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Abstract

Let T denote the class of finite groups in which normality is a transitive relation.
Let F be a formation of full characteristic such that any subgroup of any T -group
in F belongs to F. A subgroup M of a group G is said to be F-normal in G if
G/CoreG(M) belongs to F. Named after Kegel, a subgroup U of a group G is
called a K − F-subnormal subgroup of G if either U = G or there is a chain
of subgroups U = U0 ≤ U1 ≤ . . . ≤ Un = G such that Ui−1 is either normal
in Ui or Ui−1 is F-normal in Ui, for i = 1, 2, . . . , n. We call a finite group G a
TF-group if every K − F-subnormal subgroup of G is normal in G. When F is
the class of all finite nilpotent groups, the TF-groups are precisely the T -groups.
The aim of this paper is to analyse the structure of the TF-groups and show
that in many cases TF is much more restrictive than T .
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1. Introduction and Statements of Results

All groups considered in this paper are finite.
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1.1. T -groups

A group G is said to be a T -group if every subnormal subgroup of G is
normal in G. The study of this class of groups has constituted a fruitful topic in
group theory. The classical works by Gaschütz [5] and Robinson [8], for instance,
reveal a very detailed picture of such groups. It is clear from the definition that
a nilpotent group G is a T -group if and only if every subgroup of G is normal
in G; that is, G is a Dedekind group. More generally, Gaschütz proved the
following result:

Theorem A (Gaschütz [5]). Let G be a finite group with GN the nilpotent
residual of G. Then G is a soluble T -group if and only if the following conditions
hold:

(i) GN is a normal abelian Hall subgroup of G with odd order;

(ii) G/GN is a Dedekind group;

(iii) Every subgroup of GN is normal in G.

The following result due to Robinson [9, Theorem 4.1] characterises the
non-soluble T -groups. Note that in the below result D can be taken to be the
soluble residual of the group G. Also, a group G satisfies the condition Tp
if, for all soluble normal subgroups N of G, the elements of G induce power
automorphisms in every G-invariant p-subgroup of G/N of nilpotent class less
than or equal to two.

Theorem B (Robinson [9]). A group G is a T -group if and only if it has a
perfect normal subgroup D such that:

(i) G/D is a soluble T -group;

(ii) D/Z(D) = U1/Z(D)×. . .×Uk/Z(D) where Ui/Z(D) is non-abelian simple
and Ui is normal in G;

(iii) if {i1, i2, . . . , ir} ⊆ {1, 2, . . . , k}, where 0 ≤ r < k, the group G/U ′i1 . . . U
′
ir

satisfies Tp for all primes p dividing the order of Z(D).

Another characterisation of the soluble T -groups, due independently to Peng
[7] and Robinson [8], characterises them in terms of the subgroup embedding
property of pronormality.

Theorem C (Peng [7], Robinson [8]). A group G is a soluble T -group if and
only if every subgroup of prime power order is pronormal in G.

1.2. Extensions of subnormality and pronormality

It is abundantly clear that subgroup embedding properties, such as pronor-
mality and subnormality, play an important role in elucidating the structure of
a group. Hall considered the subnormal subgroups to be the bare bones of a
group, since they are precisely those subgroups which occur as terms of com-
position series, whose factors are crucial in describing the structure of a group.
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Pronormality is important when families of conjugate subgroups which remain
conjugate in intermediate subgroups are considered, and was introduced by Hall
(see [2, I; 6.1]). In some sense these properties are diametrically opposite. In
fact the normal subgroups are exactly the subgroups which are pronormal and
subnormal.

Working within the framework of formation theory, and motivated by the
theory of F-normalizers, F a saturated formation of full characteristic, developed
by Carter and Hawkes (see [1] and [2]), one may extend many classical embed-
ding properties for a subgroup in a group such as subnormality or pronormality
to an arbitrary saturated formation, and most of the results concerning these
embedding properties can be read off by specializing to the case where F is the
class of nilpotent groups. Let us now introduce extensions of subnormality and
pronormality.

Let F be a formation. A subgroup M of a group G is said to be F-normal in
G if G/CoreG(M) belongs to F.1 It is clear that M is F-normal if and only if GF,
the F-residual of G, is contained in M . Kegel (see [1, 6; 6.1.4]) introduced an
extension of subnormality which has come to be known as K −F-subnormality.

