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Abstract We study ω-regularity of the solutions of certain operators that are
globally C∞-hypoelliptic in the N-dimensional torus. We also apply these results
to prove the global ω-regularity for some classes of sublaplacians. In this way
we extend previous work in the setting of analytic and Gevrey classes. Different
examples on local and global ω-hypoellipticity are also given.
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1 Introduction

A linear partial differential operator P defined on an open set Ω of RN with
coefficients in C∞(Ω) (resp., in A(Ω)) is said to be locally hypoelliptic (resp.,
locally analytic hypoelliptic) in Ω if for every f ∈ C∞(U) (resp., f ∈ A(U)),
with U ⊂ Ω any open set, all the solutions u ∈ D′(U) of Pu = f belong to
C∞(U) (resp., to A(U)). If P is defined on the torus TN , then P is said to be
globally hypoelliptic (resp., globally analytic hypoelliptic) in TN if all the solutions
u ∈ E ′(TN ) of Pu = f belong to C∞(TN ) (resp., to A(TN )). We observe that
the local hypoellipticity (resp., local analytic hypoellipticity) implies the global
hypoellipticity (resp., global analytic hypoellipticity). By the celebrated sum of
squares theorem of Hormander [35] the finite type condition is sufficient for the
local hypoellipticity of P . But this condition is not sufficient for the local analytic
hypoellipticity of P as it was first observed by Baouendi and Goulaouic [7]. Other
classes of locally hypoelliptic operators which fail to be locally analytic hypoelliptic
have been found and there are important results on analytic regularity (see, f.i.,
[26,41,24,25,12,13] and the references therein). All such operators also fail to
be locally hypoelliptic in the setting of ultradifferentiable function spaces (see,
Propositions 4.1 and 4.2 for example). Cordaro and Himonas [15] proved that
the finite type condition is sufficient for the global analytic hypoellipticity of some
classes of operators in the form of a sum of squares of vector fields with real valued
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and real analytic coefficients. This result was further extended in Refs. [16,32,
33,43]. In particular, Himonas and Petronilho [32,43] showed the global analytic
hypoellipticity (and also the global Gevrey hypoellipticity) of certain operators of
the type P = P (t,Dt, Dx) defined on the torus Tm+n with real valued coefficients
in A(Tm) and globally hypoelliptic in Tm+n (see [15,16,33]).

During the last years, many papers have concerned with the study of global
solvability and hypoellipticity of linear partial differential operators on compact
manifolds, e.g., torus, in large scales of functional spaces (see, e.g., [4–6,8,11,15–17,
19,21,22,28,30–34,43,46]). The theory of global properties of differential opera-
tors is not well developed in comparison with the theory of local properties. In
particular, global properties are open problems except for some classes of oper-
ators. Several works treat the ultradifferentiable setting, and treat especially the
Gevrey and analytic cases (see, for instance, [4–6,15,16,28,31–33,46]).

Motivated by the recent work developed in [15,16,32,33,43] and in [2,3], we
investigate the global hypoellipticity of linear partial differential operators defined
on the torus TN in a bigger scale of spaces, namely, in the setting of ultradifferen-
tiable classes as introduced in [10]. Actually, we prove the ω-regularity of solutions
of operators of type P = P (t,Dt, Dx) defined on the torus Tm+n with real valued
coefficients in E∗(Tm) and which are globally hypoelliptic in Tm+n. Therefore, we
extend the previous work for Gevrey classes of Himonas and Petronilho [32,43]
(see, Theorem 3.1). As a consequence, we obtain some applications to sublapla-
cians that may satisfy the finite type condition or may be of infinite type at most
points, see §4. We also characterize the global ω-hypoellipticity of linear partial
differential operators with constant coefficients in TN in terms of the symbol, see
Proposition 3.1 (compare with [23,22,32]).

2 Notation and preliminaries

In this section we recall the definition of ultradifferentiable classes and ultradistri-
butions of Beurling and Roumieu type, as well as the definition of wave front set
in this setting and some needed results.

Throughout this article | · | denotes the euclidean norm on Rn or Cn.

Definition 2.1 A weight function is an increasing continuous function ω : [0,∞[→
[0,∞[ with the following properties:

(α) there exists L ≥ 0 such that ω(2t) ≤ L(ω(t) + 1) for all t ≥ 0,

(β) ω(t) = O(t) as t tends to ∞,

(γ) log(t) = o(ω(t)) as t tends to ∞,

(δ) ϕ : t→ ω(et) is convex.

A weight function ω is called quasi–analytic if∫ ∞
1

ω(t)

t2
=∞.

If the integral is finite, then ω is called a non quasi–analytic weight function.
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A weight function ω is equivalent to a sub-additive weight if, and only if, the
following property holds:

(α0) ∃D > 0 ∃t0 > 0 ∀λ ≥ 1 ∀t ≥ t0 : ω(λt) ≤ λDω(t).

For a weight function ω we define ω̃ : C → [0,∞[ by ω̃(z) := ω(|z|) and again
denote this function by ω. The Young conjugate ϕ∗ : [0,∞[→ R of ϕ is given by

ϕ∗(s) := sup{st− ϕ(t), t ≥ 0}.

There is no loss of generality to assume that ω vanishes on [0, 1]. Then ϕ∗ has
only non-negative values, it is convex and ϕ∗(t)/t is increasing and tends to ∞ as
t→∞ and ϕ∗∗ = ϕ.

Example 2.1 The following are examples of weight functions (eventually after a
change on the interval [0, δ] for a suitable δ > 0):

(1) ω(t) = tα, 0 < α < 1;

(2) ω(t) = (log(1 + t))
β
, β > 1;

(3) ω(t) = t (log(e+ t))
−β

, β > 0;
(4) ω(t) = t.

The weight function in (3) is quasi–analytic for β ∈]0, 1] and non quasi–analytic for
β > 1. The weight function in (4) is also quasi–analytic. Moreover, all the weight
functions above satisfy property (α0). For further examples of quasi–analytic
weight functions we refer to [9].

Definition 2.2 Let ω be a weight function. For an open set Ω ⊂ RN we let

E(ω)(Ω) := {f ∈ C∞(Ω) : ‖ f ‖K,λ<∞, for every K ⊂⊂ Ω and every λ > 0},

and
E{ω}(Ω) := {f ∈ C∞(Ω) : for every K ⊂⊂ Ω there exists

λ > 0 such that ‖ f ‖K,λ<∞},

where

‖ f ‖K,λ:= sup
x∈K

sup
α∈NN0

|f (α)(x)|exp

(
−λϕ∗

(
|α|
λ

))
.

