effective solu-



tion.

The easiest way to take advantage from new observations is to build a new
model from scratch using all the historic data. But this solution may be more
expensive than modifying an already trained system, or even impractical if
older training set data is not readily accessible. Typically, an alternative has
been to keep a relevant subset of the previous data available. This approach
was used in the partial memory learning [9] and in the so-called boundary
methods, or maximum margin methods [11,12]. In this paper, it is assumed
that previous data are not accessible at all. In the last two decades, vari-
ous approaches have been developed for providing learners with incremental
learning ability. A number of incremental techniques were designed for decision
trees [13—15]. Other incremental decision trees techniques have been applied
for data streaming [16]. Incremental learning has also been used for connec-
tionist models based on structural adaptation [17-20] or on weight adapta-
tion [21,22]. There are some approaches to incremental principal component
analysis [23,24] that update the projection matrix incrementally. Moreover,
incremental algorithms for Fisher’s Linear Discriminant Analysis have also
been developed in the last decade [25-27].

Following the definitions of Langley [28] and Giraud-Carrier [29], an incre-
mental learning algorithm is a learning algorithm that produces a sequence
of classifiers Hy, Ha, . . ., H, for any given training set of samples 51, 8s, ..., S,
available at different moments ¢1,t,,...,t,, such that H,,; is determined by
‘H; and S;;1. The main characteristics of an incremental learning algorithm
are: a) it should be able to learn additional information from new data without
completely forgetting its previous knowledge; b) it should not require access
to previous data; ¢) since each H; can be viewed as the best approximation of
the target application, the performance should improve over time.

This definition is related to a general problem for classification models called
the stability-plasticity dilemma [30]. This dilemma reveals that some informa-
tion may be lost when new information is learned (gradual forgetting) and
highlights the difference between stable classifiers and plastic classifiers. To
summarize, the problem is how to design a learning system that is sensitive
to new input without being radically disrupted by such input.

In addition, Polikar et al. stated in [17] that an incremental learning algorithm
should be able to admit new classes when they are introduced with the new
data. This means that a new target concept appears over time while the rest
of the target concepts remain stable.

Another issue to be considered is the problem of order effects in incremental
learning, which has been addressed by several authors [28,31,32]. An incre-
mental learning algorithm suffers from an order effect when different ordered



sequences of the same instances lead to different models. In this sense, the
selection of the final models may be biased due to the ordering of the in-
troduced inputs. An order effect is benign if this effect produces classifiers of
nearly equal scores on some metric; otherwise it is malignant. The order effect
can appear at three levels: attribute level, instance level, and concept or class
level.

In this work, an ML-based method is proposed to continously adapt an au-
tomatic brain tumour diagnosis model to reflect the most recent information
included in newly acquired cases. Therefore, an incremental learning algo-
rithm based on a weighted combination of Gaussian parameter estimation is
presented for automatic brain tumour diagnosis. Our method relies on the
Graybill and Deal combination of unbiased estimators [33,34] originally devel-
oped for the estimation of a common mean when several sets of data come
from different measurement methods or different laboratories. The Graybill-
Deal estimator is known to be unbiased for the mean [34,35] and it has been
applied to discriminant analysis to develop a straightforward method for up-
dating the parameters of each class when new observations arrive. Although
the Gaussian assumption restricts this method to datasets with continuous
variables, the proposed algorithm is able to learn from new information when
it arrives, adjusting the parameters of the model to incorporate new classes in
the discriminant space when needed, and showing a benign order effect at in-
stance and concept level. Some benchmark experiments have been carried out
to show these issues and, finally, the incremental algorithm has been applied
for brain tumour diagnosis.

2 Methods

The formal purpose of classification is to assign instances to one class among
|C| possible classes based on a set of features obtained from each observa-
tion. A decision rule § is a function that maps an object x € R? into a
class ¢ € C. An error is incurred if the decision rule assigns the instance to
a wrong class. The final objective is to minimize the error for discriminat-
ing among different classes. In discriminant analysis, each class is represented
by a function g¢;(x),i = 1,...,|C|. A classifier d(x) assigns the class ¢; if
gj(x) > gi(x),Vj # i. When a 0-1 loss function is used, finding the class that
maximizes the log-likelihood of the posterior probability p(c|x) is equivalent.
Using Bayes’ rule, assuming that the density functions follow a multivariate
normal, p(x|c) ~ N(u,,3.), and taking into account that the prior proba-
bilities are parameters to be estimated, then the expression can be evaluated
using



ge(x) = xTW x + WCTX + Wy (1)

where W, = =137 w,. =X 'p, and we = logm. — $log [E,] — tplE ..
The mean, p., the covariance matrix, 3., and the prior probabilities, 7., of the
class ¢ are the parameters that can be estimated by the maximum-likelihood
method using a set of labeled samples [36].

This decision rule divides the sample space into |C| decision regions. The
points x of the sample space which satisfy that g;(x) = g;(x),? # j make the
decision boundary. These discriminant functions describe quadratic decision
boundaries except when the covariance matrices of all the classes are identical.
If a common covariance matrix is used the quadratic terms of Equation (1)
cancel giving rise to a linear boundary. Linear and quadratic versions are both
available in the proposed incremental algorithm.