Definition 1. A subgroup U of a group G is called a K−F-subnormal subgroup
of G if either U = G or there is a chain of subgroups

U = U0 ≤ U1 ≤ . . . ≤ Un = G

such that either Ui−1 is normal in Ui or Ui−1 is F-normal in Ui, for i =
1, 2, . . . , n.

It is rather clear that the subnormal subgroups of a group G are exactly the
K−N-subnormal subgroups. K−F-subnormality has been extensively studied
with many results obtained (see [1, chapter 6]).

On the other hand, the second author ([3]) and, independently, Müller, in his
Diplomarbeit supervised by Doerk ([6]), extended the property of pronormality
of a subgroup of a soluble group to F-pronormality, where F is a subgroup-
closed saturated formation of full characteristic, and explored some connec-
tions between F-pronormality and F-subnormality. (Because F-subnormality
coincides with K − F-subnormality in the soluble universe and we use K − F-
subnormality for nonsoluble groups here, we will present our results in terms of
K − F-subnormality.) F-bases, which are an extension of the Hall systems of
soluble groups, play an important role in their approach. Outside of solubility,
it is not possible to use F-bases and so an alternative definition, first put forward
by Müller, is required.

Definition 2. Let G be a group and U a subgroup of G. Then U is said to
be F-pronormal in G if, for each g ∈ G, there exists x ∈ 〈U,Ug〉F such that
Ux = Ug.

1Note that in other references, F-normality is defined in a slightly different way.

3



Assume that U is a pronormal subgroup of G; then UXN is a normal sub-
group of X = 〈U,Ug〉 for all g ∈ G. Hence X = UXN and so U and Ug are
conjugate in XN . Hence U is pronormal in G if and only if for all g ∈ G,
U and Ug are conjugate in 〈U,Ug〉N . Thus the above definition is a natu-
ral one as the N-pronormal subgroups are precisely the pronormal ones. Note
that the F-projectors associated to saturated formations are typical examples
of F-pronormal subgroups in the category of all soluble groups.

1.3. Statements of results

The theory of K − F-subnormality and F-pronormality is usually defined
only for subgroup-closed saturated formations. However, we can make do with
a somewhat weaker assumption. Suppose F is a formation that contains the
class of all nilpotent groups, and has the property that if H ≤ G ∈ T ∩ F,
then H ∈ F. Then we say F possesses Property ∗∗. Of course any subgroup-
closed saturated formation that contains the class of nilpotent groups will have
Property ∗∗.

Bearing in mind the above discussion on T -groups and K −F-subnormality,
the following class of groups naturally arises:

Definition 3. A group G is said to be a TF-group if every K − F-subnormal
subgroup of G is normal in G.

It is clear that every subnormal subgroup is K−F-subnormal and so TF is a
class of T -groups. Moreover TN = T . However, in many cases TF is much more
restrictive. For instance every soluble T -group is supersoluble, whereas a soluble
TU-group, where U is the formation of all supersoluble groups, is a Dedekind
group. To describe each TF fully, we need first to analyse some properties of TF-
groups. We begin to do this by taking the characterisation of soluble T -groups
due to Peng and Robinson into account – it seems natural to look for a similar
characterisation of TF-groups using F-pronormal subgroups. This was already
done by the second author when F is soluble and subgroup-closed ([4, Theorem
1]). Our first major result analyses a more general case.

Theorem 1. Let G be a group and F be a formation with Property ∗∗. The
following statements are pairwise equivalent:

(i) G is a soluble TF-group.

(ii) Every subgroup of G is F-pronormal in G.

(iii) Every subgroup of G of prime power order is F-pronormal in G.

Corollary 1. For each F with Property ∗∗, the class of soluble TF-groups is
subgroup-closed.

Now let p and q be primes, and let XF be the class of non-abelian groups of
order pq that are elements of F, and let YF be the class of non-abelian simple
groups that are elements of F.

4



Definition 4. A group G is said to be an RF-group if G is a T -group and

(i) No section of G/GS is isomorphic to an element of XF.

(ii) No chief factor of GS is isomorphic to an element of YF.

We use this definition to characterise TF in our second main result.

