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ABSTRACT 

Fermentation processes are often sensitive to even slight changes of conditions 

that may result in unacceptable end-product quality. Thus, close follow-up of this type 

of processes is critical for detecting unfavorable deviations as early as possible in order 

to save downtime, materials and resources. Nevertheless the use of traditional 

analytical techniques is often hindered by the need for expensive instrumentation and 

experienced operators and complex sample preparation. In this sense, one of the most 

promising ways of developing rapid and relatively inexpensive methods for quality 

control in fermentation processes is the use of chemical multisensor systems. In this 

work we present an overview of the most important contributions dealing with the 

monitoring of fermentation processes using electronic noses and electronic tongues. 

After a brief description of the fundamentals of both types of devices, the different 

approaches are critically commented, their strengths and weaknesses being 

highlighted. Finally, future trends in this field are also mentioned in the last section of 

the article. 
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1.  Introduction 

  

The monitoring of many production processes in which some chemical 

parameters vary in the course of time is key to comply with quality control regulations. 

Typical examples are fermentation processes producing food or beverages. These 

processes usually take a long time (even over 20 days in some cases), so that their 

continuous monitoring is critical to avoid deviations caused by microbiological 

contamination or system malfunctions. Furthermore, fermentations are usually 

sensitive to certain changes and require accurate and continuous control to ensure the 

feasibility of the processes. 

 However, the control of these processes is still suboptimal. Only a few 

parameters (pH, O2, T, …) can be easily monitored in situ. Additional information 

required for process control and decision making is usually based on data produced by 

infrequent sampling, which in addition often has a significant time delay from sampling 

to obtaining the final result. Generally, analyses of target compounds are performed 

off-line by wet chemical assays often involving enzymatic reactions or separation 

techniques, such as high-performance liquid chromatography (HPLC) or gas 

chromatography (GC). Unfortunately, these assays require a tedious sample 

preparation that is usually time consuming. 

 The ideal method for fermentation process control should enable direct rapid, 

precise, and accurate determination of several target compounds, with minimal or no 

sample preparation and reagent consumption. Chemical sensors might then be a 

suitable alternative, mainly due to their well-known characteristics, such as relatively 

simple instrumentation, low prices, minimal sample preparation and easy automation of 

measurements. All these features would make chemical sensors an interesting tool for 

process control were it not for the fact that their use in fermentation media is often 

hindered by their insufficient selectivity. For example, only pH and oxygen probes are 

routinely used in bio-reactors. In fact, the literature shows many references dealing with 

the lack of suitable sensors for on-line fermentation monitoring. 

In this sense, one of the most promising approaches allowing to overcome the 

aforementioned selectivity problems is the utilization of chemical multisensor systems 

(instead of discrete sensors), namely electronic noses and electronic tongues. They 

are capable to perform both qualitative analysis (classification or recognition of 

multicomponent media) and quantitative analysis (components' concentrations), thus 

becoming particularly suitable for the continuous monitoring of fermentation processes. 

In the following sections of this work, major contributions of e-nose and e-tongue 

applications in the monitoring of this type of processes will be commented.  
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2.  Electronic noses & tongues 

 

 An electronic nose (e-nose) is a machine that is designed to detect and 

discriminate among complex odors using a sensor array. The sensor array consists of 

broadly tuned (non-specific) sensors made of a variety of odor-sensitive biological or 

chemical materials. An odor stimulus generates a characteristic fingerprint (or 

smellprint) from the sensor array. Patterns or fingerprints from known odors are used to 

construct a database and train a pattern recognition system so that unknown odors can 

subsequently be classified and identified.  

Electronic nose instruments are composed of three elements, namely: (i) a 

sample handling system, (ii) a detection system, and (iii) a data processing system 

(Figure 1a). All of them are described in detail in the specialized literature [1, 2]. Some 

recent reviews have also appeared dealing with the state of the art of e-noses [3, 4]. 

Electronic tongues (e-tongues) can be considered as analytical instruments that 

artificially reproduce the taste sensation. These devices are typically array of sensors 

coupled to chemometric processing used to characterize complex liquid samples [5]. If 

properly configured and trained (calibrated), the e-tongue is capable of recognizing the 

qualitative and quantitative composition of multispecies solutions of different natures. 

The IUPAC technical report on the topic defines it as “a multisensor system, which 

consists of a number of low-selective sensors and uses advanced mathematical 

procedures for signal processing based on the pattern recognition (PARC) and/or 

multivariate data analysis” [6]. 

