Document downloaded from:

http://hdl.handle.net/10251/37672

This paper must be cited as:

Alpuente Frasnedo, M.; Ballis, D.; Falaschi, M.; Romero, D. (2013). Rewriting-based

repairing strategies for XML repositories. The Journal of Logic and Algebraic Programming.
82(8):326-352. doi:10.1016/j.jlap.2013.05.002.

The final publication is available at
hppt://dx.doi.org/10.1016/}.jlap.2013.05.002

C ight
opyng Elsevier

Rewriting-based Repairing Strategies for XML Repositories™

Maria Alpuente®, Demis Ballis?, Moreno Falaschi®, Francisco Frechina?®, Daniel
Romero®

“DSIC-ELP, Universitat Politécnica de Valéncia,
Camino de Vera s/n, Apdo 22012, 46071 Valencia, Spain.
b Dipartimento di Matematica e Informatica,
Via delle Scienze 206, 33100 Udine, Italy.
¢ Dipartimento di Ingegneria dell’Informazione e Scienze Matematiche,
Pian dei Mantellini 44, 53100 Siena, Italy.

Abstract

Keeping XML data in a consistent state w.r.t. both structure and content is a bur-
densome task. To maintain the consistency of ever-larger, complex XML repositories,
suitable mechanisms that are able to fix every possible inconsistency are needed. In this
article, we present a methodology for semi-automatically repairing faulty XML reposi-
tories that can be integrated on top of an existing rewriting-based verification engine.
As a formal basis for representing consistency criteria, we use a rule-based description
formalism that is realized in the language Maude. Then, starting from a categorization
of the kinds of errors that can be found during the verification process, we formulate
a stepwise transformation procedure that achieves correctness and completeness of the
XML repository w.r.t. its Maude formal specification while strictly observing the struc-
ture of the XML documents. With the aim of increasing the level of automation of our
repair methodology, we also define two correction strategies and two completion strate-
gies that reduce either the amount of information to be changed or the number of repair
actions to be executed in order to deliver an XML repository that is both correct and
complete. Finally, we describe a prototype implementation of the repairing tool, which
we use for an experimental evaluation of our method with good results.

Keywords: repairing strategies, XML consistency, rule-based techniques

*This work has been partially supported by the EU (FEDER) and the Spanish MEC project ref.
TIN2010-21062-C02-02, and by Generalitat Valenciana ref. PROMETEO02011/052. This work was
carried out during the tenure of D. Ballis” ERCIM ” Alain Bensoussan” Postdoctoral Fellowship. The
research leading to these results has received funding from the European Union Seventh Framework
Programme (FP7/2007-2013) under grant agreement n. 246016. F. Frechina was supported by FPU-
ME grant AP2010-5681 and D. Romero by FPI-MEC grant BES-2008-004860.

Email addresses: alpuente@dsic.upv.es (Marfa Alpuente), demis.ballis@uniud.it (Demis
Ballis), moreno.falaschi@unisi.it (Moreno Falaschi), ffrechina@dsic.upv.es (Francisco
Frechina), dromero@dsic.upv.es (Daniel Romero)

Preprint submitted to the Journal of Logic and Algebraic Programming March 1, 2013

1. Introduction

The semi-structured nature, frequent updates, and the typically large number of
document sources and contributing authors/applications to XML repositories render
the consistency and quality ensuring of XML-based documentation a tedious and error-
prone task. Actually, Web systems are very often collaborative applications in which
many users freely contribute to update their contents (e.g. wikis, blogs, social networks,

..). In this scenario, the task of keeping data correct and complete is particularly
arduous, because of the very poor control over the content update operations which
may easily lead to data inconsistency problems.

A lot of research work has been invested in consistency management and repair of
software applications and databases, but similar technologies for XML-based systems are
much less mature. In [I], a repair framework for inconsistent distributed documents that
complements the tool xlinkit [2] is presented. The main contribution is the semantics
that maps the first-order logic language of xlinkit (without interpreted functions) to a
catalogue of repairing actions that can be used to interactively correct rule violations.
Consistency rules are expressed in first-order logic with embedded XPath predicates
and may refer to external resources that can be mapped to XML representations such
as relational databases. If rules are violated, suggestions for repairing the detected
errors are generated and presented to the user (Nentwich et al., 2003). However, the
system does not predict whether a repair action can cause new errors to appear. Also,
xlinkit is not designed to be used by authors that do not have detailed knowledge
about XML processing. The xlinkit engine has been integrated into the commercial
software “message AUTOMATION validator” [3], which offers a graphical rule editor and
a means for rule testing and management (Message Automation Ltd, 2010). Similarly,
in [4, B], an extension for the tool CDET [6] is presented. This extension includes a
mechanism to remove inconsistencies from sets of interrelated documents, which is done
by first generating direct acyclic graphs (DAGs) that represent the relations among
the documents and then deriving suitable repairs directly from the DAGs. The formal
basis is full first-order logics that is interpreted over a language that relies on Haskell.
Temporal rules are supported and the interference of repairs is not completely neglected.
Both approaches [I] and [4] rely on basic techniques that are borrowed from the field
of active databases [7]. Current research in this field focuses on the derivation of active
rules that automatically fire repair actions leading to a consistent state after each update
[8].

Coelho et al. [9] 10, 11] use an extension of Prolog called XCentric to check and
repair the syntactic and semantic properties for the content of XML-based Web sites.
The XML Web document is translated into a temporary document that is composed of
logical terms that correspond to the XML tags in the original document. A sequence
of checking and repairing rules is applied on the translated document to verify the

semantics of its content. The verified document is then translated back to its original
representation in XML. The main application of this tool is to verify the content of
collaborative Web sites such as Wikipedia [9]. The framework was first implemented in
[10] and then improved in [9, [I1].

In [12], a methodology and a tool are proposed to suggest repairs to Web sites that
violate some requirements that are given in the form of Web rules and expressed in
a fragment of Xcerpt. The methodology consists of translating these Web rules into
abductive logic programs with constraints and processing the transformed programs
by means of a general-purpose proof procedure called CIFF. The repairing tool, called
CIFFWEB, consists of CIFF together with the translation from rules to programs and
from Web sites to a suitable logical format.

In the Verdi project [13, [14] 15], 16, 17, 18], a rule-based, formal specification language
has been used to define syntactic/semantic properties of XML repositories and XML-
based Web sites. The key idea behind this approach is to exploit the power of term
rewriting [19] and Rewriting Logic (RWL) [20] to support the specification and efficient
manipulation of XML/HTML documentation in a natural and effective way. Rewriting
Logic is a very general logical and semantic framework that is particularly suitable
for formalizing highly concurrent, complex systems (e.g., biological systems and Web
systems [21]). RWL is efficiently implemented in the high-performance system Maude
[22]. In the Verdi project, a rewriting-based verification facility, which was developed
in Maude, identifies the requirements not fulfilled by the XML repository and helps in
repairing errors by finding wrong, incomplete or missing XML contents. Consistency
of the original XML documents is checked with respect to both syntactic and semantic
formal descriptions. This approach has several advantages for document verification.
We not only extract the erroneous data but we also identify its source in the documents,
a feature which is necessary for error tracing and repairing. The verification engine
was endowed with a semi-automatic repairing methodology in [I6] and a preliminary
implementation of the repairing methodology was described in [23].

While the errors in a given XML repository are often deeply interrelated, the rewriting-
based repair framework of [16] does not explore the relation/dependencies among the
identified errors. Such an analysis can be a potential source of optimization and may
increase the level of automation of the repair system because the correction of a given
bug may lead to an automatic fix for a “related” bug without the need to execute a spe-
cific repair action. This idea was first explored in the correction strategies also defined
in [23].

In recent years, the rule-based approach has experienced growing popularity in XML
applications [24]. Nevertheless, as far as we know, there has been little exploration of the
rewriting-based techniques for the repairing of XML repositories to date. Actually, we
only know of one previous rewriting-based approach for XML processing and transfor-
mation: a term rewriting implementation is provided in [25] for (a fragment of) XSLT,
the rule-based language designed by W3C for the transformation of XML documents.
A related rewriting-based approach is [26], which defines HTML transformations with

the aim of improving Web applications by cleaning up syntax, reorganizing frames, or
updating to new standards. The work in [24] defines a rule-based approach to XML pro-
cessing and Web reasoning that uses an extension of logic programming using unranked
signatures (flexible arity, i.e., variadic symbols) and advanced rule-based programming
features for hedge (aka unranked term sequence) transformations, strategies, and regu-
lar constraints. A Rewriting Logic approach to the formal specification and verification
of dynamic Web applications can be found in [27].

This article is a revised and extended version of our methodology for repairing faulty
XML repositories in [16} 23] that provides further conceptual and technical content. The
main contributions of this work can be summarized as follows:

e A rewriting-based framework for document verification and repair is presented
where the emphasis is placed on providing strategies to reduce the complexity and
to increase the quality of the repaired documentation. The rule-based approach
supports the concise definition of repairing rules for document formats based on
XML or HTML.

e We complement our methodology by defining two correction strategies and two
completion strategies that increase the level of automation of our repair method.
Specifically, the proposed strategies optmize both the amount of information to
be changed and the number of repair actions to be executed in a faulty XML
repository to make it both correct and complete. In both cases, it is worth noting
that the number of errors that we need to correct in order to get a repaired XML
repository W is much lower than the total number of errors that occur in W. Con-
sequently, employing these strategies may significantly improve the performance
of the repair process. To our knowledge, no repair system supports this kind of
optimization based on repairing strategies, which can lead to a faster and simpler
correction of the faulty repository.

e We also provide a new, totally redesigned implementation of the proposed tech-
nique in order to: (i) provide automatic support for the repairing strategies, (ii)
improve the performance of the tool, and (iii) make the system easier to use and ex-
tend. The implemented tool, called WifiX, together with a set of examples and its
XML API is publicly available at http://safe-tools.dsic.upv.es/repairing.
An on-line Java Web client that interacts with the Web verification and repair
service is also available.

Plan of the Paper. The rest of this article is organized as follows. Section [2] summa-
rizes some preliminary definitions and notations about term rewriting systems that are
needed in our formulation. In Section [3, we first briefly recall the rewriting-based XML
verification framework of [I5]. We also categorize the different kinds of errors that can
be identified in a faulty repository and that are the input for the repair process. In
Section [, we provide a catalogue of repair actions that can be used to define some

4

http://safe-tools.dsic.upv.es/repairing

basic repair techniques. These techniques allow correctness as well as completeness er-
rors to be fixed through suitable delete/insert actions which modify the content of the
XML repository under examination. In Section [5 we carry out a systematic analysis
on the relations among correctness errors, which we exploit to formalize two optimized,
semi-automatic correction strategies that deliver a correct XML repository: 1) the NAR
strategy (correctioN with Action Reduction), which allows the number of repair ac-
tions that are executed to be reduced, and 2) the NDR strategy (correctioN with Data
Reduction), which reduces the amount of information to be changed/removed in order
to correct the XML repository. Similarly, with regard to completeness, in Section [0] we
formalize two additional optimized, completion strategies that deliver a complete XML
repository: 3) the MIDR strategy (coMpletion with Deletion Reduction), which reduces
the number of deletion repair actions that are needed to complete the XML repository,
and 4) the MAR strategy (coMpletion with Addition Reduction), which allows the num-
ber of addition/insertion repair actions that are executed to be reduced. In all cases,
it is worth noting that the number of errors that we need to consider to get a repaired
XML repository W is much lower than the total number of errors that occur in W.
Consequently, employing these strategies guarantees a more efficient repair. Section [7]
describes the repairing tool WifiX and its service-oriented architecture, and reports on
some experiments that we have conducted. Finally, Section [8| concludes.

2. Preliminaries

Term rewriting systems provide an adequate computational model for functional
languages. In the sequel, we follow the standard framework of term rewriting (see [28]).

By V, we denote a countably infinite set of variables, and ¥ denotes a set of function
symbols, or signature. We consider variadic signatures as in [29] (i.e., signatures in
which symbols have an unbounded arity, that is, they may be followed by an arbitrary
number of arguments). 7(3,)) and 7(3) denote the non-ground term algebra and the
term algebra built on X UV and 3. Terms are viewed as labeled trees in the usual way.
Positions are represented by sequences of natural numbers that denote an access path in
a term. The empty sequence A denotes the root position. By notation w;.w,, we denote
the concatenation of position w; and position ws. Positions are ordered by the prefix
ordering, that is, given the positions w; and ws, w; < ws if there exists a position z such
that wy.x = we. Given S C XUV, Og(t) denotes the set of positions of a term ¢ that are
rooted by symbols in S. Moreover, for any position z, {z}.Og(t) = {z.w | w € Og(t)}.
tjy is the subterm at the position w of t. t[r], is the term ¢ with the subterm rooted at
the position u replaced by r. We say that a term ¢ is ground, if no variables occur in
t. A term t is linear, if t does not contain multiple occurrences of the same variable.
Syntactic equality between objects is represented by =. Given a set or a sequence of
elements S, by |S| we denote the number of elements in S.

A substitution 0 = {X1/t1, Xo/ta, ...} is a mapping from the set of variables V to the
set of terms 7(X, V) which is almost everywhere equal to the identity. By id we denote

the identity substitution. The application of a substitution o to a term ¢, denoted to,
is defined by induction on the structure of terms:

ro ift=u
to =]
{f(tla,...,tna) if t = f(ty,...,t,)

In the second case of this denition, n = 0 is allowed: in this case, f is a constant symbol
and fo = f.

Given a substitution o, the domain of ¢ is the set Dom (o) = {X|Xo # X}. Given
two substitutions o; and o9, such that Dom(os) C Dom(oy), by o1/02 we define the
substitution {X/t € o1 | X € Dom(oy) \ Dom(o2)} U{X/t € 05 | X € Dom(oy1) N
Dom(o9)} U{X/X|X & Dom(o1)}.