Theorem 2. If G is a group and F has Property ∗∗, then G ∈ TF if and only
if G ∈ RF.

Corollary 2. Assume F1 and F2 are two formations with Property ∗∗. Then
TF2

is contained in TF1
if and only if XF1

is contained in XF2
and YF1

is
contained in YF2

Corollary 3. If F has Property ∗∗, TF = TN if and only if XF is empty.

With Theorem A in mind it is only natural to ask if a natural extension of
this result for TF-groups would be:

Let G be a finite group with GF the F-residual of G. Then G is a
soluble TF-group if and only if GF is a normal abelian Hall subgroup
of G with odd order, G/GF is a Dedekind group, and every subgroup
of GF is normal in G.

However it is not true in general as the following example shows:

Example 1. Let F be a saturated formation with the following canonical local
definition: F (7) = S2,7, the class of all soluble {2, 7}-groups and F (p) = S the
class of all soluble groups for all primes p 6= 7. Then it is clear that N ⊆ F. The
cyclic group of order 6 has an irreducible and faithful module V over GF (7) of
dimension 1. Let G be the corresponding semidirect product. It is clear that G
is a T -group. Note that G is not an F-group and GF = V . Denote by H a Sylow
2-subgroup of G. It is easy to check that H is a K − F-subnormal subgroup of
G which is not normal. Hence G satisfies the above conditions and it is not a
TF-group.

Modifying the conditions slightly, we obtain a Gaschütz type characterisation
of soluble TF-groups.

Theorem 3. Let G be a group and F have Property ∗∗. Then G is a soluble
TF-group if and only if the following conditions hold:

(i) GF is a normal abelian Hall subgroup of G with odd order;

(ii) X/XF is a Dedekind group for every X ≤ G;

(iii) Every subgroup of GF is normal in G.
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2. Preliminaries

The main properties of K−F-subnormal subgroups are listed in the following
result; the proofs if G is arbitrary and F is subgroup-closed are contained in the
results cited. Hence here we supply a proof only of the last result, in the case
where G ∈ T and we assume only that F has Property ∗∗. This is the only place
that the proofs differ from those of the original results.

Lemma 1. [1, 6; 6.1.6, 6.1.7 and 6.1.9] Let G be a group and F be a formation
containing the class of nilpotent groups such that either F is subgroup-closed or
G is in T and F has Property ∗∗.

(i) If H is K −F-subnormal in L and L is K −F-subnormal in G, then H is
K − F-subnormal in G.

(ii) If N is a normal subgroup of G and U/N is K − F-subnormal in G/N ,
then U is K − F-subnormal in G.

(iii) If H is K − F-subnormal in G and N is a normal subgroup of G, then
HN/N is K − F-subnormal in G/N .

(iv) If H is a subgroup of G with GF ≤ H, then H is K − F-subnormal in
G. In particular, if G is an F-group, then every subgroup of G is K − F-
subnormal in G. Hence if G is in F and TF, it is Dedekind.

Proof. We establish (iv), assuming G is a T -group and F has Property ∗∗.
Suppose G ∈ F. Then for any subgroup V of G, by assumption V ∈ F, so
V F = 1. Hence if U ≤ V ≤ G, U is F-normal in V . This implies that if H ≤ G,
H is K-F-subnormal in G, establishing the particular case. More generally,
because G ∈ T , G/GF ∈ T ∩ F, so if GF ≤ H, then H/GF is K-F-subnormal in
the F-group G/GF. The result follows from Assertion (ii).

Note that by applying Lemma 1(ii), we have that TF is closed under epimor-
phic images.

To prove Theorems 1 and 2, we will use the following result.

Lemma 2. Suppose F is a formation that contains all nilpotent groups and has
Property ∗∗.

(i) If G ∈ RF and N is normal in G, then G/N ∈ RF; i.e., RF is closed
under epimorphic images.

(ii) If G ∈ RF and G ∈ F, then G is Dedekind.

(iii) If G ∈ S and G ∈ TF, then G ∈ RF.

