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Abstract: The vehicle routing problem (VRP) is a flourishing research area 
with clear applications to real-life distribution companies. However, most 
VRP-related academic articles assume the existence of a homogeneous fleet of 
vehicles and/or a symmetric cost matrix. These assumptions are not always 
reasonable in real-life scenarios. To contribute in closing this gap between 
theory and practice, we propose a hybrid methodology for solving the 
asymmetric and heterogeneous vehicle routing problem (AHVRP). In our 
approach, we consider: 1) different types of vehicle loading capacities 
(heterogeneous fleets); 2) asymmetric distance-based costs. The proposed 
approach combines a randomised version of a well-known savings heuristic 
with several local searches specifically adapted to deal with the asymmetric 
nature of costs. A computational experiment allows us to discuss the efficiency 
of our approach and also to analyse how routing costs vary when slight 
departures from the homogeneous fleet assumption are considered. 
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1 Introduction 

Vehicle routing problems (VRPs) deal with the physical distribution of goods from a 
central depot to customers, see for instance, Toth and Vigo (2002) and Golden et al. 
(2008). The best-known VRP variant is the so-called capacitated vehicle routing problem 
(CVRP). In the CVRP it is assumed the existence of a homogeneous fleet of vehicles with 
limited capacity. Another frequent assumption is that distance-based costs associated 
with travelling from one node i (customer or depot) to another node j, cij, are symmetric, 
i.e., cij = cji for all pair of nodes. A wide number of VRP variants have been developed 
during the last years, each of them considering different sets of characteristics and 
constraints. Usually, the main goal of the CVRP is to minimise distance-based costs 
associated with the distribution of products among customers while satisfying customers‘ 
demands. 
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Most road-transportation companies own a heterogeneous fleet of vehicles. This 
diversity in the vehicles capacity might be due to the fact that different customers and 
locations might require different types of vehicles, e.g.: narrow roads in a city, available 
parking spaces, vehicle weight restrictions on certain roads, etc. Another reason for 
owning vehicles with distinct capacities is the natural diversity that arises when  
vehicle acquisitions are made over time. Accordingly, Ruiz et al. (2004) and Prive et al. 
(2006) state the importance of developing new vehicle routing methods considering 
heterogeneous fleets. Some real-life applications of heterogeneous fleets are illustrated in 
Golden et al. (2002). Examples of these are: urban waste collection, residential pickups 
and delivery of beverages, food and newspapers delivery, etc. 

In the VRP is also common to consider a matrix which elements are the individual 
costs of travelling from one node to another. These costs can be based on several 
distance-related factors, such as: actual distance, time employed, fuel consumption, etc. 
In fact, classical benchmark instances are based on Euclidean distances between each pair 
of locations, which results in symmetric costs. However, this metric is just a lower bound 
of the real distance between two nodes connected by a transport network or highway.  
The real distance will depend upon the specific location of the nodes in the territory  
and also on the structure of the road network that communicates them. Moreover,  
when considering oriented networks, real distances might not have to be symmetric 
Rodríguez and Ruiz (2012). 

Several VRP variants have been extensively studied during the last decades (Laporte, 
2009). In general, VRP problems are NP-complete within the combinatorial optimisation 
field. Different VRP variants incorporate different sets of realistic constraints – i.e., 
vehicle capacity, delivery time windows, service priorities, pickup and delivery options, 
etc. These constraints make it difficult to find feasible and good solutions in a reasonable 
computing time. Despite the fact they are common situations in real-life scenarios, the 
combination of heterogeneous fleets with asymmetric costs has been rarely discussed in 
the existing literature. 

Accordingly, the first goal of this paper is to present an efficient and relatively  
easy-to-implement methodology for solving both the asymmetric homogeneous vehicle 
routing problem (AVRP) as well as the asymmetric and heterogeneous vehicle routing 
problem (AHVRP). Our approach is based on the combination of a randomised version of 
a classical heuristic with several local search processes specifically adapted to deal with 
the asymmetric nature of costs. Additionally, the paper also analyses how asymmetric 
routing costs vary when slight deviations from the homogeneous fleet are considered, i.e., 
how marginal costs/savings change when a few ‘standard’ vehicles in the homogeneous 
scenario are substituted by other vehicles with different loading capacity. 