Similarly to an e-nose, an e-tongue is also composed of three elements (Figure 

1b): (i) automatic sampler (although it is not a necessary component), (ii) array of 

chemical sensors with different selectivity, and, (iii) software with the appropriate 

algorithm to process the signal and get the results [3]. A more detailed description of 

such components is beyond the scope of this review and can be found in the literature 

[5 and references therein, 7-11]. 

 As Vlasov et al. [6] pointed out, the general concepts of the electronic tongue 

and electronic nose used for analysis of liquids and gases, respectively, are similar. 

The rationale for application of these low-selective sensors is based on an analogy to 

biological organization of the olfactory and taste systems in mammals. In the regions of 

the nose and tongue, there are millions of nonspecific receptors that respond to 

different substances present in the gas and liquid phases. However, only about 100 

different types of olfactory receptors are known, while several dozens were identified in 
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the taste buds on tongues of mammals. The taste and odor signals from the receptors 

are transmitted to the brain where they are processed by nets of neurons. As a result, 

the image of the sensed object is created. 

 The strengths of both the electronic nose and tongue include high sensitivity 

and the fact that they are easy to build, cost-effective and provide a short time of 

analysis. Therefore, these devices are becoming more and more popular as objective 

automated non-destructive techniques to characterize flavors developed in the above 

mentioned processes. Nevertheless, it should be remarked that there is much research 

still to be done especially with regard to sensors technology, data processing, 

interpretation of results and validation studies. For instance, common problems 

associated with the sensor arrays are temporal drift, contamination of sensing elements 

and therefore some calibration instability. Other important missing aspects in some 

applications are the lack of long-term studies, limited feasibility studies with concurrent 

poor validation (especially in terms of predictive ability) as well as intermediate 

precision conditions (e.g., using different operators or different devices). Nevertheless, 

it must be mentioned that researchers are becoming increasingly aware of these 

problems and are addressing them in more or less extension in the recent literature. 

 

 

3.  Fermentation monitoring 

 

3.1.  Using e-noses 

Several successful applications of electronic noses to the monitoring of flavor 

and/or aroma components along a fermentation process have been published. The 

main features of such applications are summarized in Table 1. Additionally, three 

interesting reviews on applications of e-nose technologies have recently appeared 

covering –among others- fermentations in general [12, 13] and in brewery in particular 

[14].  

The detection system of e-noses usually consists of an array of chemical gas 

sensors (i.e., piezoelectric, electrochemical, optical and calorimetric sensors) or 

biosensors (i.e., sensors that incorporate a biological sensing element). Recently, new 

technologies such as mass spectrometry (MS) and ion mobility spectrometry (IMS) 

have entered in this field [2]. As can be observed in Table 1, electrochemical sensors, 

mainly metal oxide semiconductors (MOS) and metal oxide semiconductor field-effect 

transistors (MOSFET) but also conducting polymers (CPs) sensing materials, are the 

most used sensors in fermentation monitoring applications. Additionally, MS-based e-

noses have proved to be useful in this research area. Regarding the sample handling 
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system, static head space (SHS) is undoubtedly the most popular technique to 

introduce the volatile compounds into the e-nose detection system. The main features 

of e-nose applications shown in Table 1 are described thereafter. 

Aroma production along grape must fermentation has been monitored during 

the process [15]. In this study, the muscatel aroma was chosen because the profile 

formed as a result of yeast metabolism is complex, being composed of many 

compounds. These differ from each other in concentration, chemical and organoleptic 

properties and contribute to the overall muscatel aroma. This, therefore, was a 

challenging project. A commercially available e-nose consisting of 32 organic 

conducting polymer-based sensors was used. Data analysis was carried out by 

principal component analysis (PCA). The authors found that without sample 

pretreatment, the nose could only detect ethanol production, while for small quantities 

of muscatel a selective enrichment step was needed. Once this was done, the 

electronic nose was able to discriminate samples based on aroma content. However, 

enrichment increases the time and effort required for analysis, which could prove to be 

a major disadvantage to this approach. An additional problem is the fact that there is 

competition between the aroma compounds and ethanol for detection by the sensor. 

As ethanol occurs in higher concentration, it will be detected preferentially to the 

aroma. 

A further complication is that ethanol may also interfere during the headspace 

sampling. Ethanol acts as a co-solvent in the aqueous wine-must matrix and so the 

activity coefficient of the hydrophobic aroma compounds in the aqueous-phase is 

lowered, resulting in a decreased partitioning into the sample headspace [15]. This can 

lead to erroneous results with the electronic nose. 

