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Instituto Universitario de Matemática Multidisciplinar
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Abstract

The aim of this paper is twofold. Firstly, we deal with the extension to the random
framework of piecewise Fröbenius method to solve the Airy differential equation.
This extension is based on the mean square stochastic calculus. Secondly, we want
to explore its capability to provide not only reliable approximations, for both, the
average and the standard deviation functions associated to the solution stochastic
process, but also to save computational time as it occurs in the deterministic sce-
nario. This includes a comparison of the numerical results with respect to those
obtained by other operational commonly used methods such as polynomial chaos
and Monte Carlo. To conduct this comparative study, we have chosen the Airy ran-
dom differential equation because it has highly oscillatory solutions. This feature
allows us to emphasize differences between all the considered approaches.

Key words: Piecewise random Fröbenius method, Polynomial chaos, Monte Carlo
simulation, Random Airy-type differential equations

1 Introduction

In the deterministic scenario Airy differential equation appear in a variety of
applications to mathematical physics such as the description of the solution
of Schrödinger equation for a particle confined within a triangular potential;
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in the solution for one-dimensional motion of a quantum particle affected by
a constant force or in the theory of diffraction of radio waves around the
earth’s surface [1,2]. From these few examples, it seems to be quite natural
the introduction of randomness in the Airy differential equation. This can be
straightforward justified from two perspectives, first, because in practice the
calibration of both, the initial conditions and coefficient, require exhaustive
measurements that usually contain some sort of error. Secondly, the inherent
complexity of the phenomena under study, justifies that it be more coherent
to consider the information that determines the model as random variables
rather than deterministic values. These types of arguments lead to consider the
Airy random differential equation of great interest in Physics and its related
areas.

Solutions to deterministic Airy differential equations are highly oscillatory and
it has claimed the attention of numerical analysts to compare the effectiveness
of different computational methods [3]. Thus, it seems to be a good example
to check the numerical capacity of different techniques to compute the cor-
responding solution stochastic process of random Airy differential equation.
Recently, in reference [4] some of the authors have studied the random Airy
differential equation

Ẍ(t) + AtX(t) = 0, −∞ < t <∞, X(0) = Y0, Ẋ(0) = Y1, (1)

where A, Y0 and Y1 are random variables. This study is based on an extension
of the deterministic Fröbenius method to the random framework by applying
the mean square calculus, see [5]. In that paper, it is assumed that statisti-
cal absolute moments with respect to the origin of random input A grow at
the most exponentially, i.e, there exist a nonnegative integer n0 and positive
constants H and M such that

E [|A|n] ≤ HMn < +∞, ∀n ≥ n0. (2)

This allows to obtain an approximate solution stochastic process of the Airy
model as well as its main statistical functions such as average and variance by
truncating a random power series solution. In [4], it is shown that every random
variable A whose codomain or support is bounded satisfy such condition,
otherwise (as for example, it happens in the case that A is a Gaussian random
variable), we proposed to truncate the support to take advantage of that
approach. The truncation can be done in such a way that the censured support
contains most of the values of the random variable (for instance, if A is a
Gaussian random variable with mean µA and standard deviation σA, then
the interval [µA− 3σA, µA + 3σA] contains in average the 99.7% of its values).
Although a priori this truncation may mean a loss of accuracy that could affect
computations related to relevant statistical information about the solution
stochastic process, such as its average and standard deviation functions, this
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potential inconvenient can be easily overcome by enlarging the length of the
censured interval. Even more, in practice this strategy does not entail any
significant increase of the computational cost.

In the deterministic scenario a modification of the Fröbenius method has been
successfully developed by some of the authors in order to save computational
time when dealing with problems like (1) [6,7]. This motivates the two goals
of this paper, firstly, to explore whether this modification of the Fröbenius
method works in the random framework and also speeds-up computations
and, secondly, to compare results obtained by this new approach with respect
to those provided by other available methods including polynomial chaos tech-
nique.