By Var(s) we denote the set of variables that occurs in the syntactic object s.

A term rewriting system (TRS for short) is a pair (X, R), where ¥ is a signature
and R is a finite set of reduction (or rewrite) rules of the form A — p, A, p € 7(X,V),
A€V, and Var(p) C Var(\). We will often write just R instead of (X, R). Sometimes,
we denote the signature of a TRS (3, R) by Xg.

A rewrite step is the application of a rewrite rule to an expression. A term s rewrites
to aterm ¢t viar € R, s —, t (or s —g t), if there is a position u € Og(s), r =\ — p,
and a substitution o such that s, = Ao and ¢t = s[po],. When no confusion can arise,
we will omit any subscript (i.e. s — t). A term s is an irreducible form (or normal
form) w.r.t. R if there is no term ¢ s.t. s —g t. t is the irreducible form of s w.r.t. R
(in symbols s —% t) if s —% ¢ and ¢ is irreducible.

We say that a TRS R is terminating if there is no infinite rewrite sequence t; —g
to =g ... A TRS R is confluent if, for all terms s,t; and ¢y such that s =} ¢; and
s —7% to, there exists a term ¢ s.t. t; =% t and ¢ =5 t. When R is terminating and
confluent, it is called canonical. In canonical TRSs, each input term ¢ can be reduced
to a unique irreducible form.

We say that the equation s = t holds in a canonical TRS R, if there exists an
irreducible form z € 7(X,V) w.r.t. R such that s —% z and t —', 2. Inequalities are
denoted by expressions of the form s # ¢t. An inequality s # t holds in a canonical TRS
R iff the equation s =t does not hold in R.

Given a sequence cq,...C,, where each ¢;, 1 = 1,...,m, is either an equation or an
inequality, we say that cy,...¢,, holds in a canonical term rewriting system R w.r.t. a
substitution o, if each ¢;o, i = 1,...,m, holds in R.

3. Rewriting-based XML Verification

In this section, we briefly recall the formal verification methodology proposed in [15],
which allows us to detect erroneous or missing data in XML repositories that model the
information content of Web systems. First, we show that XML repositories can be
naturally interpreted as sets of terms over a suitable term algebra. Then, we present the
rule-based specification language that we devised to formally verify XML repositories.

3.1. Modeling XML repositories

XML documents are provided with a tree-like structure that allows them to be
straightforwardly encoded into ordinary terms of a suitable term algebra 7(7Text U Tag)m
More precisely, let us consider a finite set of O-ary symbols 7" and a finite set of variadic
symbols Tag. We denote the set of all finite sequences of elements over T' by Text, and
assume that the sets Tag and Text are disjoint. An XML document p is any term of
7(Text U Tag) that can be generated by the following BNF-like grammar [}

(XMLDoc) .= t({(XMLDocList)) | w withw € Text,t € Tag
(XMLDocList) .= (XMLDoc) , (XMLDocList) | e

Througout the paper, XML documents of the form t() are simply denoted by ¢. XML
repositories are finite sets of XML documents.

Example 3.1

Figure (1] specifies an XML repository as a set of ground terms. This repository
includes the data of a research group such as member affiliations, scientific publications,
research projects, teaching information, and member personal data.

Similarly, to represent templates of XML documents that share a common structure,
we will also consider non-ground XML documents in the term algebra 7(7Text U Tag, V),
which we call XML document templates.

3.2. The rule-based specification language

An XML specification is a triple (R, Ion, Ica), where R, Icy, and Igy, are finite
sets of rules. The set R contains the definition of some auxiliary functions that the user
would like to provide (e.g., string processing, arithmetic, and boolean operators). R is
formalized as a canonical term rewriting system, which is handled by standard rewriting
[28].

The second set Ioy describes constraints for detecting erroneous XML documents
(CorrectNess rules). A correctness rule has the following form: A — error | C, with
Var(C) C Var(\), where A is a linear term, error is a reserved constant, and C'is a con-
dition —i.e. a (possibly empty) finite sequence of equations and inequalities c1, ..., .
We denote the empty condition by 0.

Roughly speaking, when an instance Ao of A is recognized inside an XML document
and the condition C' holds in the TRS R w.r.t. o, then a correctness error is detected.
Given a correctness rule roy = A — error | C; A — error is called the unconditional
part of roy.

1To keep the framework simple, we consider XML tag attributes as common tagged elements, and
hence translated in the same way.
2Note that symbol € in the BNF-like grammar denotes the empty string.

7

(P1) {members (member (name (mario) , surname (rossi) ,status(professor)),
member (name (franca) ,surname (bianchi) ,status(technician)),
member (name (giulio) ,surname(verdi) ,status(student)),
member (name (ugo) , surname (blu) ,status (professor))

)

(P2) person(fullname (mariorossi) ,phone(3333),status(professor)),

(P3) person(fullname (francabianchi) ,status(technician) ,phone(5555),
email (bianchi@myresearchgroup.org)),

(P4) person(fullname (annagialli),status(professor), email(gialli@gmail.com),
phone (4444) ,teaching(course(algebra))),

(P5) pubs (pub (name (ugo) , surname (blu) ,title(pubtitlel) ,blink(year(2003))),

pub(name (anna) ,surname (gialli) ,title(pubtitle2),year(2002))),
(P6) projects(project (pname (A1) ,grant1(1000) ,grant2(200),

total(1100),coordinator (fullname (mariorossi))),

project (pname (B1) ,grant1(2000) ,grant2(1000),
projectleader (surname(gialli) ,name(anna)),
total(3000)))}

Figure 1: An example of an XML repository for a research group

It is worth noting that the expressiveness of correctness rules is at least comparable
with the expressive power of regular expression types. Indeed, the rule condition C' may
include calls to functions which are specified by using the term rewriting system formal-
ism (which provides an adequate, Turing-complete, computational model for first-order
functional languages). For instance, the validation of an XML document p w.r.t. a given
XML type (modeled by, e.g., a DTD or a more powerful XML Schema specification)
can be formalized by a correctness rule of the form

p — error | validate(p) = false

where validate is a function, whose TRS specification implements the desired validation
algorithm.

The third set of rules Iy specifies some requirements that signal incomplete /missing
XML documents (CoMpleteness rules). A completeness rule is defined as A\ — p (q),
where A and p are terms, \ is linear, and ¢ € {E, A}. A Completeness rule A\ — p (q)
specifies that an instance of the right-hand side p must be included in all documents
((A)) or some documents ((£)) of the XML repository, whenever an embedding of the
left-hand side A is detected in some XML document. We use attributes (A) and (E) to
distinguish “universal” from “existential” rules.

Sometimes, we may be interested in checking a given completeness property only on
a subset P of the whole repository. For this purpose, some symbols in the right-hand
sides of the rules can be marked by means of the fresh constant symbol §. Marking
information of a given rule r is used to compute the subset P on which we want to check
the property formalized by r. More specifically, rule r is executed on all and only the Web
pages that embed the marked structure of r. For instance, consider the XML repository
W ={f(a,b,c), f(b), f(c,a)} and the completeness rule rop = f(a) — §f(8a,0)(A). In

8

this case, the universal rule ¢y is executed only on the set P = {f(a,b,¢), f(c,a)} that
contains those XML documents of W embedding the marked term f(a).
Given a completeness rule ropr = A — p (q), A — p is called the unquantified part of

Tom-

Example 3.2

Consider the XML specification that consists of the following completeness and cor-
rectness rules together with a term rewriting system that defines the string concatenation
function ++, the relational operator <, the arithmetic operators + and * for natural num-
bers, and the boolean function inRegExp(s,e) that checks whether a string s belongs
to the regular language denoted by the regular expression &’} That is:

1) member (name(X), surname(Y)) — fperson(fullname(X ++Y), status) (E)

r9) person(status(professor)) — fperson(fstatus(fprofessor),teaching) (A)
Tg) pub(name(X), surname(Y)) — fmember(name(X), surname(Y)) (E)
r4) courselink(url(X),urlname(Y)) — coursedocument(title(Y)) (E)
5) email(X) — error | inRegExp(X, [: Text:] " @myresearchgroup.org) = false
)

)

)

<

r6) project(grant1(X), grant2(Y),total(Z)) — error | X +Y # Z
r7) project(grant1(X),grant2(Y)) — error | X # Y x 2
rg) total(Z) — error | 500000 < Z = true

This XML specification models a number of properties for the XML repository of
Figure 1, Rules r1—r4 are completeness rules, while r5—rg are correctness rules.

The first rule formalizes the following property: if there is an XML document that
contains group member information, then for each member, an XML personal record
should exist that contains (at least) the full name and the status of this member. The
full name is computed by concatenating the name and the surname strings by means of
the ++ function.

The second rule states that, whenever a personal record of a professor is recognized,
that record must also include some teaching information. The rule is universal since it
must hold for each professor personal record.

The third rule specifies that, whenever there exists an XML document that con-
tains information about scientific publications, each author of a publication should be
a member of the research group.

The fourth rule formalizes the broken link property, that is, for each link to a course,
there must be a document that describes that course.

The fifth rule specifies invalid email addresses by using the regular expression

[: Text :]*@myresearchgroup.org,

which identifies the regular language that contains all the strings of the form
text@myresearchgroup.org, where text is a string built over the set Text.

3Regular languages are represented by means of the usual Unix-like regular expressions syntax.

9

The last three rules (rg, 77, and rg) state that, for each research project, the total
project budget must be equal to the sum of the grants (r¢), the first grant must double
the second one (r7), and the total budget must be less than 500000 euros (7).

The error diagnoses are carried out by running XML specifications on XML repos-
itories. This is mechanized by means of partial rewriting, which is a novel rewriting
technique that is obtained by replacing the traditional pattern-matching of term rewrit-
ing with a new mechanism based on homeomorphic embedding (cf. [15]).

3.3. Partial rewriting

Partial rewriting extracts “some pieces of information” from a document, pieces
them together, and then rewrites the glued term. The assembling is done by means of
a single embedding relation, which allow us to verify whether a given XML document
template is somehow “enclosed” within another one and thus replaces the traditional
pattern matching mechanism [30].

We give a definition of partial embedding, <, which is an adaptation of the home-
omorphic embedding proposed in [31], where: (i) a simpler treatment of the variables
is considered; (ii) function symbols with variable arities are allowed; (iii) the relative
positions of the arguments of terms are ignored (i.e., f(a,b) is not distinguishable from
f(b,a)); and (iv) we ignore the usual diving ruld] [31].

Definition 3.3 (partial embedding) The partial embedding relation
C 7(Text UTag,V) x 7(Text U Tag, V)

on XML document templates is the least relation that satisfies:
1. X <t, forall X €V and t € 7(Text U Tag, V).
2. f(try. s tm) < g(s1,---,8n) iff f=g and
ti < sr@y, fori=1,...,m, and injective function
m:{1,...,m} = {1,...,n}.

Whenever s <t, we say that t embeds s (or s is embedded or “recognized” in t). The
intuition behind the above definition is that the structure of the template s appears
within the template ¢

Now we are ready to introduce the partial rewrite relation between XML document
templates. In order to keep our description simple, w.l.o.g. for the time being we disre-
gard conditions and /or quantifiers from the XML specification rules. Roughly speaking,
given an XML specification rule A — p, partial rewriting allows us to extract from a
given XML document s a subpart of s that is embedded in a ground instance of A\, and

4The diving rule allows one to “strike out” a part of the term on the right-hand side of the relation
<. Formally, s < f(ty,... t,), if s < t;, for some 4.

10

then replace s by a reduced, ground instance of p. Let s,t € 7(Text U Tag,V). Then, s

partially rewrites to t, in symbols s =X ¢, iff there exist a rule r = A — p, a substitution
o, and a position u € Opyy(s) such that (i) Ao < s, and (ii) t = Reduce(po, R), where
function Reduce(m, R) computes, by standard term rewriting, the irreducible form of
term m in R. Note that the context of the selected reducible expression s, is disre-
garded after each partial rewrite step. By notation s —; t, we denote that s is partially
rewritten to ¢ using a rule that belongs to the set I. Also, when the context is clear, we
simply write s — ¢. The transitive (resp., transitive and reflexive) closure of the relation
— is denoted by —* (resp., —*).

3.4. XML verification methodology

Correctness (resp. completeness) errors are detected by applying XML correctness
(resp. completeness) specification rules to a given faulty XML repository. We classify
the kinds of errors that can be found in an XML repository in terms of the different
outputs delivered by our verification technique, when it is fed with an XML specification.
In the following sections, we will exploit this classification to develop our repairing
methodology.

3.4.1. Applying the correctness rules to XML documents

Given an XML specification (R, Ion, Icn), a correctness error is discovered in an
XML document p, whenever p is partially rewritten to the constant error using the
unconditional part of some correctness rule A — error | C' € Ioy, and the associated
condition C' holds in R w.r.t. the computed substitution.

More formally,

Definition 3.4 (correctness error) Let W be an XML repository, and let (R, Icn, Iowm)
be an XML specification. Then, the tuple (p,w, A, 0,C) is a correctness error iff there
erist roxy = A — error | C € Ion, a substitution o, and w € Oyy(p), such that
"N error and C holds in R w.r.t. 0.

Given a correctness error (p, w, A, o, C'), Ao represents the erroneous information that
is embedded in a subterm of the XML document p, namely pj,.

We denote the set of all correctness errors of an XML repository W w.r.t. a set of
correctness rules Ioy by Eon(W). When no confusion can arise, we just write Ecy.

3.4.2. Applying the completeness rules to XML documents

Completeness errors are detected by partially rewriting XML documents using com-
pleteness rules.