2.1 Graybill-Deal combination of estimators

Given k sets with N; instances z1,...,xy, in each set, for « = 1,...,k, it is
possible to estimate the common mean of the population using a weighted
mean, where the weights w; depend on the number of instances and the pop-
ulation variance, provided that all the variances are known. When the true
variance is not known, the sample variance is used instead. In this case, the
weighted mean is computed by

k
Xop =Y wiXi (2)
i-1

where X is the mean value of the i-th set. The weights are calculated using
the sample variance as

N;/S?
?:1 Nj/Sy2 ’

~

w; =

(3)

where S? is the sample estimate variance of the corresponding set. Notice that
the estimation given by (3) gives higher weight to those sets with larger number
of instances N; and smaller variance S?. Graybill and Deal [33] demonstrated
that the estimation of the mean p using X¢p is unbiased, that is E[Xgp] = p.

It is trivial to extend this result to the combination of the mean for multivariate
samples. However, the need of a combined estimator for the covariance matrix



of the samples presents a harder challenge. In the next subsection, a solution
is proposed as part of the developed incremental algorithm.

2.2 Incremental Gaussian Discriminant Analysis based on Graybill-Deal es-
timation of weights

Let the training dataset be obtained in different samples, S;, that are available
in times t;,2 = 1,...,T. The Graybill-Deal estimation for Gaussian discrim-
inant analysis begins with the adjustment of the parameters for each class
based on maximum log-likelihood using the first set of samples. Hence, the
prior probabilities for each class, 7(!; the mean vector, u(!: and the covari-
ance matrix, 29) are estimated following the usual maximum log-likelihood
estimation [36].

A model H; is composed of a mean u(), a covariance matrix 25}’, a prior
probability 7(?), and the number of instances N of each class. The first
iteration of the algorithm estimates the parameters of the first model. When
a new dataset S; is available in time ¢;, ¢ > 1, the first step is to carry out a
new parameter estimation from S;, where fi_, 3., ., and N, are calculated
for each class. Then, the prior probabilities of the new model H; are updated

based on the number of samples per class:

N® = NGV L N (4)
NO = NCD L5 N, (5)
5 _ NO

where N, is the number of instances of S; and the class ¢. The new mean and
a weighted covariance matrix are calculated as

b = (= ), @)
B0 = IS + (1 uld)S ®)

where w( and (1 — w() are the weights for updating the parameters of
class ¢. The weights are calculated using the Graybill-Deal combination of
estimators (3) and they are subject to 0 < w® < 1 and >, wl® = 1. We
propose to adapt the variance to multivariate distributions by means of the

sum of the variances S? = tr(X;), which is equivalent to the sum of the



eigenvalues of the covariance matrix.

After estimating and incrementally updating the parameters, the common
covariance matrix can be used to obtain a linear discriminant instead of a
quadratic discriminant as previously explained. The pseudocode for the iGDA
algorithm is given in the Appendix.

One interesting property is that the algorithm allows the possibility of intro-
ducing new classes if required. Therefore, if a new set of samples includes data
from a new class, an estimation of the additional parameters is carried out.
The prior probabilities are updated according to the new data set and the
parameters of the new class are retained within the model, thus modifying the
final decision boundaries and the regions described for each class. This is due
to the generative model approach followed by the algorithm.

2.3  Comparison with other algorithms

Learnt™ is a well-known incremental learning algorithm proposed by Polikar
in [17]. Learn™™ is inspired by the AdaBoost algorithm [37], which was devel-
oped to improve the classification performance of weak learners ! . Schapire [38]
showed that a weak learner can be transformed into a strong learner using a
boosting procedure.

Learn™ uses the concept of boosting to incrementally improve the perfor-
mance of the classification. In contrast with AdaBoost, Learn*™ does not
extract the subsets from the same training set but from the successive obser-
vations available throughout time. Learn™ uses a weak learner to generate
multiple hypotheses from different subsets of data. Therefore, each hypoth-
esis learns only a portion of the input space. The weak learner is based on
a perceptron, thus each hypothesis defines a linear hyperplane as a decision
boundary. When the algorithm learns with a new set of samples, it generates
a new set of hypotheses. The outputs of all the hypotheses are combined us-
ing a weighted majority voting. Therefore, Learn™ does not require access to
previously used data during the incremental learning and it does not forget
previously acquired knowledge.

Another well-known incremental learning algorithm is the incremental Lin-
ear Discriminant Analysis (iILDA) proposed by Pang et al. [25]. iLDA uses a
constructive method for deriving an updated discriminant eigenspace for clas-
sification. A typical Linear Discriminant Analysis (LDA) seeks directions in
the D-dimensional space that are efficient for discrimination, projecting the

LA weak learneris a learning algorithm that performs slightly better than random
guessing.



observations to a P-dimensional space where P < D. To obtain the projec-
tion matrix W, the ratio between the between-class scatter matrix S and the
within-class scatter matrix S, must be maximized. Once the observations are
projected, different ML techniques can be used for classification purposes [39].