The spaces E(ω)(Ω) and E{ω}(Ω) are endowed with their natural topologies.
Then E(ω)(Ω) is a nuclear Fréchet space, while E{ω}(Ω) is a countable projective
limit of (DFN)-spaces, which is reflexive and complete. The elements of E(ω)(Ω)
(respectively, E{ω}(Ω)) are called ω-ultradifferentiable functions of Beurling type

(respectively, of Roumieu type) in Ω. By E ′(ω)(Ω) and E ′{ω}(Ω) we denote the duals

of E(ω)(Ω) and E{ω}(Ω). As usual, we also denote by E ′(Ω) the dual space of

C∞(Ω). When ω is quasianalytic the elements of E ′(ω)(Ω) (respectively, E ′{ω}(Ω))

are called quasianalytic functionals of Beurling (respectively, Roumieu) type. We
observe that in the case ω(t) = tα, 0 < α ≤ 1, the corresponding Roumieu class is
the Gevrey class with exponent s = 1/α. In particular, E{t}(Ω) coincides with the
space A(Ω) of all real analytic functions on Ω.

We will write ∗ to denote (ω) or {ω} when it is not necessary to distinguish
between both cases.
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If ω is quasi–analytic, the elements with compact support in E{ω}(Ω) or in
E(ω)(Ω) are trivial. While, if ω is non quasi–analytic, the space D∗(K) := E∗(Ω) ∩
D(K) 6= {0}, being K ⊂ Ω a compact set. Then D∗(Ω) := indnD∗(Kn), where (Kn)
is any compact exhaustion of Ω. The elements of D′(ω)(Ω) (respectively, D′{ω}(Ω))

are called ω-ultradistributions of Beurling (respectively, Roumieu) type.

Remark 2.1 We observe that:
(a) If σ(t) = o(ω(t)) as t tends to infinity, then

E{ω}(Ω) ⊂ E(σ)(Ω)

with continuous inclusion.
(b) If ω(t) = o(t) as t tends to infinity, then for each constant l ∈ N, there is a

constant Cl > 0 such that

y log y ≤ y + lϕ∗
(y
l

)
+ Cl, y > 0.

We also recall the notion of wave front sets in the setting of ultradifferentiable
classes (see [2]):

Definition 2.3 Let Ω ⊂ RN be an open set and u ∈ D′(Ω). Let ω be a weight
function.

1. If ω(t) = o(t) as t tends to infinity, we define the (ω)-wave front set WF(ω)(u)

of u to be the complement in Ω × (RN \ {0}) of the set of points (x0, ξ0) such
that there exist an open neighborhood U of x0 in Ω, a conic neighborhood Γ

of ξ0 and a bounded sequence uL ∈ E ′(Ω) equal to u in U and such that for
every k ∈ N there exists a constant Ck > 0 satisfying

|ξ|L |ûL(ξ)| ≤ Ckekϕ
∗(L/k), L = 1, 2, . . . , ξ ∈ Γ. (2.1)

2. The {ω}-wave front set WF{ω}(u) of u is the complement in Ω × (RN \ {0}) of
the set of points (x0, ξ0) such that there exist an open neighborhood U of x0
in Ω, a conic neighborhood Γ of ξ0 and a bounded sequence uL ∈ E ′(Ω) equal
to u in U which satisfies, for some C > 0 and k ∈ N, the estimates

|ξ|L |ûL(ξ)| ≤ Ce
1
kϕ
∗(Lk), L = 1, 2, . . . , ξ ∈ Γ. (2.2)

Next, denote by TN = RN
2πZN the N-dimensional torus. For a weight function

ω let E∗(TN ) be the space of all E∗-functions on TN , which are identified with
the E∗-functions on RN that are 2π-periodic in each variable. Clearly, E∗(TN ) is a
closed subspace of E∗(RN ). Then, if we set Kπ = [0, 2π]N , E(ω)(TN ) is a Fréchet
space whose topology is generated by the sequence {‖ ‖Kπ,k}k∈N of norms and

E{ω}(TN ) is a dual Fréchet-nuclear space, i.e., E{ω}(TN ) = ind limk E{ω},k(TN )

with E{ω},k(TN ) = {f ∈ C∞(Kπ) : ‖ f ‖Kπ,1/k<∞} for k ∈ N.

If either u ∈ E ′∗(TN ) or u ∈ E ′(TN ), we can define û(ξ) := u((2π)−Ne−ix·ξ) for
ξ ∈ ZN and show the following result, that may be known for specialists.

Proposition 2.1 Let ω be a weight function and u ∈ E ′(TN ). Then the following

holds.
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(i) Suppose ω(t) = o(t) as t→∞. Then u ∈ E(ω)(TN ) if, and only if, for each k ∈ N
there is Ck > 0 such that |û(ξ)| ≤ Cke−kω(ξ) for all ξ ∈ ZN .

(ii) u ∈ E{ω}(TN ) if and only if there exist ε > 0, C > 0 such that |û(ξ)| ≤ Ce−εω(ξ)

for all ξ ∈ ZN .

In the following, as usual, we denote Dα = Dα1
1 · · ·D

αN
N (∂α = ∂α1

x1
· · · ∂αNxN ) for

α ∈ NN0 , where Dj = −i∂xj for j ∈ {1, . . . , N}.

Proof (i) Let u ∈ E(ω)(TN ). Since, for each α ∈ NN0 , û(ξ) = 1
(2π)N

∫
TN e

−ix·ξu(x) dx

for ξ ∈ ZN , we have

ξαû(ξ) =
1

(2π)N

∫
TN

e−ix·ξDαu(x) dx.

As u ∈ E(ω)(TN ), for each k ∈ N there exists Ck such that

|ξαû(ξ)| ≤ max
x∈Kπ

|∂αu(x)| ≤ Cke
kϕ∗

(
|α|
k

)
, α ∈ NN0 , ξ ∈ ZN . (2.3)

Now, let L ∈ N0 and ξ ∈ ZN and choose i ∈ {1, . . . , N} such that

|ξi| = max
1≤j≤N

|ξj |.

If we set α = Lei with ei being the i–th vector of the standard basis of RN , we
have

|ξ|L ≤ NL/2 max
1≤j≤N

|ξj |L = NL/2|ξi|L = NL/2|ξα|.

Combining this inequality with (2.3) we obtain that, for each k ∈ N there exists
Ck such that

|ξ|L|û(ξ)| ≤ NL/2Cke
kϕ∗(Lk ), L ∈ N0, ξ ∈ ZN .

By [2, Lemma 3.2] this implies the thesis.
Conversely, let u ∈ E ′(ω)(T

N ) satisfying the condition in (i). By [2, Lemma 3.2],

for each k ∈ N there exists Ck > 0 such that |ξ|L|û(ξ)| ≤ Ckekϕ
∗(Lk ) for all ξ ∈ ZN

and L ∈ N0. So, for each α ∈ NN0 and x ∈ RN , we obtain that the series

Dαu(x) =
∑
ξ∈ZN

ξαû(ξ)eix·ξ

is absolutely convergent. On the other hand, there exist C > 0 and M ∈ N such
that |û(ξ)| ≤ C(1 + |ξ|)M for all ξ ∈ ZN as u is a distribution on RN with compact
support.

