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Universidad Politécnica de Valencia
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Abstract

This paper deals with the construction of approximate series solutions of random
nonlinear diffusion equations where non-linearity is considered by means of a frank
small parameter and uncertainty is introduced through the white noise in the forc-
ing term. In the simpler but important case in which diffusion coefficient is time-
independent, we provide a Gaussian approximation of the solution stochastic process
by taking advantage of the so-called Wiener-Hermite expansion together with the
perturbation method. In addition, approximations of the main statistical functions
associated with a solution, such as the mean and variance, are computed. Numerical
values of these functions are compared with respect to those obtained by applying
the Runge-Kutta second order stochastic scheme by means of an illustrative exam-
ple.
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1 Introduction

Deterministic differential equations of the form ẋ(t) = a(t)x(t) constitute the
basic form of so-called diffusion or transport problems which appear in rele-
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vant models such as: the growth population geometric (or Malthusian) model
in Biology, where a(t) represents the per capita growth rate; the neutron and
gamma ray transport model in Physics, where coefficient a(t) involves the ge-
ometry of the cross-sections of the medium; the continuous composed interest
rate models for studying the evolution of an investment under time-variable
interest rate r(t) in which case a(t) = 1 + r(t); etc. Despite the usefulness of
these basic models, often they do not recover all possible situations observed
from a practical point of view. In fact, as a simple but illustrative example, if
a(t) = a > 0, Malthus model predicts unlimited growth of a species despite
the fact that resources are always limited. Then, the logistic (or Verhulst)
model introduces a nonlinear term in order to overcome this inconvenient by
considering the differential equation ẋ(t) = ax(t)−b(x(t))2, a, b > 0, where the
non-linearity intensity is given by parameter b. In many practical situations
it is proper to assume that nonlinear term affecting the phenomena under
study is small enough, then its intensity is controlled by means of a frank
small parameter, say ǫ. Relevant examples in this sense appear for instance
in Epidemiology, where the so-called SIS models become nonlinear differential
equations where nonlinear term coefficient denoting the contagious rate can
be assumed to be a frank small parameter in many situations [1]. In addition
of these considerations, diffusion models with nonlinear perturbations can also
consider the introduction of a forcing term in order to model external aspects
which can become very complex such as environment in Biology, unexpected
material changes in the surrounding medium in Physics or foreign political
events that can affect the markets where an investment has been ordered in
Finance. Stochastic differential equations based on white noise process provide
a powerful tool to model dynamically these complex and uncertain aspects.
Over the last few years, new and relevant methods for searching the exact
solutions of such type of equations have been developed. They include the
homotopy perturbation method [2–4] and the Exp-function method [5,6].

This paper deals with the solution of stochastic differential models of the form

ẋ(t) = a(t)x(t) − ǫ(x(t))2 + λn(t), t > 0, x(0) = x0, (1)

where diffusion coefficient a(t) and initial condition x0 are deterministic, ǫ is a
small parameter and n(t) = n(t)(ω) is the white noise process, whose intensity
is given by parameter λ, and ω is a random outcome of a triple probability
space (Ω,A, P ) where Ω is a sample space, A is a σ-algebra associated with
Ω and P is a probability measure.

The paper is organized as follows. Section 2 summarizes the main results about
the Wiener-Hermite expansion (WHE) that provides a powerful technique to
represent any stochastic process in terms of certain deterministic kernels to
be determined as well as the so-called Wiener-Hermite (WH) polynomials. In
Section 3, the WHE is applied in order to obtain two initial integro-differential
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equations that are satisfied by these kernels. By taking advantage of the per-
turbation method, the solution of these equations are obtained in Section 4.
Previous development is illustrated for the simpler but important case where
diffusion coefficient is autonomous. In addition, we compute approximations
for its main statistical moments such as the mean and variance. A compar-
ison of the obtained results with respect to the Runge-Kutta second order
stochastic scheme for solving stochastic differential equations is also provided.
Conclusions are shown in Section 5.