Roughly speaking, given the unquantified part A — p of a completeness rule and an
XML document p embedding an instance Ao of A, we partially rewrite p, that is, we
replace p that embeds Ao with the instantiated right-hand side po, in symbols p — po.
Each term po generated by partial rewriting is considered to be a requirement. Then,

11

from all the requirements computed by partially rewriting the XML documents, new
requirements are generated by applying further partial rewriting steps.

Finally, by a new partial embedding test, for each computed requirement, we check
whether it is recognized within the XML repository. If the test fails, a completeness
error is signaled.

With regard to completeness errors, we can distinguish three classes of errors: (i) miss-
ing XML documents; (i) universal completeness errors; (iii) existential completeness
errors.

Definition 3.5 (Missing XML document) Let W be an XML repository, and let
(R, Icn, Ica) be an XML specification. Then the pair (p —75. req, W) is a missing

Icom
XML document error if there exists p € W s.t. p A}FCM req and req € T(Text U Tag)
does not belong to W.

When a missing XML document error is detected, the pair (req, W) signals that the
expression req does not appear in the whole XML repository W.

In order to formalize existential as well as universal completeness errors, the following
auxiliary definition is helpful.

Definition 3.6 Let P be a set of terms in 7(Text U Tag), and let req € 7(Text U Tag)
be a term. We say that P is universally (resp. existentially) complete w.r.t. req iff for
each p € P (resp. for some p € P), there exists w € Opag(p) s.t. req < pjyy.

Definition 3.7 (Universal completeness error) Let W be an XML repository, P C
W, and p € W. Let (R, Icn, Icar) be an XML specification and p A}FCM req. Then,
the triple (p —\}FCM req, P, A) is a universal completeness error if P is not universally
complete w.r.t. req.

Definition 3.8 (Existential completeness error) Let W be an XML repository, P C

W, and p € W. Let (R, Icn, Ica) be an XML specification and p A}FCM req. Then, the
triple (p A}FCM req, P, E) is an existential completeness error, if P is not existentially
complete w.r.t. req.

The requirement req appearing in a completeness error (i.e. missing XML document,
existential /universal completeness error) is called missing requirement.

Note that Definition (resp. Definition formalizes the fact that the XML
repository W fails to fullfil the property that a piece of information must occur in all
(resp. some) XML documents of a given subset P of W. We denote by Ecp (W) the set
that contains all the completeness errors w.r.t. Iy, for an XML repository W. When
no confusion can arise, we just write Ecpy.

Given a completeness error e, RSeq(e) denotes the partial rewriting sequence included
in e, and Req(e) specifies the missing requirement included in e. In other words, if e =
(p —+ reg, W) or ¢ = (p =+ req, P, E), ot e = (p —* req, P, A), RSeq(e) = p —* req
and Req(e) = req, respectively.

12

4. Repairing Correctness and Completeness errors

In order to repair a faulty XML repository, we introduce four repair actions that will
be used as primitives within the repair strategies. The primitive repair actions that we
consider are the following:

e change(p, w,t), which replaces the subterm p|,, in p with the term ¢;
e insert(p,w,t), which modifies the term p by adding the term ¢ into pj,;
e add(p, W), which adds the XML document p to the XML repository W;

e delete(p,t), which deletes all the occurrences of the term ¢ in the XML document
.

Each repair action returns the transformed XML document/repository after its ex-
ecution. Note that it is possible for a particular error to be repaired by means of
different actions. For instance, a correctness error can be fixed by either deleting the
incorrect /forbidden information, or by changing the data that give rise to that error.
Similarly, a completeness error can be fixed by either (i) inserting the missing informa-
tion, or (i7) deleting all the data in the XML repository that caused that error. Moreover,
the modification or insertion of arbitrary information may cause the appearance of new
correctness errors. In order to avoid this, we have to ensure that the data considered for
insertion are correct w.r.t. the XML specification, i.e., they cannot fire any correctness
rule. The following definition formalizes this idea.

Definition 4.1 Let (R, Ion, Ion) be an XML specification, and let p € 7(Text U Tag)
be an XML document. Then, p is correct w.r.t. (Icn, R), iff for each w € Orqe(p) and
(A= p | C) € Ion, either (i) there is no o s.t. Ao < pjy,; or (i) Ao < pp,, but C does
not hold in R w.r.t. o.

In the following, we develop some basic approaches that get rid of both, correctness
and completeness errors from an XML repository. We proceed as follows. First, we deal
with correctness errors. We define two repair techniques that allow wrong information
to be removed from an XML repository: correctness through deletion, and correctness
through change. Then, we focus our attention on completeness errors and define two
repair techniques that fix completeness errors: completeness through insertion, and com-
pleteness through deletion.

4.1. Fizing Correctness Errors

Throughout this section, we will consider a given XML repository W, an XML
specification (R, Ion, Ica) and the set Ecy(W) # 0 of the correctness errors w.r.t.
(ICN; R) for W.

Given e = (p,w, \,0,C) € Ecy, e can be repaired in two distinct ways: we can decide
either (7) to remove the wrong content Ao from the XML document p (specifically, from
Pjw), OF (i1) to change Ao into a piece of correct information.

13

4.1.1. Correctness through Deletion

In this case, we simply remove all the occurrences of the subterm py,, of the XML
document p that contain the wrong information Ao by applying the repair action
delete(p, p‘w).ﬂ This way, we delete those data, that fired the correctness rule respon-
sible for the error, from the faulty page p.

Example 4.2
Consider the XML repository in Figure [I]and the XML specification in Example [3.2]
The rule r5 of the specification generates the following correctness error

(P4, 3, email(X), {X/gialli@Qgmail.com},
inRegExp(X, [: Text:] " @myresearchgroup.org) = false)
since the email address in page P4 is not valid according to the specification encoded

in rule r5. The error can be fixed by applying the repair action delete(P4,P4;), that
removes the wrong email from page P4.

4.1.2. Correctness through Change

Given a correctness error e = (p,w, A,0,C) € Ecy, we replace the subterm pj,, of
the XML document p with a new term ¢ that is introduced by the user. The new term
t must fulfill some conditions that are automatically provided and checked in order to
guarantee the correctness of the inserted information. In the following, we show how
these constraints can be computed.

Roughly speaking, whenever we fix some wrong data by executing a repair action
change(p, w,t), it is not enough to ensure that the term ¢ being introduced has no
correctness errors (i.e., it is correct w.r.t. (Ioy, R)); we also need to consider ¢ within
the context that surrounds it in p. If we do not pay attention to such a global condition,
some subtle correctness errors might arise as witnessed by the following example.

Example 4.3
Consider the XML document p = £(g(a),b,h(c)) and the following correctness rule
set
Ion = {(r1) £(g(b)) — error, (r2)g(a) — error}.

The XML document p contains a correctness error according to rule (r2). By executing
the repair action

change(£(g(a), b,h(c)), 1, g(b)).

®Note that, instead of removing the whole subterm Plw, it would also be possible to provide a more
precise though time-expensive implementation of the delete action that only gets rid of the part Ao of
Plw that is responsible for the correctness error.

14

the XML document £(g(b), b, h(c)) is obtained from p. Although the term g(b) is correct
w.r.t. (Ien, R)) (i-e., it does not introduce any new correctness error), the replacement
of g(a) with g(b) in p produces a new correctness error that is recognizable by rule (r1).

In order to avoid these kinds of undesirable repairs, we define the following global
correctness property, which simply prevents a newly introduced term t from firing any
correctness rule when inserted in the XML document to be fixed.

The following definition is auxiliary. Let s,t € 7(Text U Tag) s.t. s < t. We define
the set Embs(t) as the set of all the positions in ¢ that embed some subterm of s. For
instance, consider the terms f(k, g(c)), and f(b, g(c), k). Then, f(k, g(c)) < f(b, g(c), k),
and

Embf(kyg(c))(f(b, g(C), k‘)) = {A, 2, 2.1, 3}

Definition 4.4 Let (R, Icn, Icar) be an XML specification, p' = change(p,w,t) be a
repair action that produces the XML document p'. Then, change(p,w,t) obeys the
global correctness property if, for each correctness error e = (p',w’', X\, 0,C) such that
w' < w, satisfies that

{w}.OTag(t) N {w’}.Emb)\a(p"w/) = @

The idea behind Deﬁnitionis that any error e in the new page p’ = change(p, w, t),
which is obtained by inserting term ¢ within p, is not a consequence of this change but
already existed in a different subterm of p. For this purpose, we require that (the set of
positions of) the wrong information Ao does not “overlap” the considered term ¢.

Example 4.5
Consider Example [4.3| again. The repair action

change(£(g(a), b, h(c)), 1 g(b))

does not obey the global correctness property. Indeed, it generates an XML document
f(g(b),b,h(c)) that contains a new correctness error w.r.t. the considered specification.

The following proposition holds.

Proposition 4.6 Let (R, Icy, lon) be an XML specification, and let W be an XML
repository. Let Ecn(W) be the set of correctness errors that appear in W, and let
(p,w, A, 0,C) € Ecn(W) be a correctness error. By executing a repair action delete(p, pj,)

(resp., change(p, w,t) such that it obeys the global correctness property and t is correct
w.r.t. (Ion, R)), we have that

|Eon(W')| < [Eon (W)

15

where
W' = (W\ {p}) U {delete(p, p,)}

(resp., W' = (W \ {p}) U {change(p, w,1)})
Proof. We prove the two cases separately.

Case (7). Assume that the repair action delete(p, p,,) is executed. In this case, the proof
is immediate, since the correctness error (p,w, \, o, C') is repaired by executing
delete(p, pj,,), and no new information is added to the XML repository, hence, no
extra correctness errors can be introduced.

Case (11). Assume that the repair action change(p,w,t) is executed. By hypothe-
sis, change(p, w,t) obeys the global correctness property and ¢ is correct w.r.t.
(Icn, R). The proof for this case is also immediate. It suffices to observe that
t is free of correctness errors since it is correct w.r.t. (Icy, R). Furthermore,
Definition (global correctness property) prevents new errors from being in-
troduced by the application of the repair action change(p,w,t). Hence, the
execution of change(p,w,t) repairs the error (p,w,\,o,C). Therefore, |W’| =

|((W A\ {p}) U {change(p, w, t)}| < [W].
|

Proposition states that the application of Correctness through Deletion and Correct-
ness through Change techniques decreases the number of correctness errors of the original
XML repository at least by one. Therefore, the correctness of an XML repository can
be achieved by repeated applications of Correctness through Deletion and Correctness
through Change techniques to distinct correctness errors. Also, note that each applica-
tion of the considered repair techniques involves the execution of a delete or a change
action that might repair multiple correctness errors, simultaneously — e.g., given two
correctness errors e; and e in the same subterm t of an XML document p, by deleting
t we repair both e; and ey in p. This fact can be exploited to develop optimized, repair
strategies that free an XML repository from correctness errors (See Section [5| for further
details).

4.2. Fizing Completeness Errors

In this section, we address the problem of fixing completeness errors through suitable
repair actions. Without loss of generality, we assume that W is an incomplete but correct
XML repository w.r.t. a given XML specification (R, Icn, Icn). Such an assumption
will allow us to design repairs that “complete” the XML repository and do not introduce
any incorrect information.

Let Ecp (W) be the set of completeness errors w.r.t. Iy for the XML repository
W. Any completeness error that belongs to Ecy (W) can be repaired following distinct
techniques and, thus, by applying distinct repair actions. On the one hand, we can

16

think of adding the needed data whenever an XML document or a piece of information
in an XML document is missing. On the other hand, all the information that caused the
error might be removed to get rid of the bug. In both cases, we make use of compound
repair actions, that is, sequences of repair actions that must be executed to fix a given
completeness error.

In the following, we distinguish and discuss about the two possible repair techniques
mentioned above.

4.2.1. Completeness through Insertion

We consider two distinct kinds of repair actions, namely add(p, W) and insert(p, w, t),
according to the kind of completeness error we have to fix. The former action adds a
new XML document p to an XML repository W and thus will be employed whenever
a missing XML document error needs to be fixed. The latter action allows us to add
a new piece of information ¢ to (a subterm of) an incomplete XML document p, and
therefore is suitable to repair universal as well as existential completeness errors.

Both the add action and the insert action introduce new information in the XML
repository that might be potentially dangerous since it may contain erroneous as well
as incomplete data. It is therefore important to constrain the kind of information a user
may want to add. In order to preserve correctness, we compel the user to only insert
correct information in the sense of Definition 4.1 Hence, the new data to be added by
the execution of some repair action cannot subsequently fire a correctness rule.

Additionally, we want to prevent the execution of the repair actions from introducing
new completeness errors, that is, we just want to fix all and only the initial set of
completeness errors of the XML repository W, namely Ecy (W).

Definition 4.7 (acceptable insertion/addition w.r.t. completeness) Let (R, Icn, Icnr)
be an XML specification, and let W be an XML repository. Let Ecy (W) be the set of
completeness errors of W.

e the repair action p; = insert(p, w,t) is acceptable w.r.t. (R, Icn, Ica) and W iff

1. py is correct w.r.t. (Icn, R);
2. Req(e) dtj, w € Opyy(t), for some e € Ecpy(W);
3. if W= W\ A{p})U{pi}, then Ecpy(W') C Ecp(W).

e the repair action add(py, W) is acceptable w.r.t. (R, Icn, Icar) and W iff

1. po is correct w.r.t. (Icn, R);
2. Req(e) < pja, w € Oy (pa). for some e € Eny(W);
3. Zf W' = add(pg, W), then ECM(W’) - ECM(W)

Definition guarantees that the information that is added by insert and add
actions is not only correct but it does not yield any new completeness error either.
More precisely, the number of completeness errors does not increase by the effect of the
execution of these repair actions.

