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Abstract Polynomial constraint solving plays a prominent role in several areas of

hardware and software analysis and verification, e.g., termination proving, program

invariant generation and hybrid system verification, to name a few. In this paper we

propose a new method for solving non-linear constraints based on encoding the problem

into an SMT problem considering only linear arithmetic. Unlike other existing methods,

our method focuses on proving satisfiability of the constraints rather than on proving

unsatisfiability, which is more relevant in several applications as we illustrate with

several examples. Nevertheless, we also present new techniques based on the analysis

of unsatisfiable cores that allow one to efficiently prove unsatisfiability too for a broad

class of problems. The power of our approach is demonstrated by means of extensive

experiments comparing our prototype with state-of-the-art tools on benchmarks taken

both from the academic and the industrial world.

Keywords Non-linear arithmetic · constraint solving · polynomial constraints · SAT

modulo theories · termination · system verification

1 Introduction

Polynomial constraints are ubiquitous in many areas of system analysis and verifica-

tion. They arise, for instance, when synthesizing program invariants [10,41], as well as

analyzing reachability of hybrid systems [31,40]. Another application is the generation

of measures for proving termination of symbolic programs as well as rewrite systems

(see e.g. [12,23,33,37]). In all these cases, it is paramount to have efficient automatic

tools that, given a polynomial constraint with integer or real unknowns, either return

a solution or notify that the constraint is unsatisfiable.

Unfortunately, the polynomial constraint solving problem over the integers is un-

decidable. The situation is not much better when considering the reals since, although
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the problem is decidable as it was shown for the first-order theory of real closed fields

by Tarski, using the related algorithms in practice is unfeasible due to their complexity

(see [7] for a recent account).

Therefore, all methods used in practice for both integer or real solution domains

are incomplete. There are two approaches, namely focusing on proving satisfiability or

focusing on proving unsatisfiability. In general, the decision on the approach is guided

by the kind of problem in hand. For instance, as will be seen later on, in the applications

to termination or invariant generation one is more interested in proving satisfiability,

i.e. finding solutions, whereas when verifying properties of e.g. hybrid systems one is

more concerned with proving unsatisfiability.

As methods focusing on unsatisfiability we have, among others, [36,38,44]. On the

other hand, current techniques focusing on satisfiability encode the problem into SAT

[28,19,20] or into CSP [34]. These methods, and especially the ones using SAT, are very

successfully applied in rewriting-based termination proving tools, as they outperform

the previously existing solvers [12]. Following the success of the translation into SAT, it

is reasonable to consider whether there is a better target language than propositional

logic to keep as much as possible the arithmetic structure of the source language.

Thus, in this paper we propose a new method for solving non-linear constraints based

on encoding the problem into an SMT problem over linear arithmetic.

The basic idea is to linearize the non-linear monomials we have in our constraints

by applying a case analysis on the possible values that some of the variables in the

monomial can take. For example, if we have the constraint x = y · z ∧ 0 ≤ y ≤ 2,

we can equivalently replace the non-linear equation x = y · z by the conjunction of the

following three linear clauses:

y = 0 −→ x = 0

y = 1 −→ x = z

y = 2 −→ x = 2z

On the other hand, if neither y nor z is both lower and upper bounded then we have

to introduce new bounds and hence we lose completeness.

The resulting constraint is solved using SAT modulo linear (integer or real) arith-

metic [16], i.e. satisfiability of quantifier-free boolean combinations of linear equalities,

inequalities and disequalities. An interesting feature of this approach is that, in con-

trast to SAT translations [19,20], by having linear arithmetic built into the language,

negative values can be handled without additional codification effort. Other recent tech-

niques that incorporate arithmetic natively are similar in this sense (such as [45], which

is based on bit-vector arithmetic). Another remarkable characteristic of our method is

that, although it targets satisfiability, if enough variables are bounded it also allows

one to reason about unsatisfiability, as pointed out in the example above.

Let us mention that the idea of linearization has also been considered for (non-

linear) pseudo-boolean constraints in the literature.1 However, this is a simpler case of

linearization as it coincides with polynomial constraints over the interval domain [0, 1],

where products of variables are always in [0, 1] as well.2

This paper builds on our earlier work [9] and, although for the sake of completeness

part of our results are reviewed for the rationals, we will focus here on finding solutions

1 See http://www.cril.univ-artois.fr/PB07/coding.html, the webpage of the Pseudo-
Boolean Evaluation 2007.

2 In this paper by [L,U ] we will represent the set of integers between L and U , both included.
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over the integers, since it is in this context where we have obtained new results that

show the strength of the approach. More specifically, here we:

– extend our previous results to arbitrary boolean combinations (not just conjunc-

tions) of polynomial atoms;

– describe several implementation issues that are crucial for having a good perfor-

mance in practice; and

– present a method for iterating the process of adding new bounds in a clever way,

based on the analysis of unsatisfiable cores. The benefits of this technique are

twofold: First, it allows us to increase the size of the domains incrementally on

demand. Second, as a by-product, although our method is aimed at satisfiability,

it also allows us to prove unsatisfiability in many more cases than in [9]. Although

unsatisfiable cores are already used similarly e.g. in finite model finding [42], up to

our knowledge their application in the particular context of linearizing non-linear

arithmetic constraints is new.

All in all, in contrast to the approaches based on SAT, we can incrementally consider

larger and larger bounds in an efficient way, thus getting better performance results

in number of handled problems and, in general, in execution time, and moreover

we are able to prove unsatisfiability.

Our method has been implemented inside Barcelogic [8].3 To show its power, we:

– report a comparison with different tools that can handle the problems in the

QF NIA division of SMT-LIB [5], some of which come from industrial applica-

tions (namely, from sequential equivalence checking of arithmetic circuits). It is

worth mentioning that Barcelogic won the division QF NIA of SMT-COMP [4] in

its first edition of 2009.

– report a comparison of our solver with the one used inside the termination tool

AProVE [24], based on a SAT translation. This comparison is really fair since we

have been provided with a version of the system that can use different polynomial

constraint solvers as a black box. This has given us the opportunity to compare our

solver not only with the built-in solver of AProVE, but also with the tool HySAT [17]

(note that none of them accepts SMT format).

– revise the running example in [13] to show how our solver can be used to generate

invariants. Note again that for this application, as for the previous one of ter-

mination, using an approach focusing on proving satisfiability is more convenient

since the hope is to find solutions, which provide invariants or termination proofs

respectively.

The paper is structured as follows. In Section 2 the notion of pure non-linear con-

straint, which is key in the presentation of the approach, is introduced. Next, Section 3

describes how, under certain conditions, given a (pure non-linear) constraint with in-

teger or rational variables an equisatisfiable linear formula can be produced. Section 4

is devoted to implementation issues such as how variables should be chosen for lin-

earizing the constraint, or how variables with large domains can be dealt with. The

incremental unsatisfiability-guided approach to linearization is explained in Section

5. Sections 6 and 7 illustrate and experimentally demonstrate the potential of our

technique in several application areas, namely SMT solving, termination proving and

invariant synthesis. Finally in Section 8 we give the conclusions and sketch ideas for

future work.