The article is structured as follows: Section 2 contains a mathematical model for the 
AHVRP. Section 3 reviews the existing related work. Section 4 describes our approach 
for solving the AVRP as well as the AHVRP. Section 5 presents experimental design. In 
Section 6 a computational experiment is included for both scenarios. These experiments 
serve to test the efficiency of our approach and to illustrate its applications in the 
asymmetric context. In particular, a ‘what if’ analysis is performed in order to discuss 
how routing costs can vary when different fleet configurations are considered. Finally, 
Section 7 points out some future work possibilities and summarises the main results 
obtained. 
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2 The AHVRP 

This article is focused on a particular variant of the VRP family, called AHVRP. The 
model used next is an adaptation of the models proposed in Baldacci et al. (2008) and 
Wen et al. (2010). Both assume symmetric and different transportation costs for each 
type of vehicle, limited number of vehicles, as well as additional fixed costs for using 
each type of vehicle. 

The model of three sub-indices is formulated as follows. Let G = (V, A) be a complete 
and directed graph, where V = {0, 1,…,n} is the set of nodes and A is the set of arcs. The 
nodes i = 1, 2,…,n correspond to customers, each with a deterministic demand di ≥ 0. The 
node i = 0 is the zero-demand depot, i.e., d0 = 0. Let m > 0 be the number of different 
types of vehicles. For the kth type of vehicles (k = 1, 2,…,m), let Vk = {1, 2,…,vk}  
be the set of vehicles of type k, with load capacity Qk > 0. Let cij be the non-negative 
distance-based cost associated with the arc (i, j) ∈ A, and cii = +∞, ∀i ∈ V. In the case of 
calculating the real distances between pairs of locations (i, j), the distance matrix may be 
asymmetric, i.e., it can happen that cij ≠ cji. 

The AHVRP goal is to find the set of minimum-cost roundtrip routes – starting from 
and ending at the depot – which satisfy all customers’ demands, visit each customer only 
once, and do not exceed the load capacity of each type of vehicle. 

1
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m
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In this formulation, for both symmetrical and asymmetrical issues, and for both 
homogeneous and heterogeneous fleet, O(n2K) binary variables x are used. The binary 
variable xijk in (8) indicates whether or not the arc (i, j) ∈ A is travelled by a vehicle of 
type k (k = 1, 2,…,m). In addition, there are O(nK) variables y where yij represents the 
load in the truck arriving at customer j after visiting customer i in terms of units of 
commodity. 

The objective function (1) minimises the total distance-based cost of the arcs used by 
all m routes generated. Constraint (2) implies that the number of vehicles of each type 
leaving the depot is the same as the number of vehicles of that type returning to it. 
Constraints (3) and (4) require that each customer is visited exactly once, and that  
the same type of vehicle k arrives and leaves each h customer location respectively. 
Constraint (5) imposes that the number of used vehicles of each type does not exceed the 
number of available vehicles of that type. Constraint (6) states that the quantity of 
products yij in the truck leaving customer j plus the demand of that customer, equals the 
quantity of products in the truck leaving it after the service has been completed. 
Constraint (7) guarantees lower and upper bounds ensuring that: the quantity of products 
yij in the truck leaving customer i is equals to or greater that its demand, di; and the total 
demand served by each vehicle k does not exceed the service capacity Qk. 

3 Literature review 

As described in Laporte and Nobert (1987) and also in Toth and Vigo (2001), there is a 
wide range of algorithms for solving the classic CVRP problem-exact algorithms, 
classical heuristics, and meta-heuristics. However, most techniques have been focused on 
solving the symmetric CVRP. 