Fix k ∈ N and α ∈ NN0 , let L = |α|+N +M and observe that

|Dαu(x)| ≤
∑

|ξ|≤e
2k
L
ϕ∗( L2k )

|ξ||α||û(ξ)|+
∑

|ξ|>e
2k
L
ϕ∗( L2k )

|ξ||α||û(ξ)| =: S1+S2, x ∈ RN ,

(2.4)
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where

S1 ≤
∑

|ξ|≤e
2k
L
ϕ∗( L2k )

e
2k|α|
L ϕ∗( L2k )C(1 + |ξ|)M

≤ C2Ne
2kN
L ϕ∗( L2k )e

2k|α|
L ϕ∗( L2k )

(
1 + e

2k
L ϕ
∗( L2k )

)M
≤ 2N+MC

(
e

2k
L ϕ
∗( L2k )

)N+|α|+M
≤ 2N+MCe

2kϕ∗
(
N+|α|+M

2k

)

and

S2 =
∑

|ξ|>e
2k
L
ϕ∗( L2k )

|ξ|L−N−M |û(ξ)| ≤ Cke2kϕ
∗( L2k )

∑
|ξ|>e

2k
L
ϕ∗( L2k )

|ξ|−N−M ,

as L = |α|+N +M and
∑
|ξ|≤e

2k
L
ϕ∗( L2k ) ≤ 2Ne

2kN
L ϕ∗( L2k ). Therefore, by (2.4) we

deduce

|Dαu(x)| ≤ 2N+MCe
2kϕ∗

(
N+|α|+M

2k

)
+Ckce

2kϕ∗( L2k ) ≤ C′ke
2kϕ∗

(
N+|α|+M

2k

)
, x ∈ RN ,

(2.5)
where C′k = 2N+MC + Ckc > 0 depends only on k, on the dimension N and on u

(here, c =
∑
|ξ|6=0 |ξ|

−N−M <∞). Moreover, the convexity of ϕ∗ implies that

2kϕ∗
(
N + |α|+M

2k

)
≤ kϕ∗(|α|/k) + kϕ∗((N +M)/k). (2.6)

Combining (2.5) and (2.6) we obtain, for every k ∈ N, that there exists a constant

C′′k = C′ke
kϕ∗((N+M)/k) > 0

such that

|Dαu(x)| ≤ C′′k e
kϕ∗(|α|/k), α ∈ NN0 , x ∈ RN .

This means that u ∈ E(ω)(TN ).

(ii) The proof follows proceeding as in case (i) and using [2, Lemma 3.1]. ut
As a consequence of Proposition 2.1 we easily obtain that the Fréchet space

E(ω)(TN ) is isomorphic to the power series space of infinite type

λω :=
{
x ∈ CZN :

∑
ν∈ZN

|xν |ekω(ν) <∞, ∀k ∈ N
}
,

and that the dual Fréchet nuclear space E{ω}(TN ) is isomorphic to the sequence
space

κω :=
{
x ∈ CZN :

∑
ν∈ZN

|xν |eω(ν)/k <∞, for some k ∈ N
}

(compare with [44,37,38,9]).
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Definition 2.4 Let P = P (x,D) =
∑
|α|≤m aα(x)Dα be a linear partial differential

operator with coefficients {aα}|α|≤m ⊂ E∗(TN ) ({aα}|α|≤m ⊂ E(TN ) resp.). The

operator P is said to be globally ∗-hypoelliptic in TN (globally C∞-hypoelliptic
in TN resp.) if the conditions u ∈ E ′(TN ) and Pu ∈ E∗(TN ) (u ∈ E ′(TN ) and
Pu ∈ E(TN ) resp.) imply that u ∈ E∗(TN ) (u ∈ E(TN ) resp.). In case ω(t) = t1/s

with s ≥ 1 and the operator P is globally {t1/s}-hypoelliptic in TN , we say simply
that P is globally s-hypoelliptic in TN for s > 1, and globally analytic hypoelliptic
in TN for s = 1.

3 The Results

If P = P (D) =
∑
|α|≤m aαD

α is a linear partial differential operator with constant

coefficients on TN . By [22], the operator P is globally C∞-hypoelliptic in TN if,
and only if, there exist L, M, C > 0 such that

|P (ξ)| ≥ L|ξ|−M , |ξ| ≥ C, (3.7)

where P (ξ) =
∑
|α|≤m aαξ

α, ξ ∈ ZN , is the symbol of P . Also, by [23, Theorem

2.2] (see also [32]) the operator P is globally s-hypoelliptic in TN if, and only if,
for every ε > 0 there exists Cε > 0 such that

|P (ξ)| ≥ e−ε|ξ|
1/s

, |ξ| ≥ Cε. (3.8)

Since condition (3.7) implies (3.8), [23, Corollary 2.2], if P is globally C∞-hypo-
elliptic in TN then it is also globally s-hypoelliptic in TN . On the other hand, there
exist examples of linear partial differential operators with constant coefficients that
are globally analytic hypoelliptic but not globally C∞-hypoelliptic. For example,
in [23, Theorem 4.1] it is shown that there is α ∈ R \Q such that the vector field
V = ∂x1 − α∂x2 is globally analytic hypoelliptic but not globally C∞-hypoelliptic
in T2.

Now, it is easy to prove that

Proposition 3.1 Let ω be a weight function and P = P (D) =
∑
|α|≤m aαD

α be a

linear partial differential operator with constant coefficients on TN . Then the following

holds.

(i) Suppose that ω(t) = o(t) as t→∞. The operator P is globally (ω)–hypoelliptic in

TN if, and only if, there exist L, m, C > 0 such that

|P (ξ)| ≥ Le−mω(ξ), ξ ∈ ZN , |ξ| ≥ C. (3.9)

(ii) The operator P is globally {ω}–hypoelliptic in TN if, and only if, for every ε > 0
there exists Cε > 0 such that

|P (ξ)| ≥ e−εω(ξ), ξ ∈ ZN , |ξ| ≥ Cε. (3.10)
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Proof We first recall that if u =
∑
ξ∈ZN û(ξ)eiξ·x and f =

∑
ξ∈ZN f̂(ξ)eiξ·x, then

Pu = f if, and only if, P (ξ)û(ξ) = f̂(ξ) for all ξ ∈ ZN .
(i) Suppose that condition (3.9) holds and that Pu = f with u ∈ E ′(ω)(T

N ) and

f ∈ E(ω)(TN ). Since P (ξ)û(ξ) = f̂(ξ) for all ξ ∈ ZN , by Proposition 2.1(i) we have,
for every k ∈ N, that there exists Ck > 0 such that

|P (ξ)û(ξ)| ≤ Cke−kω(ξ), ξ ∈ ZN .

By (3.9) it follows that, for every k > m,

|û(ξ)| ≤ Ck
e−kω(ξ)

|P (ξ)|
≤ Ck

L
e−(k−m)ω(ξ), |ξ| ≥ C.

Again by Proposition 2.1(i) we have u ∈ E(ω)(TN ).

