

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

http://dx.doi.org/10.1016/j.jss.2011.11.284

http://hdl.handle.net/10251/37478

Elsevier

Simó Ten, JE.; Coronel Parada, JO. (2012). High Performance dynamic voltage/frequency
scaling algorithm for real-time dynamic load management and code mobility. Journal of
Systems and Software. 85(4):906-919. doi:10.1016/j.jss.2011.11.284.

H
d

1

d
s
t
h
s
t
d
b
p

(

1

igh performance dynamic voltage/frequency scaling algorithm for real-time
ynamic load management

J.O. Coronel ∗, J.E. Simó ∗∗

University Institute of Control Systems and Industrial Computing (AI2), Polytechnic University of Valencia, Camino de Vera s/n, 46022 Valencia, Spain

Keywords:
Dynamic voltage scaling Task migration
Real-time scheduling Power consumption Feasibility analysis

a b s t r a c t

Modern cyber-physical systems assume a complex and dynamic interaction between the real world and the computing system in real-time. In this
context, changes in the physical environment trigger changes in the computational load to execute. On the other hand, task migration services offered
by networked control systems require also management of dynamic real-time computing load in nodes. In such systems it would be difficult, if not
impossible, to analyse off-line all the possible combinations of processor loads. For this reason, it is worthwhile attempting to define new flexible
architectures that enable computing systems to adapt to potential changes in the environment.

We assume a system composed by three main components: the first one is responsible of the manage-ment of the requests arisen when new tasks
require to be executed. This management component asks to the second component about the resources available to accept the new tasks. The second
component performs a feasibility analysis to determine if the new tasks can be accepted coping with its real-time constraints. A new processor speed is
also computed. A third component monitors the execution of tasks applying a fixed priority scheduling policy and additionally controlling the frequency
of the processor.

This paper focus on the second component providing a “correct” (a task never is accepted if it is not schedulable) and “near-exact” (a task is rarely
rejected if it is schedulable) algorithm that can be appli-cable in practice because its low/medium and predictable computational cost. The algorithm
analyses task admission in terms of processor frequency scaling. The paper presents the details of a novel algo-rithm to analyse tasks admission and

processor frequency assignment. Additionally, we perform several simulations to evaluate the comparative performance of the proposed approach. This
evaluation is made in terms of energy consumption, task rejection ratios, and real computing costs. The results of simula-tions show that from the
cost, execution predictability, and task acceptance points of view, the proposed algorithm mostly outperforms other constant voltage scaling
algorithms.
. Introduction

Modern cyber-physical systems (CPS) assume a complex and
ynamic interaction between the real world and the computing
ystem in real-time (Wolf, 2009). In this scenario, computing sys-
ems are commonly formed of many embedded units that are
eterogeneously networked. One of the challenges facing future
ystems is to address the separation of modal control design from
he deployment of executable code. In such systems, it would be

ifficult, if not impossible, to analyze off-line all the possible com-
inations of processor loads. Because of the large range of control
rocess domains it is difficult to address control modality only

∗ Corresponding author. Tel.: +34 665368512; fax: +34 963877579.
∗∗ Corresponding author. Tel.: +34 963877000x75706; fax: +34 963877579.

E-mail addresses: jacopa@ai2.upv.es (J.O. Coronel), jsimo@disca.upv.es
J.E. Simó).
through the parameterization of pre-loaded local controllers. For
this reason, it is worthwhile attempting to define new flexible
architectures that enable computing systems to optimally adapt
to potential changes in the environment in a dynamic manner.

From the point of view of embedded control systems, it is
well known that the integration of controller design and real-time
scheduling is necessary (Cervin, 2003). However, this approach
is not enough in dynamic environments with limited computing
resources. Therefore, additional mechanisms must be included in
the design to optimize the use of resources and provide adapta-
tion to the changing environmental conditions. Likewise, specific
quality of services (QoS) levels must be guaranteed to ensure cor-
rect system operation. These QoS levels maintain a suitable control
performance and a temporal predictability in the control system.
In this context, changes in the system operation mode, or in
the environment, may force the disabling of some controllers and
the enabling of others. In addition, controller switching mecha-
nisms must be added in both local and distributed forms, resulting

dx.doi.org/10.1016/j.jss.2011.11.284
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:jacopa@ai2.upv.es
mailto:jsimo@disca.upv.es
dx.doi.org/10.1016/j.jss.2011.11.284

i
(
a
c
m
l
s

e
r
m
i
c
p

n
c
c
c
r

t
T
t
p
p
t
(
M
s

i
e
d
d
c
c
e
(
s

n
a
w
a
t
m
p
s
t
t
(
(
i

a
i
m
a
c
R
(
u
r
f
c

n workload changes for the embedded and networked units
Emberson and Bate, 2007; Real and Crespo, 2004). This can have

significant impact on the overall performance and real-time
onstraints of the system. For this reason, task and component
igration approaches (Briao et al., 2007) may contribute to on-

ine redistribution and reallocation of workload – according to each
ituation.

An example of this kind of architecture is proposed in Simarro
t al. (2008), which is developed in the context of a distributed
eal-time control system and from the perspective of control kernel
iddleware (Crespo et al., 2006; Albertos et al., 2006). The proposal

ncludes features such as control basis, controller switching, and
ode delegation. From the point of view of CPS, these approaches
artially bridge the abstraction gap (Lee, 2006).

In summary, cyber-physical systems should be able to deliver
ew levels of performance and efficiency thanks to sophisticated
ontrol computing co-design. Control systems mean that we must
hange our understanding of computing systems and accept that
yber-physical systems actively engage with the real world and
eal-time restrictions – and so expend real energy.

This paper explores methods that can be used in task migra-
ion when combined with techniques of energy management.
hese methods can maximize overall energy savings; facilitate
hermal chip management by moving tasks away from the hot
rocessing unit; balance the workload or concentration of parallel
rocessing elements; decrease communication among those tasks
hat are particularly energy-efficient on wireless sensor networks
WSN) systems (Yi et al., 2009; Yuan and Wang, 2008; Kumar and

animaran, 2007); and help guarantee the fulfillment of real-time
ystem constraints.

Several power-aware techniques have been widely addressed
n real-time literature (Piao et al., 2009; Tavares et al., 2008; Aydin
t al., 2006; Pillai and Shin, 2001). These papers have discussed
ynamic voltage scaling (DVS) of the processor, also known as
ynamic voltage and frequency scaling. This approach exploits the
onvex, and normally quadratic relationship between CPU energy
onsumption and voltage. Additionally, these techniques have been
xtended to reduce the energy consumed during memory cycles
Cho and Chang, 2006; Liang et al., 2008) and network energy con-
umption (Yi et al., 2009; Kumar et al., 2008).

Let’s consider a dynamic environment where an embedded and
etworked system operates with the support of task migration
nd processor frequency scaling. Assuming that the system knows
here and when it must allocate tasks (Briao et al., 2007; Emberson

nd Bate, 2007), we must perform feasibility analyses when each
ask arrives and departs. This guarantees that the temporal require-

ents of the system will be accomplished during the task allocation
hase. Additionally, a new processor speed (frequency scaling)
hould be also computed to enable the system to adapt itself to
he new computational workload and so reduce energy consump-
ion. Although some authors have carried out these two phases
feasibility analysis and frequency scaling computation) separately
AlEnawy and Aydin, 2005), these analyses are strongly related and
n some cases can be performed together.

The main motivation to use fixed priorities approaches is to
ccomplish the standard ARINC-653 (AASS Interface, 2003), which
s used mainly in Avionics and currently also in Aerospace environ-

ent (Windsor and Hjortnaes, 2009). This standard defines a Time
nd Space partitioning system and each partition should be exe-
uted on fixed priority scheduling approaches. An example is the
TEMS O.S. on XtratuM hypervisor, which we are currently working
Galizzi et al., 2011, 2012). However, we use the EDF-based sched-

ler to compare with the proposed approach by suggestion of a
eviewer. As is well known, the EDF algorithm has a higher per-
ormance than fixed priority based scheduling, but we have design
onstraints.
2

This work mainly focuses on a proposal for a new algorithm
to be used on-line during the task allocation and processor speed
assignment phases. The algorithm uses fixed priority scheduling
schemes with deadlines less than, or equal to, the period of the
tasks when the dynamic processor workloads are being handled.

1.1. Related work

Few works cover task migration in the context of embedded
and networked systems. Moreover, most algorithms are aimed
at multiprocessor systems with soft real-time constraints (Yazdi
et al., 2008; Emberson and Bate, 2007; Anderson et al., 2005). Some
papers have addressed both task migration and energy consump-
tion minimization (Briao et al., 2007; Chen, 2005). Briao et al. (2007)
analyze the impact of task migration and justify its use because it
compensates for the performance and energy costs involved in the
system.

Several heuristics has been proposed for task allocation prob-
lems with deadlines equal to the periods (Mejia-Alvarez et al., 2004;
Chen, 2007) when earliest-deadline-first (EDF) scheduling is in use.
AlEnawy and Aydin (2005) use algorithms for allocating real-time
tasks by applying rate monotonic (RM) scheduling. In their article,
a comparison of some admission control algorithms is presented in
function of complexity, feasibility, and energy consumption param-
eters. However, only tasks with deadlines that are equal to the
period are analyzed. Moreover, aspects such as predictability of
execution, behaviour related to the arrival of tasks, and the real
computing cost of the algorithms are not taken into account.