E-noses have been also applied to bioprocess monitoring where microbiological 

processes are involved in food production, i.e. to screen the aroma generation of lactic 

acid bacteria strains in the production of cheese and other fermented dairy products. In 

a paper by Marilley et al. [16], PCA inspection of a mass spectrometry based e-nose 

data allowed the discrimination between 7 different genotypes strains of Lactobacillus 

casei isolated from Gruyère cheeses (very important in order to differentiate bacterial 

populations in cheese samples and to screen for new aroma-producing strains). This 

classification of strains based on the production of volatile compounds was in 

conformity with the classification obtained with the repetitive extragenic palindromic 

polymerase chain reaction (REP-PCR) molecular method. Gutiérrez-Méndez et al. [17] 

used a metal oxide semiconductors based e-nose to screen the aroma generation of 

Lactococcus lactis strains isolated from different dairy, non-dairy and industrial sources 

for their potential use in starter cheese cultures. PCA evaluation of e-nose data showed 
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a clear separation of 4 sample groups based on their odor intensity scores (yogurt-like 

and Fresco cheese-like), but not based on the isolation source. 

During the winemaking process, unpleasant organoleptic taints arise from 

Brettanomyces yeasts spoilage. The two main components of the taint are 4-

ethylphenol (4EP) and 4-ethylguaiacol (4EG). The existing procedures to monitor 

spoilage due to Brettanomyces/Dekkera sp. are time-consuming and expensive, 

making it difficult for winemakers to monitor their wines at all stages of production. 

Consequently, there is a need for a rapid and cost-effective screening method to 

monitor the levels of 4EP and 4EG in wine. In this way, Cynkar, et al. [18] used a MS-

based e-nose together with PCA and stepwise linear discriminant analysis (SLDA). On 

the other hand, Berna et al. [19] compared the performance of a MOS sensor based e-

nose and a MS-based e-nose. GC-MS was used for quantification and prediction 

purposes. Following ethanol removal and solid-phase microextraction (SPME) sample 

handling, the limits of detection of a MOS based e-nose were determined as 44 µg L-1 

for 4EP and 91 µg L-1 for 4EG (values significantly lower than the reported human 

sensory thresholds). Partial least squares (PLS) regression of MOS based e-nose 

signals against known levels of 4EP and 4EG in 46 Australian red wines showed that 

such device was unable to identify Brettanomyces spoilage reliably because of the 

response of the gas sensors to inter-sample variation in VOCs other than 4EP and 

4EG. Conversely, the MS-based e-nose (static headspace sample handling without 

ethanol removal but selecting a window scan excluding ethanol derived ions) was 

capable of reliably estimating concentrations of 4EP higher than 20 µg L-1 and good 

PLS correlations were obtained between estimates of 4EP and 4EG concentrations 

with the concentrations determined by conventional GC-MS. 

Another interesting contribution deals with tea fermentation. During black tea 

manufacturing, tea leaves pass through a fermentation in which the grassy smell is 

transformed into a floral smell. Optimum fermentation is then extremely crucial in 

deciding the final quality of finished tea and it is very important to terminate the 

fermentation process at the right time. Bhattacharya et al. [20, 21] presented a study on 

real-time smell monitoring of black tea during the fermentation process using an e-nose 

(8 MOS sensors array) as well as prediction of the correct fermentation time. Different 

time-delay neural networks (TDNNs) and self-organizing map (SOM) methods for the 

prediction of optimum fermentation were used and both the methods appear to be 

suitable for the purpose. However, the combined SOM- and TDNN-based prediction 

algorithm proved to be the best alternative as the computational complexity is relatively 

less. The results (correlated with those from colorimetric tests and human expert 

evaluation) showed excellent promise for the instrument to be used for the on-line 
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prediction of optimum fermentation time by the industry. This work has been recently 

updated by the same group of Indian researchers [22]. 

In the wine industry it is important to monitor time-related changes that occur 

during wine fermentation [23]. Eight micro-fermentation trials conducted in the 

Valtellina region (Northern Italy) during the 2009 vintage, were monitored by a Fourier 

Transform-near infrared (FT-NIR) and a –mid infrared (FT-MIR) spectrometer and by 

an electronic nose and tongue. The spectroscopic technique was used to investigate 

changes in the chemical composition of the must, while electronic nose and electronic 

tongue evaluated the evolution of the aroma and taste profile during the fermentation. 

Must-wine samples were also analyzed by traditional chemical methods in order to 

determine sugars (glucose and fructose) consumption and alcohol (ethanol and 

glycerol) production. PCA was applied to spectral, electronic nose and electronic 

tongue data, as an exploratory tool, to uncover modifications during the fermentation 

process. Furthermore, the chemical data and the first principal component scores from 

spectral, electronic nose and electronic tongue data were modeled as a function of time 

to identify critical points during fermentation. The results showed that through the 

modeling of NIR, MIR, electronic nose and electronic tongue data, these non 

destructive methods are suitable for the monitoring of grape must fermentation giving 

crucial information about the quality of the final product in agreement with chemical 

parameters. Although in this study the measurements were carried out in off-line mode 

(with its known drawbacks), in the future these non destructive techniques could be 

valid and simple tools, able to provide in-time information about the fermentation 

process and to assure the quality of wine. 