It is much less common to find articles that focus exclusively on the asymmetric 
VRP. In Laporte et al. (1986) an exact algorithm is presented. Fischetti et al. (1994) 
propose a branch-and-bound algorithm and its practical application to a real case of 
pharmaceutical distribution in a city of Italy. In Vigo (1996), the author discusses the 
extension to the AVRP of two of the most important and successful techniques: the 
savings algorithm of Clarke and Wright (1964), and the optimisation method of Fisher 
and Jaikumar (1981). The author states that the solutions found using the proposed 
asymmetric version of the CWS quickly evolves to worse values as the number of 
customers increases, in addition to the inconvenience of the parameter combination for 
the parametric saving function. More recently, there are two promising techniques that 
have been shown to work well in both cases of symmetrical and asymmetrical CVRP. 
The first is a general heuristic proposed by Pisinger and Røpke (2007) which is the result 
of a unified heuristic for several variants of VRP using the adaptive large neighbourhood 
search (ALNS). The second is a memetic algorithm (MA) described in Nagata (2007). 
These algorithms have been selected by their performance and recognition. We  
have strived for a balance between simple classical techniques and also current and  
state-of-the-art methods. 
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Many combinatorial problems consider more than one fleet of vehicles with different 
capacities. Since the first axe of our addressed rich problem is the asymmetric costs 
matrix, the second axe is the heterogeneous fleet vehicle routing problem (HVRP). The 
HVRP has been quite studied in the literature. For instance, Baldacci et al. (2008) present 
a comprehensive description of some of its most important variants. On this last  
study, we can appreciate how the research community has addressed the HVRP in 
different ways. First, considering either a limited or an unlimited number of available 
vehicles of each type. Second, considering fixed and/or variable costs associated with the 
use of each type of vehicle. Each vehicle could have a fixed cost for using it in a trip  
(i.e., Fk ≠ 0 / ∀i, j, k) as well as a variable cost that is the result of multiplying a 
coefficient by the distance of the assigned route (i.e., 1 2 / ).ijk ijkc c k≠ ∀  These costs used 
to be associated to each type of vehicle. The combinations of the aforementioned 
parameters have created the main HVRP families, known as: 

• H1: fleet size and mix VRP with fixed and variable costs where an unlimited number 
of vehicles is considered for minimising the addition of using a specific vehicle and 
the variable distance. 

• H2: fleet size and mix VRP with only fixed costs where an unlimited number of 
vehicles is considered for minimising fixed cost of all used vehicles. 

• H3: fleet size and mix VRP with only variable costs where an unlimited number of 
vehicles is considered for minimising the variable distance of all routes. 

• H4: heterogeneous fixed fleet VRP with only variable costs where a limited number 
of vehicles is used to minimising the variable cost. 

• H5: heterogeneous fixed fleet VRP with fixed and variable costs where a limited 
number of vehicles is used to minimising both variable and fixed costs. 

Notice that there are others HVRP branches considering constraints like site-dependent, 
site-road, etc. For instance, Prins (2002) considers that each vehicle can optionally 
perform several trips using a savings-based heuristic but without any extra cost. The basic 
family (H0) consists in the natural condition of considering a heterogeneous fleet inside 
of the combinatorial problem. 

The rich vehicle routing problem (RVRP) is a generalised variant of the VRP where 
several constraints, aspects or objectives functions are considered at the same time. 
Examples of constraints and assumptions considered in RVRPs could be: multi-depot, 
periodic visits to clients, open routes, multi-products, time windows, etc. Drexl (2012) 
compiles some current needs on the RVRP field as well as a state-of-the-art of  
scientific research and commercial software. In some studies like Prins (2002), Bolduc  
et al. (2006), Irnich (2008), Rieck and Zimmermann (2010), Oppen et al. (2010), 
Prescott-Gagnon et al. (2012) and Vallejo et al. (2012) the variable and fixed costs are  
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ignored when combined with other routing features. In fact, Bolduc et al. (2006) is 
included with other papers in a Special Issue on Rich Vehicle Routing Problems (Hartl  
et al., 2006). Table 1 summarises the work done in several types of HVRP. On its 
columns, we can appreciate the addressed HVRP families, the applied methodology, as 
well as others routing constraints considered on each study. Also, the first part of the 
table presents papers exclusively dedicated to the HVRP, while the second part shows 
papers related to RVRP where the HVRP is also considered together with other 
constraints. Most of these works just include the heterogeneous capacity of vehicles (H0) 
and not the related costs associated with each type of vehicle. Therefore, there is not a 
single way to include the HVRP feature in a RVRP. 
Table 1 Summary of published HVRP studies 

Study HVRP family Method Extra constraints 

Golden et al. (1984) H0, H2 Heuristics  

Taillard (1999) H0, F2, H4 Column generation-based 
heuristic 

 

Gendreau et al. (1999) H0, H2, H3 Tabu search  

Wassan and  
Osman (2002) 

H0, H2, H3 Tabu search  

Renaud and  
Boctor (2002) 

H0, H2 Heuristic-based  

Lima et al. (2004) H0, H2 MA  

Tarantilis et al. (2004) H0, H4 Threshold accepting 
algorithms 

 

