
Enhancement of sound in chirped sonic crystals

V. Romero-Garc�ıa,1 R. Pic�o,1 A. Cebrecos,1 V. J. S�anchez-Morcillo,1 and K. Staliunas2

1Instituto de Investigaci�on para la Gesti�on Integrada de zonas Costeras, Universitat Politècnica de València,
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We propose and experimentally demonstrate a mechanism of sound wave concentration based on

soft reflections in chirped sonic crystals. The reported controlled field enhancement occurs at around

particular (bright) planes in the crystal and is related to a progressive slowing down of the sound

wave as it propagates along the material. At these bright planes, a substantial concentration of the

energy (with a local increase up to 20 times) was obtained for a linear chirp and for frequencies

around the first band gap. A simple couple mode theory is proposed that interprets and estimates the

observed effects. Wave concentration energy can be applied to increase the efficiency of detectors

and absorbers. VC 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4793575]

Manipulation and control of wave propagation, a prob-

lem of fundamental interest, is at root of many applications

in different branches of science and technology. One impor-

tant issue of wave manipulation is the localization and

concentration (or local enhancement) of the wave energy.

Artificial materials, and among them, artificial crystals are

emerging as promising tools for manipulating wave propaga-

tion. In the case of sound waves considered here, such artifi-

cial periodic materials are called sonic crystals, structurally

similar to photonic crystals in the field of optics. They are

synthetic materials formed by a periodic distribution of ele-

ments or scatterers, whose properties (i.e., elasticity and den-

sity) differ from those of the host medium. This results in a

periodic modulation of the acoustic properties of the medium

at the scale of wavelength. The strong interest in these mate-

rials comes from their ability of manipulating the propaga-

tion of sound waves, due to their peculiar dispersive

properties. A number of exotic and useful effects such as the

formation of band-gaps,1,2 negative refraction,3 birefraction,4

self-collimation,5 extraordinary transmission,6 among others,

have been so far demonstrated for sound waves. Utilizing

these wave propagation effects, novel devices such as acous-

tic frequency filters,7 spatial (angular) filters,8 lenses,9 or

diodes10 have been proposed and demonstrated.

We present here a wave propagation effect, consisting in

specifically the wave energy concentration due to progressive

decrease of the group velocity in chirped sonic crystals, in

which the lattice constant, i.e., the distance between scatterers

in longitudinal (the wave propagation) direction, gradually

changes along the propagation direction. We propose and

demonstrate here a substantial increase of the wave intensity

in controlled zones inside the crystal. Chirped (sometimes

called graded or adiabatic tapered) crystals have been intro-

duced in optics11 and acoustics12–14 for different purposes,

such as opening wide full band gaps in tandem structures12 or

waveguiding of beams. An intriguing phenomenon shown in

chirped crystals is the smooth deflection of a light beam from

the straight trajectory as it propagates through the crystal, the

so-called mirage effect.15

Another interesting effect reported recently is the so-

called rainbow trapping effect, the dependence of the turning

point position on the color of radiation. It has been predicted

for one-dimensionally modulated chirped photonic struc-

tures16 and tapered optical and plasmonic waveguides.17,18

Rainbow trapping and wave enhancement are two different

physical effects (the latter occurs even for monochromatic

radiation), although they may occur simultaneously in

chirped structures when the incident radiation is broadband.

In this letter, in addition to the extraordinary sound wave

enhancement effect, which is the main result reported, we

also present a “sound rainbow” trapping effect for acoustic

waves as a secondary result.

Wave reflection from a band-gap in a chirped structure

is peculiar. The dispersion curves xðkÞ at and close to the

band-edges develop nearly horizontal segments, which cor-

responds to small or zero group velocity of the wave, since

vg ¼ @x=@k. The occurrence of the controlled sound

enhancement requires that the crystal at the entrance plane

be within the transparency range for the incoming wave,

whose frequency is above the first band-gap, as shown in

Fig. 1. Note that here, not the wave frequency but the central

(Bragg) frequency and the width of the band-gap is consid-

ered variable along the structure. Figures 1(a) and 1(b) show

the variation of the band-gaps along the chirped sonic crys-

tal, and the local dispersion curves at different depths,

respectively. By local dispersion relation, we mean the dis-

persion of an infinitely extended periodic crystal, for parame-

ters (lattice constant, filling factor) corresponding to a

particular depth of the chirped crystal. The wave entering

into the crystal is gradually slowing down, as the “local”

band-gaps are approaching the wave frequency in the course

of propagation. Finally at a particular depth corresponding to

the band-edge, the wave, literally speaking, stops, turns

around, and starts propagating back. In other words, it expe-

riences a “soft” reflection. This effect is demonstrated in Fig.