The application of homogeneous and generalized polynomial chaos method to
the solution of random differential equations have already been tested success-
fully by some authors [8–10], although other contributions have highlighted
its current limitations in dealing with random differential models appearing
in some engineering applications [11]. As well we emphasize that interest-
ing alternative methods to deal with random inputs are those based on the
Wiener-Hermite expansion, which can be regarded as its continuous counter-
part [12].

The paper is organized as follows. Based on the deterministic approach showed
in [7], Section 2 is devoted to present a modification of random Fröbenius
method developed in paper [4]. Section 3 is addressed to introduce the poly-
nomial chaos method including its application to model (1). In Section 4, we
compare through an illustrative example the numerical results obtained by
the modified random Fröbenius method to approximate the average and stan-
dard deviation functions with respect to the corresponding ones computed by
polynomial chaos, Monte Carlo simulations and random Fröbenius method
presented in [4]. Conclusions are presented in Section 5.

2 Developing a piecewise random Fröbenius method

In the recent paper [4] an extension of the deterministic Fröbenius method to
deal with the random Airy differential equation (1) is presented. The method is
based on the construction of a mean square convergent random infinite power
series solution centered at the origin t = 0 which is truncated in order to
obtain approximations of the average and variance of the solution stochastic
process to (1). To apply the method, condition (2) is assumed to be satis-
fied by random input A. Although computation time required in numerical
experiments presented in [4] showed to be competitive with respect to other
approaches, as we have pointed out in the Introduction, in this paper we are
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also interested in comparing it with respect to other strategies. More precisely,
in this section we want to adapt to the random framework a piecewise version
of the Fröbenius method that some of the authors have tested to be more
advantageous in the deterministic scenario [7].

The method consists on divide the t-interval where we want to construct the
approximate solution, say [0, T ], into K subintervals of length a = T/K,
denoted respectively by [(j − 1)a, ja], 1 ≤ j ≤ K, where K = [T/a] being [·]
the integer part function. Then, following the reference [4], in the first step
we construct the solution X1

K(t) on the interval [0, a] using a random power
series centered at t0 = 0 and considering the random initial data X1

K(0) = Y0,
Ẋ1
K(0) = Y1. Taking as initial conditions X2

K(a) = X1
K(a) and Ẋ2

K(a) =
Ẋ1
K(a), in the second step, now we construct an approximate random power

series solution X2
K(t) centered at the point t1 = a on the interval [a, 2a]. In

general, in the j-th step, we construct an approximate random power series
Xj
K(t) centered at the point tj−1 = (j−1)a on the interval [(j−1)a, ja] taking

as initial conditions Xj
K((j − 1)a) = Xj−1

K ((j − 1)a) and Ẋj
K((j − 1)a) =

Ẋj−1
K ((j − 1)a). The procedure continues until K approximate random power

series solutions have been defined on each subinterval, respectively, covering
the total domain [0, T ]. Then a piecewise random power series solution XK(t)

is defined on interval [0, T ] through
{
Xj
K(t) : t ∈ [(j − 1)a, ja], 1 ≤ j ≤ K

}
.

Based on the previous exposition and following an analogous development as
it is shown in [4], the approximate random power series solution centered at
the point tj−1 is constructed on the interval [(j − 1)a, ja] as follows

Xj
K(t) =

∑
n≥0

Xj
n(t− tj−1)n, tj−1 = (j − 1)a, 1 ≤ j ≤ K, (3)

where coefficients Xj
n satisfy the following recurrence relationship:

Xj
2 = −Atj−1X

j
0

2
,

Xj
n+2 = −

A
(
Xj
n−1 + tj−1X

j
n

)
(n+ 2)(n+ 1)

, n ≥ 1, 1 ≤ j ≤ K,

(4)

for given initial conditions Xj
0 and Xj

1 . These coefficients become those given
in expression (17) in [4] when K = 1 (and so j = K = 1). Note that fixed
a value j: 1 ≤ j ≤ K, recurrence (4) starts from Xj