The iLDA method aims to obtain a new discriminant eigenspace model ®
by combining two discriminant eigenspace models €2; and €2, from different
samples S; and 811 acquired at time ¢ and ¢+ 1 respectively. This new model,
®, updates the sample mean, the S, matrix and the S, matrix and results in a
new projection matrix W. Once the data are projected in the new discriminant
eigenspace, a nearest neighbour algorithm is used for classification purposes.
For technical details see [25]. iLDA does not require access to previously seen
data and it can also include new classes if needed.

Finally, a naive incremental Gaussian model is used as a baseline for compari-
son with the above methods. This model updates its parameters from scratch.
That is, the previous data and the current data are used to train a new model
using quadratic discriminant analysis [36].

3 Benchmark experiments

The behaviour of the iGDA algorithm has been tested on several databases
with a threefold purpose: 1) to show that the developed algorithm is able to
incrementally learn and adapt the parameters of the classifier, improving its
performance without incurring in catastrophic forgetting; 2) to show how the
iGDA algorithm is able to introduce new concepts or classes into its knowledge
representation; 3) to analyze whether the order in which the instances are
introduced into the analysis have a crucial influence in the final hypothesis,
that is, if the algorithm is order dependent or not. The selected datasets have
only real attributes since the iGDA is restricted to that set of numbers. In
order to avoid possible bias, every experiment was evaluated following a K
random sampling train-test strategy, where K = 100.

3.1 Stability/Plasticity dilemma

3.1.1 Vehicle Silhouette Database.

The vehicle silhouette database has been extracted from the UCI Machine
Learning Repository [40]. The purpose of this database is to classify a given
silhouette into one of four different types of vehicle using a set of 18 features.
The database consisted of 846 instances. It was divided into a training parti-



Dataset H1 Ha Hs Hy Hs He H~

S1 99.93 97.42 95.48 94.22 93.22 92.57  92.11
So - 97.43 95.04 93.52 92.90 92.26  91.86
S3 - - 95.31 94.16 93.18 92.53  91.90
Sy - - - 94.24 93.38 92.64  92.08
Ss - - - - 92.68 92.06  91.54
S - - - - - 92.27  91.79
S7 - - - - - - 91.73
TEST 62.00 79.08 81.53 82.82 83.62 84.09  84.54

CI (a =1%) +1.44 +0.71 +0.62 +0.65 £0.65 +0.63  £0.59

Table 1

Training and test accuracy for the Vehicle Silhouette Database using a quadratic
iGDA. The rows indicate the different datasets Sy, ..., S7 and the columns show the
hypothesis or models H; built from a previous model H;_; and the new dataset Sj,
except Hy which is built from S; only. Each column shows the average performance
(%) on the current and the previous training datasets for the current model. The
last rows (TEST, CI) indicate the evolution of the average accuracy of the models
in the course of time evaluated with an independent test set and the confidence
interval (o = 1%).

tion (630 instances) and a test partition (216 instances). The training partition
was split again into 7 training sets Sy, ...,S7 of 90 instances with a similar
prevalence to the original database for each class. Table 1 shows that there is a
gradual loss of information relating to the previous training datasets when new
observations are introduced using the quadratic iGDA. However, the overall
performance increases from 62% to 84%. The linear iGDA showed an increase
from 73% to 78%, also with a gradual forgetting when new information was
added (Table not shown). These results are comparable to the performance of
a completely new quadratic classifier trained with the entire training dataset
(85%) and to a linear classifier (80%).

3.1.2 Wisconsin Breast Cancer Database.

The Wisconsin Breast Cancer Database from the UCI Machine Learning
Repository consists of 569 instances with 30 variables from a digitalized image
of a fine needle aspirate (FNA) of a breast mass. The objective in this prob-
lem is to classify the instances into a malignant (37.3%) or a benign (62.7%)
breast tumour. The database was divided into a test partition (169 instances)
and a training partition (400 instances) that were also split into five different
sets of 80 instances Si,...,S5. Each partition had the same prevalence for
each class as the whole database. The results of the quadratic classifier are

10



Dataset Hl Hg H3 H4 H5

S1 69.11 99.14 98.16 97.77r  97.44
Sy - 99.16 98.32 97.70  97.31
Ss3 - - 98.24 97.64  97.25
Sy - - - 97.55  97.17
Ss - - - - 97.39
TEST 02.21 94.12 94.95 95.20 95.34

CI (a = 1%) +3.56  +£0.48  £046  £0.43 £0.42

Table 2
Training and test accuracy (%) for the Wisconsin Breast Cancer Database using a
quadratic iGDA.

shown in Table 2. The linear iGDA also showed an improvement on accuracy:
from 91.14% to 94.38% for the independent test set. As shown in the pre-
vious experiment, there is generally an improvement in overall classification
as the new data are used for incremental learning, but a gradual forgetting
is observed with respect to the previous datasets. The poor performance of
the first classifier in the quadratic iGDA may be due to the low number of
instances in the first dataset S; and it is known that quadratic discriminant
classification rules generally require larger samples than those based on linear
discriminant analysis [41].