2 The Wiener-Hermite expansion (WHE)

For the sake of clarity in the presentation, we summarize in this section the
main ideas of the Wiener-Hermite expansion (WHE) based on the Wiener-
Hermite (WH) polynomials. For further details we recommend [7,8,4]. The WH
polynomials constitute a complete set of statistically orthogonal stochastic
processes, say H(i) = H(i)(t1, . . . , ti), defined in terms of white noise n(t) and
the Dirac delta function δ(·) through the following recurrence relations:

H(i)(t1, . . . , ti) = H(i−1)(t1, . . . , ti−1)H
(1)(ti)

−
i−1
∑

j=1

H(i−2)(ti1 , . . . , tii−2
)δ(ti−j − ti), i ≥ 2,

(2)

starting from H(0) = 1 and H(1)(t1) = n(t1). Taking into account the following
statistical properties of white noise process

E [n(t)] = 0, E [n(t1)n(t2)] = δ(t1 − t2), (3)

where E [·] denotes the expectation operator, one can establish that WH poly-

nomials are centered with respect to the origin (except E
[

H(0)
]

= 1) and they
are statistically orthogonal:

E
[

H(i)
]

= 0, ∀i ≥ 1; E
[

H(i)H(j)
]

= 0, ∀i 6= j. (4)

As a consequence of the completeness of the WH set [8], any arbitrary stochas-
tic process, say x(t) = x(t; ω), ω ∈ Ω, can be expanded in terms of a WH
polynomials set and this expansion converges to the original stochastic pro-
cess, i.e.,

x(t) = x(0)(t)+
∫

R

x(1)(t; t1)H
(1)(t1) dt1+

∫

R2

x(2)(t; t1, t2)H
(2)(t1, t2) dt1dt2+· · · ,

(5)
where x(0) = x(0)(t), x(i) = x(i)(t; t1, . . . , ti), i ≥ 1 are called the (deterministic)
kernels of the WHE of x(t). The first two terms of the right-hand side define
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the Gaussian representation of x(t) (begin the zeroth-order term just its mean
or average, i.e., E [x(t)] = x(0)(t)), while the second and higher-order terms
correspond to the non-Gaussian part. The variance of x(t) can be expressed
as follows:

Var [x(t)] =
∫

R

(

x(1)(t; t1)
)2

dt1 + 2
∫

R2

(

x(2)(t; t1, t2)
)2

dt1dt2 + · · · . (6)

3 Application of the WHE to approximate the solution of the non-
linear problem

In this section we will apply the WHE in order to analyze the response of the
nonlinear model (1) to the Gaussian stochastic process n(t) with intensity λ.
The procedure can be described as follows: first, from the original governing
equation (1), we expand the unknown x(t) by means of the WHE given by (5),
then, integral-differential deterministic equations are derived for the dynamics
of the unknown kernel functions x(i) of the WHE of the response. For that, we
take advantage of the stochastic orthogonality properties of WH polynomials.

In practice, the WHE series for the response must be truncated after a few
terms. Henceforth, we are just interested in obtaining the Gaussian approxima-
tion of the response x(t) of problem (1), then two integral-differential equations
for x(0)(t) and x(1)(t; t1) must be established. For the first one, we just follow
previous procedure: we substitute the WHE (5) of x(t) in model (1), next
we take the expectation operator over the resulting expression and, finally, we
take advantage of properties (4) as well as that E

[

H(1)(t1)H
(1)(t2)

]

= δ(t1−t2)

and E
[

H(2)(t1, t2)H
(2)(t3, t4)

]

= δ(t1 − t3)δ(t2 − t4) + δ(t1 − t4)δ(t2 − t3). This
leads to

ẋ(0)(t)=a(t)x(0)(t) − ǫ
{

(

x(0)(t)
)2

+
∫

R

(

x(1)(t; t1)
)2

dt1

}

, x(0)(0) = x0, (7)

where initial condition has been derived by setting t = 0 in (5), next ap-
plying the expectation operator and again taking advantage of first property
given by (4). In order to establish another (deterministic) differential equa-
tion for x(1)(t; t1), firstly we multiply WHE (5) of x(t) by H(1)(t5), next we
take the expectation operator and we again apply above properties together
with E

[

H(1)(t1)H
(1)(t2)H

(1)(t3)
]

= 0, E
[

H(1)(t1)H
(2)(t2, t3)H

(2)(t4, t5)
]

= 0

and E
[

H(1)(t1)H
(1)(t2)H

(2)(t3, t4)
]

= δ(t1 − t3)δ(t2 − t4) + δ(t1 − t4)δ(t2 − t3).
In this way, one gets

ẋ(1)(t; t1) = a(t)x(1)(t; t1)− 2ǫx(0)(t)x(1)(t; t1) + λδ(t− t1), x(1)(0; t1) = 0, ∀t1.
(8)

In this case, initial condition has been derived multiplying by H(1)(t2) the
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WHE (5), next setting t = 0 and taking the expectation operator and, finally,

applying first property of (4) as well as E
[

H(1)(t1)H
(1)(t2)

]

= δ(t1 − t2).