17

Example 4.8
Consider the XML specification of Example and the universal completeness error,
detected by rule r,, (P2 — person(status(professor),teaching), {P2,P4},A) where
P2 and P4 are the personal records of Mario Rossi and Anna Gialli in the XML repos-
itory of Figure [l To fix the error, we should add some teaching information to the
XML document P2, while XML document P4 is already complete w.r.t. the requirement
person(status(professor), teaching). Consider the pieces of information

t; = teaching(course(title(Logic), syllabus(In this course we present...)))
to = teaching(courselink(url(www.mycourse.com), urlname(LogicCourse)))

If we introduce term t;, the corresponding insert action is acceptable. However,
the insertion of term ¢ would produce a new completeness error (namely, a broken link
error), since rule ry requires an XML document, that describes a course, for every course
link that occurs in the repository.

The Completeness through Insertion technique makes use of the compound, repair
action RepairBylInsert of Definition that may involve the execution of several
insert actions.

Definition 4.9 (RepairBylnsert) Let W be an XML repository, and (R, Ion, Iowm)
be an XML specification. Let Ecpy (W) be the set of completeness errors w.r.t. Icy of
W and e € Ecpy(W).

The compound, repair action RepairByInsert(W,e) is defined according to the kind
of the considered completeness error e.

Missing XML document errors. Ife = (p —F req, W),

Ionm

RepairBylInsert(W, e) transforms W into W' as follows:
W' =add(p’, W)

where p' € 7(Text U Tag), reqg < pj,, for some w € Orqq(p), and add(p’, W) is
acceptable w.r.t. (R, Icy, lon) and W.

Existential completeness errors. Ife = (p A}FCM req,{p1,p2, -, 0n}, E),

RepairBylInsert (W, e) transforms W into W' as follows:
W'= (W \ {p;}) U {insert(p;, w,t)}

where req < t for some t € T(Text U Tag), p; € W for some i = 1,...,n,
w € O7gy(pi), and insert(p;, w,t) is acceptable w.r.t. (R, Icn,Icn) and W.

18

Universal completeness errors. Ife = (p A}FCM req,{p1,p2, .-, Pn}, A),

RepairBylInsert (W, e) transforms W into W' as follows.
Let P'={p € {p1,...,pn} | req & p"w,,Vw’ € Orae(P')}

W'= (W \ P") U {insert(p/,w',t') |p' € P,
' € 7(Text UTag),w; € Orag(p') s.t.
req <t
insert(p’, w', t') is acceptable w.r.t.
(R, Icn, Ion) and W'}

Note that the new pieces of information, that are inserted by RepairBylnsert via
add and insert actions, are typically provided by the expert. In the case when an
insert(p, w,t) action is executed, the expert also specifies the position w in p to which
attach the chosen term t.

As an immediate consequence of Definition [4.9) we have the following proposition.

Proposition 4.10 Let (R, Icn, lon) be an XML specification, and let W be an XML
repository. Let Ecy (W) be the set of completeness errors of W w.r.t. Icy, and e €
Ecy(W). Then, RepairBylInsert(W,e) transforms W into an XML repository W’
such that |Ecpy (W] < |Ecp(W)).

Proof. The proof directly follows by Definition 1.9 We distinguish the following three
cases according to the kind of error e that is considered.

e=(p A?CM req, W). By Definition , RepairBylInsert (W, e) adds an XML docu-
ment p’, that embeds req, to W through the repair action add(p’, W), generating a
new XML repository W’ = WU{p'} in which e is repaired. Since add(p’, W) is ac-
ceptable w.r.t. (R, Icn, Ioar) and W, we have that Ecp (W') C Ecp (W), Further-
more, since add(p’, W) repairs the completeness error e, Ecy (W) C Ecp (W),
and hence |Ecy (W] < |Eca (W)).

e=(p AfCM req,{P1, P2, - - -, Pn}, E). By Definition , RepairBylInsert(IV, e) adds
a term t, that embeds req, to an XML document p; € {p1,p2,...,pn} C W
through the repair action insert(p;, w,t), generating a new XML repository W' =
(W \ {p}) U{p'} in which e is repaired. Since insert(p;,w,t) is acceptable w.r.t.
(R, Ion, Icy) and W, we have that Ecp (W) C Ecp(W). Furthermore, since
insert(p;, w, t) repairs the completeness error e, Ecp (W) C Ecp (W), and hence
[Ecar(W| < |Eca(W)).

e=(p AfCM req,{P1,P2,---,Pn},A). By Definition , RepairBylInsert(WW, e) exe-
cutes a sequence of insert(p;, w;, t;) actions that adds a term ¢;, that embeds req,

to all the XML documents p; € {p1,p2,...,pn} € W such that

req A Pijw,,» for all w; € Oryy(pi).

19

This generates a new XML repository W’ in which e is repaired. Since each
insert(p;, w;, t;) is acceptable w.r.t. (R, Icn, Ion) and W, we have that Egy (W') C
Ecp (W), Furthermore, since the sequence of insert(p;, w;, t;) actions repairs the
completeness error e, Ecy (W) C Ecy (W), and hence |Ecy (W) < |Ecm (W)

4.2.2. Completeness through Deletion

When dealing with completeness errors, sometimes it is more convenient to delete
incomplete data instead of completing them. In particular, we can identify two sce-
narios where this option can be very useful: 1) when there is no expert who can guide
the completeness through insertion strategy, which may happen if the XML content
is automatically generated by a dynamic application which does not respect the XML
specification, or 2) whenever we want to get rid of out-of-date information as illustrated
in Example below. The main idea of Completeness through Deletion is to remove
all the information in the XML repository that caused a given completeness error. This
approach is independent of the kind of completeness error we are handling, since the
missing requirement is computed in the same way for all of the three kinds of errors
by partially rewriting the original XML documents of the XML repository. In other
words, given the missing requirement req of a completeness error e (i.e., a missing page
error e = (p =T req, W), or an existential completeness error e = (p =% req, P, E), or
a universal completeness error e = (p =71 req, P, A)), there exists an XML document
p € W such that p =7 regq.

Therefore, we proceed by computing and eliminating from the XML repository all
the occurrences of the term that started the partial rewrite sequence that leads to req.
As in the case of the insertion, we have to be careful about the effects of the execution of
the repair actions. More precisely, we do not want the execution of any delete action to
introduce new completeness errorsﬂ For this purpose, we consider the following notion
of acceptable delete action.

Definition 4.11 (acceptable deletion w.r.t. completeness) Let (R, Ion, Ion) be
an XML specification, and let W be an XML repository. Let Ecy (W) be the set of
completeness errors of W w.r.t. Icyr. The repair action p; = delete(p, t) is acceptable
w.r.t. (R, Ien, Ioy) and W oiff Ecy(W') C Eoy (W), where W = (W \ {p}) U {p1}.

The Completeness through Deletion technique exploits the RepairByDelete com-
pound, repair action of Definition [4.12, which removes all the information responsible
for the completeness error by possibly executing multiple delete actions.

6Correctness errors are not considered, since the execution of a delete action cannot generate any
new correctness error.

20

Definition 4.12 (RepairByDelete) Let (R, Icn, Ioa) be an XML specification, and
let W be an XML repository. Let Ecp (W) be the set of completeness errors of W w.r.t.
Icy, and e € Ecpy(W). Then, RepairByDelete(W, e) transforms W into the XML
repository W' in the following way.

For each p ™= t —* Req(e) where p € W,

W' ={p' € W | py A ply, V' € Oryy(p')} U
{delete(p’, p.») | delete(p’, p,) is acceptable w.r.t. (R, Icn, Ien) and W,
P € W,pw Qpjy, for some w' € Oryy(p')}

Example 4.13
Consider the XML specification of Example the XML repository W of Figure [T
and the missing XML document error

epy = (P1 — person(fullname(ugoblu), status),W)

that can be detected in W by using the completeness rule ;. The missing document is
obtained by means of the following partial rewrite sequences:

P1 "' person(fullname(ugoblu), status)
p5 " member (name(ugo), surname(blu)) R person(fullname(ugoblu), status)

By applying RepairByDelete(W, ep;), we delete all the information regarding the
group membership and the publications of Ugo Blu, that is, we remove the subterm P1,
from page P1 and the subterm P5); from page P5. This amounts to erasing all the data
regarding Ugo Blu from the considered XML repository.

The following result holds.

Proposition 4.14 Let (R, Icn, Ion) be an XML specification, and let W be an XML
repository. Let Ecy (W) be the set of completeness errors of W, and e € Ecp(W).

By ezecuting the RepairByDelete(W, e) repair action, W is transformed into an XML
repository W' such that |Ecy (W) < |Eca (W)).

Proof. Immediate by Definition [£.12] [

Observe that Proposition [4.10] and Proposition [4.14] state that the application of
RepairBylInsert and RepairByDelete to an XML repository W decreases the num-
ber of completeness errors in W. Therefore, completeness of an XML repository can
be achieved by executing the compound, repair actions RepairByInsert and Repair-
ByDelete on the distinct completeness errors that appear in the considered repository.
Completion strategies are treated in detail in Section [0}

21

5. Achieving Correctness of XML Repositories via Correction Strategies

In this section, we carry out a systematic analysis on the relations among correctness
errors that we use to formalize two automated correction strategies: the NAR strategy
allows the number of repair actions that are executed to be reduced, while the NDR
strategy reduces the amount of information data to be changed/removed in order to fix
all the correctness errors of a faulty XML repository.

Roughly speaking, a correction strategy is a finite sequence of delete and change
repair actions whose execution allows a faulty XML document to be fixed. We assume
that the considered strategies make use of the basic repairing techniques Correctness
through Delete and Correctness through Change of Section that allow us to safely
apply delete and change actions to XML documents, that is, their application to XML
documents does not generate any new bug.

5.1. Correctness Error Dependencies

Typically, a given XML document can contain several correctness errors that may
be interrelated. Since the execution of a repair action might fix a number of related
correctness errors simultaneously, it is crucial to discover the way an error depends on
other errors. In the following, we first analyze the dependencies among correctness
errors. Then, we exploit this information to develop the NAR and NDR correction
strategies.

We relate correctness errors by comparing the positions at which they occur in a
given XML document w.r.t. the prefix ordering over term positions < which we defined
in Section [2] Given a correctness error e = (p,w, \,0,C) € Ecn({p}), pos(e) denotes
the position at which e occur in the XML document p, that is, pos(e) = w. We say
that two correctness errors e; and ey are not comparable iff pos(e;) £ pos(ez) and
pos(ez) £ pos(er). A correctness error e is minimal in a set of correctness errors E' iff
there does not exist ¢’ € E such that pos(e’) < pos(e) and pos(e') # pos(e).

Proposition 5.1 Let p be an XML document, and let e; = (p, w;, i, 04, C;) € Eon({p}),
i=1,...,n, such that pos(e1) < pos(ez) < ... < pos(e,). The following results hold:

e Ifp' = change(p,w:,1), then Ecy({p],,}) = 0.

o Ifp' = delete(p,pj,), then Ecn({p},,}) = 0.

Proof. (Sketch) The proof of this result relies on the fact that the errors es, ..., e,
are located into the subterm py,,, which is changed or deleted by the action under
consideration. Note also that the change action always inserts a correct term ¢ into
p at position w;, which implies that not new correctness errors are introduced in pj,,
because of the execution of the change repair action. |

22

(a) (b) (c)

Figure 2: Taxonomy of error dependencies.

Informally, Proposition states that repairing a given correctness error e; =
(p,wy, A1, 01,C1) allows us to automatically fix any correctness error that is included
in the term py,, .

Let us discuss what happens when errors are not comparable, or we decide to fix an
error that is not the smallest in the order. In this case, we are interested in knowing
whether it is still possible to fix more than one error at a time. Let us start by providing
an auxiliary definition.

Definition 5.2 Lete; = (p,wy, A1, 01,C1) and eg = (p, we, Ao, 09, Cy) be two correctness
errors in Ecy({p}). We say that ey overlaps e; at w (in symbols, ex T, e1), iff (i)
pos(e1) < pos(ez), and (i) there exists w = min(wy.Emby, (pjw,) N Wa. Emby, (Plws,)),
where min(X) = w with w < w; for all w; € X. When position w is not relevant or
clear from the context, we simply write es overlaps e, or es T €.

By notation e; A~ e, we denote that ey does not overlap e;. Given two correctness
errors e; and ey of an XML document p, we can distinguish three possible scenarios:

1. e; and ey are not comparable w.r.t. < (see Figure [(a));
2. pos(e1) < pos(ez) and ey does not overlap e; (see Figure 2f(b));
3. e overlaps e; (see Figure [2{c)).

In case 1, correctness errors e; and e, are completely independent, and hence the
repair of one of them does not affect the correction of the other one.

Let us now consider case 2. In this case, also by Proposition 5.1} we are able to
automatically fix ey by just repairing e;. Note that, fixing e, will not help to fix ey, as
stated in the following proposition.

Proposition 5.3 Let p be an XML document. Let ey = (p,wy, A1,01,C1) and ey =
(p, wa, A2, 02, Ca) be two correctness errors in Ecy({p}) such that pos(e1) < pos(e2) and
es X er. If p' = action, with action € {delete(p, pj.2), change(p, wo,t)}, then (i)
Een({Ply,}) =0, (it) (s w1, M, 0",Ch) € Ecn({p'}) for some substitution o’

23

Proof. By contradiction. Assume that by repairing the error ey, also the error e; is
repaired. This implies that there exists at least a position v such that v € Emb,, (p) and
wy < v. Since wy < wy, then also wy € Emby, (p). Thus, (Emby, (p) N Emby,(p)) # 0,
i.e., e3 X ey, which leads to a contradiction. []

Example 5.4
Consider the XML document p = f(g(a), h(b)) and the following correctness errors

er = (p, A f(X),{X/h()}, 0}), €2 = (p, 2, h(Y), {Y/b},0)

Thus, pos(e;) < pos(es), and ey does not overlap e;. Now observe that we can fix ey by
either removing subterm h(b) or by changing subterm h(b) with a suitable term ¢. In
both cases, such a repair will not fix e;.