3 Barcelogic-NIA is available at http://www.lsi.upc.edu/~albert/barcelogic-NIA.



4

2 Pure Non-linear Constraints

The idea of the method is that, given an arbitrary polynomial constraint, an equisat-

isfiable pure non-linear constraint, to be defined in this section, can be obtained by

first normalizing the original constraint and then introducing auxiliary variables. In

Section 3 we will see how for such a constraint an equisatisfiable linearization can be

computed, which can then be tested for satisfiability with an SMT solver.

Let us first provide some formal definitions of the problems we are considering.

Definition 1 (Polynomial atom, constraint, clause, CNF) A polynomial atom

is built from relational operators ≥, > and = over arithmetic expressions built from

applying the arithmetic plus, minus and times operators over variables and numbers.

A polynomial constraint (or formula) is a boolean combination of polynomial atoms.

A clause is a polynomial constraint consisting of a disjunction of polynomial atoms or

negations of polynomial atoms. A polynomial constraint is in CNF if it is a conjunction

of clauses.

In the following, variables appearing in polynomial constraints are assumed to be

existentially quantified. Thus, the problem that is considered in this paper is, given a

polynomial constraint, find a solution for it, i.e., an assignment to variables such that

the constraint is satisfied, or determine that none exists.

Definition 2 (Monomial) A monomial is an expression vp1

1
· · · vpm

m where m > 0, vi
are variables, pi > 0 for all i ∈ {1 . . .m} and vi 6= vj for all i, j ∈ {1 . . .m}, i 6= j. The

monomial is linear if m = 1 and p1 = 1.

Note that any polynomial constraint F can be rewritten using the distributive law

into a polynomial constraint N such that all polynomials occurring in N are expressed

as a sum of (products of constants by) monomials, which is said to be in normal form.

This process is called normalization. A polynomial constraint C in normal form is said

to be linear if all monomials occurring in C are linear.

Example 1 If we want to normalize the constraint

2 · (x+ y) ≤ 0

we can apply the distributive law and get 2x+ 2y ≤ 0, which is linear. Similarly, if we

want to normalize

x · (y + y · z) ≥ 0

we can also apply the distributive law and get

x · y + x · y · z ≥ 0

In this case the above constraint is not linear.

Definition 3 (Pure non-linear constraint) A pure non-linear constraint is a for-

mula of the form

L ∧
(

∧

i

yi = Mi

)

where L is a linear constraint, yi are variables and all Mi are non-linear monomials.



5

Lemma 1 Any polynomial constraint is equisatisfiable to a pure non-linear constraint.

Proof Given a polynomial constraint F , proceed as follows:

1. Compute N a normal form of F applying the distributive law.

2. Compute C the formula obtained after replacing every non-linear monomial Mi in

N by a fresh variable yi, and finally adding
∧

i yi = Mi.

Then C is a pure non-linear constraint which is equisatisfiable to F . ⊓⊔

As usual, in the following, by non-linear arithmetic we mean polynomial arithmetic

not restricted to the linear case.

2.1 An Alternative for Generating Short Pure Non-linear Constraints

When one computes an equisatisfiable pure non-linear constraint for a given polynomial

formula, normalization using the distributive law as outlined above can be too expensive

due to the potential exponential growth in size. To prevent that, we can use the same

idea as in Tseitin’s algorithm for computing an equisatisfiable conjunctive normal form

of a propositional formula.

The idea is that instead of applying the distributive law, we can introduce a new

fresh variable replacing the sum. This way we obtain an equisatisfiable formula in an

efficient way. Let us show it in an example.

Example 2 Another way to normalize the constraint

x · (y + y · z) ≥ 0

is to introduce a fresh variable v and obtain:

x · v ≥ 0 ∧ v = y + y · z

which is in normal form.

This transformation is trivially equisatisfiable and can always be used. However in

our context, by adding a new variable without bounds, linearization, as will be shown

in the next section, may fail. Due to this, we only use this technique in two cases.

– If the rest of the variables in the monomial are bounded. In the example, if x is

lower and upper bounded.

– If we can calculate bounds for the new fresh variable and the size of the resulting

domain is not too large, since otherwise the transformation can be too expensive

as well. In the example, if y and z are lower and upper bounded and their domains

are small enough.

3 From Pure Non-linear to Linear Constraints

As said, now we will transform a given pure non-linear constraint into a problem in

SAT modulo linear arithmetic, for which fast solving techniques exist.

In the following, we assume that we have a fresh set of variables containing a

variable xM for every monomial M of the form vp1

1
· · · vpm

m that can be built out of the

variables v1, . . ., vm.

Now, we describe two transformations from pure non-linear to linear constraints.

We consider two kinds of domains: integer intervals and finite sets of rational numbers.
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3.1 Integer Intervals

First, we consider solutions over the integers. Given a polynomial constraint F , by Lx

we denote the lower bound of the variable x in F if it exists and by Ux we denote

the upper bound of the variable x in F if it exists. If both bounds exist then we

can assume without loss of generality that Ux ≥ Lx, since otherwise the constraint is

trivially unsatisfiable.

As we will see, we need enough variables with lower and upper bounds. If this is

not the case, we have to add some bounds and then, an unsatisfiability answer means

that the problem is unsatisfiable with the added bounds. In Section 5, it is shown how

to guide the introduction of bounds and sometimes still give correct unsatisfiability

answers.

Example 3 Consider the pure non-linear constraint

2xa3b − 5xcd2e ≥ 0 ∧ xa3b = a3 · b ∧ xcd2e = c · d2 · e,

with La = Lc = Ld = 0 and Ua = Uc = Ud = 2. Then, the translation can be done by

adding variable xd2e, which represents d2 · e.

Linearizing, we obtain the following equisatisfiable constraint:

2xa3b − 5xcd2e ≥ 0

a = 0 → xa3b = 0 c = 0 → xcd2e = 0 d = 0 → xd2e = 0

a = 1 → xa3b = b c = 1 → xcd2e = xd2e d = 1 → xd2e = e

a = 2 → xa3b = 8b c = 2 → xcd2e = 2xd2e d = 2 → xd2e = 4e

together with the bounds

0 ≤ a ≤ 2 0 ≤ c ≤ 2 0 ≤ d ≤ 2

In the following definition, the rules Linearization 1 and 2 remove a non-linear

equality by adding new linear formulas but without introducing new intermediate vari-

ables. In these two rules, making a case analysis on one initial variable is enough to

linearize. Finally, in rule Linearization 3 one variable of the monomial of some non-

linear equality is removed by adding a case analysis and a new equality with a monomial

containing one less variable is obtained.