3.2 Introduction of new classes

3.2.1 Concentric Circle Database.

The concentric circle database is a synthetic set of five classes each belonging
to a concentric ring of data. This database is used to test the ability of the
incremental algorithm to introduce new classes. The data is bidimensional
with a uniform distribution inside each ring (see Figure 1, left). The database
was split into 6 different sets: S; and Sy included 50 instances from each of
classes 1, 2, and 3; S5 and Sy included 50 instances from classes 1 to 3 and 100
instances from class 4; finally, S5 and Sg contained 100 instances from classes
1 to 4 and 200 instances from class 5. Therefore, equal prior probabilities
were kept for the number of instances of each class. An independent test set
was generated with 10000 instances from each class. In order to simulate the
general behaviour of the algorithm in a real scenario, the test set included
all the five classes. Since the database describes quadratic boundaries, only
quadratic iGDA was employed (see results in Table 3).

11



Dataset Hl Hz Hg H4 H5 HG

S1 88.89 90.53 90.82 90.73 91.16  91.60
Sy - 89.97 90.70 90.45 90.64 91.11
Ss - - 69.58 87.50 88.93  89.12
Sy - - - 87.44 88.97  89.15
Ss - - - - 62.40  84.76
S - - - - - 84.99
TEST 50.78 52.93 60.52 68.28 71.73  83.50

Cl (a =1%) +0.60 +£0.48 +0.61 £0.78 +0.62 +£1.01

Table 3
Training and test accuracy (%) for the Concentric Circle Database using a quadratic
iGDA.

As demonstrated in Table 3, iGDA has the ability to include new classes with
an increase in overall classification performance for the test set as soon as data
from new classes appear in the new datasets.

3.2.2  Image Segmentation Database.

The Image Segmentation database from the UCI Machine Learning Reposi-
tory consists of 2310 instances with 18 attributes for segmenting the images
from 7 outdoor images. The seven classes are: brickface, sky, foliage, cement,
window, path, and grass. The database was split into three training subsets
S (including classes brickface, sky and foliage), Sy (including all the classes
except path and grass), Ss (including all the classes), and one test partition
(231 instances) were all the classes were represented. The prior probabilities
of all classes were made equal as for the previous experiment. The results for
the linear version of the iGDA algorithm are shown in Table 4 and are compa-
rable to that in Muhlbaier et al. [18], where the best improvement went from
a 42.2% to a 91.0% after the third dataset. Although there was an improve-
ment for the quadratic version, the results obtained were poor: from 22.2% to

58.8%.

3.8 Order effects

3.3.1 Instance level order effects.

A synthetic dataset with two categories drawn from different multivariate
normal distributions (shown right in Figure 1) has been used to analyze the

12



Dataset H, H, Hs

S1 98.45 99.69  99.78
) - 88.25  87.45
Ss - - 94.63
TEST 42.14 64.30  91.42

CI(a=1%) +0.15 £041 +0.43

Table 4
Training and test accuracy (%) for the Image Segmentation Database using a linear
iGDA.

instance level order effects. A training set of 400 instances and a test set of
4000 instances were drawn from the distributions with equal prior probabil-
ities for each category. The training set was split into 20 different training
samples with 20 instances in each sample. The samples were used for incre-
mental learning to build consecutive models as explained before. To evaluate
the order effects, the instances were permuted in 100 experiments and the
mean accuracies and the decision boundaries of the models of each iteration
in the experiments were compared.

The Vehicle Silhouette database was also used to reinforce the analysis. The
same configuration as in Section 3.1 was prepared, but the instances were
permuted 100 times to test the effect of the instance order. Figure 2 shows the
convergence in accuracy for these two experiments, whereas Figure 3 shows
the iterative convergence of the decision boundary for the two-dimensional
synthetic dataset.

3.3.2  Concept level order effects.

The Concentric Circle database was used to analyze the effect of the concept
order on the iGDA. The database was divided into six different samples as
in Section 3.2.1. To avoid the problem of imbalanced classes [42], the prior
probabilities were forced to be equal. With this set-up of samples and classes
and considering that there are five possible categories, the possible combina-
tions for introducing different categories in each sample are 20. Therefore, 100
repetitions of 20 different combinations of samples were analysed. Figure 4
depicts the convergence of the incremental algorithm. The results show a be-
nign concept lever order effect when the prior probabilities of the categories
are equal.

13



Fig. 1. The Concentric Circle dataset is shown on the left. Five classes are
drawn following a uniform distribution in their corresponding ring. Assum-
ing Gaussian distributions the decision boundaries can be obtained. In addi-
tion, the two-dimensional synthetic dataset is shown on the right. The class

cp follows p(cilx) ~ N ((8),((1)/ 81 /g)), and class c¢o follows a distribution

p(ez|x) ~ N ((g), ((1)/ 41 /g)). The decision boundary is a parabolic curve.