Proof. For (i), let G ∈ RF, and let K be a normal subgroup of G. Then
(G/K)S = GSK/K, so (G/K)/(G/K)S = (G/K)/(GSK/K) is isomorphic to
G/GSK, which is an epimorphic image of G/GS, and therefore has no section
that is an element of XF. Similarly, GSK/K is isomorphic to an epimorphic
image of GS, so it has no chief factor that is an element of YF.
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For (ii), we use induction on |G|. Let G be a non-Dedekind group of minimal
order in F∩RF. Suppose N is a minimal normal subgroup of G. Hence G/N ∈ F,
and G/N ∈ RF by (i) above. Thus G/N is Dedekind by minimality of G. Thus if
N ∩GS = 1, then N is isomorphic to a subgroup of G/GS and must be abelian.
This means that if N is non-abelian, N ≤ GS. Furthermore, since G is a T -
group, N is non-abelian simple, so it is a chief factor of GS. However, G ∈ T ∩F,
so N ∈ F by Property ∗∗. This contradicts the assumption that G ∈ RF. Thus
N must be abelian; since G is a T -group, N is of prime order, p, and also G
is soluble, so GS = 1. If N is central in G, then G is nilpotent and therefore
Dedekind since it is a T -group, so we may assume N is not central. Being of
prime order and normal in G, N will be central in any Sylow p-subgroup of G, so
there exists a prime q different from p and a Sylow q-subgroup Q of G that does
not centralise N . Because the automorphism group of N is cyclic, QN/CQ(N)
is a non-abelian group of order pq. Note that QN ∈ F by Property ∗∗, so
QN/CQ(N) is also, contradicting the assumption that G ∈ RF and establishing
the result.

For (iii), we again use induction on |G|, beginning with a soluble G of min-
imal order in TF \ RF. Let N be minimal normal in G. Then G/N ∈ TF, so
G/N ∈ RF by minimality of G. Because G is a T -group, N is of prime order.
There must be a section A/B of G that is non-abelian of order pq with normal
subgroup of order p, where p and q are primes, with A/B ∈ F. Note that the fol-
lowing quotient groups are isomorphic: AN/BN , A/A∩BN , and A/B(A∩N).
Since G/N ∈ RF, A∩N > 1. Hence N ≤ A. But if N ≤ B, AN/BN = A/B, a
contradiction. Thus B ∩N = 1, BN/B is the unique nontrivial proper normal
subgroup in A/B, and |N | = p. Hence every minimal normal subgroup of G is
of order p. Note that if G is nilpotent, it is in RF; hence GN > 1, and since G
is a soluble T -group, every subgroup of GN is normal in G by Theorem A(iii),
and GN is an abelian Hall subgroup of G by Theorem A(i). This implies that
GN = P is a Sylow p-subgroup of G. Now if B ∩ P > 1, since every subgroup
of P = GN is normal in G, B ∩ P , and therefore B, contains some minimal
normal subgroup of G, a contradiction. Hence B and P are of relatively prime
order. Then since |A/B| = pq, p2 does not divide |A|, so A cannot contain
more than one normal subgroup of order p. Hence G has a unique minimal
normal subgroup N , so P is cyclic. Note that AP is normal in G because G/P
is Dedekind, so AP is in TF, and A/B is a section of AP , so by minimality of
G, G = AP . Note that if P = N , then G = A, so A/B is in TF and in F; hence
A/B is Dedekind, a contradiction. Therefore, P > N and Φ(P ) > 1. Now let
Q be a Sylow p-subgroup of A. Then QP is normal in G because it contains
P , so QP ∈ TF, and therefore QP/Φ(P ) ∈ TF. Then by minimality of G,
QP/Φ(P ) ∈ RF, implying ((QΦ(P )/Φ(P ))(P/Φ(P )))/C(QΦ(P )/Φ(P ))(P/Φ(P ))
is not of order pqi for i > 0. Hence Q centralises P/Φ(P ), so that Q centralises
P , and Q centralises N . But A = BQN , so A/B is nilpotent, a contradiction
establishing the result.

We collect now some properties of F-pronormal subgroups which are par-
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ticularly useful when inductive arguments are applied. All but (iv) appear in
[6].

Lemma 3. Let U be a subgroup of a group G and let F be a formation.

(i) If U ≤ H and U is F-pronormal in G, then U is F-pronormal in H.

(ii) If N is a normal subgroup of G and U is F-pronormal in G, then UN/N
is F-pronormal in G/N .