Definition 4 (Linearization rules) Let C be a pure non-linear constraint. The

transformation rules are the following:

Linearization 1:

C ∧ x = vp =⇒ C ∧
∧Uv

α=Lv
(v = α → x = αp) if p > 1 and

Lv and Uv exist

Linearization 2:

C ∧ x = vp · w =⇒ C ∧
∧Uv

α=Lv
(v = α → x = αp · w) if Lv and Uv exist

Linearization 3:

C ∧ x = vp ·M =⇒ C ∧
∧Uv

α=Lv
(v = α → x = αp · xM ) if M is not linear and

∧ xM = M v does not occur in M and

Lv and Uv exist
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In the rest of this section, by normal form we mean normal forms with respect to

Linearization 1, 2 and 3 (as opposed to the notion of normal form given in Section 2):

Lemma 2 Given a pure non-linear constraint F , a normal form can be computed in

a finite number of steps.

Proof Considering the non-linear part of F , each application of these rules eliminates

a non-linear monomial and either introduces another one with one less variable (rule

3), or no other non-linear monomial is introduced (rules 1 and 2). Hence these rules

can only be applied a finite number of times. ⊓⊔

We will now show that the left and the right hand sides of every rule are equisat-

isfiable.

Lemma 3 If a pure non-linear constraint F is transformed into F ′ by one application

of Linearization 1, 2 or 3, the following statements hold:

– Soundness: If F ′ is satisfiable, then F is satisfiable.

– Completeness: If F is satisfiable, then F ′ is satisfiable.

Proof We only detail the proof for Linearization 3, since the other two rules are simpler

cases. For the sake of simplicity we use the notation given in the definition of the rule.

For soundness, let σ be a solution for the right hand side, i.e. we have that σ(C),
∧Uv

α=Lv
(σ(v) = α → σ(x) = αp · σ(xM)) and σ(xM ) = σ(M) hold. We need to

show that the left hand side is satisfiable. Since we have σ(C) by assumption, it is

enough to show σ(x) = (σ(v))p · σ(M) holds. Now, since Lv ≤ σ(v) ≤ Uv (as these

conditions are part of C), we have that
∧Uv

α=Lv
(σ(v) = α → σ(x) = αp ·σ(xM )) implies

σ(x) = (σ(v))p · σ(xM ) and hence, σ(xM ) = σ(M) allows us to conclude.

For completeness, let σ be a solution for the left hand side, i.e. σ(C) and σ(x) =

(σ(v))p · σ(M) hold. We need to show that the right hand side is satisfiable. Since by

assumption we have σ(C), it suffices to show that σ extended with σ(xM) = σ(M)

satisfies
∧Uv

α=Lv
(v = α → x = αp · xM ) and σ(xM ) = σ(M). The latter trivially holds.

As for the former, note that if σ(v) < Lv or σ(v) > Uv we are done, otherwise we need

σ(x) = (σ(v))p · σ(xM), which holds since σ(x) = (σ(v))p · σ(M) and σ(xM ) = σ(M).

Note that, if xM already exists in C, then xM = M occurs in C, and therefore σ

already fulfils σ(xM ) = σ(M) and there is no need to extend σ. ⊓⊔

Thus we get the following result:

Lemma 4 Any normal form G of a pure non-linear constraint F is equisatisfiable.

Moreover, either G is linear or there is a non-linear monomial in G in which no

variable has both a lower and an upper bound.

Proof The first claim follows from Lemma 3 by induction on the number of rule appli-

cations. The second claim is proved by analyzing the rules. ⊓⊔

As a consequence of Lemma 4, if we find a linear normal form then our transfor-

mation provides a sound and complete method for deciding non-linear constraints over

the integers. Otherwise, we have to add some upper or lower bounds in order to reach a

linear normal form, which causes incompleteness since we can only trust a satisfiability

answer. In Section 5, it is shown how we can also sometimes give correct unsatisfiability

answers.

Finally, the last result in this section shows what is the effect of the transformation

on the size of the formulas:
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Lemma 5 Let L ∧ N be a pure non-linear constraint, where L and N are its linear

and non-linear parts respectively. If F is a linear normal form of L ∧N , then F is of

the form L ∧ G, where G is a conjunction of at most O(V · K) binary clauses, V is

the number of occurrences of variables in the non-linear monomials of N and K is the

maximum cardinality of the domains of the variables involved in the linearization.

Proof Linearization rules preserve the linear part of the original formula. Moreover,

every time a variable in a non-linear monomial is chosen for linearization, at most K

binary clauses are added. Finally, following the reasoning in the proof of Lemma 2, the

number of rule applications is at most the number of occurrences of variables in the

non-linear monomials of N . ⊓⊔

3.2 Rationals as Integers

In this case, given L,U , D ∈ Z such that L ≤ U and D 6= 0, we consider the set of

rational numbers { n
D | L ≤ n ≤ U} which are obtained by fixing the denominator D

and bounding the numerator. For instance taking D = 4 and the numerator in [0, 16]

we consider all rational numbers in the set {0

4
, 1
4
, . . . , 15

4
, 16

4
}. We denote this domain

by [L,U ]/D.

Then, we simply replace any variable x by x′

D for some fresh variable x′ and elim-

inate denominators from the resulting constraint by multiplying as many times as

needed by D. As a result we obtain a constraint over the integers to be solved in the

integer interval domain of the numerator. It is straightforward to show completeness

of the transformation.

This translation turns out to be reasonably effective. The performance is similar

to the integer interval case, but depending on the size of D it works worse due to the

fact that the involved integer numbers become much larger.

We have also considered more general domains like the rational numbers expressed

by k+ n
D with 0 ≤ n < D for a bounded k and a fixed D that can also be transformed

into constraints over bounded integers. For this kind of domains, our experiments

revealed a bad trade-off between the gain in the expressiveness of the domain and the

performance of the SMT solver on the resulting constraints.

Similarly, we have studied domains of rational values of the form n
d with a bounded

numerator n and a bounded denominator d (which cannot be zero). In this case, in

order to solve the problem over the integers, every variable x is replaced by nx

dx
where

nx and dx are fresh integer variables. Due to the increase of the complexity of the

monomials after the elimination of denominators, there is an explosion in the number

of intermediate variables needed to linearize the constraint, which finally results in a

very poor performance of the linear arithmetic solver.

These kinds of domains were also considered in the context of SAT translations

in [20], where similar conclusions were drawn.

3.3 Finite Domains

Following a similar idea as for integer intervals we can handle variables with a domain

represented by a finite set of (rational) values. In this case, for every variable v that

is used to linearize the formula we have a set Sv of domain values. Then the only
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difference with respect to the approach in Section 3.1 is that the domain of the variables

is described by a disjunction of equality literals:

∨

α∈Sv

v = α

and the three Linearization rules perform a case analysis on all the values in the

domain set of the form
∧Uv

α∈Sv
(v = α → x = . . .) (instead of a case analysis as in

Definition 4 of the form
∧Uv

α=Lv
(v = α → x = . . .) ). The following example illustrates

the transformation.