4 Experimental design for brain tumour diagnosis

So far, the behaviour of the iGDA algorithm has been studied using differ-
ent benchmark datasets with a focus on various properties. In this section,
the iGDA algorithm is applied to a real biomedical problem of high medical
relevance: automatic brain tumour classification with ' MRS. The current
gold standard classification of a brain tumour is a histopathological analy-
sis of biopsy; but this is an invasive surgical procedure with potential ad-
verse consequences for the patient. An alternative is a diagnosis based on 'H
MRS, which is a non-invasive technique that provides biochemical informa-
tion on tissue in wvivo. The database used for our evaluation contains single
voxel proton magnetic resonance spectra (SV 'H MRS) acquired at 1.5T from
brain tumours at nine European and one Argentinian hospitals. Data used
in this work was gathered during three European projects: INTERPRET,
eTUMOUR, and HEALTHAGENTS. An acquisition protocol was defined in
INTERPRET to provide maximum compatibility of the spectra obtained us-
ing different MRS systems at the different participant hospitals [43,44]. This
acquisition protocol was extended to the data acquisition procedure in eTU-
MOUR and HEALTHAGENTS. The spectra were acquired with MR scanners
of several manufacturers: Siemens, General Electric and Philips. The acquisi-
tion protocols included Point Resolved Spectroscopy (PRESS) and Stimulated
Echo Acquisition Mode (STEAM) sequences [45] with a range in the Time of
Repetition (TR, between 1600 and 2020 ms), the Time of Echo (TE, 20 or
30-32 ms), the spectral width (1000-200 Hz), and the number of data-points
(512, 1024 or 2048) [2]. Each spectrum was semi-automatically pre-processed

14
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Fig. 2. Boxplots of the accuracy of the models trained with different permutations
of the instances. The X-axis shows the iterations of the incremental models. The
top Figure shows the results for the two-dimensional synthetic database with 20
iterations. The bottom Figure shows the results for the Vehicle Silhouette database.
The convergence of the accuracy proves that the instance order has a benign effect
on the final models for both datasets.

in order to suppress the water peak, perform a phase correction, suppress

the base line, normalize the spectrum area and correct the frequency shift as
described in [6].

Spectral patterns contain resonance peaks related to the concentration of dif-
ferent metabolites in the tissue analyzed which are useful for tumour classifi-
cation purposes [5,6]. Based on a biochemical prior knowledge, a total number
of 15 features were obtained from the integration of the signal under a spec-
tral region associated with each metabolite of interest (see Figure 5). Signal
quality and the diagnosis associated with each spectrum was validated by the
INTERPRET Clinical Data Validation Committee [2], the eTUMOUR Clin-
ical Validation Committee, and expert spectroscopists. In INTERPRET and
eTUMOUR the class of each case was determined by a panel of histopathol-
ogists, while in HEALTHAGENTS the class was established by the original
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Fig. 3. Convergence of the decision boundaries of each model in 20 iterations for
the two-dimensional synthetic database. The variance of the different parameters of
the decision boundaries are also shown at the top of each iteration. The iterations
are shown left-to-right, top-to-bottom. It can be seen that the first models present
arbitrary decision boundaries because their parameters are adjusted from the first
sample only. When further samples are used for learning, the decision boundaries
and their parameters begin to converge until the final iteration.
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Fig. 4. Convergence of the median accuracies of each combination of samples for
the Concentric Circle database. The X-axis shows 6 iterations of the incremental
models, each one corresponding to a sample S;. The convergence proves that the
concept order has a slight effect on the accuracy of the models.

histopathologist.

Three types of brain tumour classes were taken into account in the experi-
ments: aggressive brain tumours (AGG), including Glioblastomas and Metas-
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tases; low-grade glial tumours (LGG), including grade IT Astrocytoma, Oligo-
dendroglioma and Oligoastrocytoma; and Meningioma (MEN). The prevalence
of the brain tumour classes considered in this study is shown in Table 5.

ppms

Fig. 5. The features selected for classification are the peak integration of the metabo-
lites observed in the brain (vertical dotted lines): Creatine (3.93 ppm and 3.02 ppm),
Choline (3.21 ppm), N-Acetyl Aspartate (2.01 ppm), Myo-Inositol (3.26 ppm and
3.53 ppm), Glycine (3.55 ppm), Taurine (3.26 ppm), Glutamate/Glutamine (2.04
and 2.46 ppm), Alanine (1.47 and 3.78 ppm), Lactate (1.31 ppm), and Lipids (1.29
and 0.92 ppm). The peak integration computes the value of the area under the
peaks considering an interval of 0.15 ppm from the assumed peak centre. The mean
spectrum of each class of brain tumour is shown: aggressive (solid black line), low
grade glial (dashed line), and meningioma (solid grey line).

A gaussian assumption is made since all the variables are continuous. Further-
more, both quadratic and linear classifiers have previously been shown to be
powerful enough to achieve good results in automatic brain tumour classifica-
tion [2,6]. Although there may be more sophisticated feature selection tech-
niques for this problem [46,6], the use of peak integration is a good trade-off
between complexity and performance, and it is independent of the different in-
cremental data subsets. Finally, the evaluation method is based on K-random
sampling train-test where K = 100 because the iterative incremental proce-
dure makes the use of cross-validation or bootstrapping difficult. From the K
repetitions the mean accuracy is shown and the standard deviation is used to
estimate the confidence interval.