At the CPU-level, DVS techniques can be classified as static or
dynamic. Static algorithms for hard real-time systems use parame-
ters such as period or minimum inter-arrival time, and assume that
each task executes its worst-case execution time when selecting
the processor frequency, and that this is statically decided before
execution. Dynamic algorithms are based on the reclamation of
additional slack resulting from the early completions of tasks. These
are then used to further reduce the processor frequency and save
more energy. These algorithms are applied at run-time.

Using static algorithms we can obtain a single processor fre-
quency that never changes, or obtain variable frequencies that
are statically decided before execution. An example of the for-
mer is Saewong and Rajkumar (2003), in which an algorithm that
chooses a single frequency for a fixed priority scheduling scheme
is proposed. In Bini et al. (2005) the authors present a method for
approximating any speed level with two given discrete values that
are switched as a pulse width modulation signal in order to obtain
the average value. For the latter, in Mejia-Alvarez et al. (2004) and
Saewong and Rajkumar (2003), the authors propose an approach
whereby each task is assigned a different frequency. Several authors
have published works that find the optimal voltage schedule for
recurrent tasks – examples for periodic tasks include Liu and Mok
(2003) and Yun and Kim (2003) and examples for periodic and ape-
riodic tasks include Zhong et al. (2007) and Scordino and Lipari
(2006). Furthermore, speed function and the characterization of the
points in time at which speed changes occur has been presented in
Liu and Mok (2003) and Gaujal and Navet (2007). However, a draw-
back in the works with statically established variable frequencies
can appear if a task activation is lost or delayed. The drawback is
that the entire frequency assignment will be affected, and this leads
to missed deadlines.

Some authors, such as Piao et al. (2009), have proposed dynamic
algorithms working in combination with static methods. These
algorithms can be divided into inter-task and intra-task methods.

In the inter-task algorithms, the processor frequency is deter-
mined task-by-task, whereas intra-task algorithms may adjust the
frequency within the boundaries of a given task. In Kim et al.
(2002), a performance comparison of several dynamic techniques is

3

p
a
s
Q
f
r
a
a

b
(
a
a
s
a

a
c
m
p
c
t
(
s

1

l
c
n
d
i
a
a

i
a
t
t
s
e
I
a
T
c
r
fi

m
I
a
S
r
f
A
S
a
f

2

2

{

resented. In Pillai and Shin (2001), the authors propose the
lgorithms named Cycle Conserving DVS for both EDF and RM
chedulers and Look-Ahead for EDF. Saewong and Rajkumar (2003),
uan (2004), and Leung (2005) propose a simple dynamic scheme

or fixed priorities. Aydin et al. (2004) presents a generic dynamic
eclaiming algorithm, as well as an adaptive and speculative speed
djustment mechanism. Dynamic frequency changes for periodic
nd aperiodic tasks are discussed in Piao et al. (2009).

The use of elastic scheduling to improve DVS management has
een proposed in Marinoni and Buttazzo (2007) and in Zhu et al.
2004). Xia et al. (2008) proposes energy management based on

feedback control scheduling methodology. The processor DVS
nalysis has been extended by other authors to reduce energy con-
umption in the memory (Cho and Chang, 2006; Liang et al., 2008)
nd network levels (Yi et al., 2009; Kumar et al., 2008).

However, some of the works mentioned above are based on
n analysis of the hyper period. This approach can result in hard
omputing and is unsuitable for execution in run-time during task
igration. Some other works consider only deadlines equal to

eriods and although this can be considered in specific cases, it
an result in hard simplifications being applied in embedded con-
rol systems. Additionally, some studies have applied heuristics
Jejurikar and Gupta, 2004; Mejia-Alvarez et al., 2002) to obtain
olutions that are sometimes far from optimal.

.2. Contributions and paper organization

Global energy consumption in the system can contribute to the
oad balance criteria in the code deployment phase. This criterion
an be combined with others such as schedulability, commu-
ication delays, control application correctness, and stability to
etermine the dynamic code movement and on-line load balancing

n a system. However, we focus on the problem of task allocation,
nd more precisely on the feasibility analysis algorithms performed
t task arrival or departure, as well as in energy management.

In this paper, we present novel algorithm that perform feasibil-
ty analyses and compute new processor frequencies when set tasks
rrive and/or depart. Through extensive simulations, we evaluate
he performance of this algorithm against other existing feasibility
ests that have been adapted to compute the minimum proces-
or frequency. This minimum frequency is computed in terms of
nergy consumption, acceptability ratio, and real computing costs.
n addition, predictability in the execution and behaviour of the
lgorithms in relation to the continuing arrival of tasks is analyzed.
hese terms will be explained later, particularly the real computing
ost of algorithms. Our algorithms are based on DVS static algo-
ithms and search for a single processor frequency while using a
xed priority scheduling scheme.

This paper is organized as follows. Section 2 describes the task
odel, processor model, and the evaluation of computational costs.

n Section 3 we introduce energy minimization and the task accept-
bility problem in a dynamic environment with variable loads. In
ection 4 an overview of a schedulability method-based feasibility
egion is presented. In Section 5 the adaptation of several existing
easibility tests for computing the processor scaling factor is shown.
dditionally, in this section a proposed A approach is presented.
ection 7 presents the results of the simulations used to evalu-
te the performance of several approaches when computing the ˛
actor. And finally, Section 8 states our conclusions and future work.

. System model
.1. Task model

In this paper we use a periodic task model. Let T =
�1, �2, . . . , �n} denote a task set of n real-time preemptible tasks
Fig. 1. Normalized reference model of power consumption by CPU cycle as used in
this paper.

running on a uniprocessor system. Each task �i(Ti, Di, Ci) is char-
acterized by a period Ti, a relative deadline Di, and a worst-case
execution time Ci. We assume critical instants of activations for
each task. Tasks are scheduled by a fixed priority scheduler (RM or
DM) and ordered from highest to lowest priority, meaning that �1
has the highest priority and �n has the lowest priority.

We consider that only real-time tasks are executed in the CPU,
this point being a simplification for the analysis rather than a
restriction.

2.2. Processor model

The power consumption (P) per CPU cycle is proportional to
CL · V2

dd
· f , where CL is the average load capacity, Vdd is the supply

voltage of the processor, and f is the operating frequency of the pro-
cessor. The maximum operating frequency is a direct consequence
of the supply voltage given by f = K((Vdd − Vth)�)/Vdd where K is a
constant specific for a given technology, Vth is the threshold voltage,
and � is the velocity saturation index where 1 ≤ � ≤ 2 (Saewong and
Rajkumar, 2003; Pouwelse et al., 2001). However, the exact form
of the power and frequency relation specifically depends on the
processor hardware, and can be expressed in terms of CPU speed
as a second or third degree polinomial function (Li and Ding, 2001;
Aydin et al., 2004; Zhong et al., 2007; Marinoni and Buttazzo, 2007).
In this article, the curve of function P (see Fig. 1) was obtained for
the relationship between power and speed on the Intel XScale pro-
cessor (Zhong et al., 2007), while taking into account the processor
consumption in idle state.

Considering the fact that most commercially available proces-
sors only provide a limited number of voltage levels, in Fig. 1, a
discrete model has been drawn over the continuous model of the
processor. This discrete model consists of 10 levels of power con-
sumption, i.e. we assume that the processor can be scaled to 10
different frequencies. In this way, the continuous model can be
mapped to a discrete model.

For the analysis of the behaviour of several DVS (dynamic volt-
age scaling) algorithms we assume that the processor voltage can
be changed continuously, and therefore, also the frequency. If the

frequency obtained using these approaches is between two dis-
crete levels, the frequency that should be used is just the higher. In
this way we can guarantee that the temporal requirements of the
system will be accomplished. Although it is a way simple and fast

4

t
h
c
e

o
s
a
e
s
h
t
i
i
l

a
l
d
a

2

B
s
i
p
F
d
s
n
t
w
c
t
(
i
e

c
o
p
b
w
a
a

3
d

t

E

w
o
t
f
t
a
t
s

y a
t0

0
tx

x

+
∫ ta

P(F(t, Tx+k))dt (1)
o extend the analysed algorithms to a discrete model, researchers
ave proposed algorithms to map continuous voltage levels to dis-
rete levels in a way more optimal. Such as the proposed in Bini
t al. (2005).

We therefore do not explore the effect of a limited number
f processor frequencies. However, thanks to advances in power-
upply electronics and CPU design (Duan and Khatri, 2006) systems
re increasingly able to operate using a wider voltage spectrum. An
xample of this is the evolution in the last years of the Intel proces-
ors that uses SpeedStep technology (Intel, 2004). This technology
as three versions: SpeedStep, SpeedStep II and SpeedStep III. In
he first versions the clock frequency can be stepped in 200 MHz
ncrements and in the last version the CPU varies its frequency in
ncrements of 100 MHz, which increments the number of discrete
evels available.

We also assume that the operating frequency will be adjusted by
normalized scaling factor ˛ (0 < ˛ ≤ 1), which will be the equiva-

ent to C scaled by a factor 1/˛ and not affect the period nor the task
eadlines. When ˛ is equal to 0, the processor is in turn-off mode,
nd when ˛ is 1, the processor runs at maximum clock frequency.