Suppose that (3.9) does not hold. Then we can find a sequence {ξm}m ⊂ ZN
such that |ξm| → ∞ and

|P (ξm)| ≤ e−mω(ξm), m ∈ N. (3.11)

Let u ∈ E ′(ω)(T
N ) defined by û(ξm) = 1 and û(ξ) = 0 otherwise. Then u 6∈ E(ω)(TN )

by Proposition 2.1. On the other hand, if we set f = Pu, then f̂(ξm) = P (ξm) for
every m ∈ N and f̂(ξ) = 0 otherwise. So, (3.11) ensures that for every k ∈ N there
exists Ck > 0 such that

|f̂(ξ)| ≤ Cke−kω(ξ), ξ ∈ ZN .

Again by Proposition 2.1 we can conclude that f ∈ E(ω)(TN ).
(ii) follows proceeding as in the previous case. ut
Since log(t) = o(ω(t)) as t → ∞, condition (3.7) implies both conditions (3.9)

and (3.10). Then, if P = P (D) is globally C∞-hypoelliptic in TN , then it is also

globally (ω) and {ω}-hypoelliptic in TN . Moreover, it is clear that condition (3.10)
implies condition (3.9). This means that if P = P (D) is globally {ω}-hypoelliptic in
TN , then it is globally (ω) -hypoelliptic in TN . But, in case ω and σ are two weight
functions such that ω = o(σ(t)) as t → ∞ and hence mω(t) − log(L) = o(σ(t)) for
every m, L > 0 as t → ∞, the converse holds, i.e., if P = P (D) is globally
(ω)-hypoelliptic in TN , then it is globally {σ}-hypoelliptic in TN . Consequently,
for ω(t) = o(t) as t → ∞ (non-quasianalytic weight functions always satisfy this
condition), if P = P (D) is globally (ω)-hypoelliptic in TN , then it is globally
analytic-hypoelliptic in TN . Also, in case ω and σ are two weight functions such
that ω(t) = O(σ(t)) as t→∞, if P = P (D) is globally (ω)-hypoelliptic in TN (glob-
ally {ω}-hypoelliptic in TN resp.), then it is also (σ)-hypoelliptic in TN (globally
{σ}-hypoelliptic in TN resp.).

From [20] it follows that for a fixed σ ≥ 1 there exists α = α(σ) ∈ R \ Q
such that the vector field V = ∂x1 − α∂x2 (already considered above) is globally
s-hypoelliptic in T2 if 1 ≤ s ≤ σ, but V is not globally s-hypoelliptic in T2 if
s > σ and hence, it is not globally C∞-hypoelliptic in T2. So, by the preceding
comments the vector field V = ∂x1 − α∂x2 is also globally {ω}-hypoelliptic and,
hence, globally (ω)-hypoelliptic in T2 for every weight function ω satisfying the
condition t1/s = O(ω(t)) as t → ∞ for some 1 < s < σ with σ > 1 fixed, but not
globally C∞-hypoelliptic in T2.
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Now, we show that the global C∞-hypoellipticity in TN of a linear partial
differential operator P = P (x,D) with variable coefficients also implies the global ∗-
hypoellipticity of P in TN under mild conditions. We first collect some preliminary
results.

For ϕ ∈ C∞(TN ) and j ∈ N0 let

‖ ϕ ‖j=
∑
|α|≤j

‖ ∂αϕ ‖∞=
∑
|α|≤j

max
x∈TN

|∂αϕ(x)|.

Then {‖ ‖j}j∈N0
is a sequence of norms on C∞(TN ) generating its Fréchet topology.

Next, for s ∈ R+ let

Hs(TN ) = {u ∈ L2(TN ) : |u|2s =
∑
ξ∈ZN

〈ξ〉2s|û(ξ)|2 <∞},

where 〈ξ〉2 = 1 + |ξ|2 for ξ ∈ ZN . Then Hs(TN ) is a Hilbert space with respect to
the inner product and norm defined by

(u, v)s =
∑
ξ∈ZN

〈ξ〉2sû(ξ)v̂(ξ), |u|s =
√

(u, v)s, u, v ∈ Hs(TN ).

So, the following continuous embeddings hold: C∞(TN ) ↪→ Hs(TN ) for s ∈ R+,
Hs(TN ) ↪→ Ht(TN ) for s > t ≥ 0, Hs(TN ) ↪→ L2(TN ) for s ∈ R+. Such embedding
maps have dense range.

We also let, for s > 0,

H−s(TN ) = {u ∈ E ′(TN ) : |u|2−s =
∑
ξ∈ZN

〈ξ〉−2s|û(ξ)|2 <∞}.

Then H−s(TN ) is also a Hilbert space with respect to the inner product and norm
defined as above. In particular, Hs(TN ) and H−s(TN ), for s > 0, identify with
each other’s dual space by duality. Moreover, for s > 0, the inclusions L2(TN ) ↪→
H−s(TN ) and H−s(TN ) ↪→ E ′(TN ) are continuous with dense range. Also, we have

C∞(TN ) = ∩s∈RHs(TN ), E ′(TN ) = ∪s∈RHs(TN ).

Finally, we remark that if {sn}n∈N is an increasing sequence of positive numbers
such that sn → ∞, then {‖ ‖sn}n∈N is a sequence of norms also generating the
Fréchet topology of C∞(TN ).

We need the following lemma.

Lemma 3.1 Let P = P (x,D) be a linear partial differential operator with coefficients

in C∞(TN ). If P is globally C∞-hypoelliptic, then for every j ∈ N0 there exist cj > 0
and h ∈ N0 with h ≥ j such that

‖ ϕ ‖j≤ cj(‖ Pϕ ‖h +|ϕ|−1), ϕ ∈ C∞(TN ). (3.12)
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Proof Observe that P is a well defined continuous linear operator from E ′(TN ) into
itself and that H−1(TN ) is continuously included in E ′(TN ). Then, the operator
Pr defined by

Pr : D(Pr) = {ϕ ∈ H−1(TN ) : Pϕ ∈ C∞(TN )} → C∞(TN ), ϕ→ Pϕ,

is closed when D(Pr), that is a subspace of H−1(TN ), is endowed with the topology
induced by the Hilbert space H−1(TN ). On the other hand, by the global C∞–
hypoellipticity of P we have D(Pr) = C∞(TN ). Thus, the operator

J : GPr → C∞(TN ), (ϕ, Pϕ)→ ϕ,

where GPr = {(ϕ, Pϕ) : ϕ ∈ C∞(TN )} ⊂ C∞(TN )×C∞(TN ) is the graph set of Pr,
is well-defined, linear and closed when GPr is endowed with the Fréchet topology
induced by H−1(TN ) × C∞(TN ). Since GPr is a closed subspace of H−1(TN ) ×
C∞(TN ) and hence a Fréchet space with respect to the induced topology, we can
apply the closed graph theorem to conclude that J is continuous. Now, as the
sequence {‖ ‖j +| |−1}j∈N0

of norms generates the Fréchet topology of H−1(TN )×
C∞(TN ), it follows that for each j ∈ N0 there exist cj > 0 and h ∈ N0 with h ≥ j

such that
‖ ϕ ‖j=‖ J(ϕ, Pϕ) ‖j≤ cj(‖ Pϕ ‖h +|ϕ|−1)

for all ϕ ∈ C∞(TN ). The proof is complete. ut

Theorem 3.1 Let ω be a weight function satisfying property (α0) and write, as usual,

∗ for {ω} or (ω). Let TN = Tm+n and write (t, x) ∈ Tm+n for t ∈ Tm and x ∈ Tn.