Example 4 Consider the pure non-linear constraint:

3xabc − 4xcd + 2a ≥ 0 ∧ xabc = a · b · c ∧ xcd = c · d

with Sa, Sb and Sc being {0, 1
2
, 1, 2}. We have the following equisatisfiable linear con-

straint:

3xabc − 4xcd + 2a ≥ 0

a = 0 → xabc = 0 b = 0 → xbc = 0 c = 0 → xcd = 0

a = 1

2
→ 2xabc = xbc b = 1

2
→ 2xbc = c c = 1

2
→ 2xcd = d

a = 1 → xabc = xbc b = 1 → xbc = c c = 1 → xcd = d

a = 2 → xabc = 2xbc b = 2 → xbc = 2c c = 2 → xcd = 2d

together with the finite domain description

(a = 0 ∨ a = 1

2
∨ a = 1 ∨ a = 2)

(c = 0 ∨ c = 1

2
∨ c = 1 ∨ c = 2)

(b = 0 ∨ b = 1

2
∨ b = 1 ∨ b = 2)

In the experimental part of this paper we have made very limited use of this kind

of domains. However, these are quite useful in termination tools, as shown by our

experimental results in [9].

4 Implementation Issues

In this section, we present some implementation decisions we have taken when imple-

menting the general transformation rules given in previous sections that are relevant

for the performance of the SMT solver on the final formula.

4.1 Choosing Variables for Linearization

In every step of our transformation, some variable corresponding to a non-linear mono-

mial (e.g. xab2c) is treated by choosing one of the original variables in its expression

(in this case a, b or c) and fixing the value of the variable according to the different

values of the chosen original variable (for instance, a) and the appropriate intermediate

variable (in this case, xb2c), if necessary.

Both decisions, namely which non-linear expression we handle first and which orig-

inal variable we take, have an important impact on the solving process. The number of

intermediate variables and thus the number of clauses in the final formula are highly
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dependent on these decisions. Not surprisingly, in general, the performance is improved

when the number of intermediate variables is reduced. A similar notion of intermedi-

ate variables (only representing products of two variables), called product and square

variables, and heuristics for choosing them are also considered in [12].

Let us now formalize the problem of finding a minimal (wrt. cardinality) set of

intermediate variables for linearizing the initial constraint. In the rest of this section,

we assume that all variables have both lower and upper bounds.

Definition 5 (Closed set) A closed set of non-linear monomials S for a given initial

set S0 of non-linear monomials is a set fulfilling S0 ⊆ S and for every M ∈ S either

– M is vk, or

– M is vk · wk′

with k = 1 or k′ = 1, or

– M is vk ·M ′ and M ′ ∈ S

Notice that, in the third item of Definition 5, v might occur in M ′.

Lemma 6 Let S0 be the set of monomials of a pure non-linear constraint C. If S is a

closed set of S0 then we can linearize C using the set of variables {xM | M ∈ S}.

Example 5 Let S0 be the set of non-linear monomials { ab2c3d, a2b2, bde }. A closed

set of non-linear monomials required to linearize S0 could be S = { ab2c3d, a2b2, bde,

ab2d, ab2, de }.

As said, we are interested in finding a minimal closed set S for S0. The decision

version of this problem, i.e., deciding whether there is a closed set for S0 of size at

most K (hereafter the Closed Set problem), can be shown to be NP-complete:

Lemma 7 Closed Set is NP-complete.

Proof Let us show that, given an initial set S0 of non-linear monomials, deciding

whether there is a closed set for S0 of size at most K is NP-complete.

It is easy to see that the problem is in NP, because a non-deterministic algorithm

needs only to guess a set of size at most K and check in polynomial time that each

element M in the set is vki or vki

i v
kj

j with either ki = 1 or kj = 1, or there is another

element M ′ in the set such that M = vki ·M ′.

In order to prove that Closed Set is NP-hard we transform Vertex Cover [22], a

well-known NP-complete problem, to Closed Set. Let the graph G = (V,A) and a

positive integer K ≤ |V | be an arbitrary instance of Vertex Cover. Note that, since

self-edges (v, v) can only be covered by v, it can be assumed without loss of generality

that G does not contain self-edges. We construct in polynomial time an instance of

Closed Set (S0,K
′) as follows: let S0 be {aibiajbj | vi, vj ∈ V and (vi, vj) ∈ A} and

K′ = 2|A|+K. In the rest of the proof it is shown that we have a vertex cover of G of

size at most K if and only if we have a closed set for S0 of size at most K′:

⇒) Let W be a vertex cover of size at most K. We define the set of monomials S as

S0 ∪ {aibi | vi ∈ W }

∪ {aibiaj | (vi, vj) ∈ A, vi ∈ W }

∪ {ajbjai | (vi, vj) ∈ A, vi 6∈ W }

Let us prove that S is a closed set for S0 of size at most K′. It is clear that S0 ⊆ S and

that the size of S is at most K′ = 2|A|+K. Moreover it is closed: for each aibiajbj ∈ S0,

since (vi, vj) ∈ A we have
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– if vi ∈ W , then aibiaj ∈ S and aibi ∈ S;

– if vi 6∈ W , then ajbjai ∈ S. Further, as W is a vertex cover, vi 6∈ W implies vj ∈ W .

Hence ajbj ∈ S.

⇐) Let S be a closed set for S0 of size at most K′. Note that for each (vi, vj) ∈ A, as

aibiajbj ∈ S0 and S is a closed set for S0, at least one of the following holds:

– biajbj ∈ S.

– aiajbj ∈ S.

– aibibj ∈ S.

– aibiaj ∈ S.

But, again as S is closed, for each of these monomials in three variables there is at

least a corresponding monomial M ∈ S in two variables. We say that such an M covers

(vi, vj).

Now we define the set of vertices W as follows. For each monomial in two variables

M :

– if M is of the form aibi, then we include vi in W .

– otherwise M covers at most one edge; if it covers (vi, vj), then we include vi in W .

By construction W is a vertex cover. Further, note that as S includes S0 and S0

has size |A|, and for each (vi, vj) ∈ A we have a different monomial in three variables,

S has at most K monomials in two variables. But the size of W is at most the number

of monomials in two variables, and therefore at most K. ⊓⊔

Thus finding a minimal set of monomials can be, in general, too expensive as a

subproblem of our transformation algorithm. For this reason, we have implemented a

greedy algorithm that provides an approximation to this minimal solution.

Our experiments have shown that applying a reduction of intermediate variables

produces a linear constraint that is, in general, easier to be checked by the SMT solver.

However, this impact is more important when considering integer interval domains

than when considering domains with rationals which are expressed by a set of particular

elements. In any case, further analysis on the many different ways to implement efficient

algorithms approximating the minimal solution is still necessary.

4.2 Handling Large Domains

In general we avoid choosing variables with a large domain when applying the lineariza-

tion rules. However, there are many cases in which we have no choice. For instance, if

the exponent of a variable is greater than one, then we must apply a linearization rule.

If there are few such variables and the size of the domain is not very large (about

300 values), we can still apply the rules directly, but otherwise the transformation may

not work in practice. As an example, in the SMT-LIB set of benchmarks for QF NIA

there are problems with variables with a domain size of hundreds of millions.