.3. Evaluation of costs

To compare different proposals, some authors such as Bini and
uttazzo (2004) and Bini et al. (2003) have proposed the use of
chedulability complexity tests based on the number of steps and
terations. However, if these comparisons are made from the view-
oint of computational cycles, the results could be strongly altered.
or example, the cost of 100 loop sums is not the same as 100 loop
ivisions. Therefore, the complexity of algorithms to calculate a
uitable alpha (˛) on embedded systems should be evaluated by the
umber of machine cycles required for each mathematical opera-
ion: especially on-line executions. In most embedded systems, it is
ell known that division operations have a higher computational

ost than other operations. The routines of integer division using
he Newton–Raphson approach can last between 20 and 100 cycles
Sloss et al., 2004), depending on the implementation and range of
nput operands. Therefore, these aspects will be considered in the
valuation of algorithms.

We look at the assembly code implementing the algorithms, and
ounted the execution cycles according to it. Cache is disabled in
rder to get predictability in the execution of the algorithm. We
rovide the execution time in machine cycles instead of time units
ecause it will permit to describe the execution time in different
ays in function of the processor frequency. For example, the cost

t a frequency of 100 MHz is not the same as execute the algorithms
t 1 GHz.

. Scaling frequency and energy consumption with
ynamic loads

Energy consumption has been defined as an integral over the
ime t of P:

(Sy, t) =
∫ ta

0

P(F(t, T(t)))dt

here Sy identifies the type of scheduling, and suffix y can be FP
r DP for fixed and dynamic priority scheduling, respectively. P is
he power consumed by the CPU cycle and this depends on the CPU
requency function. The clock frequency (F) is composed as a func-

ion of time t and T task sets for each time instant t. Fig. 2 shows
n example of the scaling of processor frequency as a function of
ime and task set. In this figure, two different task sets are repre-
ented over time. Obviously, the profile frequency scaling factor
Fig. 2. Example of the scaling of processor frequency ˛ as a function of time and
task set.

˛(t) should change just when the processor changes the task set.
This is because each ˛ is calculated for a given task set.

The switching between task sets is represented in Fig. 2 as
a dashed elipse. The resultant task set is not known in advance
because these are dynamically defined according to code dele-
gate (Posadas et al., 2008; Emberson and Bate, 2007). Nevertheless,
existing mode change protocols for real-time systems (Real and
Crespo, 2004) can be adjusted and applied to the movement of
real-time components. These change the task set demand by:

• repeating the schedulability analysis for the whole real-time sys-
tem,

• recalculating the function ˛(t) for scaling the frequency of the
processor.

These analyses can be performed together. One important
aspect to consider in task migration is the computational cost
involved in recalculating these parameters. This is because this cal-
culation may mean an increase in the energy consumption and also
an increase in the time to perform the incorporation or rejection of
tasks.

After a migration of components, a resultant task set (Tx+1) will
be understood as a modification of the current task set (Tx) due to
inclusions and expulsions of tasks. Therefore, the Tx+1 set will be
defined as:

TN
x+1 = Tn

x + Tm
I − Tp

E = Tn
x + �T

where the size of Tx+1 is N = n + m − p. TI is the task set that migrates
to the processor, and TE is the task set that migrates from the pro-
cessor, where TE ⊆ Tx.

The energy consumption function when assuming the mobility
of components at instants of time tx will be given by:

E(S , t) =
∫ t1

P(F(t, T))dt + · · · +
∫ tx+1

P(F(t, T))dt + · · ·
tx+k

where F(t, Tx) is the function of processor speed obtained from the
task set Tx during a time period.

5

4
f

s
C
a
fi
v

d
o

f
a

T
l
i

R

w

t
�
s
f
m

p
t
e

S

w

s

T
b
m
d

S

i

w

. An overview of a schedulability—analysis based
easibility region

In this article the schedulability analysis and static minimum
olutions to ˛ are addressed from the perspective of an analysis in
-space. In this space, the task computation times Ci are considered
s variable parameters, whereas the periods and the deadlines are
xed parameters. Consequently, we obtain a constraint on the Ci
ariables, which is a function of all Ti and Di.

The analysis is reduced to verify if a point is inside a region
elimited by coordinates Ci. This region is known as Rn, and was
riginally proposed in Lehoczky et al. (1989).

The formal formulation of the feasibility region Rn was derived
rom Lehoczky et al. (1989) and conveniently demonstrated in Bini
nd Buttazzo (2004) with the following theorem:

heorem 1 (Theorem 2 in Bini and Buttazzo (2004)). When dead-
ines Di are equal to periods Ti, the region Rn of a schedulable task set
s given by:

n(T1, . . . , Tn, D1, . . . , Dn)|Di=Ti

= {(C1, . . . , Cn) ∈ Rn
+ : max

i=1,...,n
min
t∈Si

i∑
j=1

⌈
t

Tj

⌉
Cj ≤ t} (2)

here Si = {kTj : j = 1, . . . , i, k = 1, . . . , �Ti/Tj�}.
The elements of Si conceptually represent the arrival times of

asks with a priority higher than �i before deadlines Di and D of task
i, and assuming �i = 0. This subset of values is called rate monotonic
cheduling points S. In Bini and Buttazzo (2004), this theorem is
ormulated through logical operators to represent the max (∧) and

in (∨).
For a better understanding and characterization in terms of com-

lexity and implementation costs of this approach, we will apply
he following notation for a matrix representation of Eq. (2). The
lement set Si is represented by the matrix:

i =
{

skl

}
k ∈ [1, . . . , i] ∧ l ∈ [1, . . . , �Ti/T1�] (3)

here skl is equal to the product:

kl =

⎡
⎢⎣

T1
T2
· · ·
Tk

⎤
⎥⎦⊗
[

1 2 3 · · ·
⌊

Ti

Tk

⌋]
=

⎡
⎢⎣

s11 s12 · · · s1l

s21 s22 · · · s2l

· · · · · · · · ·
sk1 0 · · · 0

⎤
⎥⎦

he column numbers in each row of the matrix skl are determined
y the difference between period tasks (�Ti/Tk�), thus several ele-
ents from the matrix could be 0, and as a result, the set Si can be

efined as S∗
i = Si/skl /= 0.

The total number of elements of S∗
i is determined by:

ize(S∗
i) =

i∑
j=1

⌊
Ti

Tj

⌋
(4)

Moreover, Eq. (2) can be expressed again as:

max
=1,...,n

min Mi(Si) ≤ Si (5)

here Mi(Si) is:
Mi(Si) = {mkl}i

{mkl}i =
i∑

j=1

⌈
skl

Tj

⌉
Cj skl ∈ S∗

i
(6)
where mkl is a matrix with the same dimension as the matrix skl.
This will result in a matrix sum:

{mkl}i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⌈
s11

T1

⌉
C1 · · ·

⌈
s1l

T1

⌉
C1⌈

s21

T1

⌉
C1 · · ·

⌈
s2l

T1

⌉
C1

· · · · · · · · ·⌈
sk1

T1

⌉
C1 · · ·

⌈
skl

T1

⌉
C1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+ · · · +

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⌈
s11

Ti

⌉
Ci · · ·
⌈

s1l

Ti

⌉
Ci⌈

s21

Ti

⌉
Ci · · ·
⌈

s2l

Ti

⌉
Ci

· · · · · · · · ·⌈
sk1

Ti

⌉
Ci · · ·
⌈

skl

Ti

⌉
Ci

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

From this expression, it is possible to determine for which
repeated values skl gives redundant values of mkl as the result.
Therefore, S∗

i can be redefined as:

S∗
i = Si

skl
/= 0 ∧ ∃!skl

Region Rn (Eq. (2)) can be expressed as:

Rn(T1, . . . , Tn, D1, . . . , Dn)|Di=Ti

= {(C1, . . . , Cn) ∈ Rn
+ : max

i=1,...,n
min Mi(S∗

i) ≤ S∗
i } (7)

where Mi(S∗
i) is defined in Eq. (6). Region Rn is delimited by planes

which define the space where the points Ci must be located. How-
ever, for analysis of large task sets, the number of equations to be
checked is huge and equals the sum of the number of elements in
all Si (such as shown in Eq. (4)). This prevents a practical on-line
application of Theorem 1. Nevertheless, such as is demonstrated in
Bini and Buttazzo (2004), solving Eq. (7) results in many equations
that are useless, so the idea is to reduce the number of equations
by eliminating the redundant elements in Si. This approach has led
to the formulation of the following theorem:

Theorem 2 (Theorem 3 in Bini and Buttazzo (2004)). The region of
the schedulable task sets Rn, such as defined by (2), is given by:

Rn(T1, . . . , Tn, D1, . . . , Dn)

= {(C1, . . . , Cn) ∈ Rn
+ : max

i=1,...,n
min

t∈Pi−1(Di)
Ci +

i−1∑
j=1

⌈
t

Tj

⌉
Cj ≤ t} (8)

where Pi(t) is defined by the following expression:{
P0(t) = {t}
Pi(t) = Pi−1

(⌊
t

Ti

⌋
Ti

)
∪ Pi−1{t} (9)

The total number of elements of Pi−1(t) is determined by:

Size(Pi−1) =
i∑

n=1

2n−1 (10)

Note that the difference between this theorem and Theorem
2 is only the presence of the Pi−1(t) set, instead of Si. Pi−1(t) is
a Pi−1(t) ⊆ Si, and this strongly reduces the number of equations
to be evaluated. As a consequence, the time needed to establish
whether a set task is inside the region Rn is limited.