 An electronic nose coupled to gas chromatography was tested [24] to monitor 

alcoholic fermentation by Saccharomyces cerevisiae ICV-K1 and Saccharomyces 

cerevisiae T306, two strains well-known for their use in oenology. The biomass and 

ethanol concentrations and conductance changes were measured during yeast growth 

and allowed to observe the standard growth phases for both yeast strains. The two 

strains were characterized by a very similar tendency in biomass or ethanol production 

during the fermentation. E-nose was able to establish a kinetic of the production of 

aroma compounds production and which was then easy to associate with the 

fermentation phases. PCA showed that the data collected by e-nose during the 

fermentation mainly contained cultivation course information. Discriminant factor 

analysis (DFA) was able to clearly identify differences between the two strains using 

the four main principal components of PCA as input data. Nevertheless, the electronic 

nose responses being mainly influenced by cultivation course, a specific data treatment 
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limiting the time influence on data was carried out and permitted to achieve an overall 

performance of 83.5 %. 

 NIR spectrometry and electronic nose data were used for on-line monitoring of 

yogurt and filmjölk (a Swedish yogurt-like sour milk) fermentations under industrial 

conditions [25]. The NIR and e-nose signals were selected by evaluation of PCA 

loading vectors and further analyzed by studying the variability of the selected principal 

components. First principal components for the NIR and the e-nose signals were used 

for on-line generation of a process trajectory plot visualizing the actual state of 

fermentation. The NIR signals were also used to set up empirical PLS models for 

prediction of the cultures’ pH and titratable acidity (expressed as Thorner degrees, °T). 

By using five or six PLS factors the models yielded acceptable predictions that could be 

further improved by increasing the number of reliable and precise calibration data. The 

presented results demonstrate that the fusion of the NIR and e-nose signals has a 

potential for rapid on-line monitoring and assessment of process quality of yogurt 

fermentation. 

 Measurement data from an electronic nose, a NIR spectrometer and standard 

bioreactor probes were utilized to follow the course of lab-scale yoghurt fermentation 

[26]. The sensor signals were fused using a cascade neural network: a primary network 

predicted quantitative process variables, including lactose, galactose and lactate; a 

secondary network predicted a qualitative process state variable describing critical 

process phases, such as the onset of coagulation or the harvest time. Although the 

accuracy of the neural network prediction was acceptable and comparable with the off-

line reference assay, its stability and performance were significantly improved by 

correction of faulty data. The results demonstrate that on-line sensor fusion with the 

chosen analyzers improves monitoring and quality control of yoghurt fermentation with 

implications to other fermentation processes. 

 In the study performed by Eklöv et al [27] a sensor array and pattern recognition 

routines (an electronic nose) were used to monitor a sausage fermentation in order to 

follow the changes in emitted volatile compounds during the fermentation process and 

to compare the electronic nose results with a sensory analysis. From the sensor array 

responses the fermentation time could be predicted using different methods, where 

principal component regression and an artificial neural network based on all sensors in 

the electronic nose performed best. A sensory panel evaluated the final product and 

these results were compared with the electronic nose measurements in the early stage 

of the process and on the final sausages. PCA data showed that one of the sausage 

batches clearly deviated from the other using both the sensory panel data and the 
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electronic nose responses. The deviating batch was different already after 4 h and the 

difference was consistent during the process. 

 Finally, an on-line approach of non-invasive monitoring of the physiological 

changes in fermentation processes was presented by Bachinger and Mandenius [28]. 

In yeast batch and bacterial fed-batch fermentations it is shown that metabolic state 

changes can be revealed using an electronic nose. The transient responses of the gas 

sensors to the changes in the composition of the volatiles emitted from the cell cultures 

during fermentation are used to retrieve a semi-quantitative representation of the 

physiological state of the cultures. With the sensor responses of the electronic nose it 

is shown that physiological variables such as rates of growth, substrate uptake and 

product formation can be depicted. The non-invasive method thus seems as a pertinent 

alternative to conventional bioreactor monitoring methods. 

 

3.2.  Using e-tongues 

Electronic tongues have been successfully applied to the monitoring of several 

components occurring during fermentation process such as those caused by specific 

microorganisms, production of food and beverages, as well as production of biogas. 

The main features of such applications are summarized in Table 2. Moreover, some of 

them are included in the interesting review devoted to the use of sensor systems for 

the monitoring of biotechnological process [12]. 