(iii) If N is a normal subgroup of G and U/N is F-pronormal in G/N , then U
is F-pronormal in G.

(iv) If F has Property ∗∗, G ∈ T is an F-group, and U is F-pronormal in G,
then U is a normal subgroup of G.

Proof. (i), (ii), and (iii) follow easily from the definition. Moreover if U is F-

pronormal in G, and g ∈ G, there exists x ∈ 〈U,Ug〉F such that Ux = Ug. Since

G is a T ∩ F-group, 〈U,Ug〉 ∈ F, so 〈U,Ug〉F = 1 and Ug = U for each g ∈ G;
that is, U is a normal subgroup of G, which yields (iv).

Proposition 1. Let U be a subgroup of a group G and let N be a normal
subgroup of G such that U ≤ N ≤ G. Then if F is a formation, the following
conditions are equivalent:

(i) U is F-pronormal in G.

(ii) U is F-pronormal in N and G = NG(U)N .

Proof. Assume that U is an F-pronormal subgroup of G contained in a normal
subgroup N of G. If g ∈ G, there exists x ∈ 〈U,Ug〉F ≤ N such that Ug = Ux.
Therefore gx−1 ∈ NG(U) and hence G = NG(U)N .

To see that (ii) implies (i) consider g = xn ∈ G = NG(U)N with x ∈ NG(U)
and n ∈ N . Then Ug = Uxn = Un. On the other hand, since U is F-pronormal
in N , there exists m ∈ 〈U,Un〉F such that Un = Um. Consequently Ug = Um

and m ∈ 〈U,Un〉F = 〈U,Ug〉F; that is, U is F-pronormal in G.

3. Proofs of the main results

Proof of Theorem 1. It is clear that (ii) implies (iii). Next we show that (i)
implies (ii). Assume the contrary, and that G is a counterexample of minimum
possible order. Observe first that G ∈ T , so by Lemma 1(iv), since G/GF is
a TF-group, it is Dedekind. Thus 1 6= GF contains GN. Since it is clear that
GF ≤ GN, it follows at once that GF = GN. By Gaschütz’s characterisation of
soluble T -groups, GF is an abelian Hall subgroup of G and every subgroup of
GF is normal in G.

Let H be a non-F-pronormal subgroup of G. Suppose R = CoreG(H) > 1.
Then G/R is a TF-group, so by induction, H/R is F-pronormal in G/R, so
H is F-pronormal in G by Lemma 3(iii), a contradiction. Thus R = 1 and
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H ∩ GF = 1. Therefore H is a Hall subgroup of the normal subgroup HGF of
G. Suppose that H is F-pronormal in HGF. Then, since G = GFNG(H) by
the Frattini argument, we obtain that H is F-pronormal in G by Proposition 1.
This contradiction shows that H is not F-pronormal in the TF-group HGF and
so G = HGF = HGN by the minimal choice of G. Applying [2, IV; 5.18], H is
an N-projector of G, i.e. a Carter subgroup of G, and therefore pronormal in
G.

Suppose g ∈ G and let X =< H,Hg >. The pronormality of H in G implies
that Hg = Hx for some x ∈ X. Now XN ≤ GN is abelian and H is an N-
projector of X, so by [2, IV; 5.18], X = HXN. Note that Definition 4 easily
implies that any subgroup of a soluble member of RF is also in RF. Now by
Lemma 2(iii), G ∈ RF, so X ∈ RF. Thus by Lemma 2(i) and (ii), X/XF is
Dedekind, implying XF = XN. Hence Hx = Hy, where y ∈ XF. Thus H is
F-pronormal in G, the final contradiction.

Finally we prove that (iii) implies (i), arguing by induction on the order of G.
It is clear that every subgroup of prime power order of G is pronormal in G and
so G is a soluble T -group by Theorem C. Suppose that 1 6= GF. Then all the
subgroups of p-power order in G/GF are epimorphic images of such subgroups
in G, so they are F-pronormal by Lemma 3(ii). The induction hypothesis leads
to the conclusion that G/GF is a TF-group. It is in F, so it is Dedekind. If
H < G and H is K-F-subnormal in G, then H is K-F-subnormal in a proper
subgroup M of G, where M is either an F-normal subgroup of G or M is normal
in G. In the former case, GF ≤M . But then M/GF is normal in the Dedekind
group G/GF, so M is normal in G.