Following the same expression as Eq. (5), a periodic task set is
feasibly schedulable using Theorem 2 if and only if:

max
i=1,...,n

min Mi(Pi−1) ≤ P∗
i−1 (11)

where P∗
i−1 = Pi−1 /p ∃!p.
5. Computing the processor scaling factor

In this section, we state – as based on the test described above
and other schedulability tests – that it is possible to compute the

f
t
b

b
w
t
2
c
a
e
p
a

i
s

C

5

T
w
2

˛

w
t
p

i

˛

w
a
m
t
m
T

5

T
h

˛

w
a

u

s

n

2

w
a
q

requency scaling factor ˛ for task sets with D = T and D ≤ T. Fur-
hermore, we establish that if this same computing approach can
e used for analyzing the schedulability of periodic task sets.

Not all execution cycles are scaled for the processor speed
ecause some operations deal with memory, or other I/O devices,
hose access time may be fixed (Bini et al., 2005). However, access

o memory can also be performed at different speeds (Marvell,
008), and so we should use two scaling factors: ˛ to scale the pro-
essor; and ˇ to scale the system bus. To simplify the analysis, we
ssume ˇ as a fixed parameter equal to 1, such that the worst-case
xecution time C can be expressed as a parameter split in two: a
arameter Cf which is dependent on the processor frequency; and
fixed parameter Cm which is not.

Therefore, Ci can be expressed as the execution time at the max-
mum frequency of the processor with respect to the frequency
caling factor ˛ plus a constant execution time:

i = Cf
i

˛
+ Cm

i (12)

.1. LL approach

heorem 3. The computing of the frequency scaling factor ˛ using the
ell-known approximate schedulability test of Liu Laylan (Sha et al.,
004) (LL) is given by:

LL
x = Uf

n(21/n − 1) − Um
(13)

here Uf is the sum of the whole utilization of the part of the task set
hat depends on the processor frequency, Um is the utilization of the
art of the task set that is independent of the processor.

After a migration of components, the new scaling factor LL ˛LL
x+1

s defined as:

LL
x+1 =

(U˛x
f

(tx) + �U˛x
f

(tx+1))˛x

n(21/n − 1) − Um(tx) − �Um(tx+1)
(14)

here �U is the difference of utilization between task inclusion
nd expulsion. And ˛x is the frequency scaling factor before the
igration of components. However, it is well-known that the LL

est is a sufficient but unnecessary test, and so the scaling factor ˛LL

ay not be the minimum ˛ that minimizes energy consumption.
his test could be used only for a task set with D = T.

.2. HB approach

heorem 4. The frequency scaling factor based on the approximate
yperbolic bound (Bini et al., 2003) test can be computed as:

HB
x = max{˛n} (15)

here ˛n represent the n possible values that can be assigned to alpha,
nd which are the result of solving the roots of the product of all the n

tilizations plus one
(∏n

i=1((Uf
i
/˛x) + Um

i
+ 1) − 2 = 0

)
of the task

et on the computer system.

To obtain the scaling factor after a migration of components, it is
ecessary to solve the product by deducing ˛x+1 from the equation:

=
n∏(Uf˛x

i
· ˛x

˛x+1
+ Um

i + 1

)
·
∏inc

j=1(((Uf˛x
j

· ˛x)/˛x+1) + Um
i

+ 1)∏exp (((Uf˛x · ˛x)/˛x+1) + Um + 1)

i=1 k=1 k i

here inc and exp are, respectively, the number of tasks included
nd expelled to and from the current (T(tx)) task set. ˛x is the fre-
uency scaling factor before the migration of components. In the
6

same way as the LL approach, the HB approach cannot be used for
task sets where D < T.

5.3. EDF-U approach

Theorem 5. The computing of the frequency scaling factor ˛ using
the well-known schedulability test EDF utilization based (Sha et al.,
2004) when D = T is given by:

˛EDF−U
x = Uf

1 − Um
(16)

where Uf is the sum of the whole utilization of the part of the task set
that depends on the processor frequency, Um is the utilization of the
part of the task set that is independent of the processor.

When D < T, we use a simple and approximate utilization-based
admission test. ˛ is calculated in the same way as in Eq. (16), but in
the calculation of the utilization instead of using the period is used the
deadline: U = C/D.

5.4. LLM approach

As an extension of LL test, an utilization bound test for tasks
with pre-period deadlines has been used Racu et al. (2005), and
some changes were made to find an approximate value for ˛. We
termed this the LLM test.

Theorem 6. The frequency scaling factor based on an approximate
utilization bounds test is given by:

˛LLM = max
i=1,...,n

f f
i

U(p, �i) − f m
i

(17)

where f f
i

and f m
i

are, respectively:

f f/m
i

=
∑
j∈Hp

Cf/m
j

Tj
+
∑
k∈H1

Cf/m
k

Ti
+ Cf/m

i

Ti

where H1 consists of a set of higher priority tasks that preempt task �i
only once before its deadline at Di, and Hp consists of a set of higher
priority tasks that may often preempt task �i before the deadline at Di.

U(p, �i) =
{

p((2�i)
1/n − 1) + 1 − �i 0.5 ≤ �i ≤ 1

�i 0 ≤ �i < 0.5

where �i and p are:

�i = Di

Ti
p = num(Hp) + 1

5.5. RTA approach

As is well known, the response time analysis (RTA) (Sha et al.,
2004) recurrent approach is an exact test, which we can change to
find an exact value for ˛ that minimizes energy consumption. It is
based on Saewong and Rajkumar (2003) and we can obtain a static
and exact solution to compute the frequency scaling factor for task
sets with D = T and D < T.

5.6. Approach based on the schedulability region (P and S
approaches)

Taking into account the above regarding the representation of

the feasibility condition as a region in the C-space, it is easy to think
that Ci can be tuned so that its values are in the feasibility region.
In Bini et al. (2006) this topic is addressed from the perspective of
sensitivity analysis.

7

d
t

T
i
w

˛

w
c

˛

w

M

s

s
o
i

P
s

d

i

w

T

6

s
S
a
a

r
i
S
b
e

For our purpose, in Eq. (11) and using Eq. (12), Ci becomes the
esign variable and a constant parameter. The scaling factor ˛ is
he interesting component that results in the following theorem.

heorem 7. The static scaling factor of the clock frequency that min-
mizes CPU energy consumption while preventing missed deadlines
hen given a task set T is defined by:

P
min(T) = max

i=1,...,n
min M∗

i (Pi−1) (18)

here Pi−1 are the scheduling points defined by Eq. (9). This expression
an also be used with the scheduling points Si:

S
min(T) = max

i=1,...,n
min M∗

i (Si) (19)

here M∗
i
(Si) is given by:

∗
i (Si) =

i∑
j=1

skl/Tj�Cf
j

t −
skl/Tj�Cm
j

skl ∈ S∗
i

kl is defined in Eq. (3). Cf and Cm are defined in Eq. (12).
Let the scaling factor be normalized between 0 < ˛ ≤ 1, the computer

ystem is feasibly schedulable if and only if ˛ is less than or equal to 1,
therwise, the processor is unable to schedule the task set even though
t is running at full speed.

roof. Based on definitions in Eqs. (5) and (12), and following
everal changes to simplify the analysis, we have:

max
i=1,...,n

min Mi(Si) ≤ Si

max
i=1,...,n

min
i∑

j=1

⌈
skl

Tj

⌉
Cj ≤ skl skl ∈ S∗

i

max
i=1,...,n

min
i∑

j=1

⌈
skl

Tj

⌉(
Cf

j

˛
+ Cm

j

)
≤ skl skl ∈ S∗

i

max
i=1,...,n

min
i∑

j=1

⌈
skl

Tj

⌉
Cf

j

˛
≤ skl − max

i=1,...,n
min

i∑
j=1

⌈
skl

Tj

⌉
Cm

j

educing ˛ from the expression, we have:

max
=1,...,n

min M∗
i (Si) ≤ ˛ � ˛min

here the modified matrix M (M∗
i
) will be:

M∗
i
(Si) = {m∗

kl
}i

{m∗
kl

}i =
i∑

j=1

skl/Tj�Cf
j

skl −
skl/Tj�Cm
j

skl ∈ S∗
i

(20)

hese expressions can be expanded to the points Pi−1. �

. Proposed approach A

To bound the schedulability region for periodic fixed priority
ystems the analysis in the C-space is mainly based on the point set
i orPi (Theorems 1 and 2). The number of mathematical operations
nd the accuracy of this analysis are determined by the structure

nd the number of scheduling points.

In Section 4, two expressions for calculating the schedulability
egion were described (Eqs. 7 and 11). These regions are delim-
ted by two different point sets (Si and Pi−1), which differ in size:
ize(Si) � Size(Pi−1) (Eqs. 4 and 10). The size of point set S can
e much greater than the size of P. However, both approaches are
qually precise, and both are sufficient and necessary tests.
6.1. Reduced approach using the schedulability region

In this section we propose a reduction in the number of schedul-
ing points required to compute the schedulability region. The
objective of this simplification is to substantially reduce the com-
putational cost of the DVS algorithm, but at the same time, preserve
the accuracy of the schedulability analysis.

The reduction in these scheduling points will be based on points
Pi−1, which in turn are a reduction in the point set Si (Pi−1 ⊆ Si).
The new point set we call Ai. This Ai set is a Ai ⊆ Pi−1 and a Ai ⊆ Si.