Moreover, if ∗ = (ω), we assume that ω(t) = o(t) as t → ∞. Let P = P (t,Dt, Dx)
be a linear partial differential operator with coefficients in E∗(TN ) and suppose that

P is globally C∞-hypoelliptic in TN . If u ∈ E ′(TN ), Pu ∈ E∗(TN ) and (t, x, τ, 0) 6∈
WF∗(u), for any (t, x) ∈ Tm+n and τ ∈ Rm \ {0}, then u ∈ E∗(TN ).

Proof Since Pu =: f ∈ E∗(TN ) ⊂ C∞(TN ) and P is globally C∞-hypoelliptic in
TN , u ∈ C∞(TN ). Moreover, by Lemma 3.1 there exist c0 > 0 and h ∈ N0 such
that

‖ ϕ ‖0≤ c0(‖ Pϕ ‖h +|ϕ|−1)

for every ϕ ∈ C∞(TN ). As ∂αxϕ ∈ C∞(TN ) for every ϕ ∈ C∞(TN ) and α ∈ Nn0 , it
follows that

‖ ∂αxϕ ‖0≤ c0(‖ P (∂αxϕ) ‖h +|∂αxϕ|−1) (3.13)

for every ϕ ∈ C∞(TN ) and α ∈ Nn0 .

Since u ∈ C∞(TN ), |∂αxϕ|−1 ≤ |∂
α−ej
x ϕ|0 where ej is an element of the standard

basis of Rn such that the corresponding αj ≥ 1, [∂αx , P ] = 0 for every α ∈ Nn0 as
the coefficients of P depend only on t and Pu = f , we obtain via (3.13) that

‖ ∂αx u ‖0≤ c0(‖ ∂αx f ‖h +|∂α−ejx u|0) (3.14)

To conclude the proof we need distinguish two cases: (B) Beurling case; (R)
Roumieu case.

(B) Beurling case. Since f ∈ E(ω)(TN ), there exists A > 0 such that for each
k ∈ N there exists Ck > 0 for which

‖ ∂αx f ‖0≤ CkA|α|+1e
kϕ∗

(
|α|
k

)
, α ∈ Nn0 . (3.15)

Consequently, the following holds.
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Lemma 3.2 There exists E > 0 such that for every k ∈ N there exists Ek > 0 for

which

‖ ∂αx u ‖0≤ EkE|α|+1e
kϕ∗

(
|α|
k

)
, α ∈ Nn0 . (3.16)

Proof Fixed any k ∈ N, the proof is given by induction on |α|.
For α = 0 we have ‖ u ‖0= E0 ≤ E0e

kϕ∗( 0
k ) as ϕ∗(0) = 0

Let α ∈ Nn0 with |α| > 0 and suppose that the result holds for all β ∈ Nn0 with
|β| < |α|. By (3.14), since ϕ∗ is a non negative convex function and ϕ∗(t)/t is an
increasing function, we have

‖ ∂αx u ‖0 ≤ c0

 ∑
|β|≤h

‖ ∂α+βx f ‖0 +|∂α−ejx u|0


≤ c0

 ∑
|β|≤h

CkA
|α+β|+1e

2kϕ∗
(
|α+β|

2k

)
+ EkE

|α|e
kϕ∗

(
|α|−1
k

)
≤ c0

CkA|α|+1e
kϕ∗

(
|α|
k

) ∑
|β|≤h

A|β|e
kϕ∗

(
|β|
k

)
+ EkE

|α|e
kϕ∗

(
|α|
k

)
≤ c0

(
CkDkA

|α|+1 + EkE
|α|
)
e
kϕ∗

(
|α|
k

)
.

Here, Dk =
∑
|β|≤hA

|β|e
kϕ∗

(
|β|
k

)
> 0 depends only on h, f and k.

Let E = AM with M > 1 such that E ≥ E0 and let Ek = max{CkDk, 1}. Then
the inequality above gives that the result follows if

c0(EkA
|α|+1 + EkA

|α|M |α|) ≤ EkA|α|+1M |α|+1,

i.e., if

c0

(
1

M |α|+1
+

1

AM

)
≤ 1.

Therefore, if we take M big enough in order that c0
(

1
M + 1

AM

)
≤ 1, the inductive

step is proved and the proof of the lemma is complete.
End of the proof for the Beurling case. By Lemma 3.2 there exists E > 0 such

that for each k ∈ N there exist Ek > 0 such that

‖ ∂αx u ‖0≤ EkE|α|+1e
kϕ∗

(
|α|
k

)
, α ∈ Nn0 . (3.17)

Since

|ξαû(t, ξ)| =
∣∣∣∣ 1

(2π)n

∫
Tn
e−ix·ξ∂αx u(t, x) dx

∣∣∣∣
≤ 1

(2π)n

∫
Tn
|∂αx u(t, x)| dx

≤ ‖ ∂αx u ‖0, t ∈ Tm, ξ ∈ Zn, α ∈ Nn0 ,

by (3.17) we have, for each k ∈ N,

|ξαû(t, ξ)| ≤ EkE|α|+1e
kϕ∗

(
|α|
k

)
, t ∈ Tm, ξ ∈ Zn, α ∈ Nn0 . (3.18)



12 Angela A. Albanese, David Jornet

Next, let L ∈ N0 and ξ ∈ Zn. Then we select i ∈ {1, . . . , n} so that |ξi| =
max1≤j≤n |ξj |. If we set α = Lei, where ei is the i-th vector of the standard
basis of Rn, we have

|ξ|L ≤ nL/2 max
1≤j≤n

|ξj |L = nL/2|ξi|L = nL/2|ξα|. (3.19)

By (3.18) it follows, for each k ∈ N, that there exists Fk > 0 such that

|ξ|L|û(t, ξ)| ≤ FkEL+1ekϕ
∗(Lk ), t ∈ Tm, ξ ∈ Zn, L ∈ N0.

Now, by Lemma 3.2 of [2] this means that, for each k ∈ N there is Gk > 0 such
that

|û(t, ξ)| ≤ Gke−kω(ξ), t ∈ Tm, ξ ∈ Zn.