Hence H is K-F-subnormal in a proper normal subgroup M of G. Now
induction, via Lemma 3(i), yields M is a TF-group. Thus H is normal in M ,
which is normal in G, so because G is a T -group, H is normal in G. We may
suppose then that GF = 1 and so every subgroup of prime power order is normal
in G by Lemma 3(iv). Therefore G is a Dedekind group and then G ∈ TF.

Proof of Corollary 1. Applying Theorem 1 and Lemma 3(i), if H denotes a
subgroup of G, we see that every subgroup of H is F-pronormal in G and
therefore in H; hence H is a TF-group.

Proof of Theorem 2. Suppose first that G ∈ TF. Then G/GS is a soluble TF-
group, so by Lemma 2(iii), G/GS ∈ RF, and Condition (i) of Definition 4 is
satisfied. Now each normal subgroup and chief factor of a TF-group is a TF-
group, so GS and all its chief factors are in TF. Hence if any chief factor of GS

is in YF, then it is a Dedekind group, which is impossible. Thus Condition (ii)
of Definition 4 is satisfied, and G ∈ RF.

Hence we need to prove that if G ∈ RF, then G ∈ TF. Suppose not, choose
a group G of minimal possible order in RF \ TF, and let H be a subgroup of
minimal order in G such that H is K − F-subnormal in G but not normal in
G. Write R = CoreG(H). Suppose that R > 1. It follows that G/R ∈ RF by
Lemma 2(i), and G/R ∈ TF by the choice of G. As H/R is a K − F-subnormal
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subgroup of G/R by Lemma 1(iii), we have that H/R is normal in G/R, and
therefore H is normal in G, contrary to assumption. Therefore R = 1.

If G ∈ F, by Lemma 2(ii) G is Dedekind, and in TF. Thus we may assume
G is not in F, so GF > 1 and by induction, G/GF is a TF-group. Then G/GF is
Dedekind, and any subgroup of G containing GF is normal in G. Also as above,
H is K-F-subnormal in a proper normal subgroup M of G. Thus if M ∈ RF, by
induction M ∈ TF, so H is normal in M and therefore normal in the T -group
G, establishing the Theorem.

Suppose first that M is not soluble. Then MS > 1, and MS, being a
characteristic subgroup of the normal subgroup M in G, is normal in G. Hence
G/MS, which is in RF by Lemma 2(i), is in TF by assumption. Thus the normal
subgroup M/MS is also in TF, and therefore in RF. Now (M/MS)S is trivial,
so Condition (i) of the definition of RF is satisfied by M because it is satisfied
by M/MS. Also, MS is a normal subgroup of GS, which is a T -group. Then
by Theorem B, GS/Z(GS) is a direct product of non-abelian simple groups,
each of which is a chief factor of GS. Thus none of these simple groups is in
YF because G ∈ RF. Now MSZ(GS)/Z(GS) is normal in GS/Z(GS), so it is
a direct product of non-abelian simple groups that are not in YF; these groups
are its chief factors. Hence a chief series of MS/MS ∩ Z(GS) will have the
same chief factors, and a chief series of MS passing through the abelian group
MS ∩ Z(GS) will have the same non-abelian chief factors. Hence M satisfies
condition (ii) of the definition of RF, so M ∈ RF.

Now suppose M is soluble, so MS = 1 and Condition (ii) of the definition
of RF is satisfied trivially. We may assume that M is maximal with respect to
being proper and normal in G. If M ≥ GS, then GS is soluble and therefore
trivial, so G is soluble and M ∈ RF because it is a subgroup of a soluble member
of RF, and we get a contradiction as above. Thus G = MGS. Also, because G
is not soluble, G > MZ(GS), so Z(GS) ≤ M . Hence M ∩GS ≥ Z(GS). But
M ∩ GS/Z(GS) is a soluble normal subgroup of GS/Z(GS) and is therefore
trivial, so M ∩GS = Z(GS).