The frequency scaling factor that uses the new set of scheduling
points is defined by the following theorem:

Theorem 8. The minimum scaling factor of the processor frequency
that minimizes the energy consumption and guarantees no missed
deadline given a task set T, is defined as:

˛A
min(T) = max

i=1,...,n
min M∗

i (Ai) (21)

where M∗
i

is defined in Eq. 20, but applied to the points set A. This
points set Ai is equal to:

Ai(Di) = {Di ∪ schedAi(Di)} (22)

where schedA(Di) is the characteristic matrix in the computation of
the points Ai. schedA(Di) is the following matrix expression:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⌊
Di

T1

⌋
T1

⌊
Di

T2

⌋
T2 · · ·

⌊
Di

Tj

⌋
Tj⌊⌊

Di

T2

⌋
T2

T1

⌋
T1 · · ·

⌊⌊
Di

Tj

⌋
Tj

Tj−1

⌋
Tj−1

· · ·
⌊⌊⌊

Di

Tj

⌋
Tj

Tj−1

⌋
Tj−1

Tj−2

⌋
Tj−2

· · ·· · ·⌊
· · ·
⌊⌊⌊

Di

Tj

⌋
Tj

Tj−1

⌋
Tj−1

Tj−2

⌋
· · · Tj−k−1

Tj−k

⌋
Tj−k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∀j ∈ [1, . . . , i − 1] ∧ ∀k ∈ [0, . . . , i − 2] (23)

where the dimension of this matrix is given by (i − 1)x(i − 1).
Taking into account that the scaling factor has been normalized

between 0 < ˛ ≤ 1, the whole system will be schedulable if ˛ is less
than or equal to 1. If ˛ is greater than 1, there is a low probability that
the system can be really schedulable, on the contrary, if ˛ is less than
or equal to 1, the system is always schedulable.

Proof. Schedulability region analysis (Bini and Buttazzo, 2004;
Lehoczky et al., 1989) is mainly based on a worst-case workload
analysis of the task set. Using the concept of workload, the schedu-
lability condition of a particular task �i can be expressed by:

Ci + Wi−1(Di) ≤ Di (24)

The processor demand in the interval [0, t] is defined by∑i
j=1
t/Tj�Cj . To be a feasible schedule, the workload in [t, D] should

be smaller than the length of the interval, therefore:

∀t ∈ [0, Di] Wi(Di) − Wi(t) ≤ (Di − t)

The latter equation can also be expressed as follows:

∀t ∈ [0, Di] Wi(Di) ≤
i∑

j=1

⌈
t

Tj

⌉
Cj + (Di − t) (25)

Moreover, we define a term ϕi(Di) as the last instant in [0, Di]
during which the processor is idle:
ϕi(Di) = max{t ∈ [0, Di] ∧ t /∈ activetasksininstants t}
From this expression we can induce that the processor is always

busy in [ϕi, Di], and thus the workload of the i highest priority tasks
during such interval is (Di − ϕi(Di)). The definition of ϕ is needed

b
H

W

o
t
s
o
t
T
b
s
ϕ
b
t
m
w

W

U

f
o
t
o
e
c
w

A

i
o
a
a

Fig. 3. The set Pi−1(Di) can be obtained from the set Ai .

ecause it can be useful for simplifying the computation of Wi(Di).
ence,

i(Di) =
i∑

j=1

⌈
ϕi(Di)

Tj

⌉
Cj + (Di − ϕi(Di)) (26)

However, using this expression we move from the complexity
f the workload estimation itself (using continuous interval [0, Di])
o the complexity of the ϕi(Di) search. Nevertheless, a set of pos-
ible values of ϕi(Di) can be restricted. With this aim, an initial set
f possible values can be comprised for the deadline of task i and
he arrival times of tasks with a priority higher than �i before Di.
his is because the last instant of time in which the processor can
e idle (ϕi) matches exactly with the arrival times of the tasks. This
et is defined by the point set Si described in Section 4, such that
i(t) ∈ Si(t). This set of possible values of Si can be further reduced
y the set of values proposed in Eq. 9, such that ϕi(t) ∈ Pi(t). From
he evaluation of the schedulability points in Expression 25, the

inimum value corresponds to the workload i and is the same
hen t = ϕi(D) (Bini and Buttazzo, 2004), that is:

i(Di) = min
t∈Si(Di)∪Pi−1(Di)

i∑
j=1

⌈
t

Tj

⌉
Cj + (Di − t) (27)

sing Eq. 24 for a whole task set, we obtain Eqs. 2 and 8.
Having established the principle of the schedulability region and

easibility conditions, we focus on proof of the reduced set A. To
btain the reduced point set A based on the points P, we propose
o extract a characteristic function of the points Pi−1, in order to
btain the most important points that enable narrowing and delin-
ating the area where the points Pi−1 are located at the time. This
haracteristic function is defined by means of a matrix expression,
hich is given in Eq. (23). The set Ai is given by:

i(Di) = {Di ∪ schedA(Di)}

From the set A(Di), we can obtain additional point subsets that

n total constitute the set Pi−1 (see Fig. 3). The number of elements
f Pi−1(Di) and A(Di) are determinated, respectively, by the Eqs. 10
nd 29. In Fig. 4, the points of the sets Pi−1 and Ai are compared for
specific set of 15 periodic tasks. Notice that the regions of point

Fig. 4. Comparison of the points Pi−1 with the points Ai .
8

concentration Pi−1 are delimited by the points obtained from the
characteristic matrix Ai.

By definition the set A uses fewer points than P for the estima-
tion of the values of ϕi(Di), therefore two things can happen:

1. The exact value of ϕi(Di) is within the values obtained in the
calculation of Ai(Di).

2. There is a difference between the exact value ϕi(Di) and the
values obtained by means of Ai(Di).

In the first case, we get an exact result for Wi(Di) and so the
schedulability conditions exposed will be accurately tested. More-
over, we could also compute the frequency scaling factor ˛ within
a margin of error 0.

In the second case, let the smallest workload Wi correspond with
the evaluation at t = ϕi(Di), and assuming that ϕi(Di) is not included
in the points Ai(Di), then Wi when t ∈ {Ai(Di)} is always fulfilled
that:

ϕi(Di) /∈ Ai(Di) ⇒ Wi(Di)
t=Ai(Di) ≥ Wi(Di)

t=ϕi(Di) (28)

This proves that the result of calculating the frequency scaling
factor using set A is always valid. Using the set A we will obtain an
˛A equal or greater than the exact value. However, we will never
obtain a value below the exact scaling factor. This guarantees a
result that is sufficient, although in some cases not necessary.

Based on the analysis of the schedulability region, we have:

max
i=1,...,n

min Mi(Ai) ≤ Ai

max
i=1,...,n

min
i∑

j=1

⌈
a

Tj

⌉
Cj ≤ a a ∈ A∗

i

max
i=1,...,n

min
i∑

j=1

⌈
a

Tj

⌉(
Cf

j

˛
+ Cm

j

)
≤ a a ∈ A∗

i

max
i=1,...,n

min
i∑

j=1

⌈
a

Tj

⌉
Cf

j

˛
≤ a − max

i=1,...,n
min

i∑
j=1

⌈
a

Tj

⌉
Cm

j

where a is the element set that forms the set A∗
i (see Eq. (22)) and

A∗
i :

A∗
i = {a}

a
∈ Ai ∧ ∃!a ∈ Ai

The total number of elements of Ai is determined by:

Size(Ai) = i +
i∑

n=1

n(n − 1)
2

(29)

Deducing the factor ˛ from {m}i, we have:

max
i=1,...,n

min M∗
i (Ai) ≤ ˛ � ˛min

where

M∗
i
(Ai) = {m∗}i

{m∗}i =
i∑

j=1

a/Tj�Cf
j

a −
a/Tj�Cm
j

a ∈ A∗
i

�
We can obtain a maximum error in the computation of ˛ using
the set Ai when ϕi(Di) /∈ Ai(Di), i.e. when the Ai(Di) approach finds
an approximate value (ϕ∗

i
) equal to:

error˛A =
i∑

j=1

(⌈
ϕ∗

i
(Di)

Tj

⌉
1

ϕ∗
i
(Di)

−
⌈

ϕi(Di)
Tj

⌉
1

ϕi(Di)

)
Cj (30)

9

Table 1
Range of periods for task groups A, B and C.

Group Lower bound (�s) Upper bound (�s)

A 2000 40,000

7

p
L
p
a

c
m
E
t

h
fi
l
t

e
I
o
e
o
r
t
l
w
c
r
l
u

L
T
(

t
o
e

•

In the figures, we can see that all approaches for the calculation
of ˛, except for LLM, LL, and HB, have a rejection ratio equal to 0%.
The LL approach has a dispersed rejection ratio that increases with
utilization and which stretches from 0% to 45%. The HB approach

0.6

0

t
o

1
) Rejection ratio versus computational cost (D=T)

P Approach

A Approach
B 40,001 600,000
C 600,001 4,000,000

. Experimental evaluation when D = T and D ≤ T

We have performed extensive simulations of the algorithm pro-
osed (A approach) and the other algorithms described (P, RTA,
LM, HB, LL and EDF-U approaches) to experimentally evaluate the
erformance of the dynamic code delegation for task sets with D = T
nd D ≤ T.

We propose three group of random tasks: A, B and C. Group A
onsists of tasks with short periods, group B consists of tasks with
iddle periods, and group C consists of tasks with large periods.

ach task group consists of 20 tasks. The range of periods for the
ask groups are shown in Table 1.