0 = Xj−1
K (tj−1) and

Xj
1 = Ẋj−1

K (tj−1). Setting a truncation order of series (3), say N , one obtains
the following approximate random power series solution on the interval [(j −
1)a, ja] which is centered at the point tj−1:

Xj
K,N(t) =

N∑
n=0

Xj
n(t− tj−1)n, tj−1 = (j − 1)a, 1 ≤ j ≤ K.
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This allows us to define the following approximation for the average of the
approximate solution stochastic process on the interval [(j − 1)a, ja]:

E
[
Xj
K,N(t)

]
=

N∑
n=0

E
[
Xj
n

]
(t− tj−1)n, tj−1 =(j − 1)a, 1 ≤ j ≤ K. (5)

In order to compute an approximation of the variance, we must take into
account that

Var
[
Xj
K,N(t)

]
= E

[(
Xj
K,N(t)

)2]
−
(
E
[
Xj
K,N(t)

])2
, (6)

together with

E
[(
Xj
K,N(t)

)2]
=

N∑
n=0

E
[(
Xj
n)
)2]

(t− tj−1)2n

+ 2
N∑
n=1

n−1∑
m=0

E
[
Xj
nX

j
m

]
(t− tj−1)n+m, 1 ≤ j ≤ K.

In this way, approximate average and standard deviation functions of piecewise
random power series XK(t) are defined. In the following these approximations
will be denoted by µF

XK,N
(t) and σF

XK,N
(t), respectively.

3 Applying the polynomial chaos method

This section is concerned to introduce the polynomial chaos method includ-
ing its application to construct an approximate solution stochastic process to
problem (1). Henceforth we shall assume that coefficient A is a random vari-
able (r.v.) defined on a sample space Ω of certain probability space (Ω,F , P )
[13, part I]. Thus, r.v. A depends on an outcome ω ∈ Ω, i.e., A = A(ω). As a
consequence the solution X(t) = X(t;ω) to problem (1) becomes a stochastic
process (s.p.).

Polynomial chaos method was firstly introduced by N. Wiener who called it
the homogeneous chaos [14]. In this context, if L2 denotes the set of all r.v.’s
χ whose statistical second-order moments with respect to the origin are finite,
i.e., r.v.’s such that 〈χ2〉 < +∞ (and as a consequence its variance is also
finite) then every χ ∈ L2 can be represented in the form

χ(ω) = χ0H0 +
∞∑
i1=1

χi1H1(ξi1(ω)) +
∞∑
i1=1

i1∑
i2=1

χi1i2H2(ξi1(ω), ξi2(ω))

+
∞∑
i1=1

i1∑
i2=1

i2∑
i3=1

χi1i2i3H3(ξi1(ω), ξi2(ω), ξi3(ω)) + · · · .
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In this representation, Hn = Hn(ξ) are Hermite polynomials in terms of vector
ξT = (ξi1 , . . . , ξin) whose components are n independent standard Gaussian
r.v.’s. An explicit formula to generate these polynomials is given by

Hn(ξi1(ω), . . . , ξin(ω)) = exp
(

1

2
ξTξ

)
(−1)n

∂n

∂ξi1 · · · ∂ξin

(
−1

2
ξTξ

)
.