1(c), which shows the wave propagating through the crystal

as obtained by numerical simulation using the multiple scat-

tering theory approach.19,20 The frequencies of the incident
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waves in the simulations correspond to local band-gaps at

different depths. Figure 1(c) evidences that the intensity of

the wave increases substantially in the soft reflection area.

Most importantly and in opposition to the case of perfectly

periodic crystals (constant lattice period) in which only some

discrete frequencies can be enhanced by the Fabry-P�erot

resonances, chirped crystals can localize the energy for a

wide range of frequencies in a controlled way by the gradu-

ally change of the lattice constant.

An experimental setup was designed to demonstrate the

predicted extraordinary enhancement effect and to obtain quan-

titative data of the acoustic field inside the structure. It consists

in a two-dimensional sonic crystal with rectangular local sym-

metry, as illustrated in Fig. 2, made of acoustically rigid alumi-

num cylinders, of radius r¼ 2 cm, embedded in air. The spatial

period is constant in transverse-to-propagation direction y,

ay ¼ 10 cm, while a longitudinal chirp is introduced in the

period along the propagation direction x. The adimensional

chirp parameter is defined as a ¼ ðaj � ajþ1Þ=aj, where aj is

the local longitudinal lattice constant at jth layer. For our partic-

ular crystal case, a0 ¼ 10 cm (initial period), a13 ¼ 4:8 cm

(final period), and a gradient a ¼ 0:055. The sign of the chirp

can be either positive or negative, corresponding to lattice con-

stant decreasing or increasing along the propagation direction.

In case of identical scatterers, as used in our study, the filling

fraction for the positive (negative) chirped structures increases

(decreases) in the propagation direction. This has a consequence

of broadening of the local bandgap shown in Fig. 1(a).

The measurements were performed using the automatized

acquisition system 3DReAMS (3D Robotized e-Acoustic

Measurement System).21 Figures 2(a) and 2(b) show the grid of

hanging points of the cylinders and a photograph showing the

source (a loudspeaker) and the crystal inside the chamber,

respectively (for propagation directed downwards in Fig. 2(a)).

The experimental measurements are in excellent agree-

ment with numerical calculations, as shown in Figs. 3 and 4.

We recorded the sound intensity profile along a fixed trans-

verse position by translating the microphone along the x-axis

through the void space between the rows of scatterers. In this

way, we obtained two-dimensional space-frequency plots as

shown in Fig. 3, from numerical (a) and experimental (b) data.

White continuous lines mark the positions of the boundaries of

the first band gap. Note the concentration of acoustic energy at

positions corresponding to just before the upper band edge.

Figure 4(a) shows the axial distributions obtained exper-

imentally (dots) and theoretically (continuous lines) for three

particular frequencies. In both cases, small-scale fringes are

observed, corresponding to the local Bloch mode, as well as

a large-scale oscillations or envelope (dashed line) of the

Bloch mode, to be discussed below. Figure 4(b) represents

the theoretical calculation of the position of the maximum

value of concentration of acoustic energy inside the crystal

depending on the frequency. In correspondence with the

results in Fig. 1, the position of the maximal energy concen-

tration shifts deeper into the bulk of the structure as the fre-

quency is increased (rainbow effect). Note also that, since

the incident amplitude was normalized to unity, at the maxi-

mum value, the intensity has been recorded up to around

20 times higher than incident. For usual reflection between

two different homogeneous media or from a purely band-gap

material in the range of the band-gap, only an increase of

4 times of the local intensity is possible (as the interference

pattern is formed from forward and fully reflected backward

wave). For the case of periodic structures, the wave pene-

trates into the reflecting material evanescently, i.e., with ex-

ponential decay21 and never shows an increase of intensity.

The increase of the intensity field observed in Fig. 4 can

be understood from a coupling between the forward and back-

ward waves inside the chirped crystal. In order to interpret the

results, we propose a simple coupled mode analytical theory

for the propagation of acoustic plane waves inside a one-

dimensional chirped crystal (in optics also known as chirped

mirror). This dimension reduction is possible because the first

band gap in CX direction essentially appears due to a resonant

coupling between the forward and the backward waves.