In these experiments, three specific desired features of a clinical decision sup-
port system (CDSS) based on machine learning techniques were analyzed: 1)
the convergence of the classifiers in terms of stability/plasticity; 2) the effect
of including new classes; 3) the customization of the classifiers in relation to
the distributions of data in different hospitals.
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4.1  Convergence of the iGDA

Following the methodology applied in Section 3.1, we tried to show how the
iGDA algorithm is able to learn brain tumour discrimination with MRS in an
incremental fashion from different subsets of training data. This was evaluated
using the whole brain tumour database to show how the iGDA performance
improved in the course of time when new observations were used to update
the classifier. The whole database (see Table 5) was randomly split into a
training partition (300 samples, 39.5%) and a test partition (460 samples,
60.5%). The decision of using only 39.5% of data for training is justified by
the need of simulating a real scenario where the number of instances might be
small. Although more incremental iterations could have been performed at the
cost of having fewer instances for testing, the selected samples are enough to
demonstrate the convergence of the algorithm and reduction in the standard
errors of the results. The training partition was split into ten subsets of 30
samples. The whole test partition was used as an independent test set for
each new updated classifier. The performance of the classifiers was measured
in terms of the accuracy. The linear and quadratic versions of iGDA and
the results were also compared to the performance of the other incremental
algorithms.

4.2 Inclusion of new classes

In this second experiment, centers in Table 5 were used in order to address
the inclussion of new classes. Each center initially contained only two classes
(LGG, MEN). An initial classifier was trained from the first group of hospitals
(CENj). Subsequently, using data from the rest of hospitals, the remaining
class (AGG) was included in the following subsets and each generation of
the classifier was evaluated with an independent test set. When introducing
new classes, a problem of imbalanced classes may appear [42], resulting in a
classifier with null sensitivity for the new class. In order to detect such a bias,
a geometric mean of sensitivities was used to evaluate the classifiers in these

experiments (G = Y HLC:'l sen;, where sen; is the sensitivity of class 7). The
general behaviour of the G measure is high when all the sensitivities are high
and in equilibrium.

4.3 Customization to different centers

The third experiment simulates the customization of the classifier for a hospital
by adapting a general model into the specific distribution of one hospital. Data
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Center Classes Total
AGG LGG MEN

CENj 111 44 29 184
CEN; 108 48 34 190
CEN, 114 44 33 191
CEN; 120 26 49 195

TOTAL 453 162 145 760

Table 5
The different centers and the number of samples per class. AGG: aggressive, LGG:
low-grade glial, and MEN: Meningioma.

from three hospitals (CENg) were used to train an initial classifier. Three other
groups from two hospitals (CEN;, CEN,, and CEN3) were made for testing
the iGDA. These groups were chosen to balance the number of samples in
each center. In addition, all the centers were grouped together in order to
obtain a general behaviour of the convergence of the algorithm to compare
with. Table 5 shows the prevalence of each class in the dataset according to
the four data groups used. Each center was divided into a test set and four
subsets with 20 random samples in each one. Once the initial classifier was
trained, it was used to automatically classify data from the test set of the
other centers. Then, the first sample S; of CEN; was used to update the
classifier with the iGDA algorithm. The same process was performed with the
first sample &7 of the other two centers, thus obtaining a total of three new
incrementally updated classifiers. After incremental updating of the classifier
of each center, a new evaluation was carried out using the independent test
set of the corresponding center.

5 Results in brain tumour classification with MRS

5.1 Convergence of the iGDA

The comparison with the Learn™ and the iLDA algorithms shows that the
accuracies of all these methods converge asymptotically (see Figure 6). This
result suggest that the iGDA algorithm works properly as an incremental
learning algorithm.

Generally speaking, the linear version of the iGDA algorithm performs better
than the Learn™™ and the iLDA algorithms. However, the quadratic version of
iGDA needs three incremental updates to reach a comparable accuracy with
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Fig. 6. Comparison of the evolution of the accuracies of the linear iGDA (solid line
and triangles), the quadratic iGDA (solid line and circles), iLDA (dashed line and
triangles), and Learn®™™ (dashed line and circles) incremental learning algorithms.
Also, a naive Gaussian classification model updated from scratch is compared (dot-
ted line and circles). The first iteration is the performance of the initial classifier.
From the second bin on, the incremental algorithm is executed. The experiment was
repeated 100 times. The plots represent the mean value of all the experiments. The
x-axis shows the different moments of time, ¢;, of new observed data. The y-axis
shows the accuracy. The iGDA using Graybill-Deal weight estimation shows a very
good performance and it converges asymptotically.

the other algorithms. This behaviour may be explained by the low number
of samples of the less prevalent classes in each subset. Nevertheless, there is
asymptotic convergence of all methods: the data fits to the Gaussian model
assumed by the iGDA, which describes linear or quadratic boundaries, as well
as to the model assumed by the Learn™ algorithm, which divides the sample
space using multiple hyperplanes.