Three types of arrival of tasks at the processor (Ll1, Ll2 and Ll3)
ave also been simulated. For Ll1 the highest priority tasks arrive
rst, for Ll2 the medium priority tasks arrive first, and for Ll3 the

east priority tasks arrive first. The simulation consists of sets of 20
asks.

These task groups try to represent the tasks set used in sev-
ral practical applications, such as mobile or humanoid robotics.
n these applications usually converge various hierarchical levels
f control. These hierarchical levels consist of tasks set with differ-
nt temporal characteristics, which will depend on the criticality
f the activities to be performed. For instance, in a hierarchical
obotic system with reactive, tactical and mission levels the dis-
ribution of tasks could be like the proposed task groups. The first
evel (reactive level) consists mainly by high-priority tasks, i.e. tasks

ith short periods, such as the proposed group A. The second level
an be compared with group B, which is formed by tasks with more
elaxed periods. It consists of medium priority tasks. In the mission
evel the temporal constraints are decreased. In this level the tasks
sed are the least priority, i.e. with large periods such as group C.

Task groups A, B, and C are combined with arrival types
l1, Ll2 and Ll3, and this results in nine different sets of tasks.
hese, in turn, will be evaluated on five discrete utilizations U
0.3–0.5–0.7–0.8–0.95).

Each test is characterized by an acceptance ratio AR, computa-
ional cost CR, and energy consumption ER (see Fig. 5). The results
f these simulations will be presented on three components of ref-
rence:
The cost of each algorithm will be counted in accordance with the
number and type of operations. Each operation is characterized
with a predetermined number of machine cycles based on the

Fig. 5. Test sets for analyzing approaches for computing the scaling factor.
ARM architecture (Sloss et al., 2004). Therefore, the units in which
the computational cost will be measured are machine cycles.

• The component energy over-consumption is referred to the energy
consumption exceeded by an algorithm when it is compared to
energy consumption achieved using an exact algorithm of fixed
priority. Using an exact algorithm we get the minimum processor
frequency with which it is possible to scheduling a given task
set. An example of exact algorithm for fixed priorities is the RTA
approach.

• The rejection ratio refers to one less than the number of accepted
task sets Tpt with respect to those accepted by a necessary and
sufficient algorithm Tp: 1 − (Tpt/Tp).

These components were chosen so that a greater magnitude on
the axes can be understood as a worse behaviour for an algorithm.
In the tests, the worst result will be plotted for each task group and
type of arrival. The calculation of ˛ using the S approach was not
used due to the high computational cost involved.

In the energy performance only the consumption caused by
execution of whole task set is reflected in the simulations, this con-
sumption depends on the processor frequency obtained by each
algorithm. The energy consumption derived from the execution
of the algorithm itself was not included in the energy consump-
tion presented in the simulations. It is because this consumption
depends on the frequency at which the processor is running when
the algorithm requires to be performed. Therefore we consider it
more appropriate to compare the cost of the algorithms in inde-
pendent units to the processor frequency. This considering that the
number of machine cycles is proportional to the energy consump-
tion. Mode change protocols should set the processor frequency
at which the algorithms must be performed when a new frequency
calculation is required. However, these protocols are not within the
scope of this paper.

7.1. Rejection ratio versus computational cost

Figs. 6 and 7 show the simulation results of the percentage of
rejected tasks in comparison with the computational cost of calcu-
lating algorithms.
10
2

10
4

10
6

10
8

0

0.1

0.2

0.3

0.4

0.5

Computational cost (log)

P
e
r
c
e
n
t
a
g
e

o
f

r
e
j
e
c
t
i
o
n

(RTA Approach

HB Approach

LL Approach

EDF−U Approach

Fig. 6. Rejection ratio versus computational cost when D = T. Note that the percent-
age of over-consumption has been plotted between 0 and 0.6.

10

10
2

10
4

10
6

10
8

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

P
e
r
c
e
n
t
a
g
e

o
f

r
e
j
e
c
t
i
o
n

(
0

t
o

1
)

Rejection ratio versus computational cost (D<T)

P Approach

A Approach

RTA Approach

LLM Approach

EDF−U Approach

h
m
5
a

(
a
c
u
o
s

f
d
t
t
i

7

t
a
p
a

10
2

10
3

10
4

10
5

10
6

10
7

10
8

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Computational cost (log)

P
e
r
c
e
n
t
a
g
e

o
f

o
v
e
r

c
o
n
s
u
m
p
t
i
o
n

(
0

t
o

1
)

Over consumption percentage versus computational cost (D<T)

P Approach

A Approach

RTA Approach

LLM Approach

EDF−U Approach

Fig. 9. Over-consumption percentage versus computational cost when D < T.

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

Percentage of over consumption (0 to 1)

P
er

ce
nt

ag
e

of
 r

ej
ec

tio
n

(0
 to

 1
)

Rejection ratio versus over consumption perecentage (D=T)

Fig. 10. Rejection ratio versus energy over-consumption percentage when D = T.
Computational cost (log)

Fig. 7. Rejection ratio versus computational cost when D < T.

as a slightly lower rejection percentage than LL. When D ≤ T, the
aximum rejection ratio for the LLM approach is increased to about

0%. The EDF-U based scheduler will has a behaviour similar to LLM
pproach.

From the perspective of cost, although the methods of EDF-U
when D ≤ T), LLM, LL, and HB show the largest rejection percent-
ges, they also have lower costs. In both cases, D = T and D ≤ T, the
omputational cost of using the RTA approach is dispersed and
npredictable, and their costs are sometimes among the highest
f all the methods, exceeded only by the P approach. The cost is
ometimes less than the proposed A approach.

The A approach has a middle cost and a rejection ratio of zero
or D = T and for D ≤ T. Furthermore, the proposed method has pre-
ictable costs, and their computational cost is almost 20 times less
han the cost of the P approach. Notice that the gap in the magni-
ude of the cost between the proposed approach and thePapproach
ncreases with the arrival of tasks.

.2. Over-consumption percentage versus computational cost

Figs. 8 and 9 show the energy over-consumption in function of

he computational cost for the worst case. The over-consumptions
re due to deviations in the calculation of the scaled factor ˛ com-
ared with the calculation using an exact method. Notice that devi-
tions in alpha lead to quadratic over-consumption – depending

10
2

10
4

10
6

10
8

−0.2

0

0.2

0.4

0.6

0.8

1

Computational cost (log)

P
e
r
c
e
n
t
a
g
e

o
f

o
v
e
r

c
o
n
s
u
m
p
t
i
o
n

(
0

t
o

1
)

Over consumption percentage versus computational cost (D=T)

Fig. 8. Over-consumption percentage versus computational cost when D = T.

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Percentage of over consumption (0 to 1)

P
e
r
c
e
n
t
a
g
e

o
f

r
e
j
e
c
t
i
o
n

(
0

t
o

1
)

Rejection ratio versus over consumption
perecentage (D<T)

P Approach

A Approach

RTA Approach

LLM Approach

EDF−U Approach

Fig. 11. Rejection ratio versus energy over-consumption percentage when D < T.

11

0 2 4 6 8 10 12 14 16 18
0

0.2

0.4

0.6

0.8

1

1.2

Number of tasks

E
n
e
r
g
y

s
a
v
i
n
g

p
e
r
c
e
n
t
a
g
e

(
0

t
o

1
)

Group A (D=T)

P Approach

A Approach

RTA Approach

HB Approach

LL Approach

EDF−U Approach

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of tasks

E
n
e
r
g
y

s
a
v
i
n
g

p
e
r
c
e
n
t
a
g
e

(
0

t
o

1
)

Group A (D<T)

P Approach

A Approach

RTA Approach

LLM Approach

EDF−U Approach

0 2 4 6 8 10 12 14 16 18
0

0.2

0.4

0.6

0.8

1

1.2

Number of tasks

E
n
e
r
g
y

s
a
v
i
n
g

p
e
r
c
e
n
t
a
g
e

(
0

t
o

1
)

Group B (D=T)

P Approach

A Approach

RTA Approach

HB Approach

LL Approach

EDF−U Approach

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of tasks

E
n
e
r
g
y

s
a
v
i
n
g

p
e
r
c
e
n
t
a
g
e

(
0

t
o

1
)

Group − Group B (D<T)

P Approach

A Approach

RTA Approach

LLM Approach

EDF−U Approach

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

E
n
e
r
g
y

s
a
v
i
n
g

p
e
r
c
e
n
t
a
g
e

(
0

t
o

1
)

Group C (D=T)

P Approach

A Approach

RTA Approach

HB Approach

LL Approach

EDF−U Approach

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
n
e
r
g
y

s
a
v
i
n
g

p
e
r
c
e
n
t
a
g
e

(
0

t
o

1
)

Group − Group C (D<T)

P Approach

A Approach

RTA Approach

LLM Approach

EDF−U Approach

a exac

o
c

b
s
p
c
s
W
b

u
h
c

Number of tasks

Fig. 12. Evolution of the energy saved with respect to the saving with

n the polynomial expression that describes CPU power
onsumption.