Regarding the sensor array used in the design of e-tongues, a wide variety of 

chemical sensors have been employed: electrochemical (potentiometric, voltammetric, 

amperometric, impedimetric and conductimetric), optical, mass, and enzymatic sensors 

(biosensors) [3]. As can be observed in Table 2, most of the systems utilized in 

fermentation monitoring use arrays of potentiometric sensors, especially ion-selective 

electrodes based on PVC membranes or chalcogenide glass, as well as combinations 

of both type of sensors. The main features of e-tongue applications shown in Table 2 

are described thereafter. 

The first paper on the application of e-tongues to the monitoring of fermentation 

process seems to be the one by Imamura et al. [29]. These authors used eight different 

lipid membranes in the multichannel taste sensor for monitoring the changes in the 

taste of miso (traditional Japanese soybean paste) during the fermentation process. 

The authors found that the responses of two of the sensors used increased linearly 

with the number of days of fermentation, whereas they had only a slight increase for 

ripe miso samples. Moreover, satisfactory correlation coefficients (higher than 0.87) 

between chemical parameters related to the fermentation length (amino-acid contents 

and titratable acidity) and the sensors output were obtained. 
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Since the above commented study, some other works on the application of e-

tongues to the monitoring of the production of other foodstuffs [30, 31] as well as 

alcoholic beverages production processes such as winemaking [23] and brewing 

process [32] have been reported. 

In the work by Kim et al. [30] the potential of a sensor array consisting of eight 

cation- and anion-selective polymer membrane electrodes to the monitoring of Kimchi, 

a Korean traditional pickle fermented with lactic acid bacteria, was studied. Samples 

were maturated for ten days at three temperatures (4, 10 and 25 ºC) and analyzed with 

the sensor array. Additionally, titratable acidity of samples, a well established index for 

Kimchi fermentation, was determined. The authors observed that the response 

potentials of the sensor array increased during the fermentation period and storage 

temperatures. Moreover, for each storage temperature, PCA was performed using 

membrane potential values obtained from sensors. First principal component scores-

fermentation time scatterplots showed similar profiles to those obtained for titratable 

acidiy-fermentation time scatterplots, mainly when using data obtained from the sensor 

group of cation-selective membranes and samples maturated at 4 ºC. These results 

suggest that the proposed sensor array could be useful for the monitoring of the 

titratable acidity changes occurring during Kimchi fermentations. 

An e-tongue based on 30 non-specific potentiometric sensors was applied to 

the monitoring of a batch fermentation process of starting culture for cheese production 

[31]. PLS control charts allowed detection of fermentations running under ‘normal’ and 

‘abnormal’ operating conditions at an early stage. Moreover, the capability of the e-

tongue to quantify organic acids (such as citric, lactic, and orotic) in the fermentation 

media was demonstrated with average prediction errors in the 5-13% range. 

Wine is a complex mixture of a great number of compounds arising from grape 

and fermentation, giving wine its interesting organoleptic properties. Compounds found 

in wine depend on the grape’s genomic properties, but also by the strain of yeast used 

in fermentation, viticultural practices, the environment where the grapes are grown and 

the ageing in oak wood barrels [33]. Nowadays, a trained sensory panel is the only 

possible way to assess the flavor of wine. Flavor assessment by humans is inevitably 

associated with a number of serious drawbacks: (i) the subjectivity of the assessment; 

(ii) the score for particular sample depends greatly on the physical condition, health 

and mood of the panelist, even if that person is highly trained which often leads to 

irreproducible results. (iii) The fast blocking of human tongue taste receptors during a 

sensory session results in a very limited number of sensory assessments per day. (iv) 

Training and preparation of sensory experts are expensive and time-consuming [34]. In 

this context, e-tongues seem to be promising tools for an effective control at all stages 
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of the winemaking and ageing process. 

In the paper by Buratti et al. included in section 3.1 [23], for the monitoring of 

eight wine-must fermentation trials a commercial e-tongue (Taste-Sensing System SA 

402B, Intelligent Sensor Technology Co., Ltd., Japan) was also used besides Fourier 

transform near and mid infrared spectroscopies and a e-nose. As commented 

previously, first principal component scores from spectral and electrochemical sensor 

data were modeled as a function of time to follow the kinetics of the fermentation 

process and to estimate crucial kinetic parameters. These estimates from spectral and 

e-nose data showed a good agreement with those obtained by the modeling of sugar 

consumption and alcohol production (correlation coefficients higher than 0.91). Though 

satisfactory, e-tongue data provided the lowest correlation coefficients (0.79-0.92). 