This implies that, for each k ∈ N,

|û(τ, ξ)| =
∣∣∣∣ 1

(2π)m

∫
Tm

e−it·τ û(t, ξ) dt

∣∣∣∣ ≤ Gke−kω(ξ), (τ, ξ) ∈ Zm+n. (3.20)

Let (τ0, ξ0) ∈ Rm+n with ξ0 6= 0 and define Γ := {(τ, ξ) ∈ Rm+n : |τ | < c|ξ|} with
c > 1 such that (τ0, ξ0) ∈ Γ . Therefore, (0, 0) 6∈ Γ , (τ0, 0) 6∈ Γ and if (τ, ξ) ∈ Γ then
ξ 6= 0. Moreover, for every (τ, ξ) ∈ Γ ∩ Zm+n we have

|ξ| = 1

2
|ξ|+ 1

2
|ξ| ≥ 1

2c
|τ |+ 1

2
|ξ| ≥ 1

2c
|(τ, ξ)|

and hence, as ω is an increasing function, this yields that

ω(ξ) ≥ ω
( 1

2c
(τ, ξ)

)
.

Now, since ω also satisfies property (α0), there exist D > 0 and t0 > 0 such that

ω
( 1

2c
(τ, ξ)

)
≥ 1

2cD
ω(τ, ξ)

for |(τ, ξ)| ≥ 2ct0. Therefore, if for each k ∈ N we set

Dk = max
{

max
|(τ,ξ)|≤2ct0

|û(τ, ξ)|ek
ω(τ,ξ)
2cD , Gk

}
<∞,

it follows from (3.20) that

|û(τ, ξ)| ≤ Dke−
k

2cDω(τ,ξ), (τ, ξ) ∈ Γ ∩ Zm+n. (3.21)

Set k0 = [2cD]. Then (3.21) implies that

|û(τ, ξ)| ≤ Dh(k0+1)e
−hω(τ,ξ), h ∈ N, (τ, ξ) ∈ Γ ∩ Zm+n. (3.22)

Next, fix τ0 ∈ Rm\{0}. By hypothesis (t, x, τ0, 0) 6∈WF(ω)(u) for any (t, x) ∈ Tm+n.
Hence, by [2, Definition 3.4 and Lemma 3.2] (see [3, Definition 2.4(i)] in case ω is
a non quasi–analytic weight function) there exists a cone Γ1 containing (τ0, 0) and
for every h ∈ N there is D′h > 0 such that

|û(τ, ξ)| ≤ D′he
−hω(τ,ξ), (τ, ξ) ∈ Γ1 ∩ Zm+n. (3.23)
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Now, (3.22) and (3.23) imply that u ∈ E(ω)(Tm+n) via [2, Proposition 3.3(b) and
Lemma 3.2] (see [3, Definition 2.4(i)] in case ω is a non quasi-analytic weight
function); see also Proposition 2.1. This completes the proof in the Beurling case.
ut

The proof of Theorem 3.1 for the Roumieu case is a consequence of Theorem
3.1 for the Beurling case and of [2, Proposition 4.5 and Corollary 4.6]. So, we first
recall that, by [2, Proposition 4.5 and Corollary 4.6],

WF{ω}(u) = ∪σ∈SWF(σ)(u), u ∈ E ′(TN ), (3.24)

and hence

E{ω}(T
N ) = ∩σ∈SE(σ)(TN ), (3.25)

where S = {σ weight function : σ0 ≤ σ = o(ω)} with σ0 and ω two weight functions
such that σ0(t) = o(ω(t)) as t→∞.

(R) Roumieu case. Since Pu =: f ∈ E{ω}(TN ) and (t, x, τ, 0) 6∈ WF{ω}(u) for

any (t, x) ∈ Tm+n and τ ∈ Rm \ {0}, it follows from (3.24) and (3.25) that, for
every σ ∈ S, Pu ∈ E(σ)(TN ) and (t, x, τ, 0) 6∈ WF(σ)(u) for any (t, x) ∈ Tm+n and

τ ∈ Rm \{0}. Since the coefficients of P belong to E{ω}(TN ) and hence also belong

to the space E(σ)(TN ) for σ ∈ S, we can apply the already proved Beurling case

to conclude that u ∈ E(σ)(TN ) for every σ ∈ S. Therefore, (3.25) implies that

u ∈ E{ω}(TN ). ut

4 Applications

Now, we study the global ∗-hypoellipticity for some classes of sublaplacians, whose
global Gs-hypoellipticity for s ≥ 1 was treated in [15,16,32,33,43]. For the notation
see, for example, [15,16].

Theorem 4.1 Let ω and σ be two weight functions such that σ satisfies property (α0),

and ω(t) = o(σ(t)) and ω(t) = o(t) as t→∞. Let TN = Tm+n and

Xj =
m∑
h=1

ajh(t)∂th +
n∑
k=1

bjk(t)∂xk , j = 0, . . . , l,

with ajh, bjk ∈ E{σ}(Tm) and real valued. Let c ∈ E{σ}(Tm). Moreover, suppose that

the following conditions are satisfied:

(i) Every point in TN is of finite type for X1, . . . , Xl.

(ii) The vector fields {
∑m
h=1 ajh(t)∂th}lj=1 span T (Tm) for every t ∈ Tm.

Then P =
∑l
j=1X

2
j +X0 + c(t) is globally (ω)-hypoelliptic in TN .

We recall that a point in TN is of finite type for X1, . . . , Xl if the Lie algebra
generated by the vector fields X1, . . . , Xl spans the tangent space of TN there.
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Proof By condition (i), we can apply Hormander’s Theorem [35] to conclude that
P is locally C∞-hypoelliptic and, hence, globally C∞-hypoelliptic in TN . On the
other hand, let u ∈ E ′(TN ) be such that Pu ∈ E(ω)(TN ). Since, by condition (ii), P
is elliptic in t, we have (t, x, τ, 0) 6∈ WF(ω)(u) for any (t, x) ∈ Tn and τ ∈ Rm \ {0}
(see [2, Theorem 4.1] or, also, [3, Theorem 3.15] for non quasi-analytic weight
functions). So, we can apply Theorem 3.1 to conclude that u ∈ E(ω)(TN ). ut

The Roumieu version of Theorem 4.1 continues to hold for c depending also
on both variables t and x as in [33]. Indeed, we have

Theorem 4.2 Let ω be a weight function satisfying property (α0). Let TN = Tm+n

and

Xj =
m∑
h=1

ajh(t)∂th +
n∑
k=1

bjk(t)∂xk , j = 0, . . . , l,

with ajh, bjk ∈ E{ω}(Tm) and real valued. Let c ∈ E{ω}(TN ). Moreover, suppose that

the following conditions are satisfied:

(i) Every point in TN is of finite type for X1, . . . , Xl.

(ii) The vector fields {
∑m
h=1 ajh(t)∂th}lj=1 span T (Tm) for every t ∈ Tm.

Then P =
∑l
j=1X

2
j +X0 + c(t, x) is globally {ω}-hypoelliptic in TN .

Proof In case c(t, x) = c(t) for all (t, x) ∈ Tm+n the result follows from Theorem
3.1 as in Theorem 4.1. In case the function c depends on both variables t and
x, the proof is not a consequence of Theorem 3.1. In fact, here the commutator
[∂αx , P ] 6= 0 and we need a different subelliptic estimate from (3.12).