In Fig. 8 we can observe that LL has a small computational cost,
ut an energy over-consumption close to 45%. When D = T, EDF-U
ave more energy than the others approaches. For this reason the
oints of EDF-U are located in negatives values. HB has an over-
onsumption slightly lower than LL. When D ≤ T, the LLM approach
hows an over-consumption for the worst case of around 30–60%.

hen D ≤ T, the EDF-U approach has a similar behaviour than LLM,
ut it has lower computational cost.
Moreover, we obtain an intermediate computational cost when
sing the reduced approach A. When D = T, the proposed method
as a higher concentration of points around the 0% for the worst
ase, and with some values of over-consumption above 0, and
Number of tasks

t algorithm in function to the arrival of tasks. Utilization equal to 95%.

which do not exceed 2.5%. When D ≤ T, we obtain an over-
consumption mostly equal to 0 using the A approach. A 2% of the
plotted points for A are above 0. For both cases, D = T and D ≤ T, the
approaches P and RTA show an over-consumption equal to 0, but
with higher costs and dispersion, respectively.

7.3. Rejection ratio versus over-consumption percentage

Figs. 10 and 11 show the percentage of rejected tasks in com-
parison with energy over-consumption percentages.
When D = T, the LL and HB approaches are dispersed at the inter-
section of the areas of between 20% and 48% of over-consumption
and the area of between 0% and 45% of rejection ratio. The
increase in the percentage in these approaches is determined by the

12

F
a

u
o
5
p
a
s
a
t

o
a
h
a
r

7

r
o
r
f

p
a
t
t
s

i
n
w
r
P

8

p
w
r
t

Table 2
Comparison of approaches to compute a constant frequency scaling factor ˛.

Alg. Cost Rejection
ratio

Over-cons.
ratio

D/T

S Very high None None D ≤ T
P High None None D ≤ T
RTA Unpredictable

middle-high
None None D ≤ T

Aa Low-middle None Very low D ≤ T
LLM Low Very high Very high D ≤ T
HB Low High High D = T
LL Very low High High D = T
ig. 13. Evolution of the computational cost of the algorithms with respect to the
rrival of new tasks.

tilization and the number of tasks. The A approach has no points
n the axis of the rejection ratio. On the axis of over-consumption,
% of the plotted points for A are between 1.2% and 2.5%. The other
oints are at 0%. EDF-U approach has a rejection ratio equal to 0%
nd it saves more energy than the others approaches. For this rea-
on the points of EDF-U are located on the axis negative. The other
pproaches have an over-consumption and a rejection ratio equal
o 0.

When D ≤ T, the LLM approach is dispersed at the intersection
f the areas between 30% and 55% of over-consumption and the
rea of between 0% and 50% of the rejection ratio. EDF-U approach
as a behaviour similar to LLM. The RTA, P and A approaches have
n over-consumption equal to 0 and close to 0, respectively, and a
ejection ratio equal to 0.

.4. Other simulations

Fig. 12 shows separately the evolution of the energy saved with
espect to the saving achieved with an exact algorithm in function
f the arrival of tasks for each task group (A, B, and C) and their
espective arrivals (LL1, LL2 and LL3). It shows a utilization of 95%
or the complete tasks set with D = T and D ≤ T.

Fig. 13 shows the evolution of the computational cost of the pro-
osed algorithm when compared with the other static algorithms
nd EDF-U algorithm with respect to the arrival of new tasks for
he whole test set when D = T. The figure shows the variability of
he cost for the RTA approach, which varies depending on the task
et and increases with the number tasks arriving.

Fig. 13 also shows the evolution of the P approach, whose cost
ncreases depending on the number of tasks in the order 2n, where
is the number of tasks. The cost of our static algorithm is smaller
hen compared to P and RTA algorithms, and their evolution with

espect to the number of arrivals of tasks is far more muffled than
and RTA.

. Conclusions

In this paper a new algorithm (A approach) for computing the

rocessor frequency scaling factor under fixed priority assignment
ith D = T and D ≤ T is proposed. This algorithm is performed with a

educed computational cost and minimizes CPU energy consump-
ion while guaranteeing no missed deadlines. Therefore, it can be
EDF-U aprox. Very low Very high Very high D ≤ T
EDF-U Very low None None D = T

a Proposed approach A.

used as on-line acceptance test in systems with dynamic workload.
However, as is well known, if it is compared with dynamic prior-
ity approaches, such as EDF, they have a higher performance than
fixed priority based scheduling, but we have design constraints and
we have to use fixed priority algorithms in order to complaint the
standard ARINC-653 (AASS Interface, 2003).

Using extensive simulations, we have evaluated the behaviour
of several existing feasibility tests that have been adapted to
compute a frequency scaling factor ˛ for the proposed approach
A. The analysis has been presented from the point of views of
energy consumption, task rejection ratio, and real computing
costs.

Our simulation results show that the proposed algorithm out-
performs other constant voltage scaling algorithms from the cost,
predictability, and task acceptance points of view. However, some
small deviations were observed in the energy saved. The proposed
approach is compared with other approaches. The proposed algo-
rithm enables not only the high precision verification of system
feasibility and the computation of ˛ in an environment with a
dynamic processor load. The algorithm can also be used in real-
time operating systems because the computational cost represents
a small system overload.

The main features of the described approach are presented in
Table 2.

As a future work, we plan to investigate the case where mem-
ory access and the system bus perform at different clock speeds
– together with processor frequency scaling (Marvell, 2008). In
this case, the combination of these parameters will enable an even
greater reduction in energy consumption for the whole computing
system. Note that typical values of frequency scaling in XScale pro-
cessors are 208, 156 and 104 MHz for system bus and 312, 208,
156 and 104 MHz for SRAM memory access. Such as was men-
tioned in the Section 5, not all execution cycles are scaled for the
processor speed because some operations deal with memory or
other I/O devices. Therefore, they can be handled according to the
activities of the tasks, for instance, while a task does not interact
extensively with I/O devices, the access frequency to these can be
reduced.

On the other hand, top-level algorithms to reclaim additional
idle time resulting from the early completions of tasks will be inves-
tigated, such as approaches based on feedback control scheduling
methodology. It to be used together with the proposed approach
A. Additionally, testing of the proposed method on real hardware
will be addressed.

Acknowledgements
This work has been supported by the Spanish Government
as part of the SIDIRELI project (DPI2008-06737-C02-02), COBAMI
project (DPI2011-28507-C02-02) and by the Generalitat Valenciana
(Project ACOMP-2010-038).

1

R

A
A

A

A

A

A

B

B

B

B

B

C

C
C

C

C

D

E

G

G

G
I

J

K

K

K

L

L

L

3

eferences

ASS Interface, 2003. ARINC653, Arinc Specification 653-1. RTCA.
lbertos, P., Crespo, A., Simó, J., 2006. Control kernel: a key concept in embedded

control systems. In: 4th IFAC Symposium on Mechatronic Systems.
lEnawy, T., Aydin, H., 2005. Energy-aware task allocation for rate monotonic

scheduling. In: Proceedings of the 11th IEEE Real Time and Embedded Tech-
nology and Applications Symposium (RTAS), pp. 213–223.

nderson, J.H., Bud, V., Devi, U.C.,2005. An EDF-based scheduling algorithm for
multiprocessor soft real-time systems. In: ECRTS ’05: Proceedings of the 17th
Euromicro Conference on Real-Time Systems. IEEE Computer Society, Washing-
ton, DC, USA, pp. 199–208.

ydin, H., Devadas, V., Zhu, D.,2006. System-level energy management for periodic
real-time tasks. In: RTSS ’06: Proceedings of the 27th IEEE International Real-
Time Systems Symposium. IEEE Computer Society, Washington, DC, USA, pp.
313–322.

ydin, H., Melhem, R., Mossé, D., Mejía-Alvarez, P., 2004. Power-aware schedul-
ing for periodic real-time tasks. IEEE Transactions on Computers 53,
584–600.

ini, E., Buttazzo, G., 2004. Schedulability analysis of periodic fixed priority systems.
IEEE Transactions on Computers 53, 1462–1473.

ini, E., Buttazzo, G., Lipari, G.,2005. Speed modulation in energy-aware real-time
systems. In: ECRTS ’05: Proceedings of the 17th Euromicro Conference on Real-
Time Systems. IEEE Computer Society, Washington, DC, USA, pp. 3–10.

ini, E., Buttazzo, G.C., Buttazzo, G.M., 2003. Rate monotonic analysis: the hyperbolic
bound. IEEE Transactions on Computers 52, 933–942.

ini, E., Natale, M.D., Buttazzo, G.C., 2006. Sensitivity analysis for fixed-priority real-
time systems. In: Proceedings of the 18th Euromicro Conference on Real-Time
Systems, Dresden, Germany.

riao, E.W., Barcelos, D., Wronski, F., Wagner, F.R., 2007. Impact of task migration in
NOC-based MPSOCS for soft real-time applications. In: IFIP International Con-
ference on Very Large Scale Integration (VLSI), pp. 296–299.

ervin, A., 2003. Integrated control and real-time scheduling. Ph.D. Thesis. Depart-
ment of Automatic Control, Lund University ISRN LUTFD2/TFRT-1065-SE.

hen, 2007. Energy-efficient real-time Task Scheduling with Task Rejection.
hen, J.-J.,2005. Multiprocessor energy-efficient scheduling for real-time tasks with

different power characteristics. In: ICPP ’05: Proceedings of the 2005 Interna-
tional Conference on Parallel Processing. IEEE Computer Society, Washington,
DC, USA, pp. 13–20.

ho, Y., Chang, N., 2006. Energy-aware clock-frequency assignment in micropro-
cessors and memory devices for dynamic voltage scaling. IEEE Transactions
on Computer-aided Design of Integrated Circuits and Systems 26, 1030–
1040.