In case 3, e; and ey are not independent since pos(e;) < pos(es), and e overlaps e;.
Roughly speaking, the correctness error e, is partly “contained” in e; and thus fixing e,
might also yield a fix for e;. However, this is not always the case as witnessed by the
following example.

Example 5.5

Consider the XML document p = f(g(a),h(b)) and the following correctness er-
rors e; = (p, A, f(h(X)),{X/b},0), ea = (p,2, h(X),{X/b}, X = b). Thus, pos(e;) <
pos(ez), and ey overlaps e;. We can fix ey by changing, for instance, h(b) with h(a).
However, such a fix would not automatically repair e;, while by removing h(b) or by
replacing h(b) with one term that does not match any subterm of f(h(X)) (e.g. l(c)),
we would fix both e; and e; by executing a single repair action.

As Example illustrates, some conditions are necessary in order to automatically
achieve a fix for e; by simply correcting e,. This is formalized in the following proposi-
tion.

Proposition 5.6 Let (R, Icn, Ica) be an XML specification. Let p be an XML docu-
ment. Let ey = (p, w1, \1,01,C1) and ey = (p,wa, Ay, 09, Co) be two correctness errors
in Ecn({p}) such that pos(e1) < pos(es) and ey overlaps e at some position w. The
following results hold:

1) If p' = delete(p, pjw,), then

(i) Eex(1, 1) =0,
(i1) (p', w1, A\, 0',CL) & Ecn({p'}), for any substitution o’ ;

2) If p’ = change(p, ws,t) and M\, A t, then

(i) Eox () = 0,
(i1) (p',wi, A\, 0',CL) & Ecn({P'}), for any substitution o’;

24

3) If ' = change(p, wo,t), Mjwo’ <t for some substitution o', and Cy does not hold
in R w.r.t. o1/0’, then

(i) Eon({Plu,}) =0,
(i) (p', wi, A1, 01/0, Ch) & Eon({0'}).

Proof. Claim 1 and 2 follow from Proposition [5.1]straightforwardly. The proof of Claim
3 derives from Proposition [5.1] and Proposition [4.6] which establish that no new errors
are introduced in the XML document by executing a change action. []

Roughly speaking, Proposition states that: (7) whenever a delete action is un-
dertaken to fix a correctness error e, which overlaps a “smaller” (w.r.t. <) correctness
error ey, such an action also fixes eq; (ii) whenever a repair action p’ = change(p, ws, t)
is performed in order to fix ey, some extra conditions are necessary in order to ensure
that the term ¢ to be inserted will automatically fix e;. Basically, these conditions en-
sure that either (an instance of) the faulty term \; is not recognized in p’ or, if such an
instance is identified, the associated condition does not hold.

5.2. Correction Strategies

As we explained in Section [d] a given correctness error e in an XML document p can
be fixed by executing a suitable repair delete or change action a. By (e, a), we denote
a correction pair that consists of a repair action a that fixes a correctness error e. If
(e,a) fixes an error in the XML document p, we say that (e, a) is a correction pair for
p. Moreover, by notation p’ = a(p) we refer to the execution of the repair action a on
the XML document p that returns the XML document p'.

Definition 5.7 (Correction Strategy) Letp be an XML document, and let Ecn({p})
be the set of correctness errors of p. A correction strategy for p is a finite sequence
((e1,a1),...(en,an)) of correction pairs for p, with ay, . ..a, repair actions, and e, . . . e,
correctness errors in Econ({p}), such that

L. po = p;
2. pi = a;(pi—1), 0 <i<n,

and Econ({pn}) = 0.

Roughly speaking, given a faulty XML document p, a correction strategy for p allows
all the bugs in p to be fixed by running all the repair actions that occur in the strategy.

The definition of correction strategy for a single XML document can be naturally
extended to XML repositories as follows.

Definition 5.8 Let W = {p1,...,pn} be an XML document. Let Ecn(W) be the set of
correctness errors of W. A correction strategy for W is a sequence (S, ...,Sy), where
S; is a correction strategy for p;, 1 =1,...,n.

25

Note that by applying a correction strategy to an XML repository W, we obtain a new
repository W’ such that Eqy(W’) = 0, that is, the resulting repository W' is free of
correctness errors.

As we discussed in Section [5.1] fixing a correctness error may automatically repair
other bugs. This fact shows that a correctness strategy does not necessarily contain a
correction pair (e, a) for any correctness error e that is found in a faulty XML document.
In the following, we describe two semi-automatic correction strategies that exploit the
results of Section (.11

In both cases, we assume that for any e € Eon({p}), we have a correction pair (e, a)
for p at hand that can be executed if this is necessary.

5.2.1. Correction with Action Reduction Strategy
First, let us observe the following fact.

e Fact 1. By Proposition for every correction pairs (e, a), (¢/,a’) for p, such
that pos(e) < pos(€’), the execution of the repair action a will fix both e and ¢’.
Therefore, fixing a correctness error e, such that e is minimal in Foy({p}), will
fix all the correctness errors €' in p that are “greater” than e w.r.t. <, without
running any other repair action.

By Fact 1, it is straightforward to see that it suffices to fix those errors that are
minimal in Eon({p}) to repair the whole XML document p. Let M(Ecn({p})) be the
set of all correctness errors in Ecy({p}) that are minimal in Ecy({p}).

Definition 5.9 (Correction with Action Reduction Strategy, NAR) Let p be an
XML document.

A Correction with Action Reduction strategy for p (or NAR(p) strategy) is a se-
quence ((e1,a1), ... (em,am)) of correction pairs for p, such that e; € M(Ecn({p})), for
alli=1,...m.

Given an XML repository W = {py,...,pn}, a Correction with Action Reduction strat-
egy for W (or NAR(W) strategy) is a sequence (Ti,...,7,), where 7; is a NAR(p;)
strategy, 1 =1,...,n.

The next proposition states that any given NAR(p) strategy is a correction strategy
for the XML document p, whose number of repair actions is less or equal than the total
number of correctness errors detected in p.

Proposition 5.10 Let p be an XML document. Then, a NAR(p) strategy is a correction
strategy for p such that INAR(p)| < |[Een({p})]-

Proof. The proof that a NAR(p) strategy is a correction strategy for p is immediate
by the definition of error minimality in Ecy({p}) and Proposition [5.1] Furthermore,

INAR(p)| < [Ecn({p})], because M (Ecn({p})) € Eon({p})- u

26

Proposition can be trivially lifted to XML repositories.

Corollary 5.11 Let W be an XML repository. Then, a NAR(W) strategy is a correc-
tion strategy for W such that INAR(W)| < |Ecn(W)|.

Proof. Immediate by Proposition and Definition [5.8] |

Example 5.12
Consider the XML document p = f(g(10), h(d), 20) together with the following
correction strategy 7 for p that includes two repair actions:

(((p, A, f(g(X),20), {X/10}, {X < 20}), change(p, A, f(¢(20),15))),
((p, 2, 1(Y),{Y/d}, 0), delete(p, h(d))))

The NAR(p) strategy corresponds to the unary sequence

(((p, A, f(9(X),20), {X/10}, {X < 20}), change(p, A, f(¢(20),15)))).

Note that NAR(p) fixes the XML document p by using just one repair action.

5.2.2. Correction with Data Reduction Strategy

The NAR strategy typically forces the user to modify/introduce a lot of information
in an XML document p, even if only minor changes are needed to fix p, as illustrated
by the following example.

Example 5.13

Let us consider the XML document p = f(g(a), k(m(c)), h(a)) and the set Ecny({p}) =
{(p, A, f(g(X), h(Y)) {X/a,Y/a} {X =Y})}, (p.1,9(a),id,0)}. The NAR(p) strategy
would only fix the minimal error at the root position. This fact might force the user to
provide quite a large amount of information if a change action is taken, even if a close
variant of p would have been enough to fix the bug.

For instance, if the chosen change action was change(p, A, f(g(b), k(m(c)), h(a))),
the user should re-enter the whole XML document p with just a small change at posi-
tion 1.1.

Instead, if we repaired (p, 1, g(a), id,) by means of the repair action change(p, 1, g(b)),
the user would correct both errors by introducing a smaller amount of information.

The idea behind the Correction with Data Reduction strategy is thus to “push”
the corrections towards the leaves of the XML document as much as possible and to
automatically propagate them up to the root position.

Obviously, given two correctness errors e and €’ such that pos(e’) < pos(e), correcting
e does not guarantee an automatic repair for e’ (see, for instance, Example . Indeed,
by Proposition [5.3, whenever the error e does not overlap a given error ¢/, there is no

27

possibility to automatically lift a correction for e up to €¢/. On the other hand, under
the conditions stated in Proposition ¢’ can be repaired by just fixing e, whenever e
overlaps €.

Given an XML document p, we partition Ecy({p}) into the following two sets:

o NOVL({p}) = {e € Ecn({p}) | B €', ¢’ T €}

e OVL({p}) = Ecn({p}) \ NOVL({p}).

Clearly, Ecn({p}) = NOVL({p})UOVL({p}). The correctness errors in NOVL({p})
(resp., in OVL({p})) are called non-overlapping (resp., overlapping) errors. Note that
a non-overlapping error e cannot be automatically fixed by executing a repair action
on a correctness error ¢’ such that pos(e) < pos(e’), since correction effects cannot be
propagated upwards. However, this is the case of the overlapping errors that may be
implicitly affected by other repairs. Actually, the following facts hold.

e Fact 1. Given an overlapping error €', there must exist a non-overlapping error e
such that pos(e’) < pos(e).

e Fact 2. Let e,ep,e1,...¢,, n > 0, be correctness errors. If e is an overlapping
error s.t. ey overlaps e and pos(e) < pos(e,) <,pos(e,_1)... < pos(ep), then e;
overlaps e, i =1,...n.

These facts, together with Proposition [5.1] suggest to us that it suffices to fix only
minimal, non-overlapping errors in order to get a repaired XML document. This is
because: (i) all the correctness errors that are “greater” (w.r.t. <) than the considered
non-overlapping error will be repaired, as stated by Proposition ; (i) for each overlap-
ping error e, there is always ¢/ € NOVL({p}) such that ¢’ overlaps e; hence by repairing
e’ we also fix e.

Let M(NOVL({p})) be the set of all correctness errors in NOVL({p}) that are min-
imal in NOVL({p}).

The Correction with Data Reduction strategy is formalized as follows.

Definition 5.14 (Correction with Data Reduction Strategy, NDR) Let p be an
XML document. Let NOVL({p}) be the set of non-overlapping correctness errors of
p. A correction with data reduction strategy for p (or NDR(p) strategy) is a sequence
((e1,a1),...(em,am)), such that (e;,a;) is a correction pair for p, e; € M(NOVL({p}),
foralli=1,...m.

Given an XML repository W = {p1,...,pn}, a Correction with Data Reduction Strategy
for W (or NDR(W) strategy) is a sequence (Ti, ..., T,), where T; is a NDR(p;) strategy,
1=1,...,n.

A NDR(p) strategy is a correction strategy for an XML document p, whose number
of repair actions is less or equal than the total number of correctness errors in p. More
formally,

28

ok

|\

ov ok ov/ \ok
ok/n‘o\ |

no ok ok

Figure 3: The NDR strategy

Proposition 5.15 Let p be an XML document. Then a NDR(p) strategy is a correction
strategy for p such that INDR(p)| < |Ecn({p})|-

Proof. The proof that a NDR(p) strategy is a correction strategy for p is immediate
by the definition of error minimality in NOVL({p}) and Proposition [5.1] Furthermore,
INDR(p)| < [Ecn({p})|, because M(NOVL({p})) € Ecn({p})- u

Proposition [5.15| can be trivially lifted to XML repositories.

Corollary 5.16 Let W be an XML repository. Then, a NDR strategy for W 1is a
correction strateqy for W such that |INDR(W)| < |[Ecy(W)|.

Proof. Immediate by Proposition [5.15] and Definition [5.8| [

In Figure [3] we show how the correction with data reduction strategy works. For the
sake of simplicity, we just label each node of the given XML document with: ok, if no
correctness error is rooted at the considered node; ov, if an overlapping error is rooted
at the considered node; or no, if a non-overlapping error is rooted at the considered
node. The XML document contains nine errors, but we just need to fix three errors in
order to end up with a repaired XML document. Specifically, these errors correspond
to the minimal non-overlapping errors that occur within the XML document.

Example 5.17
Consider the XML document

b= f(gl(hl(ala a2)7 h2<bl, bz)),gg(hg(Cl), h4)) and

ECN({p}> = {(p7 17g17id7 (Z))J (p7 117 h’l(a2)7id7 (Z))u
(p,1.1.2,a9,1id, (), (p,2.1.1, ¢y, id, D),
(p7 217 h3<cl)7 Zda (D)a
(P, 2, 92(hs(X)), {X/c1},0)}

Hence,

NOVL(p) = {(p, 1, g1,id, D), (p, 1.
(p,2.1.1, ¢4, id, 0)}

OVL(p) = (p, 1.1, hu(az), id, 0),
(p7 27 92(h3(X))7 {X/Cl}7 (b)?
(p7 217 hg(Cl), Zd? (D)}

1.2, as, id, 0),

29

A correction with data reduction strategy only corrects minimal non-overlapping
errors. In this case, a possible NDR(p) strategy is the sequence:

< ((p7 17 g1, Zd> (Z))7 delete(p7 17 gl(h1<a17 &2)7 h?(bh b2))7
((p,2.1.1, ¢y, 1id, 0), change(p,2.1.1,¢4)))

Therefore, the execution of the correction strategy yields the following repaired XML
document f(ga(hs(ca), ha)).