4 The application of the perturbation method. An illustrative ex-
ample

In order to compute the Gaussian part of the stochastic process solution of
problem (1), we need to solve the nonlinear coupled deterministic problems
(7)–(8). Note that both problems depend on small parameter ǫ > 0. Then a
reliable technique in order to solve them is the so-called perturbation method
under which the deterministic kernels can be represented in first approxima-
tion as:

x(0)(t) = x
(0)
0 (t) + ǫx

(0)
1 (t), x(1)(t; t1) = x

(1)
0 (t; t1) + ǫx

(1)
1 (t; t1). (9)

Substituting these representations in equations (7)–(8) and neglecting these
powers of ǫ whose exponents are greater than 1, one obtains the following
initial value problems:

ẋ
(0)
0 (t) = a(t)x

(0)
0 (t), x

(0)
0 (0) = x0, (10)

ẋ
(0)
1 (t) = a(t)x

(0)
1 (t) −

(

x
(0)
0 (t)

)2
−

∫

∞

0

(

x
(1)
0 (t; t1)

)2
dt1, x

(0)
1 (0) = 0, (11)

ẋ
(1)
0 (t; t1) = a(t)x

(1)
0 (t; t1) + λδ(t − t1), x

(1)
0 (0; t1) = 0, ∀t1 ≥ 0, (12)

ẋ
(1)
1 (t; t1) = a(t)x

(1)
1 (t; t1) − 2x

(0)
0 (t)x

(1)
0 (t; t1), x

(1)
1 (0; t1) = 0, ∀t1 ≥ 0. (13)

Example 1 Let us consider the important situation where diffusion coefficient
does not depend on time, i.e., a(t) = a. In this case, we first compute directly
the solution of problems (10) and (12), and after that we solve problems (11)
and (13). The obtained results are:

x
(0)
0 (t) = x0e

at, x
(0)
1 (t) = −

(eat − 1) (eat(2a(x0)
2 + λ2) − λ2)

2a2
, (14)

x
(1)
0 (t; t1) =











λea(t−t1) if t ≥ t1,

0 if t < t1,
(15)

x
(1)
1 (t; t1) =















−
2ea(t−t1) (eat − 1)λx0

a
if t ≥ t1,

0 if t < t1.
(16)
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Taking into account that E [x(t)] = x(0)(t) = x
(0)
0 (t) + ǫx

(0)
1 (t), one gets the

following approximation of the mean of x(t)

E [x(t)] = x0e
at − ǫ

(eat − 1) (eat(2a(x0)
2 + λ2) − λ2)

2a2
. (17)

Regarding the variance approximation, note that by perturbation method and
(6) one gets

Var [x(t)]=
∫

∞

−∞

{

(

x
(1)
0 (t; t1)

)2
+2ǫx

(1)
0 (t; t1)x

(1)
1 (t; t1)+ǫ2

(

x
(1)
1 (t; t1)

)2
}

dt1,

(18)
that leads in our case to

Var [x(t)] =
λ2

2a

(

e2at − 1
)

− 2ǫ
λ2x0

a2

(

eat − 1
)2 (

eat + 1
)

+ 2ǫ2λ2(x0)
2

a3

(

eat − 1
)3 (

eat + 1
)

.
(19)

Columns E
[

xWHE(t)
]

and Var
[

xWHE(t)
]

of Table 1 show the results for the

average and variance obtained from (17) and (19), respectively, for λ = 1,
ǫ = 10−2, a = 1/2, x0 = 0.5. In Figures 1 and 2, we compare these results
with respect to those obtained by using a Runge-Kutta second order stochas-
tic scheme [9], where the involved Brownian motion has been simulated tak-
ing m = 100000 simulations and step h = 10−4. In addition, third and fifth
columns of Table 1 show the relative errors for the average (RelErrE) and
variance (RelErrVar) with respect to Runge-Kutta scheme. Note that the ap-
proximations obtained from both approaches are agree.