Therefore, for this kind of variables we need an alternative solution. In our tool, we

have solved this problem by introducing new variables with a smaller interval domain

[0, B−1] which are roughly used for describing the solution of the variable with a large

domain in base B. This is done by repeatedly replacing the variable v with a large

domain [Lv ,Uv] by B · vR + vB where vR ∈ [⌊Lv

B ⌋, ⌊Uv

B ⌋] and vB ∈ [0, B − 1]. Note
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that if v occurs with an exponent p then this replacement will be done p times. Our

experiments show that 32 is the best candidate for B, although 16, 64 and 128 have

all a very similar behaviour.

Let max be a positive integer defining the limit size for the domain of the variables

that need a case analysis and let B be a positive integer with 2 ≤ B ≤ max. Then

Linearization 1, 2 and 3 of Definition 4 might be applied on a variable v if Uv −Lv ≤

max. Otherwise, we repeatedly apply the following rules

Linearization 4:

C ∧ x = v · z =⇒ C ∧
∧B−1

α=0
(vB = α → x = B · y + α · z) if Lv and Uv exist

∧ y = vR · z and

∧ v = B · vR + vB Uv −Lv > max

∧ ⌊Lv

B ⌋ ≤ vR ≤ ⌊Uv

B ⌋

∧ 0 ≤ vB ≤ B − 1

where y, vR and vB are fresh variables.

Linearization 5:

C ∧ x = vp ·M =⇒ C ∧
∧B−1

α=0
(vB = α → x = B · y + α · z) if Lv and Uv exist

∧ y = vR · z and

∧ v = B · vR + vB Uv − Lv > max

∧ z = vp−1 ·M and

∧ ⌊Lv

B ⌋ ≤ vR ≤ ⌊Uv

B ⌋ p > 1 or

∧ 0 ≤ vB ≤ B − 1 M non-linear

where z, y, vR and vB are fresh variables.

Note that v = B · vR + vB ∧ ⌊Lv

B ⌋ ≤ vR ≤ ⌊Uv

B ⌋ ∧ 0 ≤ vB ≤ B − 1 needs to be

added only once for every variable v. Moreover, in order to simplify the presentation

of Linearization 5 we consider that p− 1 can be 0 but, in this case, we know that M

is non-linear and hence z = M is still necessary.

In what follows, by normal form we mean normal forms with respect to Lineariza-

tion 1, 2, 3, 4 and 5. The following lemma states that the linearization rules are ter-

minating:

Lemma 8 Given a pure non-linear constraint F , a normal form can be computed in

a finite number of steps.

Proof We can take as a measure the sum of the sizes of the domains of the bounded

variables occurring in non-linear monomials multiplied by the corresponding exponent.

It is straightforward to see that this measure decreases with the application of any of

the five rules. ⊓⊔

Again, the left and the right hand sides of the new rules are equisatisfiable:

Lemma 9 If a pure non-linear constraint F is transformed into F ′ by one application

of Linearization 4 or 5, the following statements hold:

– Soundness: If F ′ is satisfiable, then F is satisfiable.
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– Completeness: If F is satisfiable, then F ′ is satisfiable.

Proof For the sake of simplicity we use the notation given in the definition of the rules.

We only show soundness for rule 5, as the proof for rule 4 is just a particular

case. Assume we have a solution σ for the transformed constraint. Then we just have

to prove that σ is a solution for x = vp · M . By construction of the transformed

constraint we have that σ(y) = σ(vR) · σ(z), σ(v) = B · σ(vR) + σ(vB) and σ(z) =

(σ(v))p−1 · σ(M). Moreover, since 0 ≤ σ(vB) ≤ B − 1, from the case analysis we have

σ(x) = B ·σ(y)+σ(vB) ·σ(z). Hence we have σ(x) = B ·σ(vR) ·σ(z)+σ(vB) ·σ(z) and

thus, σ(x) = (B · σ(vR) + σ(vB)) · σ(z) = σ(v) · σ(z). Finally σ(x) = σ(v) · (σ(v))p−1 ·

σ(M) = (σ(v))p · σ(M).

Regarding completeness, we again only prove it for rule 5, as rule 4 is just a particu-

lar instance. Let us assume that we have a solution σ for the constraint x = vp ·M ∧ C,

i.e., σ(x) = (σ(v))p · σ(M) ∧ σ(C). In order to prove that the transformed constraint

has also a solution, we extend σ with values for vR, vB , y and z. Values for vR and vB
fulfilling σ(v) = B · σ(vR) + σ(vB) can be obtained by dividing σ(v) by B, which also

ensures that 0 ≤ σ(vB) ≤ B−1 and ⌊Lv

B ⌋ ≤ σ(vR) ≤ ⌊Uv

B ⌋. The value for z is obtained

directly fulfilling σ(z) = (σ(v))p−1 · σ(M), since v and all variables in M are variables

of the original problem. Finally the value for y is taken as σ(y) = σ(vR) · σ(z). Now it

only remains to show that
∧B−1

α=0
(σ(vB) = α → σ(x) = B · σ(y) + α · σ(z)), which can

be seen to hold by reversing the argument in the proof of soundness:

σ(x) = (σ(v))p ·σ(M) = σ(v) ·σ(z) = (B ·σ(vR)+σ(vB)) ·σ(z) = B ·σ(y)+σ(vB) ·σ(z)

⊓⊔

The next lemma analyzes the increase in the size of the transformed formulas:

Lemma 10 Let L ∧N be a pure non-linear constraint, where L and N are its linear

and non-linear parts respectively. Let F be a linear normal form of L∧N with respect

to Linearization 1, 2, 3, 4 and 5. Then F is of the form L ∧G, with G a conjunction

of at most O((B · logB K +max) · V ) (unit or binary) clauses, where:

– B is the base for Linearization 4 and 5;

– K is the maximum cardinality of the domains of the variables involved in the lin-

earization;

– max is the threshold size for a domain to be considered large; and

– V is the number of occurrences of variables in the non-linear monomials of N

(counting multiplicities according to exponents).

Proof Each time we apply Linearization 4 or 5 we add O(B) (unit or binary) linear

clauses. Linearization 4 can only be applied logB K times, while Linearization 5 can be

applied p times for each vp occurring in a non-linear monomial in N , and each time adds

a non-linear equation y = vR ·z that needs at most logB K applications of Linearization

4. Thus the number of times we can apply rules 4 and 5 is in O(logB K ·V ), and hence

the number of added clauses is in O(B · logB K · V ). Joining this result with Lemma

5, we have that the number of clauses of G is in O((B · logB K +max) · V ). ⊓⊔
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5 Unsatisfiability and Learning

When some variable that needs to be linearized lacks an upper or lower bound, then

we have to add bounds. This makes our method incomplete since then we cannot

prove unsatisfiability any longer, as only “sat” answers imply the satisfiability of the

original constraint. In order to lose fewer “sat” cases we can add bounds to make the

domain as large as possible, but this is clearly a bad strategy in many cases, since we

may easily produce a too hard problem, due to the size or the shape of the resulting

transformation, which cannot be solved within a reasonable time limit.