Hn(·) is usually referred to as the n-th order homogeneous chaos. As a conse-
quence, the two first terms in the representation (7) related to H0 and H1 can
be interpreted as the Gaussian part of r.v. χ. For convenience, this represen-
tation can be arranged through certain polynomials basis {Φi} as

χ(ω) =
∞∑
i=0

χiΦi(ξ(ω)), (7)

since there is a one-to-one correspondence between Φi(·) and Hi(·). The num-
ber of the r.v.’s in ξ represents the dimension of the chaos. {Φi} constitutes
a complete set of statistically orthogonal s.p.’s of the Hilbert space L2 with
respect to the inner product, i.e., 〈Φi,Φj〉 = δij 〈Φi,Φi〉, where 〈·〉 denotes the
following average

〈f(ξ), g(ξ)〉 =
∫
Rn
f(ξ)g(ξ)W (ξ) dξ,

W (ξ) =
1√

(2π)n
exp

(
−1

2
ξTξ

)
,

(8)

and δij is Kronecker delta function. In addition, for i ≥ 1 these polynomials are
centered at the origin, i.e., 〈Φi〉 = 0, i ≥ 1, and Φ0 = 1. As a consequence, from
(7) expectation and variance of r.v. χ can be computed in terms of coefficients
χi in the following way

〈χ(ω)〉 = χ0, Var [χ(ω)] =
∞∑
i=1

(χi)
2
〈
(Φi(ξ(ω)))2

〉
, (9)

see [15] for further details.

In the operational practice, the infinite summation (7) needs to be truncated
at a finite term, say P . In our case, this leads to the following expansion of
both, input r.v. A(ω) and solution s.p. X(t;ω)

A(ω) =
P∑
i=0

AiΦi(ξ(ω)), X(t;ω) =
P∑
i=0

Xi(t)Φi(ξ(ω)). (10)

In these expansions, the total number of terms is P + 1. This value is fixed
by the dimension of the chaos, i.e., n (the number of components of vector
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ξ) and the highest order p of the polynomial basis {Φi} in the following way:
P+1 = (n+p)!/(n!p!). Since we are going to consider A as the only input r.v. in
problem (1), we will take n = 1, so p = P . In practice, the value of truncation
index P is obtained after observing the stabilization of numerical solution.
Only as an illustrative example, if we fix p = 4, then this implies that r.v. A
is going to be expanded by means of the one-dimensional polynomial chaos
whose functionals {Φi} are just the Hermite polynomials of degree 0, 1, . . . , 4
which depend on r.v. ξ1 (see Table 1). In this particular case P = 4 in the
spectral representation given by (10).

i p, order of the polynomial chaos i-th polynomial chaos Φi

〈
(Φi)

2
〉

0 p = 0 1 1

1 p = 1 ξ1 1

2 p = 2 (ξ1)
2 − 1 2

3 p = 3 (ξ1)
3 − 3ξ1 6

4 p = 4 (ξ1)
4 − 6 (ξ1)

2 + 3 24

Table 1
One-dimensional polynomial chaoses and their variances for n = 1 (excerpted from
table 2.1. [15, p.52]).

Now, we are ready to explain how the polynomial chaos operational method-
ology works in model (1). Firstly, we impose that truncated polynomial chaos
series given by (10) satisfies random Airy differential equation (1)

P∑
i=0

Ẍi(t)Φi(ξ1(ω)) + t
P∑
i=0

P∑
j=0

AiXj(t)Φi(ξ1(ω))Φj(ξ1(ω)) = 0.

A Galerkin projection of previous equation onto each polynomial basis {Φi}
is then conducted in order to ensure the error is orthogonal to the functional
space spanned by the finite-dimensional basis {Φi}

P∑
i=0

Ẍi(t) 〈Φi(ξ1(ω)),Φl(ξ1(ω))〉

+t
P∑
i=0

P∑
j=0

AiXj(t) 〈Φi(ξ1(ω))Φj(ξ1(ω)),Φl(ξ1(ω))〉 = 0, l = 0, 1, . . . , P.