Finally, observe that we needed to fix only two errors out of six, and just minor fixes
were necessary to make the original XML document correct.

6. Achieving Completeness of XML Repositories via Completion Strategies

The application of a repair action can fix more than one completeness error. This
implies that we do not need to execute a different repair action for each detected error,
but rather we can choose suitable subsets of errors to act upon.

In this section, we analyze the dependencies among completeness errors in an XML
repository. More precisely, we define two partial orderings (C;,; and C**?) that allow
completeness errors to be compared by using the embedding relation <. This informa-
tion is the basis for developing two completion strategies that aim to reduce the number
of repair actions to be executed in order to achieve completeness.

By notation W’ = ¢(W, E), we specify the execution of the compound, repair action
¢ on the XML repository W, which returns the XML repository W’ where the errors in
E have been fixed. By abuse of notation, when E is a singleton {e}, we simply write

c(W, e) instead of c¢(W, {e}).

Definition 6.1 (Completion Strategy) Let (R, Icn,Ion) be an XML specification.
Let W be an XML repository, and let Ecpy (W) be the set of completeness errors of W

w.r.t. Iopr. A completion strategy for W is a finite sequence of compound repair actions
(co(Wo, Eo), . ..cn(Wa, E,)), with Ey, ... E, C Ecp (W), such that

1. WO = W,'
2. Wis1 =c;(Wi, E;) foralli= 0...n;

and EC’M(Wn—H) = @

Roughly speaking, a completion strategy is a sequence of repair actions that, once
executed, allows all the completeness errors in a given XML repository to be repaired.

30

6.1. Completion with Deletion Reduction Strategy

The Completion with Deletion Reduction strategy is based on the completeness
through deletion technique of Section that allows a given completeness errors to be
fixed by applying the compound, repair action RepairByDelete (see Def. which
removes all the data responsible for the incompleteness by means of a suitable number
of primitive delete actions.

To specify the Completion with Deletion Reduction strategy, we first define the
following auxiliary preorder <, on Ecp (W).

Definition 6.2 (=,r) Let (R, Icn,Iom) be an XML specification. Let W be an XML
repository, and let Ecp (W) be the set of completeness errors of W w.r.t. Iop. Let
e1,es € Ecp (W) be two completeness errors with RSeq(e;) = py RV * req, and
RSeq(es) = py 727 ty —* req,. Then,

e1 Ring €2 iff there exists w € O7ag(Dojuws) S-T- Pijwy I (P2)ws)w

Roughly speaking, the relation e; =<;,¢ es considers the subterms of p; and p, that
are reduced in the first partial rewrite step of the partial rewrite sequences RSeq(e;)
and RSeq(ez), namely pij,, and paju,. Whenever py,, is embedded into a subterm of
D2jws €1 1s smaller than ey w.r.t. <,;.

The action of repairing a completeness error e via the compound, repair action
RepairByDelete allows us to simultaneously repair all the errors ¢’ in Ecp (W) such
that e <;,; €. More formally, we can prove the following proposition.

Proposition 6.3 Let (R, Ion, Icy) be an XML specification. Let W be an XML repos-
itory, and let Ecp (W) be the set of completeness errors of W w.r.t. Icy. Let e; €
Ecu(W),i = 1...n, be completeness errors in W such that ey =inf €2 =inf ... Sins

en. Then, after repairing the completeness error ey by using the operation W' =
RepairByDelete(W,e;), e; € Ecp(W'), for everyi=1... n.

Proof. By Definition , a completeness error is repaired by removing (any subterm
of) the XML documentthat fires the partial rewriting sequence that leads to a missing
requirement.

Consider the completeness errors ey, ..., e, € Ecp (W) such that e; =g ... =ins €n,
with RSeq(e;) = p;i "X ¢ —* req;, i = 1,...,n. By Definition , we have that
Pitw; I (Pit1jwigs)jw> for some w € O7ag(Pitijw,,,), ¢ = 1,...n—1. Then, by using
RepairByDelete(e;, W) to repair the error ey, the term p;., is removed from the
whole XML repository W. This fact implies that each term (p;i1jw,,,)w is removed
from W too. Thus, by Definition [4.12] the errors es,...e, are also repaired, which
concludes the proof. []

31

Note that Proposition does not depend on the kind of completeness error consid-
ered (Missing XML document, Universal completeness error, and Existential complete-
ness error).

We say that two completeness errors e; and ey are equivalent w.r.t. <, (in symbols,
e1 Rins e2) iff e; =iy €2 and es =y,r €. By using the equivalence =, we can
naturally lift the preorder <,y on Ecp (W) to a (well-founded) partial order T, p on
Ecn(W) /.., that is, the set of all equivalence classes [e] on Ecp (W) w.r.t. Ry

More specifically, given [eq], [e2] € Ecrpr(W)/~ing, [€1] Cing [e2] iff €1 <ing eo.

We say that an equivalence class [e] is minimal w.r.t. T, ¢, if and only if there does
not exist [e'] € Egn(W)/x,,, such that [e'] Zi.r [e] and [€'] # [e].

Now, the following results, which are both a consequence of Proposition [6.3] hold:

Proposition 6.4 Let (R, Ion, Ioy) be an XML specification. Let W be an XML repos-
itory, and let Ecp (W) be the set of completeness errors of W w.r.t. Ioy. Let e €
Ecy(W). By applying a RepairByDelete action to e, all the completeness errors in
le] get repaired.

Proof. Immediate. Simply observe that e <, € for each ¢’ in [e]. Hence —by Propo-
sition the repair for e also fixes the error €.]

Proposition 6.5 Let (R, Ion, Ion) be an XML specification. Let W be an XML repos-
itory, and let Ecy (W) be the set of completeness errors of W w.r.t. Icy. Let eq,e5 €
Ecy(W). If [e1] Ting lea], then, by repairing the error ey through o RepairByDelete
action, we fix all the errors in [es] as well.

Proof. Since [e1] Ty [e2], €1 <ins €2. Thus, the repair for e; also fixes es by Proposition
This implies that all the errors in [es] get repaired by Proposition [6.4] [

The notion of Completion with Deletion Reduction strategy is formalized as follows.

Definition 6.6 (Completion with Deletion Reduction Strategy)

Let (R, Icn, Ion) be an XML specification. Let W be an XML repository, and Ecy (W)
be the set of completeness errors of W w.r.t. Icpr. Let [eq), ..., [en] be all the minimal
equivalence classes w.r.t. Ty in Eoy(W)/x,,.,- Then, a Completion with Deletion
Reduction strategy for W (also called MDR(W)) is a sequence

(RepairByDelete(W)y, ¢y), . . ., RepairByDelete(W,,, e,,))
where for every i =10...n, W; is an XML repository, and Wy = W.

Roughly speaking, the above strategy completes a given XML repository by fixing
only a completeness error e for each minimal equivalence class [e]. Therefore, the number
of RepairByDelete actions, that are needed to achieve completeness, is less or equal
than the total number of error in Eqp (W).

32

Proposition 6.7 Let (R, Ion, Ioy) be an XML specification. Let W be an XML repos-
itory, and let Ecpy (W) be the set of completeness errors of W w.r.t. Icpy. Then, a
MDR(W) strategy is a completion strategy for W that transforms W into an XML
repository W' such that |[MDR(W)| < |Ecp (W)].

Proof. Given a set of completeness error evidences Ecy (W), let e € Ecp (W) be an
arbitrary completeness error in Ecp (W). Let [eg], .. ., [e,] be all the minimal equivalence
classes w.r.t. Cinp of Ecy(W)/x,,,-

It is easy to see that the partial order T, s is well-founded, that is, for each [e], there
always exists a minimal [e;] such that [e;] C,¢ [e], for some i =0,...,n.

Now, we can distinguish two cases.

Case(i). e € [e;] for some i = 0,...,n. This implies that there exists a compound action
RepairByDelete(IV, ¢;) in the MDR(WW) strategy, that repairs all the errors in
e;] by Proposition [6.4] Hence, e is repaired.

Case(ii). e & [e;] for all i = 0,...,n. Then, there exists a non minimal equivalence class
[é] such that e € [e]. Since T, is well-founded, there exists a minimal class [e,],
for some i = 0,...,n, such that [e;] T,y [€]. As there exists the compound action

RepairByDelete(WW, ¢;) in the MDR(WW) strategy, e; gets fixed. Therefore, by
Proposition , all the errors in [é] get repaired as well. Hence, e is repaired.

Therefore, any error e is repaired by applying the MIDR(W) strategy, that transforms
W into a repository W’ such that Ecp(W’) = 0. This implies that MDR(W) is
a completion strategy. Also note that the number of RepairByDelete, appearing
in the MDR(W) strategy, is equal to the number of minimal equivalence classes in
Ecn(W) /x> which is lower than [Ecy (W)[. Hence, [IMDR(W)| < |Ecy (W) m

Example 6.8
Consider the following XML repository W and the set of completeness rules Ioyy:

XML repository W = {p1,p2,p3,p4} Completeness rules Ions = {ri,re,73,74}

p1=m(s(b), f(a)) r = f(X) = #g(X)(E)
p2 = m(m(g(a))) r2 = g(X) — th(X)(E)
p3 = m(l(b,a)) r3 = h(X) — ip(X)(A)
pa = h(b) ra =1(X,Y) = ip(X,Y)(4)

ps = m(b, h(c,b))

Then, Ecy = {eo, €1, €2, €3, €4, €5, €6, €7} is the set of detected completeness errors
of W that is delivered by our verification methodology, where

eo = (m(m(g(a))) = h(a),{ps}, E) e3 = (m(s(b), f(a)) = g(a) = h(a),{ps}, E)

er = (h(b) — p(b),W) es = (m(m(g(a))) = h(a) = p(a), W)

ez = (m(l(b,a)) — p(b,a), W) es = (m(s(b), f(a)) — g(a) = h(a) = p(a), W)
€6 = (m(bv h(c, b)) - p(b)v W) €7 = (m(b7 h(C, b)) - p(C), W)

Note that the errors ey, es, €4, €5, €5, and e; refer to missing XML documents, whereas
eo and es are existential completeness errors.
The preorder =, is defined as follows:

{e0 Sinys €4, €1 Zins €0, €3 Rinf €5,€5 Rinf €3,€1 Rinf €6, €1 Sinf e7}U{€; Ring eili =0,...,7}

where [eg] = {eo, €4}, [e1] = {e1}, [e2] = {e2}, [es] = {es,e5}, [es] = {es, e7}. Therefore,
the minimal, equivalence classes are

[eol, [ea]; [ea], [es].

Note that [eg] is not minimal as [e1] Cipf [es]-
Then, the MDR(WW) strategy is

(RepairByDelete(W, ¢y), RepairByDelete(117, e;),
RepairByDelete(W;, e;), RepairByDelete(Ws, e3))

Since the MDR(W) strategy is a completion strategy, by Definition we have

W, = RepairByDelete(IV, ¢)

W, = RepairByDelete(117, ¢;)
W3 = RepairByDelete(113, e)
Wy = RepairByDelete(W3, e3)

Finally, a complete XML repository Wy = {p}, ph, ps, ps} is obtained, (i.e., Ecn(Wy) = 0),
where p| = m(s(b)), ph = m(m()), py = m(), and p; = m(b). Note that the MDR(W)
strategy reduces the number of errors that are needed to repair the XML repository,
since it only addresses 4 errors from the original set of errors Ecp ().

6.2. Completion with Addition Reduction Strategy

The Completion with Addition Reduction strategy completes an XML repository W
by adding all the required missing information contained in the set Ecp (W) by means
of multiple applications of a variant of the RepairBylInsert repair action of Section

4211
The strategy uses the following preorder <" on E¢ay (W).

Definition 6.9 (=*"?) Let (R, Icn, Icar) be an XML specification. Let W be an XML
repository, and let Ecy (W) be the set of completeness errors of W w.r.t. Ioy. Let

e1, ez € Ecp (W) be two completeness errors with RSeq(e;) = py IV ~* reqy and
RSeq(es) = py 727 ty —* req,. Then,

er ™ ey iff there exists w € Oyy(reqy) s.t. req; I reqy,,.

34

Algorithm 1 Procedure to repair a set of completeness errors ordered by <*"P.
Require:
E=A{e,...,en} st eg I . LW e,
W be an XML repository
Ensure:
W |Vee€ E,e g Ecpy(W)
1: procedure REPAIRBYINSERT* (W, E)

2. Pp={} // Set of repaired documents.

3: for i <~ m downto 1 do

4: if e, = (p =" req, W) and Pg = {} then

5: W <+ add(req, W)

6: Pr < Pr U {req}

7 else if e; = (p =T req, P, E) and Pr = {} then

8: p < ask_user() // Ask user to select an XML document of P
9: w <— ask_user() // Ask user to select a position w in p
10: p < insert(p, w, req)

11 W WA A{p} U{p’}

12: Pr < PrU{p}

13: else if e¢; = (p =1 req, P, A) then

14: Pauz < P\ Pr

15: for all p € Py, do

16: w <— ask_user() // Ask user to select a position w in p
17: P < insert(p, w, req)

18: W WA\ {ptU{p'}

19: Pr + PrU {p}

20: end for

21 end if

22: end for
23: end procedure

Intuitively, given two completeness errors e; and ey, e; =*“P e5, whenever the missing
requirement of e; is embedded into (a subterm of) the missing requirement of e.