Choi and Tcha (2007) H0, H1,  
H2, H3 

Branch-and-bound  

Li et al. (2007) H0, H4 Record-to-record  

Prins (2009) H0, H1, H2, 
H3, H4 

MA  

Imran et al. (2009) H0, H1, H3 Variable neighbourhood-
based heuristic 

 

Liu et al. (2009) H0, H2 Genetic algorithm  

Brandao (2009) H0, H2, H3 Tabu search  

Euchi and  
Chabchoub (2010) 

H0, H4 Hybrid tabu search  

Li et al. (2010) H0, H5 Adaptive memory 
programming 
metaheuristic 

 

Brandao (2011) H0, H3, H4 Tabu search  

Penna et al. (2013) H0, H1, H2, 
H3, H4, H5 

Iterative local  
search with variable 

neighbourhood descent 

 

Subramanian  
et al. (2012) 

H0, H1, H2, 
H3, H4, H5 

Iterative local search with 
set partitioning 
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Table 1 Summary of published HVRP studies (continued) 

Study HVRP family Method Extra constraints 

Bolduc et al. (2006) H0 Heuristics Multi-period 
Irnich (2008) H0 Local search-based 

metaheuristic 
Multi-depots, and  

time windows 
Baldacci and 
Mingozzi (2009) 

H0, H5 MIP model with set 
partitioning 

Site-dependent, and  
multi-depots 

Rieck and 
Zimmermann (2010) 

H0 MILP model Time windows,  
and simultaneous  

delivery and pickup 
Oppen et al. (2010) H0 Column generation-based Multi-products, multiple 

trips, precedence and 
inventory constraints 

Prescott-Gagnon et al. 
(2012) 

H0 Heuristics Multi-depots, intra-route 
replenishments, time 

windows, driver shifts and 
optional customers 

Vallejo et al. (2012) H0 Memory-based approach 
with clustering 

Time windows, multi-
depots, and multi-trip 

To the best of our knowledge, there is not any published work on the AHVRP. The most 
approximated ones are presented in Marmion et al. (2010) and Pessoa et al. (2008). In the 
first study, the authors analyse the sensitivity of two classical neighbourhoods methods 
for the AHVRP. Thus, they simulate a heterogeneous fleet assigning different variable 
costs to each vehicle, but the capacity remains unchanged. On Pessoa et al. (2008), the 
authors developed a set of robust branch-cut-and-price algorithms for several VRPs. 
Some promising experiments are presented, but changes in the capacity of fleets are not 
justified for the HVRP. More details about these two studies are discussed later. 

4 Our approach for the AHVRP 

Our approach focuses on solving two realistic problems: the AVRP as well as the 
AHVRP. 

4.1 Constructive component 

The algorithm we propose is based on a randomised version of the Clark and Wright 
savings (CWS) heuristic (Clarke and Wright, 1964). The CWS is one of the most 
commonly cited methods in the VRP literature. It uses the concept of savings associated 
with each arc for merging routes. At each step, the arc with the greatest savings is 
selected if and only if the two corresponding routes can be combined into a new feasible 
route and if the selected arc is composed of nodes that are directly connected with the 
depot. We address the AVRP and AHVRP without considering an extensive asymmetric 
saving list – i.e., a list including two directed arcs for each pair of customers. Instead we 
consider a weighted savings list considering just one arc for each pair of customers. Also, 
we consider the direction of the resulting route after each merging. 
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Figure 1 Flowchart of the asymmetric SR-GCWS for heterogeneous fleets (see online version  
for colours) 
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Figure 1 shows a flowchart diagram offering a high-level view of our algorithm. Our 
approach starts solving the problem as proposed in the CWS heuristic – i.e.: computing a 
dummy solution assigning one round-trip route from the depot to each customer.  
Then the algorithm computes the weighted savings list using an auxiliary parameter β  
(see below the formulas for weighted saving, i.e., ˆ ,ijS  and CWS saving, i.e., Sij). At  
this point the CWS heuristics is combined with a randomisation process. We use a 
pseudo-geometric distribution to assign a selection probability to each edge in the savings 
list (alpha). Moreover, this selection probability is coherent with the weighted saving 
value associated with each edge, i.e., edges with higher savings will be more likely to be 
selected from the list than those with lower savings. Therefore, each combination of 
edges has a chance of being selected and merged with previously built routes. Then, a 
multi-start process is initiated and controlled by a time parameter (maxTime). At each 
iteration of this process, different edges are selected using the aforementioned biased 
probability distribution. This allows obtaining different outputs at each iteration. After 
merging, we improve the merged route applying two promising local search processes. At 
the end, we apply a general local search to the whole solution which is explained in the 
next section. 