The significance of differences (o = 5%) among algorithms was evaluated with
a multiple comparison test using a Friedman’s nonparametric two-way analy-
sis of variance test with Tukey’s honestly significant difference criterion from
the first to the last iteration. The linear iGDA always displays a significant
difference with respect to the other algorithms except with the iLDA in the
first iteration. From iteration 8 to 10 the differences among the algorithms are
all significant (p < 0.01).
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5.2 Inclusion of new classes

The mean accuracy of the results obtained when a new class appears inside the
new observed samples improve from 0.29 to 0.78 in 10 incremental iterations.
Since the convergence is asymptotic, the first two iterations show the biggest
improvement: from 0.29 to 0.45 and to 0.57. Thereafter, the improvement is
slower. The geometric mean of sensitivities (G) improves from 0 to 0.76. Our
results show that the first classifier is unable to correctly classify any sample
belonging to the new class and thus G = 0. But, after further learning from
two additional samples that include cases of the new class, the subsequent
classifiers converge, obtaining not only a good accuracy but also a good G
without forgetting to classify the initial classes. Our results show that the
iGDA is able to introduce the new class into its knowledge base.

5.3  Customization to different centers

The third experiment tried to simulate a practical environment where a trained
classifier is used for classification with data coming from different populations
of patients and /or different acquisition machines. The results in Figure 7 show
how the initial classifier exhibits a performance that clearly needs improve-
ment. Therefore, when the classifier is updated with the new observations,
the performance increases significantly with a small additional set of samples.
In every new center, the accuracy of the incremental classifier improves in
the course of new observations being used to incrementally train the classi-
fier. Each observation included 20 new samples. The centers were joined in a
unique set to compare the evolution of each center with the evolution of all
the centers and show that the accuracy tends to converge asymptotically.

In general, the sensitivities for the first classification model in the centres
CEN;, CENy, and CENj3 are between 0.71 to 0.76 for AGG, 0.85 to 0.86 for
LGG, and 0.29 to 0.58 for MEN. After four incremental iterations the sensi-
tivities vary from 0.79 to 0.83 for AGG, 0.74 to 0.84 for LGG, and 0.51 to 0.73
for MEN. Therefore, the incremental algorithm seems to be prone to balance
the sensitivities of the different tumour types, increasing the sensitivities of
the AGG and MEN tumour types while slightly decreasing the sensitivity of
the LGG tumour types.

Again, a multiple comparison test (a« = 5%) was carried out. Initially, only
CENy and CENj3 showed significant differences but by iteration 5, only CENj
showed significant differences against the other centers (p < 0.01).

The same multiple comparison test (o = 5%) was used to analyze the statis-
tical differences in the incremental models developed in the iterations of each
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center. These tests showed that the models of CEN; and CENj3 had signifi-
cant differences among iterations, except for the results of iteration 4 and 5.
With respect to the models of center CENy there were significant differences

between iteration 1 and 2 and between iterations 2 and 4, and iterations 3 and
D.

Naive GDA

6 8 10
Learn**
o
A
6 8 10

Fig. 7. Comparison of the evolution of the mean accuracies of the different incremen-
tal learning algorithms trained with data from center CENy and tested with data
of new centers: CEN; (grey dash dotted line with triangles), CENy (grey dashed
line with circles), CENj3 (grey dotted line with squares), and the evolution of the
convergence for the union of centers CEN; to CENj (black).

6 Discussion and conclusions

6.1 Technical aspects of the iGDA

The iGDA algorithm is presented as a new incremental algorithm for Gaussian
discriminant analysis based on a weighted combination of different parameter
estimations. It obeys the definition about the incremental learning algorithm
given by several authors [28,29,17]. iGDA does not use any previous original
datasets, but updates its knowledge by means of the information of the newly
observed data and its already acquired knowledge. Therefore, it can be used
when dealing with problems where past information is inaccessible or where
there are problems gathering an appropriate dataset in a reasonable time. In
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such situations, this incremental learning algorithm can avoid the waiting time
by using a small amount of information to build an initial simpler model and
then update the model incrementally, and allow for additional classes, as new
information arrives.

The implementation of the algorithm is straightforward and the models can be
estimated in polynomial time. The complexity of the algorithm is O(cd2(N +

d))7 where ¢ is the number of classes, d is the number of variables, and N is
the number of instances.

Figure 7 shows that the evolution of the updated classifiers in centers CEN;
and CEN; is comparable to the evolution of the classifiers from all centers
taken together. However, the evolution using the dataset from center CENjy
shows the highest improvement. This may be explained by the prevalence
of the different brain tumour types in center CEN3, which has an influence
on the prior probabilities of the models. Hence, while the updated classifiers
of CEN; and CEN, are improving the knowledge concerning the conditional
distributions p(x|c), the updated classifiers of CENj are reinforcing the knowl-
edge of the conditional distributions as well as the prior probabilities m.. The
final accuracy reached is similar to the median accuracy rate achieved in [6]
for quadratic and linear discriminant analysis. In our results, the iGDA is
comparable with the baseline model and the other incremental algorithms.