The following trivial facts hold.

e Fact 1. Let us consider two completeness errors e; and ey such that e; <P e,.
The missing requirement Reg(e;) (resp., Reg(es)) is the information to be added
to repair the error e; (resp. e3). Since Req(e;) is embedded into Req(es), if we add
Req(eq), we also add Req(ey).

e Fact 2. If the missing document/existential completeness error e, is repaired by
inserting the corresponding missing requirement, then we also get all the com-

35

pleteness errors e repaired such that e; <5"" and e; is a missing XML document
error or an existential error. This is because, in a simple step, we add the infor-
mation that embeds the missing requirements of all the considered missing XML
documents and existential completeness errors.

e Fact 3. Let e; be a universal completeness error. If ey is repaired by adding the
corresponding missing requirement, then every e; <5 is also fixed simultaneously.

These facts are the basis of Algorithm [I}, which implements RepairByInsert*: a variant
of the compound, repair action RepairByInsert of Definition [4.9that allows us not only
to fix a single completeness error but also multiple errors by applying a reduced number
of primitive insert/add actions. Note that, to ensure the soundness of our technique,
we require add and insert actions to be acceptable w.r.t. the XML specification and
XML repository under consideration (as in the case of the original RepairBylInsert).

Algorithm [1| takes in input an XML repository to be repaired and a set of complete-
ness errors {e,...,e,} such that e; <P ... 25" ¢, and delivers an XML repository
where every e; has been fixed. The algorithm fixes the errors ey, ..., e, in reverse order
(that is, from e, to ey): initially, it repairs the error e,, by adding the required missing
information Req(e,,). Note that, if e; <P ... <P ¢,, does not contain universal com-
pleteness errors (Fact 2) or e, is a universal completeness error (Fact 3), it suffices to
repair e,, to get every e; fixed.

The Completion with Addition Reduction strategy is based on the partial order C*%P,
induced by the preorder <*"P which is constructed as follows.

Given two completeness errors e, e, €1 and ey are equivalent w.r.t. <P (in symbols,
ep R ey) iff e <P ey and ey =<*P e;. By using the equivalence =,,, we can
naturally lift the preorder <**? on Ecp (W) to a (well-founded) partial order C°*P on
Ecp (W) /~sup, that is, the set of all equivalence classes [e] on Eqp (W) w.r.t. &2,

More specifically, given [eq], [ea] € Ecpr(W)/asur, [e1] 55 [eg] iff e 25U 5.

We say that an equivalence class [e] is mazimal w.r.t. C°°P if and only if there does
not exist [¢'] € Ecp(W)/~suwr such that [e] T [¢/] and [¢/] # [e].

An error chain is a sequence [eq] TP [eg] TP ... C* le,]. An error chain
[e1] T5UP [eo] T5UP .. C5UP [e,] is maximal w.r.t. C5P iff [e,,] is maximal w.r.t. C°“P. By
notation Set(e; TP eq TSP ... L ¢,,), we denote the set {eq,...,e,}.

Given an error chain [e;] T [eg] TP ... C*" [e,], the next proposition states that
to fix all the errors in each [e;], i = 1,...,n, it suffices to consider one error e; for each
class [e;] and apply a single RepairByInsert* on such errors.

Proposition 6.10 Let (R, Ion, Icy) be an XML specification. Let W be an XML
repository, and let Ecp (W) be the set of completeness errors of W w.r.t. Iop. Let
e1,..., e, € Ecp(W) such that [e1] Cyp - .. Coup [€n]. Then,

RepairBylInsert™ (W, Set([e;] T°P [eg] TP ... TP [e,]))
delivers an XML repository W' in which every error € € le;] is repaired, for all i =

1,...,n.

36

Proof. This is an immediate consequence of Fact 2 and Fact 3. []

Now, by exploiting a naive completion strategy would repair an incomplete
XML repository, by executing Algorithm [1| on each sequence of errors e; <%“P ey <P
... X% e guch that the error chain [e;] TP [ey] TP ... C5P [e,] is maximal.
However, this approach is not efficient at all. Indeed, it may require to correct the very
same error e several times, as [e] may occur in more than one maximal error chain.
In other words, if [e] occurs in two different error chains and one occurrence of e is
repaired, this naive strategy may lead to inefficacy, since the second insertion action
might not be needed anymore. The idea of the Completion with Addition Reduction
strategy is to distill, from the set of all maximal error chains on Ecp(W)/xsur, a set
Lienw) C 2EcmW) guch that

(i) each K € I'g,,, is a set {ey,...,er} of completeness errors with [e,] TP ... TP
[ex];

ii) the sets of errors that belong to I'g., () are pairwise disjoint (i.e., any given
8 cm (W) J y g
completeness error e belongs to only one set K € I'g.,, (w))-

Then, Algorithm [I]is applied to every set of errors in I'g,,,,(w). This approach solves the
issues introduced by the naive approach, since it removes completeness error duplicates
and guarantees that each considered completeness error is repaired only once.

More formally, let ng\pf wy = {Cy,...,C,} be the set of all maximal error chains
<sup

on Egp(W)/~xsur such that [Ci| > |Ciyq] for 0 < i < n. By Cg (i), we denote the set
{8et(Cy), ..., Set(C;)}. Then, we define the set I'g,,, w) as follows:
Cieaw) = {Ki | K; = dif (Cg,.,, (1), with 0 <i < |Cg, | [},

where dif ({zo}) = xo
dif ({zo, .- xn}) = (((xy \ Tno1) \ ...) \ o), if n >0

The Completion with Addition Reduction strategy is thus formalized by using the
set I'g.,,(w) as follows.

Definition 6.11 (Completion with Addition Reduction Strategy, MAR)

Let (R, Icn,Ioa) be an XML specification. Let W be an XML repository, and let

Ecn(W) be the set of completeness errors of W w.r.t. Icn. LetUgg,,wy = {Ko, ..., Ky}
Then, a Completion with Addition Reduction strategy for W (also called MIAR(WW)

strategy) is a sequence
(RepairBylnsert* (W, Ky), ..., RepairByInsert*(W,,, K,,))

where for every i =0...n, W; is an XML repository, and Wy = W.

37

The following proposition states that a MAR(W) strategy is a completion strat-
egy that allows an XML repository W to be completed by applying a number of
RepairBylInsert* actions that is less or equal than the total number of completeness
errors in W.

Proposition 6.12 Let (R, Icy, Ion) be an XML specification. Let W be an XML repos-
itory, and let Ecpy (W) be the set of completeness errors of W w.r.t. Icpy. Then, a
MAR(W) strategy is a completion strategy for W that transforms W into an XML
repository W' such that [MAR(W)| < |Ecp (W)

Proof. Given a set of completeness errors Ecy (W), let e € Ecp (W) be an arbitrary
completeness error in Eqp (W), First, observe that each error chain w.r.t. C* is fi-
nite by Definition of C°*? and the fact that each XML document is represented by
a finite term in 7(Text U Tag). Therefore, there must exist a maximal error chain
[e1] TP [eq] TP ... C*"P [e,] such that e € [e;] for some i = 1,...,n. Now,
by definition of I'g,,,(w), there must exists K € I'g,,,w) such that e; € K. Since
RepairBylInsert*(W;, K) occurs in the MAR(W) strategy by Definition e; gets
repaired. Then, by Proposition [6.10} all errors in [e;] get repaired. Hence, e is repaired
as well.

Therefore, any error e is repaired by applying the MAR(W) strategy, that transforms
W in a repository W’ such that Ecp(W’') = 0. This implies that MAR(W) is a
completion strategy. Also note that the number of RepairByDelete, appearing in the
MDR (W) strategy, is equal to the number of elements of I'g,,,, (w), which is less or equal
than |Ecpy (W)|. Hence, IMAR(W)| < |Ecp (W)]. n

Example 6.13
Consider the XML repository W, the set of completeness rules /,;, and the set of
detected completeness errors Fcpr = {eo, €1, €2, €3, €4, €5, €6, €7} of Example .
The preorder <*“P is defined as follows:

Su su Su su Su su Su
{eg 2P e3,e3 =P e, 61 7P g5, 66 P 1,61 X7 €9, 66 5P €9, €4 <P e,

es %P ey ey X5 ey 5 2P ept U {e; P eli =0,...,7}
and the equivalence classes w.r.t. ~°“? are

leo] = {eo, €3}, [e1] = {e1, €6}, [ea] = {ea}, [es] = {eq, €5}, [er] = {er}.

The set of all maximal error chains, in reverse order w.r.t. their length, is

o = {le1] T [ea], [ea] T [ea], [eq], [e7]}-

The partition I'g,,, is then I'g.,, = {{eo}, {es, €2}, {e1}, {er}}.

Then, the MAR (W) strategy is (RepairByInsert* (W, {¢y}), RepairByInsert*(1W;, {e4, e2}),
RepairBylInsert*(Ws, {e:}), RepairByInsert*(WV;, {e;}))

38

and it yields a complete XML repository

W’ = {m(s(b), f(a)), p(b, a), p(b), m(m(g(a))), m(l(b, a)), h(a, b), m(b, h(c,b)), p(c) }

7. Implementation

The rule-based repairing methodology presented in this work has been implemented
in the WifiX tool. The underlying rewriting machinery of WifiX is written in Maude and
consists of about 250 Maude function definitions (approximately 5K lines of source code).
WifiX also comes with an intuitive Web user interface, which allows the verification and
repairing facilities to be used through a Web service. The provided verification engine
uses the Web service functionality described in [I5], while the repair engine has been
newly reimplemented and can also work in stand-alone mode.

XML e L Repaired XML
. Specification .
repository, repository

Web Interface 7’
Web Service & SOAP API

Verification Repair
Engine

Figure 4: WifiX architecture.

The architecture of WifiX is depicted in Figure [4] and is structured into two standard
layers, front-end and back-end. The back-end layer provides the Web services that are
offered through the front-end layer. This architecture allows clients on the network to
easily invoke the Web service functionality through the available interfaces.

WifiX consists of four main components: Web interface, Web service & SOAP
API, Verification engine and Repair engine.

Web interface. This module is purely implemented in HTML5 and JSP. It represents
the front-end layer and provides an intuitive, versatile Web user interface, which interacts
with the Web service to invoke the capabilities of the verification and repair engine, and
it offers the possibility to choose the repair strategy to be applied.

Web service & SOAP API. The Web service is developed by defining a SOAP
API that encompasses the executable library of the core engine. This is achieved by
making use of the Apache Axis module which is integrated into Apache Tomcat Web
server. Apache Axis is an implementation of the SOAP protocol that handles all of the

39

procedures needed for the Web service deployment. Detected errors as well as repaired
XML repositories are encoded in XML in order to be transferred from the Web server
to client applications by means of the SOAP protocol.

Verification engine. The verification engine module uses the Web service functionality
described in [I5], which is implemented in the Maude language and is independent of
the other system components. It gets an XML repository and an XML specification and
delivers the computed list of correctness/completeness errors as outcome.

Repair engine. The repair engine is also implemented in Maude and uses the list of
errors delivered by the verification engine to fix the XML repository following the chosen
repair strategy.

In Figures we illustrate part of the repair functionality that is offered by the
WifiX system. Specifically, Figure 5| shows the loading phase of the XML repository to
be fixed and the considered XML specification. Figures illustrate the selection of
the correction strategy to apply, and the specification of the associated repair actions.
Finally, Figure |8 partially displays the resulting XML repository.

Provide the input XML repository and specification.

In this step, an XML repository and specification have to be entered. Some predefined repositories are provided for demonstration purposes,
just select a repository from the given list and the input areas will be automatically filled in.

Select predefined example: [Example 2 #

— XML repository
Load XML repository from file: [choose File | no file chosen

<XMLrepository>
<XMLdocument>
<id> 6 </id>
<name> p6 </name>
<data>
<projects>
<project>
<pname> Al </pname>
<grantl> 1000 </grantl>
<grant2> 200 </grant2>

— Specification
Load Specification from file: [Choose File |wo file chosen

<Specification>
<ruleCompleteness Name="r3">
<left>
<attrib>
<pubs>
<attrib>
<pub>
<attrib>
<name>
<attrib>X</attrib>

. 9% Complaiz

Figure 5: Loading XML repository

40

Select the correction strategy

List of errors

Error Node id w 1 sigma condition
1 6 1.2 project(grantl(X), grant2(Y)) { X /'2000',Y /'1000' } Y*2>=X
2 6 1.1 project(grantl(X), grant2(Y), total(Z)) {X/'1000",Y/'200',Z/'1100" } Y+X=/=2Z

Correction strategy

(» Minimize the number of repair actions to be executed.
) Reduce the amount of information to be changed/removed.

Fix the errors

List of errors

CEEED ol

~

Figure 6: Selecting the repair strategy

Error Node id w 1 sigma condition
1 6 1.2 project(grantl(X), grant2(Y)) { X /'2000',Y /'1000' } Y*2>=X
2 6 1.1 project(grantl(X), grant2(Y), total(Z)) {X/'1000",Y/'200',2Z/'1100" } Y+X=/=2Z

You can repair error 1

(= Delete
() Change:

You can repair error 2

) Delete

@ Change: project(grantl(1000

XML repository result

66% Complete)

Figure 7: Selecting the error and associated repair action

<XMLrepository>
<XMLdocument>
<projects>
<project>
<pname>
'B1'
</pname>
<grantl>
12000
</grantl>
<grant2>
'1000'
</grant2>
<projectleader>
<surname>

100% Complete

Figure 8: Displaying the transformed XML repository

41

7.1. Experimental results

In order to evaluate the usefulness of our approach in a realistic scenario (that is,
for huge XML repositories), we have benchmarked our system by repairing correctness
errors as well as completeness errors of different complexity over a significant number of
large XML repositories that have been generated by using the XML documents generator
xmlgen available within the XMark benchmark suite [32].