An alternative idea is starting with bounds that make the domain size small and

enlarge them if necessary. The way to decide which are the bounds to be changed is by

analyzing an unsatisfiable core that we obtain when the solver answers unsatisfiable.

We proceed as follows.

From now on we will assume that the given pure non-linear constraint is in CNF

and represented as a set of clauses.

Definition 6 (Unsatisfiable core) Let C be an unsatisfiable constraint in CNF. An

unsatisfiable core is an unsatisfiable subset of C.

Let SL be a set of lower bounding constraints and let SU be a set of upper bounding

constraints, i.e. constraints of the form b ≤ x and x ≤ b respectively for some integer

b and variable x.

Assume we are given a pure non-linear constraint F and two sets SL and SU , such

that F∪SL∪SU , denoted by C, can be linearized. Note that SL and SU will be included

in the linearization. Moreover, in the following we also assume that all variables have

small domains, so that only rules 1, 2 and 3 are applied in the linearization (variables

with large domains can be treated a priori by exhaustively applying rules 4 and 5 until

all variables have small domains).

Lemma 11 Let C be a pure non-linear constraint, SL ⊆ C and SU ⊆ C be respectively

the set of added lower and upper bounding constraints and D be the linearization of C.

If UD is an unsatisfiable core for D then there is an unsatisfiable core UC for C

such that UC ∩ (SL ∪ SU ) = UD ∩ (SL ∪ SU ).

Proof Let C be of the form C′ ∪ N , where C′ is a linear constraint and N is the set

of equations y = M with M non-linear. Then, since rules 1, 2 and 3 only remove the

non-linear part from the initial C, we have that D is of the form C′ ∪ L, where L is

the set of clauses added by the linearization.

Let UD be an unsatisfiable core for D. Let us define UC as the set of clauses

(UD ∩C′) ∪N . It is clear that UC ⊆ C. Note also that satisfiability of (UD ∩C′) ∪N

implies satisfiability of (UD ∩ C′) ∪ L (following the argument in the completeness

proof of Lemma 3). Moreover, since (UD ∩C′) ∪ L ⊇ (UD ∩C′) ∪ (UD ∩ L) = UD , we

have unsatisfiability of UD implies unsatisfiability of UC . Hence, UC is an unsatisfiable

core for C. Finally, since SL and SU are in C′ and UC ∩ C′ = UD ∩ C′, we conclude

UC ∩ (SL ∪ SU ) = UD ∩ (SL ∪ SU ). ⊓⊔

Now we have the following completeness result.

Lemma 12 Let F be a pure non-linear constraint, and let D be the linearization of

F ∪SL∪SU . If D is unsatisfiable, U is an unsatisfiable core for D, and U∩(SL∪SU ) =

∅, then F is unsatisfiable.
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Proof Let C be F ∪SL∪SU . By Lemma 11 there is an unsatisfiable core UC for C such

that UC ∩ (SL ∪ SU ) = U ∩ (SL ∪ SU ) = ∅. Hence UC ⊆ F and F is unsatisfiable. ⊓⊔

As a consequence, if we cannot conclude that the original constraint is unsatisfiable,

then we know that either UL := (U ∩ SL) 6= ∅ or UU := (U ∩ SU ) 6= ∅. But U is an

unsatisfiable core for D. Therefore, we can use these two sets to choose which lower and

upper bounding constraints we want to modify. Once we have enlarged the domains

by modifying all or part of the constraints in UL and UU , we can iterate the process.

Note also that if we replace x ≤ b (respectively b ≤ x) by x ≤ b′ (respectively

b′ ≤ x) with b′ > b (respectively b′ < b), then the new transformed constraint can

be obtained by replacing the old added bounds by the new ones and adding the case

analysis only for the values between b and b′.

Finally, let us mention that even if we have all the needed bounds for the lineariza-

tion, it can be useful to apply the technique described in this section. For instance, in

the problems of the calypto collection for QF NIA in the SMT-LIB there are always

enough bounded variables to be able to linearize (and hence all these problems are

decidable). However, in general, the domains are quite large, and it turns out to be

very useful to consider first the domain [0, 1] for all the variables that need a case

analysis. Then, in case of unsatisfiability, we replace the added bounds occurring in

the unsatisfiable core by new ones (or directly the original ones) and start again.

6 Comparison with Existing Solvers

This section compares the performance of our implementation in Barcelogic [8] with

that of other SMT solvers on SMT benchmarks for the theory of non-linear arithmetic.

Namely, we have considered the tools Z3 [35], CVC3 [6], and minismt and minismtbv [45].

While the former two solvers implement techniques based on proving unsatisfiability,

the latter two are based on proving satisfiability, like our approach.

The benchmarks that have been used for this experimental evaluation have been

taken from the QF NIA division of SMT-LIB [5], which consists of the families calypto

(produced by Calypto Design Systems, Inc. in the context of sequential equivalence

checking of arithmetic circuits) and leipzig (coming from termination analysis with

matrix interpretations). Besides, a family of problems m2int considered in [45] that

arises in a similar application to the latter has also been included.

We have performed the experiments in Tables 1, 2, 3, 6 and 7 on a 2.4 GHz 2.9 GB

Intel Core Duo with a 32-bit architecture. On the other hand, the experiments in

Tables 4 and 5 have been kindly provided by Harald Zankl and have been carried out

on a server equipped with 8 dual-core AMD Opteron 885 running at a clock rate of

2.6 GHz and 64 GB of main memory with a 64-bit architecture.

There is a table for every family of benchmarks we have considered: calypto (Ta-

ble 1), leipzig (Table 2) and m2int (Table 3). The total number of instances for each

family is indicated between parentheses in the corresponding table. Each of these tables

has four columns, which for every solver show the number and total time in seconds of

“sat”, “unsat” and “unknown” answers (first to third columns), and the number of

timeouts (fourth column). We have set the timeout to 1200 seconds for those problems

coming from the SMT-LIB and to 60 seconds for the problems in the family m2int,

which is the timeout used in [45].

Tables 1, 2 and 3 clearly show the superiority of our solver, although CVC3 performs

slightly better with unsatisfiable problems on the leipzig and m2int families, as could



16

calypto sat unsat unknown timeout
(303) Total Time Total Time Total Time 1200

Barcelogic 110 14 193 191 0 0 0
CVC3 57 37 138 10 11 6288 97

Table 1 Experiments with family calypto

leipzig sat unsat unknown timeout
(167) Total Time Total Time Total Time 1200

Barcelogic 162 1563 0 0 0 0 5
CVC3 51 23 1 0 34 6386 81

Table 2 Experiments with family leipzig

m2int sat unsat unknown timeout
(1331) Total Time Total Time Total Time 60

Barcelogic 1186 1699 60 11 1 50 84
CVC3 92 45 84 187 427 2584 728

Table 3 Experiments with family m2int

be expected since it applies methods that focus on proving unsatisfiability. Note that,

even though our method focuses on proving satisfiability, using Lemma 12, our tool

can prove unsatisfiability of 60 problems of the m2int family, only 24 less than CVC3.