The validation of the capacity constraint in a heterogeneous fleet is addressed as a 
vehicle-trip assignment. For this, an effective method based on CWS is proposed in  
Prins (2002). The list of vehicles and the list of routes are sorted decreasingly by capacity 
and accumulated demands respectively; after that, a temporary assignment between the 
two lists is searched. If a successful match – including all previously routes plus the  
new merged one – is found, then the capacity constraint is satisfied and the temporary 
assignment becomes final. Otherwise, the merge becomes unfeasible. If a situation arises 
in which the number of routes is greater than the number of vehicles, then new fictitious 
vehicles are assigned to the remaining routes. Notice that this vehicle assignment 
validation is made for each possible saving, increasing the computational operations. The 
author also imposes an assumption that the largest demand cannot exceed the capacity of 
the smallest vehicle. 

One important contribution of our approach is the fact that we consider a weighted 
savings list merging two routes without taking into account directions at this initial stage. 
See an example in Figure 2. The application of a local search will help to define the best 
direction. The weighted saving associated with an arc connecting customers i and j is 
defined as: 

{ } { }mˆ ax , (1 ) min ,ij ij ji ij jiS S S SS = + ∗∗ − ββ  

where β ∈ [0.5, 1] and Sij = c0i + c0j – cij. 
The disregard of orientation is important given that an asymmetric savings list does 

not choose arcs which do not match their orientation established. For example, it rejects 
the routes in Figure 2 since they have different orientation. This reduces the solution 
space and worsens the general solution; even some obtained solutions are using a greater 
number of vehicles. 
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Figure 2 Merging routes R1 = {0, h, i, 0} and R2 = {0, k, j, 0} with different orientation into a 
route R = {0, h, i, j, k, 0} 

  

Note: The route R2 is reversed and some edges are changed given that it is an urban area 
with some one-way streets. 

Given that the orientations are not considered, an original local search for the asymmetric 
context was created exploring the near solution space with few steps. It represents 
another important contribution of our approach. 

4.2 Asymmetric local searches 

Once a merged route is obtained, two local searches are applied in order to explore the 
solution space with few steps. The first local search procedure is the so called reversing 
routes local search. This procedure intends to find an improvement in the order and 
orientation of the nodes. Given a merged route, we first try to sort the nodes in a more 
efficient way. If a route is composed by more than four nodes, then we take each four 
nodes – i.e., (i, j, k, l) – and try to determine if a swapping of two middle-nodes could 
improve the cost – i.e., (i, k, j, l). After that, we try to reverse the order in which nodes are 
traversed. 

A second local search, originally described in Juan et al. (2011), is focused on 
checking if a given set of nodes already exists in a memory but with a better order of  
the nodes. The basic idea of this learning mechanism is to store in a cache memory the 
best-know order to travel among the nodes that constitute one route. This cache is 
constantly updated whenever a better order with a lower cost is found for a given set of 
nodes. At the same time, the routes contained in this cache are re-used whenever possible 
to improve newly merged routes. Notice that this procedure does not search a new 
vehicle assignment. The previously assigned vehicle to each route remains unchanged 
during this process. 

Finally, once all edges in the saving list have been considered, the resulting solution 
is improved through a Splitting local search method proposed in Juan et al. (2011). The 
current solution is divided into disjoint subsets of routes together with their previously 
assigned vehicles; then, each of these subsets are solved applying the same methodology 
described before during a given number of iterations (maxSplitter). This tries to apply a 
‘divide and conquer’ approach since smaller instances could be easier to solve. So a new 
set of routes could be created on each partition with the previously assigned vehicles. 
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5 Experimental design 

The most commonly-used methodology to compare the performance of different 
algorithms for solving VRPs consists in running these algorithms over a set of  
well-defined benchmark instances. In the case of the CVRP or the AVRP, several 
benchmark sets are available through open-access websites, so that researchers 
worldwide can use them. Usually, these datasets contain complete information, including 
not just the instance inputs and the best-known value for the objective function, but also a 
complete description of the corresponding solution – i.e., the specific composition of 
each route in the best-known solution. In the case of the AHVRP, however, there is not a 
commonly-accepted set of instances to test algorithms, since the AHVRP has rarely been 
discussed so far in the literature. 