Now taking advantage of orthogonality properties of polynomial basis {Φi},
one obtains the following coupled second-order system of deterministic differ-
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ential equations

Ẍl(t) = − t

el

P∑
i=0

P∑
j=0

eijlAiXj(t), l = 0, 1, . . . , P, (11)

where

eijl = 〈Φi(ξ1(ω))Φj(ξ1(ω)),Φl(ξ1(ω))〉 , 0 ≤ i, j, l ≤ P,

el =
〈
(Φl(ξ1(ω)))2

〉
, Ai =

〈A,Φi(ξ1(ω))〉〈
(Φi(ξ1(ω)))2

〉 , l, i = 0, 1, . . . , P. (12)

Note that coefficients el and eijl can be computed directly from expression
(8). More precisely, in the illustrative case previously introduced where n = 1,
p = 4, to compute coefficients el and eijl, we just need to use expression (8)
and the two last columns of Table 1. In the significant case where A is also a
Gaussian r.v., coefficients Ai can still be computed in the same way that el and
eijl. Whereas if A is a non-Gaussian r.v., the computation of the numerator of
coefficients Ai requires that both involved r.v.’s, A and ξ1, to be transformed to
the same uniformly distributed r.v. u using the inverse transformation method.
This can be made as follows

〈A,Φi(ξ1(ω))〉 =
∫ 1

0
F−1A (u)Φi(F

−1
ξ1

(u)) du, i = 0, 1, . . . , P, (13)

where F−1A (·) and F−1ξ1
(·) denote the inverse probability distribution functions

of r.v.’s A and ξ1, respectively.

4 Comparing the modified random Fröbenius method with respect
to other techniques: An illustrative example

This section is addressed to compare the modified random Fröbenius method
presented in Section 2 with respect to other available methods. On the one
hand, as we have explained in Section 1, we have selected the random Airy
differential equation to conduct this comparative study because it has highly
oscillating solutions, so it is expected to be an adequate model capable to show
discrepancies between the different methods. On the other hand, a random
variable with unbounded domain is going to be considered to play the role of
coefficient A in model (1) in order to require the truncation of its codomain
to deal with random Fröbenius method. This will allow us to show better the
differences between the considered approaches including polynomial chaos and
Monte Carlo methods [16]. Specifically, this numerical comparative study will
be made computing approximations of the average and standard deviation
functions of the solution s.p. to problem (1).
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From (11), note that we first need to compute coefficients el, eijl and Ai. As
we have already pointed out, coefficients el and eijl do not depend on r.v. A,
therefore these computations can be stored for reusability with independence
of the involved r.v. A. Note also that coefficients Ai given by (12) neither
depend on the form of the random differential equation to be solved nor the
initial conditions.

Let us assume the frequent case where A is a Gaussian r.v. with mean µA
and standard deviation σA > 0, i.e., A ∼ N(µA;σA). Taking into account
that A can be written as A = µA + σAξ1, ξ1 ∼ N(0; 1), then from (12) it is
straightforward to see that

A0 = µA, A1 = σA, Ai = 0, i = 2, 3, 4, . . . , P.

In the context of the illustrative example above introduced, that is, for n = 1,
p = P = 4, the deterministic coupled linear differential system (11) becomes

Ẍ0(t) = −t (µAX0(t) + σAX1(t)) ,

Ẍ1(t) = −t (σAX0(t) + µAX1(t) + 2σAX2(t)) ,

Ẍ2(t) = − t
2

(2σAX1(t) + 2µAX2(t) + 6σAX3(t)) ,

Ẍ3(t) = − t
6

(6σAX2(t) + 6µAX3(t) + 24σAX4(t)) ,

Ẍ4(t) = − t

24
(24σAX3(t) + 24µAX4(t)) .


(14)

In order to establish the corresponding initial conditions, let us assume that
Y0 ∼ N(µY0 ;σY0) and Y1 ∼ N(µY1 ;σY1), hence Y0 = µY0 + σY0ξ1, Y1 = µY1 +
σY1ξ1. We now multiply by Φi, 0 ≤ i ≤ P expression (10) for X(t;ω) and
Ẋ(t;ω) with t = 0. Then we apply the expectation operator and finally we
take advantage of orthogonality of polynomial basis {Φi}, thus we obtain:

X0(0) = µY0 ; X1(0) = σY0 ; Xi(0) = 0, i = 2, 3, . . . , P,

Ẋ0(0) = µY1 ; Ẋ1(0) = σY1 ; Ẋi(0) = 0, i = 2, 3, . . . , P.