 Nowadays significant efforts are being directed to the development of 

instrumental methods for routine analysis of taste attributes of beer. Brewing and aging 

of beer are complex processes during which several parameters have to be controlled 

to ensure a reproducible quality of the finished product. These include chemical 

parameters that are measured with conventional analytical techniques and taste and 

aroma properties that are evaluated by the sensory panels [35]. 

 Up till now research on the prediction of the sensory characteristics of beer from 

analytical techniques remains scarce, probably due to the complexity of the matrix and 

the variety of the components present therein. Beer constituents comprise more than 

800 compounds and many of them contribute to its flavor characteristics. In the case of 

such a complex process of beer fermentation, it is difficult to choose the right 

techniques for classical instrumental analysis. Moreover, similarly to the other 

fermentation process, the application of analytical techniques can be problematic to 

estimate the final quality of the product, due to the rapid changes occurring throughout 

the beer fermentation process.  

 The potential of e-tongues as fast, simple and reliable analytical techniques to 

partly or fully replace the complex and expensive reference methods in the brewery 

industry is investigated in the work by Kutyła-Olesiuk et al. [32]. In this paper the 

application of a miniaturized hybrid e-tongue, combining both potentiometric and 

voltammetric sensors, to the monitoring of beer fermentation is presented. The analysis 

included samples from batch of homemade beer fermentation and from two stages of 

the process (fermentation reaction and maturation of beer). The obtained data were 

processed using partial least squares-discriminant analysis (PLS-DA). It was shown 

that the combination of potentiometric and voltammetric data provided lower 

classification error of samples according to their fermentation time or age and better 

quantitative prediction when compared to the use of data obtained from each 
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electrochemical technique separately. 

Regarding fermentations caused by specific microorganisms, Turner et al. [36] 

reported one the first studies related to the use of e-tongues in fermentation process 

monitoring. In this paper, an e-tongue consisting of 21 potentiometric chemical sensors 

was used for off-line measurements of model batch fermentation of Escherichia coli. 

Some physicochemical parameters were also determined at different fermentation 

times during the process using conventional analytical techniques and independently 

correlated with e-tongue output by means of PLS regression. It was possible to predict 

optical density, dry weight, acetate concentration and fermentation time with average 

prediction errors or 13, 16, 11 and 5%, respectively. 

Legin et al. [37] proposed a potentiometric e-tongue system for the 

determination of ammonium, oxalate and citrate content in simulated fermentation 

media closely resembling real-world samples typical of a process involving Aspergillus 

niger. Data processing using artificial neural network (ANN) provided average relative 

prediction errors lower than 8%. ANN provided slightly lower prediction errors than PLS 

regression for ammonium and citrate concentrations, most likely due to the non-linear 

dependence of sensor potentials on concentration. The device also allowed for 

quantifying the content of analytes in samples containing sodium azide, a compound 

commonly used to suppress microbial activity after sampling. 

 In the last few years, e-tongues have also been utilized for the monitoring of 

production of biogas [38-40]. In this biotechnological process, specific microorganisms 

under anaerobic conditions transform organic substrates present in waste into 

methane, which is used as a valuable energy source. 

 The research group of Ciosek et al. developed a miniaturized flow-through 

sensor array for the monitoring of methane fermentation of whey samples [38, 39]. 

PLS-DA inspection of data allowed for a satisfactory differentiation of samples gathered 

after 24 and 48 hours, but a partial overlapping of the clusters was observed and 

confirmed by the determination of chemical oxygen demand and volatile fatty acid 

content. However, precision was improved by splitting the dataset into two subsets 

according to their pH level [39]. In a further work [40], a novel design of ion selective 

electrodes was developed, which is fully compatible with the flow-through modules. In 

this case it was no necessary to split dataset to obtain satisfactory results. 

 

 Finally, it should also be remarked that the combination of an e-nose, an e-

tongue, and an electronic eye is emerging as a promising tool for the on-line monitoring 

of food fermentation processes. It has already been applied to the characterization of 

red wines [41] and olive oils with different degree of bitterness [42]. The fusion of these 
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three sensory modalities (volatiles, liquids, and color) has given rise to the so-called 

“electronic panel”, which includes the corresponding sensors as well as the electronics 

and software necessary for combining information from the three modules. The 

simultaneous utilization of these devices increases the amount of information 

extracted, since visual aspects can also play an important role in the monitoring of the 

different compounds produced along a fermentation process. Therefore, there is no 

doubt that this innovative system will be of great utility in the field of food analysis, and 

more especifically in fermentations. 
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4. Conclusions and future trends 

 

 In this paper, applications of sensor array systems -electronic noses and 

electronic tongues- to the monitoring of fermentation processes are reviewed. These 

devices are of particular interest for the analysis of complex gas and liquid mixtures 

due to some important advantages over conventional analytical techniques such as 

fast measurements, possibility of easy automation, relatively simple and inexpensive 

instrumentation, and the fact of being non-destructive techniques thus allowing an 

effective and continuous control at all stages of a fermentation process. 