We recall from [16, Lemma 2.1] that there exist c0 > 0 such that

|∂αxϕ|0 ≤ c0(|P (∂αxϕ)|0 + |∂αxϕ|−1) (4.26)

for every ϕ ∈ C∞(TN ) and α ∈ Nn0 (here, | |0 denotes the L2–norm, i.e., |f |0 =
(1/(2π)n+m

∫
Tn+m |f(x)|2dx)1/2). Moreover, if Pu =: f ∈ E{ω}(TN ) for some u ∈

E ′(TN ), then u ∈ C∞(TN ). Now, as in the proof of Theorem 3.1, |∂αxϕ|−1 ≤
|∂α−ejx ϕ|0 where ej is an element of the standard basis of Rn such that the cor-
responding αj ≥ 1. Since the vectors fields X1, X2, . . . , Xl depend only on the
variable t, and hence commute with ∂αx , we obtain via (4.26) that

|∂αx u|0 ≤ c0(|∂αx f |0 + |[∂αx , P ]u|0 + |∂α−ejx u|0). (4.27)

Since f, c ∈ E{ω}(TN ), there exist A > 0 and k ∈ N so that

max{|∂αx f |0, |∂αx c|0} ≤ max{‖ ∂αx f ‖0, ‖ ∂αx c ‖0} ≤ A|α|+1e
1
kϕ
∗(k|α|), α ∈ Nn0 .

(4.28)
Therefore, the following lemma holds (compare with [33, Lemma 3.1]).

Lemma 4.1 There exist B > 0 and l ∈ N such that

|∂αx u|0 ≤ B|α|+1e
1
l ϕ
∗(l|α|), α ∈ Nn0 . (4.29)
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Proof The proof is given by induction on |α|. Since ϕ∗(0) = 0 we have

|u|0 = B0 = B0e
1
l ϕ
∗(0),

for any l ∈ N0 with l ≥ k.
Let α ∈ Nn0 with |α| > 0 and suppose that (4.29) holds for all β ∈ Nn0 with

|β| < |α|. The dependence only on the variable t of the vectors fields X1, X2, . . . , Xl
gives

[∂αx , P ]u = c∂αx u− ∂αx (cu) = −
∑
β<α

(
α

β

)
∂α−βx c ∂βxu.

As in [2], since ω satisfies (α0) we can assume that it is equivalent to a sub-additive
weight function and then

e
1
l ϕ
∗(l|α−β|)

(α− β)!

e
1
l ϕ
∗(l|β|)

β!
≤ e

1
l ϕ
∗(l|α|)

α!
.

By the inductive hypothesis and by (4.28) we obtain that

|[P, ∂αx ]u|0 ≤
∑
β<α

(
α

β

)
A|α−β|+1e

1
kϕ
∗(k|α−β|)B|β|+1e

1
l ϕ
∗(|β|l)

≤ α!
∑
β<α

A|α−β|+1 e
1
l ϕ
∗(l|α−β|)

(α− β)!
B|β|+1 e

1
l ϕ
∗(l|β|)

β!

≤ e
1
l ϕ
∗(l|α|) ∑

β<α

A|α−β|+1B|β|+1.

Then, by (4.27) we obtain

|∂αx u|0 ≤ c0

(
|∂αx f |0 + |[P, ∂αx ]u|0 + |∂α−ejx u|0

)
≤ c0

A|α|+1e
1
l ϕ
∗(l|α|) + e

1
l ϕ
∗(l|α|) ∑

β<α

A|α−β|+1B|β|+1 +B|α|e
1
l ϕ
∗(l|α|−l)


≤ c0 e

1
l ϕ
∗(l|α|)

A|α|+1 +
∑
β<α

A|α−β|+1B|β|+1 +B|α|

 .

We look for B of the form B = MA, for some M > 1. Then, it suffices to choose
M such that

c0

A|α|+1 +
∑
β<α

A|α−β|+1M |β|+1A|β|+1 +M |α|A|α|

 ≤M |α|+1A|α|+1.

The conclusion follows as in the proof of [33, Lemma 3.1]. ut
End of the proof of Theorem 4.2. By Lemma 4.1 there exist B > 0 and l ∈ N

such that

|∂αx u|0 ≤ B|α|+1e
1
l ϕ
∗(l|α|), α ∈ Nn0 . (4.30)
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It follows from (4.30) that

|ξαû(t, ξ)| =
∣∣∣∣ 1

(2π)n

∫
Tn
e−ix·ξ∂αx u(t, x) dx

∣∣∣∣
≤ 1

(2π)n

∫
Tn
|∂αx u(t, x)| dx ≤ c|∂αx u|0 (4.31)

≤ cB|α|+1e
1
l ϕ
∗(l|α|), t ∈ Tm, ξ ∈ Zn, α ∈ Nn0 .

The same argument used in the proof of Theorem 3.1 for the Beurling case gives
(see formula (3.19)), by (4.31),

|ξ|L|û(t, ξ)| ≤ cnL/2BL+1e
1
l ϕ
∗(lL), t ∈ Tm, ξ ∈ Zn, L ∈ N0.

Since L and ξ are arbitrary, we can apply Lemma 3.1 of [2] to conclude that there
exist ε > 0 and C > 0 such that

|û(t, ξ)| ≤ Ce−εω(ξ), t ∈ Tm, ξ ∈ Zn.

This implies that

|û(τ, ξ)| =
∣∣∣∣ 1

(2π)m

∫
Tm

e−it·τ û(t, ξ) dt

∣∣∣∣ ≤ Ce−εω(ξ), (τ, ξ) ∈ Zm+n. (4.32)

Let (τ0, ξ0) ∈ Rm+n with ξ0 6= 0 and define Γ := {(τ, ξ) ∈ Rm+n : |τ | < c|ξ|} with
c > 1 such that (τ0, ξ0) ∈ Γ . Then, (0, 0) 6∈ Γ , (τ0, 0) 6∈ Γ and if (τ, ξ) ∈ Γ then
ξ 6= 0. Since ω is an increasing function and satisfies property (α0), we can argue
again as in the proof of Theorem 3.1 for the Beurling case to show via (4.32) that
there exist ε′ > 0 and E > 0 such that

|û(τ, ξ)| ≤ Ee−ε
′ω(τ,ξ), (τ, ξ) ∈ Γ ∩ Zm+n. (4.33)

Next, let τ0 ∈ Rm \ {0}. By condition (ii), P is elliptic in t, and consequently
(t, x, τ0, 0) 6∈ WF{ω}(u) for any (t, x) ∈ Tm+n. Hence, by [2, Definition 3.4 and
Lemma 3.1] (see [3, Definition 2.4(ii)] in case ω is a non quasi–analytic weight
function) there exist ε′′ > 0, F > 0 and a cone Γ1 containing (τ0, 0) such that

|û(τ, ξ)| ≤ Fe−ε
′′ω(τ,ξ), (τ, ξ) ∈ Γ1 ∩ Zm+n. (4.34)