 (15)

Since we are just interested in comparing piecewise random Fröbenius method
with respect to other approaches considering the case that random input A
has codomain unbounded, for readability, we have taken deterministic initial
conditions: Y0 = 3 and Y1 = 1 (then µY0 = 3, µY1 = 1, σY0 = σY1 = 0) and
A ∼ N(µA = 2;σA = 0.5). For computations, we have taken [−6, 10] as the
censured interval for random variable A, in order to apply random Fröbenius
method.
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Tables 2 and 3 collect, respectively, the numerical approximations at several
points for the average (µ) and standard deviation (σ) by using the following
techniques: random Fröbenius approach and its piecewise modification intro-
duced in Section 2, Monte Carlo simulations and polynomial chaos method.
Columns µF

XN
(t) and σF

XN
(t) have been computed by applying the random

Fröbenius method with truncation order N . Columns µF
XK,N

(t) and σF
XK,N

(t)
have been computed by applying the piecewise random Fröbenius method
with truncation order N and splitting interval [0, 5] into K subintervals of the
same length. Note that expressions (5)–(7) have been used to deal with com-
putations. Columns µMC

Xm
(t) and σMC

Xm
(t) have been obtained by applying Monte

Carlo technique with m simulations and, finally, columns µpc
XP

(t), σpc
XP

(t) have
been calculated by formulae (9), respectively, following the polynomial chaos
approach previously presented. In the column 2, for both, random Fröbenius
methods of order N and {N,K}, respectively, and also for polynomial chaos
of degree P (last column), these numerical computations have been performed
until they have reached the stabilization of six significative digits of the nu-
merical values with respect to N and P . Mathematica c© instruction NDSolve
has been used to obtain a numerical solution of the corresponding analogous
systems to (14) together with the initial conditions (15). In accordance with
Tables 2 and 3, at this point, we stress that in order to obtain the numerical
stabilization of average, a nonlinear coupled system like (14) but with seven
equations have been solved while the corresponding one for the standard de-
viation has thirteen equations.

t µFX69
(t), µFX2,35

(t), µFX5,17
(t) µFX200,4

(t)
µMC
Xm

(t)

m = 100 000
µpcX6

(t)

0.00 3.00000 3.00000 3.00000 3.00000

1.00 2.91023 2.91023 2.90932 2.91023

2.00 −1.22508 −1.22508 −1.228 −1.22508

3.00 −0.759985 −0.759962 −0.755933 −0.759985

4.00 1.07227 1.07223 1.06919 1.07227

5.00 −0.705977 −0.705934 −0.702016 −0.705977

Table 2
Comparison of the average by using random Fröbenius method, piecewise random
Fröbenius method, Monte Carlo simulations and polynomial chaos approach for
A ∼ N(µA = 2;σA = 0.5), Y0 = 3 and Y1 = 1.

From the previous example, we have observed that both versions of random
Fröbenius method as well as polynomial chaos technique achieve stabilization
of the numerical results. We underline that by increasing the number K of
subintervals associated to the piecewise random Fröbenius method, we can re-
duce the degree N of the approximate finite series, which is just a polynomial.
In practice, the smaller is the degree N of the polynomial, the lower will be
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t σFX63
(t), σFX2,32

(t), σFX5,17
(t) σFX200,4

(t)
σMC
Xm

(t)

m = 100000
σpcX12

(t)

0.00 0 0 0 0

1.00 0.256018 0.25602 0.255866 0.256018

2.00 0.816923 0.81692 0.815421 0.816923

3.00 1.19504 1.19504 1.19562 1.19504

4.00 1.18406 1.18404 1.18305 1.18406

5.00 1.39934 1.39927 1.38065 1.39934

Table 3
Comparison of the standard deviation by using random Fröbenius method, piecewise
random Fröbenius method, Monte Carlo simulations and polynomial chaos approach
for A ∼ N(µA = 2;σA = 0.5), Y0 = 3 and Y1 = 1.

the computational cost. However, this cost will increase as the number K of
subintervals raise. Comments in this issue are added later.