 Electronic noses and tongues permit the possibility of classification of samples, 

as well as the quantitative (or at least semi-quantitative) determination of sample 

components simultaneously. They have also demonstrated a good potential for the 

assessment of the state and operation conditions of a fermentation process.  

 Although all the results presented in this review seem to be very promising, in 

our opinion these devices are still in an early stage of development, especially e-

tongues, and much more research has to be carried out in order to implement them in 

the process production. Major concerns include the lack of intermediate precision 

studies (i.e. using different operators or instruments) and long term studies, more 

validation studies and higher number of analyzed samples being required in some 

cases to extract more reliable conclusions. Other practical issues such as sensor 

surface contamination, drift of responses and calibration stability have also to be 

addressed. 

 On the other hand, some differences between e-noses and e-tongues 

performance should be remarked. An advantage of e-noses is that the sampling 

systems used, mainly headspace techniques, avoid the direct contact between sensors 

and samples, thus reducing contamination of sensors. Nevertheless, some time is 

required to reach equilibrium between liquid and gas phases and, on the other hand, 

specially cleaning of a possible memory effect can also be an important drawback. 

Moreover, e-noses usually provide only semi-quantitative information, while e-tongues 

are straightforward with good capabilities for quantitative analysis. 

 In spite of these concerns, the future of e-nose and e-tongue seems to be 

encouraging, and upcoming trends include: the development of new chemosensitive 

materials and techniques for the preparation of sensors, the use of hybrid systems 

joining in the array of sensors of different nature, the inclusion of sensor arrays in flow-

based analytical systems for real-time analysis, the fusion of e-nose and e-tongue 

techniques to improve the recognition capabilities of the system, and the coupling of 
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sensor arrays with distributed expert systems for the advanced in-line monitoring of 

fermentation processes. 
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Abbreviations: 

 

 4EG: 4-ethylguaiacol 

 4EP: 4-ethylphenol 

 ANN: artificial neural network 

 CG: gas chromatography 

 CP: conducting polymer 

 CPE: carbon paste electrode 

 DFA: discriminant factor analysis 

 FT: Fourier transform 

 HPLC: high performance liquid chromatography 

 IMS: ion mobility spectrometry 

 MIR: mid infrared spectroscopy 

 MLR: multiple linear regression 

 MOS: metal oxide semiconductor 

 MOSFET: metal oxide semiconductor field-effect transistor 

 MS: mass spectrometry 

 NIR: near infrared spectroscopy 

 PCA: principal component analysis 

 PLS: partial least squares 

 PLS-DA: partial least squares-discriminant analysis 

 SHS: static headspace 

 SLDA: stepwise linear discriminant analysis 

 SOM: self-organizing map 

 SPME: solid-phase microextraction 

 TDNN: time-delay neural network 

 VOCs: volatile organic compounds 



Figure Captions 

 

Figure 1. Schematic representation of the components of an electronic nose (a) and an 

electronic tongue (b). 
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Table 1 
Main applications of e-noses in fermentation monitoring. 
 

Sample Type of study Sample handling system Sensors 
Data processing 
algorithm 

Ref. 

Wine-must Discrimination between fermentation stages SHS - pervaporation 32 CPs (A32S AromaScan) a PCA [15] 

Milk fermented with Lactobacillus casei 
strains used in Gruyère cheese 

Discrimination between genotype strains INDEX 
MS (Smart Nose®) b 

PCA [16] 

Milk fermented with Lactococcus lactis 
strains 

Discrimination between odor intensity scores SHS 
12 MOS (FOX 3000) c 

PCA [17] 

Australian red wines Spoilage caused by Brettanomyces yeast SHS 
MS (HP4440) d 

PCA, PLS, 
SLDA 

[18] 

Australian red wines Spoilage caused by Brettanomyces yeast SPME (for MOS) 
SHS (for MS) 

FOX 3000 
HP4440 

PLS [19] 

Black tea Estimation of optimum fermentation time SHS 8 MOS TDNN, SOM [20-22] 

Italian red wine Evolution of aroma profile SHS 10 MOS (PEN2) e PCA [23] 

Synthetic media containing two 
Saccharomyces cerevisiae strains 

Identification of two strains along an alcoholic 
fermentation 

SHS 
18 MOS (FOX 4000) c 

PCA, DFA [24] 