Fig. 1. Comparison of the expectation by using the Wiener-Hermite expansion tech-
nique for problem (1) with a(t) = 1/2, λ = 1, ǫ = 10−2 and x0 = 0.5 on the interval
[0, 2] and a Runge-Kutta stochastic scheme by considering m = 100000 simulations
and taking as step h = 10−4
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Fig. 2. Comparison of the variance by using the Wiener-Hermite expansion technique
for problem (1) with a(t) = 1/2, λ = 1, ǫ = 10−2 and x0 = 0.5 on the interval [0, 2]
and a Runge-Kutta stochastic scheme by considering m = 100000 simulations and
taking as step h = 10−4

t E
[

xWHE(t)
]

RelErrE Var
[

xWHE(t)
]

RelErrVar

0.00 0.5 0 0 0

0.25 0.565465 0.001495642 0.282515 0.004461187

0.50 0.638576 0.000480526 0.641372 0.004179709

0.75 0.720045 0.0009411 1.09676 0.00440265

1.00 0.810596 0.00063616 1.67398 0.00537721

1.25 0.9110935 0.00100017 2.4046 0.00656068

1.50 1.02172 0.00034244 3.32786 0.01095191

1.75 1.14352 0.0006563 4.49228 0.01562586

2.00 1.27674 0.0006662 5.95747 0.01874725

Table 1
Numerical values of the expectation and variance as well as its relative errors by
using the Wiener-Hermite expansion technique for problem (1) with a(t) = 1/2,
λ = 1, ǫ = 10−2 and x0 = 0.5 on the interval [0, 2] and a Runge-Kutta stochastic
scheme by considering m = 100000 simulations and taking as step h = 10−4

5 Conclusions

This paper shows that WHE technique constitutes a powerful tool to construct
approximate solution stochastic process of random diffusion models with non-
linear perturbations where uncertainty is considered by means of an additive
term defined by white noise. As it has been highlighted, these type of models
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appear in important applications of fields such as Physics and Epidemiology,
for example. Although the success of WHE method depends heavily on com-
plexity encountered in dealing with integro-differential equations, a large of
deterministic techniques to solve them are available including mathematical
software [10]. Besides computing the Gaussian approximation of the solution,
we have also provided approximations of its average and variance. As we have
shown, these results are agree with respect to those obtained by applying other
stochastic numerical methods. Finally, we remark that in the near future, we
will report the corresponding results to the non-Gaussian approximation.
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as well as Universidad Politécnica de Valencia grant PAID-06–09 (ref. 2588).

References

[1] O. Diekmann, J.A.P. Heesterbeek, Mathematical Epidemiology of Infectious
Diseases: Model Building, Analysis and Interpretation, Wiley Series in
Mathematical and Computational Biology, New York, 2000.

[2] M.A. El–Tawil, The application of the WHEP technique on partial differential
equations, Intern. J. Diff. Equat. and its Appl. 7 (2003) 325–337.

[3] M.A. El–Tawil, A.S. Al-Jihany, On the solution of stochastic oscillatory
quadratic nonlinear equaitons using different tecniques, a comparison study,
Topol. Methods Nonlinear Anal. 31(2) (2008) 315–330.

[4] M.A. El–Tawil, N.A. Al-Mulla, Using homotopy WHEP technique for solving
a stochastic nonlinear diffusion equation, Math. Comput. Modell. 51 (2010)
1277–1284.

[5] C.Q. Dai, J.F. Zhang, Application of He’s Exp-function method to the
stochastic mKdV equation, Intern. Nonlin. Sci. Numer. Simul. 10 (5) (2009)
675–680.

[6] C.Q. Dai, J.F. Zhang, Stochastic exact solutions and two-soliton solution of the
Wick–type stochastic KdV equation, Europhysics Letters 86 (2009) Art. No.
40006.

[7] R.G. Ghanem, P.D. Spanos, Stochastic Finite Elements: A Spectral Approach,
Dover Publications, New York, 2003.

[8] R.H. Cameron, W.T. Martin, The orthogonal development of non-linear
functionals in series of Fourier-Hermite functionals, J. Ann. Math. 48 (1947)
385–392.

8



[9] E. Kloeden, E. Platen, Numerical Solution of Stochastic Differential Equations,
Springer, Berlin 1992.

[10] P. Linz, Analytical and Numerical Methods for Volterra Equations, SIAM,
Philadelphia, 1985.

9