Then G/GS = MGS/GS is isomorphic to M/M ∩ GS = M/Z(GS). Now
[GS, GS] = GS by Theorem B, while [M,GS] ≤ M ∩ GS = Z(GS). Thus
[M,GS, GS] = 1, so by the Three Subgroups Lemma, [GS, GS,M ] = [GS,M ] =
1. Hence Z(GS) ≤ Z(G). Now consider a section A/B of M . Suppose
A ∩ Z(GS) = B ∩ Z(GS), and consider the group AZ(GS)/BZ(GS), which is
a section of M/Z(GS), which is isomorphic to G/GS. Then each of the groups
in the following sequence is isomorphic: A/B, (A/A∩Z(GS))/(B/B∩Z(GS)),
(AZ(GS)/Z(GS)/(BZ(GS)/Z(GS)), and AZ(GS)/BZ(GS). Thus A/B is
not in XF. And if A ∩ Z(GS) > B ∩ Z(GS), then A ∩ (BZ(GS)) > B, so
B(A ∩ Z(GS)) > B. But this implies that A/B has a nontrivial central sub-
group B(A ∩ Z(GS))/B, and again A/B is not in XF. Thus M ∈ RF, and the
theorem is proved.

Obviously the classes U and N satisfy Condition (ii) from Definition 4. How-
ever every non-abelian group of order pq, where p and q are primes, is an element
of U, so no such group can be a TU-group. Then clearly not every T -group is
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a TU-group. Hence Condition (i) is necessary to distinguish between different
TF’s. The following example shows that Condition (ii) cannot be dispensed with
in Theorem 2 either.

Example 2. Let S be a non-abelian simple group and let GS denote the class
of all groups G which are isomorphic to a section of a direct product of finitely
many copies of S. It is clear that GS is a subgroup-closed formation. Hence
FS = N ◦GS is a subgroup-closed saturated formation.

Assume that S1 and S2 are two different non-abelian simple groups whose
orders are divisible by the elements of the same set π of prime numbers. Let
us consider the formations FS1

and FS2
. Then each of these formations will

contain non-abelian groups of order pq, where p and q are primes and the non-
normal Sylow subgroups are of order q, for exactly those q that are elements of
π. Hence FS1

\ FS2
contains no non-abelian subgroup of order pq. Assume now

that S1 /∈ FS2
(for instance S1 = A6 and S2 = A5, the alternating groups of

degrees 6 and 5 respectively). Then S
FS2
1 = S1 and so S1 ∈ TFS2

\ TFS1
.

Proof of Corollary 3. We know TF is contained in TN, and XN and YN are
empty, so by Corollary 2 we need only prove that if XF is empty, then so is
YF. Let F be the canonical formation function defining F. If S is a non-abelian
simple group in F, let p be an odd prime dividing |S|. Then by [2, IV; 4.2],
C2 ∈ F (p), and F (p), and therefore F, contains a non-abelian group of order
2p.

Proof of Theorem 3. Assume that G is a soluble TF-group. Then G is a T -group
and so GN is an abelian Hall subgroup of odd order and every subgroup of GN

is normal in G by Gaschütz’s Theorem. Since G/GF is a Dedekind group and
GN contains GF, it follows that GN = GF and therefore G satisfies conditions
(i) and (iii). Let X be a subgroup of G. By Theorem 1, X is a TF-group, so
X/XF is Dedekind as seen above. Therefore Condition (ii) holds.

We prove that Conditions (i)-(iii) imply G is a soluble TF-group. We proceed
by induction on | G |, noting that the conditions imply that G is a soluble T -
group. Assume that GF 6= 1 and let H be a proper K − F-subnormal subgroup
of G. Now H is K-F-subnormal in a proper subgroup M of G such that M is
either F-normal in G or normal in G. If M is F-normal in G, then M contains
GF, so we know that M is normal in G by Condition (ii). Thus in either case,
we can choose M normal in G.

Now M is a T -group, and by Condition (ii), MF = MN. Hence M satisfies
Conditions (i) and (iii) because it is a T -group, and M inherits Condition (ii)
from G. Therefore M is a TF-group by minimality of G. Hence H is normal
in M and subnormal in the T -group G, so H is normal in G. Consequently we
may suppose that G ∈ F. In that case G is a Dedekind group and so G ∈ TF.
The proof of the theorem is now complete.
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