For the AVRP, some researchers have used a set of real instances related to Fischetti 
et al. (1994). In our case, we have selected 20 public AVRP instances from http://soa. 
iti.es/files/Instances_CVRP.7z. Details on these instances can be found in Rodríguez and 
Ruiz (2012). They have been generated with a realistic perspective and mathematical 
justification. The selection was made at random among the set of medium and large-size 
instances (in terms of number of nodes). They have 50 or 100 customers and are designed 
to employ a homogeneous fleet with the number of vehicles ranging from 2 to 7. These 
instances consider large demands and vehicle capacities, as well as random location of 
the nodes within intra-city areas. The depot may be in the centre of the area, those with 
‘C’ in the second letter of the name, or a random position, those with ‘A’. The intra-city 
instances were chosen given that they represent a higher asymmetry degree. Rodríguez 
and Ruiz (2012) conclude that these instances affect in a statistically significant way the 
CPU time needed by some algorithms and deteriorate the quality of the solutions 
obtained. 

We have selected the following state-of-the-art AVRP methods in order to compare 
with: 

• General heuristic of Pisinger and Røpke (2007). It is a unified heuristic that works 
for several variants of routing problems and that uses an ALNS. 

• MA of Nagata (2007). Similar to ALNS, MA is a very powerful and recent AVRP 
metaheuristic. 

The previous algorithms have been selected by their performance and recognition.  
We have strived for a balance between simple classical techniques and current and  
state-of-the-art methods. Algorithms MA and ALNS were run from the original code 
which was kindly provided by their respective authors. No code modification was carried 
out and the methods were run according to their recommendations. 

For the AHVRP, Fischetti et al. (1994) developed some preliminary experiments 
based on a set of real AVRP instances. Likewise, Marmion et al. (2010) analysed the use 
of a heterogeneous fleet. However, these studies have only considered the effect of 
variable cost on vehicles selection, but no differences in actual vehicle capacities are 
considered. Also Pessoa et al. (2008) have used these benchmarks first modifying the 
capacity of the original fleets and then running the experiments with homogeneous fleets. 

Therefore, we propose to use exactly the same nodes as in these AVRP instances, 
including their asymmetric costs and demands, and the same number of vehicles. We 
then consider a heterogeneous fleet composed of ‘standard’ vehicles – i.e., vehicles with 
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the capacity defined in the AVRP instances – and ‘non-standard’ vehicles with modified 
capacities. In our opinion, this is a natural way to adapt the homogeneous-capacity 
instances, since it allows the decision-maker to answer sensitivity-analysis questions such 
as: “How would my routing costs be changed if we could employ one or two trucks with 
a different capacity?”. 

Thus, in order to test our approach, a total of twenty classical AVRP instances were 
selected and adapted as ‘base’ AHVRP instances. For each base instance, six different 
fleet typologies were defined – thus, 120 different instances were considered in total. 
These fleet typologies are partially composed of ‘standard’ vehicles, each of them with 
capacity Q0, but they differ in their exact composition as explained in the following 
general rule: 

• fleet 150-125: two ‘standard’ trucks are substituted by a ‘large’ truck (with capacity 
Ql = 150% · Q0) and by a ‘large-medium’ truck (with capacity Qlm = 125% · Q0), 
respectively 

• fleet 125-125: two ‘standard’ trucks are substituted by two ‘large-medium’ trucks 

• fleet 125-80: two ‘standard’ trucks are substituted by a ‘large-medium’ truck and by 
a ‘small’ truck (with capacity Qs = 80% · Q0), respectively 

• fleet 100-100: the homogeneous case where all trucks are ‘standard’ 

• fleet 90-90: two ‘standard’ trucks are substituted by two ‘small-medium’ trucks  
(with capacity Qsm = 90% · Q0) 

• fleet 90-80: two ‘standard’ trucks are substituted by a ‘small-medium’ truck and by a 
‘small’ truck, respectively. 