From a computational standpoint, unlike what happens in the deterministic
scenario, piecewise random Fröbenius method carries out more computational
time than random Fröbenius method. This is expected because splitting of the
whole domain into subintervals entails a considerable increase of the involved
algebraic expressions to be handled in order to deals with average and standard
deviation functions.

In practice, a balance between K and N must be sought. In our case, we
found that timing until numerical stabilization was less by applying ran-
dom Fröbenius method (corresponding to N = 69), while computations by
polynomial chaos (P = 6) and piecewise random Fröbenius method (with
K = 5, N = 17) were similar.

As the numerical approximations obtained by the differential approaches prac-
tically coincide, for the sake of clarity in the presentation, Figure 1 shows av-
erage (given by X0(t)) and standard deviation (denoted by σX(t)) approxima-
tions on the interval [0, 5]. Note that the standard deviation shape is justified
by the oscillatory behavior of the average.

Fig. 1. Representation of mean approximation X0(t) (left) and standard de-
viation approximation σX(t) (right) on the interval [0, 5] in the case that
A ∼ N(µA = 2;σA = 0.5), Y0 = 3 and Y1 = 1.
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5 Conclusions

Based on the results obtained by some of the authors through a piecewise
Fröbenius method in the deterministic case [6,7], in this paper we have ex-
plored whether we can also take advantage of this approach by extending it
to the random scenario. For this study, we have chosen the Airy differential
equation because in the deterministic framework their solutions are highly
oscillatory. Thus, it seems to be a good example to test the quality of this
piecewise random Fröbenius method, and compare it with respect to other
techniques commonly used in the study of random differential equations, in-
cluding the polynomial chaos method.

The formulation in the random framework of the piecewise random Fröbenius
method has taken as a starting point a previous paper by some of the authors
[4]. In that former contribution, the input random variable A was assumed
to satisfy condition (2). Note that a flexible and wide family of random vari-
ables satisfying this condition is defined by random variables having bounded
codomain. Otherwise, truncation method allows us to deal with unbounded
random variables, although in this case a loss of the quality of the approxima-
tions is expected. As we want also to consider this feature, we have chosen a
Gaussian random variable to play the role of the random input A.

As a remarkable difference with respect to it occurs in the deterministic case,
and based on the illustrative example that we have considered, we realized
that piecewise random Fröbenius method requires more computational time
than its former version developed in [4]. With respect to piecewise random
Fröbenius method and polynomial chaos are concerned, we have seen that
both require similar computational time whenever an appropriate balance be-
tween parameters {N,K} is kept. Although being one of the most popular
methods to deal with random differential equations, in this example Monte
Carlo technique is not competitive with both random Fröbenius and polyno-
mial chaos approaches. This feature is highlighted in our test example likely
due to the highly oscillatory behavior of the solutions.

Although it is not the case for the study of random Airy differential equation
(1), the mean square analyticity of the coefficients is, in general, demanded in
order to apply random Fröbenius method. Nevertheless, we want to stress that
useful characterizations of m.s. analyticity can be found in terms of correlation
function [5, p.99]. We point out that another significant advantage of Fröbenius
method with respect to polynomial chaos, is that Fröbenius method provides
us a series representation of the solution stochastic process directly in terms of
the random input, say A, rather than in function of standard Gaussian random
variables which constitutes the cornerstone of the homogeneous polynomial
chaos type-representation. This feature can become of prime importance in
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order to deduce, for instance, the true statistical distribution of the solution
stochastic process.
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