For the good results with the family calypto, the incremental approach explained in

Section 5 played a very important role. With respect to the previous implementation

used in [9], the difference is most significant precisely with unsatisfiable instances,

which used to be the bottleneck in this family and can now be solved very fast. As for

satisfiable instances, avoiding large domains in this fashion also has a beneficial effect

and reduces the solving time moderately.

The results for Z3 have not been included in the tables in Tables 1, 2 and 3 as we

have observed an unstable behavior for the problems in the QF NIA division.

It is worth pointing out that, in the original m2int family, 60 of the benchmarks

were actually empty. Since the behavior of an SMT solver on these degenerate instances

is undefined, we have not considered these problems for the experiments in Table 3.

Finally, Tables 4 and 5 show the performance of minismt and minismtbv on our

benchmark suite. In this case rows correspond to families of instances, and the time

limit is 60 seconds.

Even though for the benchmarks in calypto and leipzig the time limit for the

experiments with Barcelogic is 1200 seconds, our tool required more than 60 seconds to

produce an answer only for one “unsat” problem in the calypto set (more specifically

62 seconds) and four “sat” problems in the leipzig set. Although this is the same

number of timeouts of minismt and minismtbv in the leipzig set, only two timeouts

are common to the three tools.

Notice that, although the experiments were carried out on a more powerful machine,

our results are better or equal in number of “sat” answers, and except for the family

leipzig, also in total solving time. Moreover, it has to be taken into account too that by

construction these solvers cannot produce “unsat” answers, i.e., they are incomplete.

In the remaining of this section we report on a comparison of our solver with other

existing solvers for non-linear arithmetic that cannot handle SMT-LIB format; namely,
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sat unsat unknown timeout
Total Time Total Time Total Time 60

calypto 109 1931 0 0 148 2167 46
leipzig 158 401 0 0 2 15 7
m2int 995 8563 0 0 122 1282 214

Table 4 Experiments with minismt

sat unsat unknown timeout
Total Time Total Time Total Time 60

calypto 110 67 0 0 168 285 25
leipzig 158 309 0 0 2 1 7
m2int 1068 4373 0 0 123 104 140

Table 5 Experiments with minismtbv

a SAT-based solver implemented in the termination tool AProVE [24] and HySAT4, a

solver based on interval analysis.

Since the SAT-based solver was intended to handle problems generated by the

AProVE system, in order to make a fair comparison, we have been provided with a

parameterized version of AProVE that can use different solvers taken off-the-shelf by

the user. In this way, we have been able to assess the performance and the impact

of using our solver against others. The comparison with HySAT is also fair, since we

send to this tool exactly the same constraint provided by AProVE adding only the

declaration of the variables with the domain under consideration (for instance, int

[0,7] x).

For our experiments we have considered the benchmarks included in the Termi-

nation Problems Data Base (TPDB; see http://www.lri.fr/~marche/tpdb), version

7.0, in the category of TRS. We have removed all examples that consider special kinds

of rewriting (basically, rewriting modulo an equational theory and conditional, relative

and context-sensitive rewriting), since they cannot be handled by the simplified ver-

sion of AProVE we have been provided. Some of the benchmarks in the first part of

this section (namely, families leipzig and m2int) also come from this application to

termination.

The experiments have been performed with a time limit for each termination

problem of 60 seconds (which is the same as in the Termination Competition; see

http://www.termination-portal.org/wiki/Termination_Competition).

For each of the domains we have considered we provide a table with three columns,

corresponding to the three solvers under evaluation: the original AProVE solver (SAT),

HySAT and our implementation (SMT). For every solver the results (in number of

problems and total running time in seconds) are split in three rows depending on

whether the answer is YES (then we have a termination proof), MAYBE (we cannot

prove termination) or TIMEOUT (we have exceeded the time limit; in this case, only

the number of problems that timed out are shown).

In this particular application to rewriting-based termination, when considering in-

teger domains it turns out that having small domains suffices in general. With upper

bounds from 1 up to 7, all solvers improve on the number of positive answers, although

4 HySAT has recently been replaced by its successor iSAT; see http://isat.gforge.avacs.

org. Nevertheless, in this particular application the former performs better than the latter, so
we have chosen HySAT for our experiments.
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DOMAIN [0,7]
SAT HySAT SMT

Total Time Total Time Total Time
YES 781 1859 776 1274 787 1456
MAYBE 1656 5383 1528 5400 1670 3429
TIMEOUT 53 186 33

DOMAIN [0,15]
SAT HySAT SMT

Total Time Total Time Total Time
YES 770 1998 774 1539 790 1384
MAYBE 1549 9834 1331 6659 1622 4455
TIMEOUT 171 385 78

Table 6 Experiments with integers in AProVE

DOMAIN [0,16]/4
SAT HySAT SMT

Total Time Total Time Total Time
YES 922 3033 917 3223 946 2605
MAYBE 1273 9194 1090 6332 1415 6524
TIMEOUT 295 483 129

Table 7 Experiments with rationals in AProVE

this improvement is very relevant from 1 to 2 and becomes almost negligible from 4 to

7. Moreover, all solvers have a similar behavior until 4, although HySAT has a worse

behavior as the bound increases. In Table 6 we have reported the results for upper

bound 7 and 15, as it shows that our solver can handle larger domains. In the reported

results one can observe that our solver is the only one that keeps on getting more posi-

tive answers when considering the interval domain [0, 15], while the others lose positive

answers and increase the number of timeouts considerably. On the other hand, except

for domain [0, 1], our solver is faster than the SAT-based AProVE solver and faster in

the overall runtime (without counting timeouts), starting very similar and increasing

as the domain grows. This improvement is more significant if we take into account that

there is an important part of the process that is common (namely the generation of the

constraints) independently of the solver. Moreover, the number of problems for which

our solver timed out is only bigger than or equal to that of the SAT-based one for the

smallest two domains but is always the lowest from that point on and the difference

grows as the domain is enlarged.

Note that the time limit of 60 seconds is for the whole proof of termination of a

single problem, which may involve solving a huge number of constraints. Due to this

severe time restriction, the learning techniques described in Section 5 do not have a

good global impact.

Regarding rational domains, we can only compare the solvers on domains of ratio-

nals with fixed denominator and a bounded numerator (see Section 3.2). The reason is

that this is the only kind of rational domains that the original solver of our version of

AProVE can handle (more general domains are available in the full version of AProVE,

but they turned out to have a poorer performance). In particular, we have considered

the domain [0, 16]/4. When encoding this domain with integers, Table 7 shows that

our solver has a better performance than the other solvers, although we have noticed

that, when using rationals, the version of AProVE we have has sometimes an unstable
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behavior producing different constraints from one execution to another on the same

problem and using the same solver.