Notice, however, that in some cases a reduction in the fleet capacity might cause the 
infeasibility of the problem, i.e., the total demand to be satisfied might be greater than the 
total fleet capacity. In those particular cases, an additional ‘standard’ vehicle is added to 
the fleet to promote feasibility of the problem. 

6 Experimental results 

In order to validate our algorithm, we first present the results of an AVRP homogeneous 
case. For this, we compare our results with those obtained using the MA of Nagata 
(2007) and the ALNS of Pisinger and Røpke (2007). Finally, we developed some 
experiments for the AHVRP. 

The algorithm described in this paper has been implemented as a Java application. An 
Intel QuadCore i5 at 3.2 GHz and 4 GB RAM was used to perform all tests, which were 
run over Windows XP. 

6.1 Homogeneous instances 

For the 20 AVRP instances, we have used ten random seeds (ten replicas), an elapsed 
time of 1 minute (maxTime) for each seed, and 60 iterations for the splitting technique 
(maxSplitter). In order to perform a biased randomisation of the weighted savings list, a 
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quasi-geometric distribution with a parameter α randomly selected in the interval  
[0.5, 0.10] was used; and the value chosen for the weighted saving was β = 0.6. 

The Nagata algorithm was executed with a parameter setting: Npop = 100, Nch = 30, 
ten trials and two parents. Also ten runs with elapsed time of 1 minute were executed for 
each instance. For the ALNS, only one run was executed for each instance without time 
limit. Both algorithms were run from the original C++ code which was kindly provided 
by their respective authors. No code modification was carried out and the methods were 
run according to their recommendations. 

The results of these tests are summarised in Table 2, which contains the following 
information for each instance: name of instance; number of nodes; number of vehicles; 
the best solution of ten replicas of the MA, {1}; the ALNS solution, {2}; gap, expressed 
as a percentage value, between {1} and {2}; the time used for ALNS in seconds; our best 
solution found, OBS {3}; and gap between {1} and {3}. 
Table 2 Comparison of results for AVRP instances 

Instance # nodes # vehicles MA 
{1} 

ALNS 
{2} 

Gap 
{1}–{2} Time (s) OBS  

{3} 
Gap  

{1}–{3} 
G-A-CAA0501 50 2 370.26 370.26 0.00% 17.83 370.26 0.00% 
G-A-CAA0502 50 3 414.44 414.44 0.00% 13.30 414.44 0.00% 
G-A-CAA0503 50 4 444.69 444.69 0.00% 10.48 444.69 0.00% 
G-A-CAA0504 50 2 362.01 362.01 0.00% 17.95 362.01 0.00% 
G-A-CAA0505 50 3 395.78 395.78 0.00% 15.59 398.47 0.68% 
G-A-CAA1001 100 5 661.88 664.53 0.40% 43.03 675.31 2.03% 
G-A-CAA1002 100 5 621.06 622.67 0.26% 39.36 625.82 0.77% 
G-A-CAA1003 100 5 627.29 627.29 0.00% 42.23 627.29 0.00% 
G-A-CAA1004 100 6 681.89 681.89 0.00% 34.84 686.25 0.64% 
G-A-CAA1005 100 7 810.97 810.97 0.00% 29.03 820.56 1.18% 
G-C-CAA0501 50 2 376.62 376.62 0.00% 17.70 376.62 0.00% 
G-C-CAA0502 50 3 372.48 372.48 0.00% 13.31 372.48 0.00% 
G-C-CAA0503 50 4 404.30 404.30 0.00% 10.36 404.30 0.00% 
G-C-CAA0504 50 2 361.74 361.74 0.00% 17.84 361.74 0.00% 
G-C-CAA0505 50 3 386.73 386.73 0.00% 13.80 386.73 0.00% 
G-C-CAA1001 100 5 596.54 596.86 0.05% 40.83 600.35 0.64% 
G-C-CAA1002 100 5 578.15 578.15 0.00% 38.61 583.39 0.90% 
G-C-CAA1003 100 5 561.08 561.08 0.00% 41.13 566.10 0.89% 
G-C-CAA1004 100 6 660.81 660.81 0.00% 35.19 664.14 0.50% 
G-C-CAA1005 100 7 652.08 652.18 0.02% 28.63 652.42 0.05% 
     0.04%   0.41% 