Yogurt and filmjölk (yogurt-like sour milk) Rapid on-line monitoring of yogurt 
fermentation 

SHS 10 MOSFET (with catalytic gates of Pd, 
Ir and Pt), 19 MOS and 1 infrared CO2 
sensor 

PCA, PLS [25] 

Fat milk fermented Sensor fusion for on-line monitoring of yogurt 
fermentation 

SHS 10 MOSFET (with catalytic gates of Pd, 
Ir and Pt) and 19 MOS 

ANN, PCA [26] 

Homemade sausages Early prediction of final quality of fermented 
sausage 

SHS - injection 10 MOSFET ((with catalytic gates of 
Pd, Ir and Pt) and 4 MOS 

PCR, ANN, PCA [27] 

Synthetic media with Saccharomyces 
cerevisiae and Escherichia coli 

Monitoring of physiological changes in 
fermentation processes 

SHS – gas flow injection In yeast batch fermentations: 10 
MOSFET (with catalytic gates of Pd, Ir 
and Pt) and 4 MOS 
 
In E. coli fed-batch fermentations: 10 
MOSFET, 19 MOS and 1 infrared 
sensor 

ANN, PLS [28] 

 
For details see Abbreviations section 
a A32S AromaScan is a conducting polymer (CP) based e-nose commercially available from Osmetech plc, UK 
b SMart Nose® a MS-based e-nose comprising high-sensitive quadrupole mass spectrometer with an ionic mass detection ranging from 1 to 200 amu. This device is commercially available from 
LDZ, Marin, Switzerland 
c FOX 3000 and FOX 4000 are e-noses based on metal oxide semiconductors (MOS) sensors. They are commercially available from Alpha MOS, Toulouse, France 
d HP 4440 is a MS-based e-nose commercially available from Agilent Technologies 
e PEN2 is a portable electronic nose based on MOS sensors. It is commercially available from Win Muster Airsense Analytics Inc., Schwerin, Germany 
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Table 2 
Main applications of e-tongues in fermentation monitoring. 
 

Sample Type of study Chemical sensors 
Data processing 
algorithm 

Ref. 

Miso (soybean paste) Modeling and prediction of amino-acids contents and titratable 
acidity of samples with different fermentation degrees 

Potentiometric sensors (8 plasticized PVC sensors containing lipid 
membranes; Ag/AgCl reference electrode) 

MLR [29] 

Kimchi Assessment of changes of the titratable acidity of samples during 
fermentation 

Potentiometric sensors (8 plasticized PVC sensors containing 
polymer membranes; Ag/AgCl reference electrode) 

PCA [30] 

Starting culture for light 
cheese production 

Discrimination of samples from fermentation batches 
Modeling and prediction of organic acids and peptide profile 

Potentiometric sensors (30 chalcogenide glass and solvent 
polymeric working electrodes; Ag/AgCl reference electrode) 

PLS [31] 

Must-wine Discrimination of samples according to their fermentation time 
Modeling and prediction of kinetics of wine-must fermentation 
process 

Commercial e-tongue (4 sensors with artificial lipid membranes) PCA [23] 

Beer Monitoring of the fermentation and beer aging process, prediction 
of fermentation time 

10 miniaturized ion-selective electrodes (potentiometric e-tongue) 
and silicon based 3-electrode voltammetric transducers 
(voltammetric e-tongue) 

PLS-DA 
MLR (backward 
stepwise method) 

[32] 

Synthetic media with 
Escherichia coli 

Modeling and prediction of physicochemical parameters during 
the fermentation process 

Potentiometric sensors (21 chalcogenide glass and plasticized 
PVC working electrodes; Ag/AgCl reference electrode) 

PLS [36] 

Model solutions where 
Aspergillus niger are 
typically grown 

Modeling and prediction of organic acids and ammonium 
concentrations during the fermentation process 

Potentiometric sensors (8 plasticized PVC sensors, chalcogenide 
glass sensors, glass pH electrode; Ag/AgCl reference electrode) 

ANN, PLS [37] 

Whey Methane fermentation monitoring 
Discrimination between fermentation times 
Prediction of chemical oxygen demand and volatile fatty acid 
contents 

Potentiometic sensors (10 solid-state electrodes with various types 
of PVC membranes doped with electroactive components; 
Ag/AgCl reference electrode) 

PLS-DA 
 
PLS 

[38,39] 

Whey Methane fermentation monitoring 
Prediction of chemical oxygen demand and volatile fatty acid 
contents 

Potentiometic sensors (10 ion selective electrodes with various 
types of PVC membranes doped with electroactive components; 
Ag/AgCl reference electrode) 

PLS [40] 

 
For details see Abbreviations section 