It is worth mentioning that small finite rational domains, which were dealt with

in [9] using the linearization rules outlined in Section 3.3 and which could not be

handled by the AProVE original solver, improved the performance of the termination

tools significantly and turned out to be the best choice for this particular application.

We have also performed experiments with an old version of another termination tool

called MU-TERM [32]. This version is also parameterized by the polynomial constraint

solver but, in this case, the original solver is based on CSP. Our experiments show that

the performance of the tool is far better using our solver than using the CSP-based

solver. These experiments can be found in [9].

Due to this, the current version of the tool MU-TERM-5.05 that participated in

the Termination Competition 2009 (see termcomp.uibk.ac.at/termcomp/) has already

incorporated our solver [1]. This tool ranked first in the TRS Contextsensitive category

tied with AProVE-1.8 in number of solved problems, but using a smaller amount of time.

Finally, let us mention another tool called CORD [21], which, like HySAT, is based

on interval analysis. Unfortunately, it is not publicly available and we have not been

able to compare it with our implementation. On the other hand, the experiments in [21]

involve real variables with infinite domains, and thus our techniques do not apply.

7 Application to Invariant Generation

Here we show how our solver can be used inside the so-called constraint-based invariant

generation approach described in [10] and [39]. Let us outline this method using the

running example of [10].

Example 6 Consider the program in Figure 1 (which has been taken from [13]) and its

corresponding transition system, where l0 and l1 are program locations, being l0 the

initial one, and τ0, τ1 and τ2 are transitions from one location to another.

integer i, j where i = 2 ∧ j = 0
l0 : while true do





i := i+ 4
l1 : or

(i, j) := (i+ 2, j + 1)





l0 l1
τ0 : true

τ1 : i
′ = i + 4 ∧ j′ = j

τ2 : i
′ = i + 2 ∧ j′ = j + 1

Ini: {i = 2 ∧ j = 0}

Fig. 1 Program and its corresponding transition system

The idea of the constraint-based invariant generation approach is as follows. First,

for each location, a template formula expressed in terms of the program variables and

unknown parameters is considered as a candidate invariant. Then it is forced that these

candidates are inductive invariants: namely, one imposes initiation conditions (which

ensure that initial states satisfy the invariant of the initial location) and consecution

conditions (which ensure that if a state can be reached at a location and a transition

from this to another location is followed, the resulting state will satisfy the invariant

of the latter). These conditions are encoded conservatively so that a set of constraints
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in the unknowns is obtained whose solutions correspond to inductive invariants of the

program.

In practice, it is not needed to consider all locations but a cut-set. A cut-set of a

program is a set of locations (called cut-points) such that all cyclic paths pass through

a location in the set. For instance, note that in the example there are two cyclic paths

π1 = (τ0, τ1) and π2 = (τ0, τ2), both of which pass through l0; hence {l0} is a cut-set.

One of the possible classes of template formulas that can be considered in this

method are linear inequalities. In this case, Farkas’ Lemma is used to transform the

initiation and consecution conditions into polynomial constraints [10].

For the simple program above, let us consider a template invariant of the form

c1i + c2j + d ≤ 0 at location l0. The solutions of the polynomial constraints to be

given next in the unknowns c1, c2 and d will provide invariants at that location. More

specifically, the constraint encoding the initiation condition is

∃λ

[

c1 = λ1 ∧ c2 = λ2 ∧

d = −2λ1 − λ0 ∧ λ0 ≥ 0

]

,

the consecution constraints for π1 are

(∃λ, µ)













0 = µc1 + λ1 ∧

0 = µc2 + λ2 ∧

c1 = −λ1 ∧ c2 = −λ2 ∧

d = µd+ 4λ1 − λ0 ∧

µ, λ0 ≥ 0













∨ (∃λ, µ)













0 = µc1 + λ1 ∧

0 = µc2 + λ2 ∧

0 = −λ1 ∧ 0 = −λ2 ∧

1 = µd+ 4λ1 − λ0 ∧

µ, λ0 ≥ 0













and the consecution constraints for π2 are

(∃λ, µ)













0 = µc1 + λ1 ∧

0 = µc2 + λ2 ∧

c1 = −λ1 ∧ c2 = −λ2 ∧

d = µd+ 2λ1 + λ2 − λ0 ∧

µ, λ0 ≥ 0













∨ (∃λ, µ)













0 = µc1 + λ1 ∧

0 = µc2 + λ2 ∧

0 = −λ1 ∧ 0 = −λ2 ∧

1 = µd+ 2λ1 + λ2 − λ0 ∧

µ, λ0 ≥ 0













,

where ∃λ stands for ∃λ1 ∃λ2 ∃λ3.

We can move the existential quantifiers out by renaming the quantified variables.

Then we get a problem in QF NIA that can be easily solved by Barcelogic obtaining

a solution. We can iterate the process forbidding redundant solutions, obtaining auto-

matically j ≥ 0 and i− 2j ≥ 2, which are all the invariant relations found in [13] and

[10].

However, the application of polynomial constraint solving is not limited to the

generation of linear invariants. For instance, we can handle similarly the polynomial

constraints that need to be solved for generating polynomial equality invariants [41].

Moreover, in that paper, some complete encoding for ensuring consecution is discarded

because of the complexity of the generated polynomial constraints. Thus, it could be

the case that thanks to the improvement in polynomial constraint solvers some of these

techniques can become useful now.

Similarly, our approach can also be applied for generating polynomial inequality

invariants [30]. The techniques presented in [30] have had limited success so far because

current tools for quantifier elimination in the reals (e.g., QEPCAD [29], REDLOG [14])

only work on very small problems. Our methods, in combination with Positivstellensatz

[43] playing a similar role to Farkas’ lemma for linear inequalities, could also be applied
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for producing this kind of very expressive invariants and thus open the door to much

more precise program analyses.

Last but not least, the previous applications were focused on intraprocedural anal-

ysis, i.e., ignoring other procedures and the contexts in which they call each other.

In [25], it is shown how several problems of interprocedural program analysis can be

reduced to polynomial constraints over the integers, which are solved in that paper by

translating into SAT. Based on our results in the area of termination of rewriting sys-

tems, we foresee that the methods proposed here could yield a significant improvement

on the efficiency of those interprocedural program analyzers.

8 Conclusions

We have proposed a simple method for solving non-linear polynomial constraints over

finite domains of the integer and the rational numbers, which is based on translating

the constraints into SAT modulo linear (real or integer) arithmetic.

Our method focuses on proving satisfiability, but we have shown that it can also

be used to prove unsatisfiability. It has been implemented within the Barcelogic SMT-

solver and has shown its power in a variety of examples coming from academia as well

as from industry.

As shown in the different applications, the existence of new powerful solvers for

non-linear arithmetic can be crucial for reconsidering methods that were discarded in

the past because they generate non-linear constraints.

As future work, we want to extend the learning mechanism on bounds to the case

of rationals where the finite domains cannot be expressed using bounds. Moreover, we

want to study how to combine our method with the other existing approaches based

on proving unsatisfiability [36,38,44].
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