Notice that the results obtained with our approach are quite competitive, showing an 
average gap of 0.41% with respect to Nagata (2007), which always obtains the best 
results. Our approach also found exactly the same solution (gap = 0.00%) for 10 out of  
20 instances. Notice that all three algorithms were run using the same computing time 
and machine. The only difference is that our algorithm was codified in Java, which runs 
over a virtual machine and thus has a lower performance than a code implemented in 
native C/C++. 
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Table 3 Experimental results for small-size instances with different fleet configurations 
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Table 3 Experimental results for small-size instances with different fleet configurations 
(continued) 
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Table 4 Experimental results for medium-size instances with different fleet configurations 
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Table 4 Experimental results for medium-size instances with different fleet configurations 
(continued) 
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6.2 Analysing different fleet compositions 

Once the proposed approach has shown to be competitive for the AVRP, the next logical 
step is to use it for solving the AHVRP. Thus, twenty AVRP instances were adapted as 
‘base’ AHVRP instances. For each base instance, six different fleet typologies were 
defined, see Section 5 for more details. Thus, 120 different instances were considered in 
total. For each of them, ten random seeds (ten replicas) and an elapsed time of 1 minute 
were used. 

Tables 3 and 4 contain, for each base instance, the following information: name  
of instance; number of nodes; number of vehicles; our best solution found for the 
homogeneous case, OBS {1}; different fleet rules for the heterogeneous case, each of 
them defining a new routing instance; our best solution found for the heterogeneous case, 
OBS {3}; the obtained number of vehicles for the fleet configuration; and percentage gap 
between the BKS for the homogeneous case and the OBS for the heterogeneous case. 
Instances are distributed in both tables according to their sizes. 

Observe that * highlights different number of vehicles. For example, (1, 1, 1)* of the 
fifth row remarks that this heterogeneous solution is using one more vehicle than the 
homogeneous solution. It uses one vehicle of 90% of capacity, one vehicle of 80% and 
one ‘standard’ vehicle. Instead, *(1, 1, 0) of the sixth row remarks that this solution is 
using one less ‘standard’ vehicle. 

Figure 3 Surface plot of average gap vs. fleet configuration (see online version for colours) 

Average Gap (in %) w.r.t. Homogeneous Fleet 
(for different fleet configurations of two vehicles) 

 

Figure 3 shows a 3D scatter plot representing the average gap associated with each of the 
six fleet configurations considered in this article. In other words, for each fleet rule, the 
twenty gaps with respect to the homogeneous OBS – one per base instance – have been 
averaged. From these results, it can be noticed the following: 

• just by employing two large vehicles (fleet 150-125) instead of two ‘standard’ 
vehicles (fleet 100-100), it is possible to obtain noticeable costs reductions that  
can go up to 10% in some instances (e.g., G-A-CAA0502) 
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• likewise, when using two small vehicles (fleet 90-80) instead of two ‘standard’ 
vehicles, costs can suffer an increase of about 5% for some instances  
(e.g., G-CCAA0504). 

Therefore, it can be concluded that routing costs can be in fact quite sensitive to small 
variations in the fleet configuration. This justifies the necessity for employing new 
approaches in real-life routing applications, i.e., algorithms which are able to deal with 
both asymmetric costs as well as heterogeneous fleets. 

7 Conclusions 

In this paper, we have discussed the importance of taking into account both 
heterogeneous fleets and asymmetric costs in realistic VRPs. Despite the fact that most 
real-life fleets of vehicles are heterogeneous and that real-life distances are frequently 
asymmetric – especially in urban transportation –, there is a lack of works considering 
both situations simultaneously. Accordingly, we have presented a hybrid algorithm for 
solving the AHVRP. This algorithm combines a randomised savings heuristic with three 
local search processes specifically adapted to the asymmetric nature of costs in real-life 
scenarios. 

A complete set of AVRP tests have been performed to illustrate the methodology and 
analyse its efficiency when compared with two state-of-the-art algorithms. The results 
show that our approach is able to produce competitive results for the AVRP while,  
at the same time, it is much simpler to implement and requires less parameters – and  
fine-tuning efforts – than current state-of-the-art algorithms. 

Moreover, since our methodology can also consider heterogeneous fleets, a set of 
benchmarks for the AHVRP have been developed and a sensitivity analysis on the fleet 
composition has been performed. This last experiment shows how decision-makers can 
benefit from our approach when deciding the actual composition of their heterogeneous 
fleets. 
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