Our methodology successfully tackles two main problems that commonly arise when
large datasets are considered. The first problem concerns how to find the critical errors
which are necessary to correct, since many of the errors might be induced by the most
critical ones, similarly to the error induction phenomenon that occurs when one compiles
a program written in a high-level language. Second, the number of errors in a large
dataset can be very high, and the time to correct them all, or even a subset, can be
quite long. So the benefits coming from our methodology are twofold. By selecting the
minimal errors we have a mechanism to focus only on the critical ones, and furthermore,
we reduce significantly the time to make correction/completion on the datasets. These
benefits are illustrated by Table 1 reporting on our experiments.

Specifically, Table [1| shows some of the results that we obtained for the repair of four
XML repositories of increasing size (ranging from 1Mb to 10Mb) w.r.t. two different
XML specifications WS1 and WS2. The XML specification WS1 aims at checking the
correctness of the considered repositories w.r.t. some properties formalized by means of
conditional correctness rules with regular expressions and several user-defined functions.
The XML specification WS2 defines a number of critical completeness rules that identify
a significant amount of missing information.

Correctness errors, detected by applying the XML specification WS1, have been
repaired by using the NAR and NDR correction strategies; while completeness errors,
produced by the execution of WS2, have been repaired by means of MAR and MIDR
completion strategies.

For each experiment, columns Errors and Fixed Errors of Table|l|respectively pro-
vide the total number of correctness/completeness errors detected in the XML reposito-
ries and the number of correctness/completeness errors fixed by each considered repair
strategy (NAR, NDR, MAR, and MDR) to achieve correctness/completeness of the
XML repositories. The Rate column shows the percentage of errors (w.r.t. the total
number of errors) that have been repaired. The repair times for the considered experi-
ments are shown in Column Time, and were obtained on a 2.26GHz Intel Core 2 Duo
with 4Gb of RAM memory.

The system WifiX worked well in all the experiments under examination. In all cases,
the XML repositories have been corrected and completed by repairing a rather small
number of errors. Indeed, in the worst case, we needed to fix 11 completeness errors out
of 26, which is approximately the 42% of the total number of completeness errors de-
tected. In the best case, we only needed to fix 17 completeness errors out of 98, which is
approximately the 17% of the total number of completeness errors detected. As for cor-
rectness, we achieved similar reduction rates (ranging from 19% to 38% approximately)

42

XML Size | XML Spec. | Errors | Fixed Errors | Strategy | Rate | Time
8 NAR 38.10 % | 0.24 s

1 MB WSt 21 7 NDR 33.33 % | 0.18 s
W92 96 11 MAR 42.31 % | 0.46 s

9 MDR 34.62 % | 0.30 s

13 NAR 26.53 % | 1.40 s

5 MB WSt 49 14 NDR 28.57 % | 1.54 s
W92 51 14 MAR 27.45 % | 1.32 s

15 MDR 29.41 % | 145 s

17 NAR 23.94 % | 1.63 s

3 MB WS & 16 NDR 22.54 % | 1.59 s
W92 74 16 MAR 21.62 % | 1.82's

18 MDR 24.32 % | 1.98 s

19 NAR 19.79 % | 2.58 s

10 MB ws1 %6 18 NDR 18.75 % | 2.50 s
W99 08 17 MAR 1735 % | 2.84 s

19 MDR 19.39 % | 2.92 s

Table 1: WifiX Benchmarks

in the number of correctness errors to repair.

As for the repair time, our benchmarks demonstrate that repair strategies are time
efficient. The elapsed times are small even for very involved errors and complex docu-
ments. For example, running the repair facility for an XML repository about 1Mb and
considering an XML specification with about 20 rules took less than 1 second (480.000
rewrites per second on standard hardware).

Finally, we want to point out that the current Maude implementation of the repairing
system supersedes and greatly improves our preliminary system [23], which was only able
to manage correctness for small XML repositories (of about 1Mb) within a reasonable
time.

8. Conclusions

The automated management of data-intensive XML repositories is an area in which
rule-based technology can make a significant contribution. Today, it is widely accepted
that declarative representations are a suitable way to specify the structural aspects of
XML repositories as well as many forms of XML document content. Our rule spec-
ification language is simpler than the formalizations of XML schemata based on tree
automata that are often used in the literature (e.g., the regular expression types [33]).
As an additional advantage, the high-performance rewriting logic language Maude [34]

43

offers an extremely powerful, automated “reasoning engine” that is unmatched by ex-
isting repair methods for XML documents.

The repairing methodology developed in this paper deals with semantic flaws that
are not addressed by classical tools. The framework comes with a language for defining
correctness and completeness conditions on XML repositories. Thus, our rewriting-based
(verification and) repairing technique is able to get rid of forbidden/incorrect patterns
and amend incomplete/missing documents in a (semi-)automatic way.

In our implementation of WifiX, we exploit the capabilities of Maude that are par-
ticularly suitable for our task, such as the built-in associative-commutative pattern
matching and intensive meta-programming capabilities. We have benchmarked WifiX
and obtained a very good performance in several cases. We have also proposed a service-
oriented architecture that makes the repairing capabilities of the system easily accessible
to Internet requests.

As future work, we plan to study new repair strategies that minimize the information
to be removed.

Acknowledgement

We would like to thank the anonymous reviewers for their helpful comments.

References

[1] C. Nentwich, W. Emmerich, A. Finkelstein, Consistency Management with Repair
Actions, in: Proc. of the 25th Int’l Conference on Software Engineering, ICSE’03,
IEEE Computer Society, 2003, pp. 455—464.

[2] L. Capra, W. Emmerich, A. Finkelstein, C. Nentwich, XLINKIT: a Consistency
Checking and Smart Link Generation Service, ACM Transactions on Internet Tech-
nology 2(2) (2002) 151-185.

[3] MessageAUTOMATION Validator, 2010. Available at: http://www.
messageautomation.com/products/validator.html.

[4] J. Scheffezyk, P. Rédig, U. M. Borghoff, L. Schmitz, Managing Inconsistent Reposi-
tories via Prioritized Repairs, in: Proc. of the 2004 ACM Symposium on Document
Engineering (DocEng '04), ACM Press, 2004, pp. 137-146.

[5] J. Scheffczyk, P. Rodig, U. M. Borghoff, L. Schmitz, S-DAGs: Towards efficient
document repair generation, in: Proc. of the 2nd Int’l Conference on Computing,
Communications and Control Technologies, volume 2, pp. 308-313.

[6] J. Scheffczyk, U. M. Borghoff, P. Rodig, L. Schmitz, Consistent Document Engi-
neering: Formalizing Type-Safe Consistency Rules for Heterogeneous Repositories,
in: Proc. of the 2003 ACM Symposium on Document Engineering (DocEng ’03),
ACM Press, 2003, pp. 140-149.

44

http://www.messageautomation.com/products/validator.html
http://www.messageautomation.com/products/validator.html

[7]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

L. Bertossi, J. Pinto, Specifying Active Rules for Database Maintenance, in:
G. Saake, K. Schwarz, C. Tirker (Eds.), Transactions and Database Dynamics, 8th
Int’l Workshop on Foundations of Models and Languages for Data and Objects,
volume 1773 of Lecture Notes in Computer Science, Springer, 1999, pp. 112-129.

E. Mayol, E. Teniente, A Survey of Current Methods for Integrity Constraint
Maintenance and View Updating, in: Proc. of Advances in Conceptual Modeling
(ER ’99), volume 1727 of Lecture Notes in Computer Science, Springer, 1999, pp.
62-73.

L. Alexandre, J. Coelho, A High-level Approach to Web Content Verification,
Advan Appl., AISCces in Computer Science, Eng. & 166 (2012) 755-764.

J. Coelho, M. Florido, XCentric: logic programming for XML processing, in:
I. Fundulaki, N. Polyzotis (Eds.), 9th ACM International Workshop on Web In-
formation and Data Management (WIDM 2007), Lisbon, Portugal, November 9,
2007, ACM, 2007, pp. 1-8.

J. Coelho, M. Florido, Type-Based Static and Dynamic Website Verification, in:
Int’l Conference on Internet and Web Applications and Services (ICIW 2007), May
13-19, 2007, Le Morne, Mauritius, IEEE Computer Society, 2007, p. 32.

P. Mancarella, G. Terreni, F. Toni, Web Sites Repairing through Abduction, Electr.
Notes Theor. Comput. Sci. 235 (2009) 137-152.

M. Alpuente, D. Ballis, M. Falaschi, A Rewriting-based Framework for Web Sites
Verification, ENTCS 124(1) (2005). Proc. of 1st Int’l Workshop on Ruled-Based
Programming (RULE’04).

M. Alpuente, D. Ballis, M. Falaschi, VERDI: An Automated Tool for Web Sites
Verification, in: J. J. Alferes, J. Leite (Eds.), Proc. of the 9th European Conference
on Logics in Artificial Intelligence (JELIA’04), volume 3229 of Lecture Notes in
Computer Science, Springer, 2004, pp. 726-729.

M. Alpuente, D. Ballis, M. Falaschi, Rule-based Verification of Web Sites, Software
Tools for Technology Transfer 8 (2006) 565-585.

M. Alpuente, D. Ballis, M. Falaschi, D. Romero, A Semi-automatic Methodology
for Reparing Faulty Web Sites, in: Proc. of the 4th IEEE Int’l Conference on
Software Engineering and Formal Methods, SEFM’06, IEEE Computer Society
Press, 2006, pp. 31-40.

M. Alpuente, D. Ballis, M. Falaschi, P. Ojeda, D. Romero, A Fast Algebraic Web
Verification Service, in: Proc. of First Int’l Conference on Web Reasoning and
Rule Systems (RR 2007), volume 4524 of Lecture Notes in Computer Science, pp.
239-248.

45

[18]

[19]

[20]

[21]

[22]

23]

[26]

[27]

28]

[29]

M. Alpuente, D. Ballis, M. Falaschi, P. Ojeda, D. Romero, An Abstract Generic
Framework for Web Site Verification, in: Proc. of the 2008 Int’l Symposium on
Applications and the Internet (SAINT 2008), IEEE Computer Society, 2008, pp.
104-110.

J. Klop, Term Rewriting Systems, in: S. Abramsky, D. Gabbay, T. Maibaum (Eds.),
Handbook of Logic in Computer Science, volume I, Oxford University Press, 1992,
pp. 1-112.

J. Meseguer, Twenty Years of Rewriting Logic, Journal of Algebraic and Logic
Programming (2012). To appear.

N-Marti-Oliet, M. Palomino, A. Verdejo, Rewriting Logic Bibliography by Topic:
1990-2011, Journal of Logic and Algebraic Programming (2012). To appear.

M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer, C. Talcott,
All About Maude: A High-Performance Logical Framework, volume 4350 of Lecture
Notes in Computer Science, Springer-Verlag, 2007.

D. Ballis, D. Romero, Fixing Web Sites Using Correction Strategies, in: Proc of
2nd Int’l Workshop on Automated Specification and Verification of Web Systems
(WWV’06). Paphos, Cyprus, IEEE Computer Society Press, 2007, pp. 11-19.

J. Coelho, B. Dundua, M. Florido, T. Kutsia, A Rule-Based Approach to XML
Processing and Web Reasoning, in: P. Hitzler, T. Lukasiewicz (Eds.), Web Rea-
soning and Rule Systems - Fourth International Conference (RR 2010), Bres-
sanone/Brixen, Italy, September 22-24, 2010. Proceedings, volume 6333 of Lecture
Notes in Computer Science, Springer, 2010, pp. 164-172.

C. Kirchner, Z. Qian, P.-K. Singh, J. Stuber, Xemantics: a Rewriting Calculus-
Based Semantics of XSLT, Technical Report, LORIA, 2002. Rapport de recherche
A01-R-386.

I. D. Baxter, F. Ricca, P. Tonella, Web Application Transformations based on
Rewrite Rules, Information and Software Technology 44 (2002).

M. Alpuente, D. Ballis, D. Romero, Specification and Verification of Web Applica-
tions in Rewriting Logic, in: Formal Methods, Second World Congress FM 2009,
volume 5850 of Lecture Notes in Computer Science, Springer, 2009, pp. 790-805.

TeReSe (Ed.), Term Rewriting Systems, Cambridge University Press, Cambridge,
UK, 2003.

N. Dershowitz, D. Plaisted., Rewriting, Handbook of Automated Reasoning 1
(2001) 535-610.

46

[30] M. R. Henzinger, T. A. Henzinger, P. W. Kopke, Computing Simulations on Finite
and Infinite Graphs, in: IEEE Symp. on Found. of Computer Science, pp. 453—462.

[31] M. Leuschel, Homeomorphic Embedding for Online Termination of Symbolic Meth-
ods, in: The Essence of Computation, volume 2566 of Lecture Notes in Computer
Science, pp. 379-403.

[32] A. Schmidt, F. Waas, M. L. Kersten, M. J. Carey, I. Manolescu, R. Busse, XMark:
A benchmark for xml data management, in: VLDB 2002, Proceedings of 28th Int’l

Conference on Very Large Data Bases, August 20-23, 2002, Hong Kong, China, pp.
974-985.

[33] H. Hosoya, B. Pierce, Regular Expressions Pattern Matching for XML, in: Proc.
of 25th ACM SIGPLAN-SIGACT Int’l Symp. POPL, ACM, 2001, pp. 67-80.

[34] M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer, C. Talcott,
The maude 2.0 system, in: Rewriting Techniques and Applications (RTA 2003),
number 2706 in Lecture Notes in Computer Science, pp. 76-87.

47