Since the experiments were repeated 100 times to avoid any possible bias, the
results show a general behaviour of the iGDA algorithm. However, when the
convergence to a minimum error has been achieved, there may be situations
where addition of a new biased dataset results in a model with a slightly
poorer performance to that previously, but without statistical significance.
Thus, when a convergence has been reached small oscillations in the accuracy
of the models may be observed, similar to other iterative procedures.

An interesting feature of iGDA is that it does not have a malignant order
effect [28], nor at instance level or at concept level. This means that the order
of the instances may give rise to slightly different models, but with similar
discrimination accuracies. Our results show that the decision boundaries of the
models are also similar regardless of the order in which the instances appear,
or even the order in which the classes are introduced into the analysis.

One limitation of the iGDA algorithm is that it assumes that the data will
follow a Gaussian distribution. This assumption may be useful for real num-
ber variables, even when they do not follow a Gaussian distribution, but this
approach is useless for discrete distributions, such as Bernoulli or multinomial
distributions. Nevertheless, the extension of these concepts may be of interest
to other distributions, including discrete ones. The unimodal Gaussian as-
sumption also restricts the type of decision boundaries to linear or quadratic
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boundaries.

Another feature of the iGDA is its ability to include new classes. However,
this ability may lead to an imbalanced class problem [42] if the new class is
underrepresented compared to the previous classes. This may be also related
to the outvoting problem that occurs in incremental learners based on vot-
ing schemes such as the Learn™™ [17,18]. Furthermore, the behaviour of the
weights in multivariate distributions and the combination of the covariance
matrices using the Graybill-Deal estimation must still be theoretically studied
and is the focus of future work.

6.2 Potential clinical interest of iGDA for brain tumour diagnosis

Primary brain tumours are proportionately less frequent than other cancers,
but they are devastating diseases with high mortality. An accurate initial di-
agnosis of brain tumours has important consequences for therapeutic decisions
and prognosis. Compared to most other tumours, obtaining brain tumour tis-
sue for diagnostic purposes is relatively difficult even when using the advance
technique of stereotactic biopsy [47]. The clinical DSS that are based on ML
techniques and 'H-MRS have shown a promising results for non-invasive brain
tumour diagnosis. However, the development of robust classifiers requires ac-
quisition of a large number of cases. Furthermore, in multi-center projects it is
usually assumed that the data have similar distributions, however in practice
we may expect some differences in data distributions or class assignments. A
straightforward application of the incremental method presented here is its
ability to customize an already trained classifier to the specific distribution
of a particular hospital. In other words, if a hospital has a limited number of
samples for a particular class, a classifier trained with data from other hospi-
tals can be used as an initial model and then adapted to the distribution of the
patient population or the hospital scanner performance. Thus a classifier can
be developed that has a customization to the hospital, but without the need
for an unachievable acquisition of local data. The development of new models
in the course of time as new data is acquired is related to the concepts of
temporal and external validation reported by Altman et al. in [48]. Based on
the results, our incremental algorithm could enhance the performance of such
models when evaluated with subsequent patients coming from new hospitals.

In the framework of a clinical DSS the iGDA algorithm that has been de-
veloped may take advantage of the availability of new information to adapt
the knowledge of the current system to the evolution of the data domain and
also to extend the lifecycle of the system in a real clinical environment. As-
suming that new information is ready for supervised classification at different
times, the iGDA algorithm can learn from such new data without access to
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the previously seen data, even when a new class arises.

The ability to customize a model to a specific clinical centre could be used to
improve the behaviour of a state-of-the-art CDSS for aiding brain tumour di-
agnosis. Further work will include the integration of the incremental algorithm
developed in this work into a generic and dynamic DSS for clinical environ-
ments such as the aforementioned CDSSs and CURIAM [49]. The CURIAM
Brain Tumour version [50] offers orientation on brain tumour diagnosis and is
currently being tested in a clinical setting at several hospitals in Europe. The
incremental learning method shown here may also complement to an audit
model of brain tumour classifiers [51] and help provide dynamic optimisation
of a CDSS.
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Appendix A.iGDA algorithm pseudocode

Algorithm 1 Incremental Gaussian Discriminant Analysis

Input: Siy1 = {(xn, )1} Hi
Output: H;q
Require: Ve e S;, N. > 1
for all c € S do
T — NC/N
l’l’c — NLc Z Ly
X — NLC (T — U’c)T(a’n - Ke)
end for
if Hifl 75 (Z) then
for all ce S do
Wit1,W; <— Graybill-Deal(Ni, Zi? Ni—&—l, Zi+1)
Net+ N
Te < NFTLNi
P — Wit + wi]
2. = wip 25 4w 3
end for
end if
if linear then
for all c € S do
Y. — X
end for
end if
for all ce S do
W, — —(1/2)%!
We < E(jlll’c
we — logm — (1/2)log | 2] — (1/2)pl = p,
end for
return H;

Algorithm 2 Graybill-Deal computation of weights

Input: Nl, NQ, 21, 22
Output: wy,ws
Sy = trace(3)

Sy = trace(Xs)
_ _M/S
- 2

D iy NifSi
Wy = 1-— w1
return wi, wo

Wi
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