Now, (4.33) and (4.34) imply that u ∈ E{ω}(Tm+n) via [2, Proposition 3.3(a) and
Lemma 3.1] (see also Proposition 2.1). This completes the proof. ut

Theorems 4.1 and 4.2 ensure, for example, that the operator in T3 given by

P1 = ∂2t1 + (∂t2 − a(t1)∂x)2 (4.35)

is globally (ω)- ({ω}-) hypoelliptic in T3 for every weight function ω satisfying
property (α0) if the function a belongs to A(T), is real valued and not constant on
T. We recall that the global analytic and Gevrey hypoellipticity of P1 was already
established by Cordaro and Himonas [15] and by Himonas and Petronilho [32],
and that P1 is not in general locally analytic hypoelliptic. Indeed, Hanges and
Himonas [24] proved that if a(t1) = tk−1

1 , k = 3, 5, 7, . . ., then P1 is not analytic
hypoelliptic at 0. Christ [12] extended this result for all k ≥ 3 and improved it
in [13] showing that P1 is not analytic hypoelliptic at 0 for any analytic function
a(t1) with a(0) = a′(0) = 0. We prove that P1 is also not locally ∗-hypoelliptic for
some weight function ω.
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Proposition 4.1 Let P1 = ∂2t1 + (∂t2 − a(t1)∂x)2 with a in A(T), real valued and

not constant on T. If a(0) = a′(0) = 0, then there exists a weight function ω with

ω(t) = o(t) as t→∞ such that P1 is neither {σ}-hypoelliptic nor (σ)-hypoelliptic at 0
for all weight function σ satisfying ω(t) = o(σ(t)) as t→∞.

Proof Since, by [13], P1 is not analytic hypoelliptic at 0, there exists u ∈ D′(U) \
A(U) for some U ⊂ R3 open neighbourhood of 0 such that P1u ∈ A(U). So,
WF{ω1}(u) 6= ∅, where ω1(t) = max(t− 1, 0). By [2, Proposition 4.5 and Corollary
4.6] (see (3.24)) this implies that there exists a weight function ω with ω(t) = o(t)
as t→∞ such that WF(ω)(u) 6= ∅; hence, u 6∈ E(ω)(U). Since E(σ)(U) ⊂ E{σ}(U) ⊂
E(ω)(U) for all weight function σ satisfying ω(t) = o(σ(t)) as t → ∞ (see Remark
2.4 (a)), and A(U) ⊂ E(σ)(U) ⊂ E{σ}(U), we can conclude that P1 is neither {σ}-
hypoelliptic nor (σ)-hypoelliptic at 0 for all weight function σ satisfying ω(t) =
o(σ(t)) as t→∞. ut

Theorems 4.1 and 4.2 also imply that the generalized Baouendi-Goulaouic op-
erator

P2 = ∂2t + a2(t)∂2x1
+ b2(t)∂2x2

(4.36)

is globally (ω)- ({ω}-) hypoelliptic in T3 for every weight function ω satisfying
property (α0) if the functions a and b belong to A(T), are real valued and not
identically 0 on T. It is known that the operator P2 is globally analytic and Gevrey
hypoelliptic on T3, see [15,32], but P2 is not in general locally Gevrey hypoelliptic.
For example, Christ [14] proved that, if a(t) = tp−1 and b(t) = tq−1, for some
1 ≤ p ≤ q ∈ N, then P2 is locally Gevrey hypoelliptic for every s ≥ q/p, but it
is not locally Gevrey hypoelliptic in any class Gs with s < q/p. These operators
include the well-known Baouendi-Goulaouic operator ∂2t +∂2x1

+ t2∂2x2
. Also in this

case, we have that P2 is not locally ∗-hypoelliptic for some weight function ω.

Proposition 4.2 Let a(t) = tp−1, b(t) = tq−1, for 1 ≤ p ≤ q ∈ N, and t ∈ T, and let

P2 = ∂2t +a2(t)∂2x1
+b2(t)∂2x2

. Then for every s ∈ [1, q/p), there exists a weight function

ω with ω(t) = o(t1/s) as t → ∞ such that P2 is neither {σ}-hypoelliptic nor (σ)-

hypoelliptic at 0 for all weight function σ satisfying ω(t) = o(σ(t)) and σ(t) = o(t1/s)
as t→∞.

Proof By [14], P2 is not Gevrey hypoelliptic at 0 in any class Gs with s < q/p.
We fix then s < q/p. There exists u ∈ D′(U) \ Gs(U) for some U ⊂ R3 open
neighbourhood of 0 such that P2u ∈ Gs(U). So,WF{t1/s}(u) 6= ∅. By [2, Proposition

4.5 and Corollary 4.6] (see (3.24)) this implies that there exists a weight function
ω with ω(t) = o(t1/s) as t → ∞ such that WF(ω)(u) 6= ∅; hence, u 6∈ E(ω)(U).
Since E(σ)(U) ⊂ E{σ}(U) ⊂ E(ω)(U) and Gs(U) ⊂ E(σ)(U) for all weight function

σ satisfying ω(t) = o(σ(t)) and σ(t) = o(t1/s) as t → ∞, we can conclude that
P2 is neither {σ}-hypoelliptic nor (σ)-hypoelliptic at 0 for all weight function σ

satisfying ω(t) = o(σ(t)) and σ(t) = o(t1/s) as t→∞. ut
We end the paper with another application of Theorem 3.1 to a class of oper-

ators which may be of infinite type in the setting of non-quasianalytic ultradiffer-
entiable classes.

Theorem 4.3 Let ω and σ two weight functions such that σ satisfies property (α0),

and ω(t) = o(σ(t)) and ω(t) = o(t) as t→∞. Let TN = Tm+n and let

P = −∆t −
n∑
j=1

aj(t)∂
2
xj , (4.37)
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where aj ∈ E{σ}(Tm) with aj ≥ 0. If each aj is not identically equal to zero on Tm,

then P is globally {σ}-hypoelliptic and globally (ω)-hypoelliptic on TN .

Proof By Himonas [27, Theorem 1.1], the operator P is globally C∞-hypoelliptic
in TN . On the other hand, if u ∈ E ′(TN ) is such that Pu ∈ E(ω)(TN ), then by [2,
Theorem 4.1] (see also [3, Theorem 3.15] if ω is a non quasi-analytic weight) we
have (t, x, τ, 0) 6∈ WF(ω)(u) for any (t, x) ∈ Tn and τ ∈ Rm \ {0} as P is elliptic at

every point t ∈ Tm. We can apply Theorem 3.1 to conclude that u ∈ E(ω)(TN ).
In the Roumieu case the result follows in a similar way. ut
We remark that the operator P in (4.37) may be of infinite type at most points

and is not locally hypoelliptic if the weights are non-quasianalytic, see [27, Remark
1.1].
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