respo, A., Albertos, P., Balbestre, P., Vall’es, M., Lluesma, M., Sim’o, J., 2006.
Schedulability issues in complex embedded control systems. IEEE International
Conference on Control Applications.

uan, C., Khatri, S.P., 2006. Computing during supply voltage switching in DVS
enabled real-time processors. In: IEEE ISCAS Conference, p. 2254.

mberson, P., Bate, I.,2007. Minimising task migration and priority changes in mode
transitions. In: RTAS ’07: Proceedings of the 13th IEEE Real Time and Embedded
Technology and Applications Symposium. IEEE Computer Society, Washington,
DC, USA, pp. 158–167.

alizzi, J., Metge, J.-J., Arberet, P., Morand, E., F.V., Crespo, A., Masmano, M., Coronel,
J., Ripoll, I, V.B.U.P., Roubert, F., Scuri, C., V.T., T.N., 2011. Porting of LVCUGEN
(TSP-based solution) on CPU-ITAR-FREE board. In: DASIA.

alizzi, J., Metge, J.-J., Arberet, P., Morand, E., F.V., Crespo, A., Masmano, M., Coronel,
J., Ripoll, I., V.B.U.P., Roubert, F., Scuri, C., V.T., T.N., 2012. LVCUGEN (TSP-based
solution) and first porting feedback. In: Embedded Real Time Software and Sys-
tems.

aujal, B., Navet, N., 2007. Dynamic Voltage Scaling Under EDF Revisited.
ntel, 2004. Enhanced Intel speedstep technology for the Intel Pentium M processor.

In: White Paper.
ejurikar, R., Gupta, R.,2004. Dynamic voltage scaling for systemwide energy min-

imization in real-time embedded systems. In: ISLPED ’04: Proceedings of the
2004 international Symposium on Low Power Electronics and Design. ACM, New
York, NY, USA, pp. 78–81.

im, W., Shin, D., Yun, H.-S., Kim, J., Min, S.L.,2002. Performance comparison of
dynamic voltage scaling algorithms for hard real-time systems. In: RTAS ’02:
Proceedings of the Eighth IEEE Real-Time and Embedded Technology and Appli-
cations Symposium (RTAS’02). IEEE Computer Society, Washington, DC, USA, p.
219.

umar, G.S.A., Manimaran, G.,2007. Energy-aware scheduling of real-time tasks
in wireless networked embedded systems. In: RTSS ’07: Proceedings of the
28th IEEE International Real-Time Systems Symposium. IEEE Computer Society,
Washington, DC, USA, pp. 15–24.

umar, G.S.A., Manimaran, G., Wang, Z., 2008. End-to-end energy management in
networked real-time embedded systems. IEEE Transactions on Parallel and Dis-
tributed Systems 19, 1498–1510.

ee, E.A., 2006. Cyber-physical systems – are computing foundations adequate? In:

NFS Workshop on Cyber-Physical Systems.

ehoczky, J., Sha, L., Ding, Y., 1989. The rate-monotonic scheduling algorithm: exact
characterization and average case behavior. In: 10th IEEE Real-Time Systems
Symposium, pp. 166–172.

eung, L.-F., 2005. Exploiting Dynamic Workload Variation in Low Energy.
Li, T., Ding, C., 2001. Instruction balance and its relation to program energy con-
sumption. In: International Workshop Languages and Compilers for Parallel
Computing.

Liang, W.-Y., Chen, S.-C., Chang, Y.-L., Fang, J.-P., 2008. Memory-aware dynamic volt-
age and frequency prediction for portable devices. In: 14th IEEE International
Conference on Embedded and Real-Time Computing Systems and Applications
(RTCSA), pp. 229–236.

Liu, Y., Mok, A., 2003. An integrated approach for applying dynamic voltage scaling
to hard real-time systems. In: 9th IEEE Real-Time and Embedded Technology
and Applications Symposium, Toronto, Canada.

Marinoni, M., Buttazzo, G., 2007. Elastic DVS management in processors with dis-
crete voltage/frequency modes. IEEE Transactions on Industrial Informatics, 3.

Marvell, 2008. System and timer configuration developers manual. In: Marvell
PXA3xx Processor Family, vol. I.

Mejia-Alvarez, P., Levner, E., Mosse, D., 2002. Power-optimized scheduling server
for real-time tasks. In: Proceedings of the Eighth IEEE Real-Time and Embedded
Technology and Applications Symposium, pp. 239–250.

Mejia-Alvarez, P., Levner, E., Mossé, D., 2004. Adaptive scheduling server for power-
aware real-time tasks. ACM Transactions on Embedded Computing Systems 3,
284–306.

Piao, X., Kim, H., Cho, Y., Park, M., Han, S., Park, M., Cho, S.,2009. Energy consump-
tion optimization of real-time embedded systems. In: ICESS ’09: Proceedings of
the 2009 International Conference on Embedded Software and Systems. IEEE
Computer Society, Washington, DC, USA, pp. 281–287.

Pillai, P., Shin, K., 2001. Real-time dynamic voltage scaling for low-power embedded
operating systems. In: ACM symposium on operating systems principles, Banff,
Canada.

Posadas, J.L., Poza, J.L., Sim, J.E., Benet, G., Blanes, F., 2008. Agent based distributed
architecture for mobile robot control. Engineering Applications of Artificial Intel-
ligence 21, 805–823.

Pouwelse, J., Langendoen, K., Sips, H., 2001. Dynamic voltage scaling on a low-power
microprocessor. In: Seventh Internacional Conference Mobile Computing and
Networking (MOBICOM).

Quan, 2004. Fixed Priority Scheduling for Reducing Overall Energy on Variable Volt-
age Processors.

Racu, R., Jersak, M., Ernst, R., 2005. Applying sensitivity analysis in real-time
distributed systems. In: 11th IEEE Real-Time Technology and Applications Sym-
posium (RTAS), IEEE Computer Society, pp. 160–169.

Real, J., Crespo, A., 2004. Mode change protocols for real-time systems: a survey and
a new proposal. Real-time Systems 26, 161–197.

Saewong, S., Rajkumar, R.R.,2003. Practical voltage-scaling for fixed-priority rt-
systems. In: RTAS ’03: Proceedings of the 9th IEEE Real-Time and Embedded
Technology and Applications Symposium. IEEE Computer Society, Washington,
DC, USA, p. 106.

Scordino, C., Lipari, G., 2006. A resource reservation algorithm for power-aware
scheduling of periodic and aperiodic real-time tasks. IEEE Transactions on Com-
puters 55, 1509–1522.

Sha, L., Abdelzaher, T., Arzn, K.-E., Cervin, A., Baker, T., Burns, A., Buttazzo, G., Cac-
camo, M., Lehoczky, J., Mok, A.K., 2004. Real-time scheduling theory: a historical
perspective. Real-time Systems 28:23, 101155.

Simarro, R., Coronel, J., Simó, J., Blanes, J., 2008. Hierarchical and distributed embed-
ded control kernel. In: 17th IFAC World Congress, Seoul, Korea.

Sloss, A.N., Symes, D., Wright, C., 2004. Arm System Developer’s Guide (Designing
and Optimizing System Software). Primera ed. Elsevier.

Tavares, E., Maciel, P., Silva, B., Oliveira Jr., M.N., 2008. Hard real-time tasks’ schedul-
ing considering voltage scaling, precedence and exclusion relations. Information
Processing Letters 108, 50–59.

Windsor, J., Hjortnaes, K., 2009. Time and space partitioning in spacecraft avionics.
In: IEEE International Conference on Space Mission Challenges for Information
Technology, pp. 13–20.

Wolf, W., 2009. Cyber-physical system. IEEE Computer: Innovative Technology for
Computer Professionals 42, 88–89.

Xia, F., Tian, Y.-C., Sun, Y., Dong, J., 2008. Control-theoretic dynamic voltage scaling
for embedded controllers. IET Computers & Digital Techniques 2, 377–385.

Yazdi, H., Salmani, H., Khatib-Astaneh, N., Salmani, M., Fard, A., 2008. Exploiting lax-
ity for heterogeneous multiprocessor real-time scheduling. In: 3rd International
Conference on Information and Communication Technologies: From Theory to
Applications (ICTTA), pp. 1–6.

Yi, J., Poellabauer, C., Hu, X.S., Simmer, J., Zhang, L.,2009. Energy-conscious co-
scheduling of tasks and packets in wireless real-time environments. In: RTAS
’09: Proceedings of the 2009 15th IEEE Real-Time and Embedded Technology
and Applications Symposium. IEEE Computer Society, Washington, DC, USA, pp.
265–274.

Yuan, Z., Wang, G., 2008. Power management for real-time tasks in wireless net-
worked embedded systems. In: International Conference on Computer Science
and Software Engineering, vol. 4, pp. 118–121.

Yun, H.-S., Kim, J., 2003. On energy-optimal voltage scheduling for fixed-priority
hard real-time systems. ACM Transactions on Embedded Computing Systems 2,
393–430.

Zhong, Xiliang, Xu, Cheng-Zhong, 2007. Frequency-aware energy optimization for
real-time periodic and aperiodic tasks. SIGPLAN Notices 42, 21–30.
Zhu, D., Melhem, R., Mossé, D., 2004. The effects of energy management on reliability
in real-time embedded systems. In: International Conference on Computer-
aided Design.