The contributions of the wave components propagating to

transverse directions are negligible. Assuming that the full

pressure field consists of forward and backward propagating

waves, P ¼ AðxÞeikx�ixt þ BðxÞe�ikx�ixt þ c:c:, the following

coupled amplitude equations can be systematically obtained

from wave equations

FIG. 1. (a) Dependence of the local band gaps on the local lattice constant

along the chirped sonic crystal. (b) Band structure (local dispersion curves)

evaluated at different depths: at the entrance (top), at the middle (center),

and at the exit (bottom) of the sonic crystal. (c) Intensity of the acoustic field

calculated using multiple scattering technique inside the chirped structure

for the frequencies in (a) and (b).

FIG. 2. Photographs of the experimental setup. (a) The grid of hanging

points of the cylinders. (b) The chirped sonic crystal hanging vertically in

the anechoic chamber.
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dA

dx
¼ i

ffiffi
s
p

aðxÞBe2iDqðxÞx;
dB

dx
¼ �i

ffiffi
s
p

aðxÞAe�2iDqðxÞx; (1)

where s is the back-reflection coefficient by one row of scat-

terers, a(x) is the variable longitudinal period and DqðxÞ
¼ 2p=k� p=aðxÞ is the detuning from the Bragg frequency.

From the numerical study of the scattering by only one

row of the structure, we estimate that the back reflected in-

tensity is around 40% of the incident, so s ’ 0:4. The same

numerical study reveals that the scattering into field compo-

nents propagating at transverse direction is only around 5%,

which justifies the followed one-dimensional approach,

neglecting transverse modulations in the vicinity of the first

bandgap. We notice that the detuning from the Bragg reso-

nance DqðxÞ is a function of the longitudinal position x for

chirped crystals. Recall that in our study the chirp is linear,

given by aðxÞ ¼ a0 þ aðx� x0Þ.
Equations (1) can be rewritten in canonical form as

d2A

dX2
¼ i�ðxÞ dA

dX
þ A; (2)

where the space scaling dX ¼ dx
ffiffi
s
p
=aðxÞ was chosen to

make the normalized coupling coefficient unity and �ðxÞ
¼ 2dðXDqðXÞ=dX is the normalized detuning from the

Bragg frequency.

The wave, roughly speaking, reflects “from the bandgap,”

i.e., from the position X0 corresponding to the Bragg

frequency, with �ðX0Þ ¼ 0. In general (for arbitrary chirp),

Eq. (2) cannot be solved analytically. However, in a simple

case when the normalized detuning varies linearly around

zero �ðXÞ ¼ �1ðX � X0Þ, Eq. (2) has an analytical solution in

the form

AðXÞ ¼ c1Hi=�1
ðX

ffiffiffiffiffiffiffiffiffiffiffi
i�1=2

p
Þ; (3)

where Hn is the Hermite polynomial of imaginary order. The

counter-propagating field obeys a similar expression. The

integration constant c1 ¼ Hi=�1
ðXF

ffiffiffiffiffiffiffiffiffiffiffi
i�1=2

p
Þ is determined by

the boundary conditions, by imposing that the amplitude of

the forward wave at the front face X ¼ XF equals unity. �1

¼ d�ðXÞ=dXjX¼XF
or, in terms of initial variables,

�1 ¼ 4pa=s, which estimated for experimental parameters

results �1 ¼ 3.

In Fig. 5, we present the amplitude of the acoustic inten-

sity of the forward and backward waves for linearly chirped

crystals as follows from Eq. (3). The acoustic field is nearly

exponential in the bandgap and oscillatory in front of it. The

oscillations, with the period and amplitude increasing as the

wave approaches the band-gap, are large-scale oscillations,

which originate from the energy exchange between the for-

ward and backward waves. These large-scale oscillations cor-

respond to oscillations of the envelope of the Bloch modes

observed in Fig. 4 and are not due to conditions imposed at

the entrance of the sonic crystal, e.g., some possible imped-

ance mismatch.

FIG. 3. Acoustic intensity inside the crystal, along the x-

axis, for varying frequencies. (a) Multiple Scattering simu-

lation and (b) experiment. White continuous lines show

the spatially varying edges of local band-gaps.

FIG. 4. (a) Numerical simulation results (continuous line)

and experimental results (dots) for the acoustic intensity at

the central section inside the crystal for the three frequen-

cies: 2500 Hz, 2600 Hz, and 2700 Hz. The shaded (yellow)

rectangle denotes the area covered by the crystal. (b)

Position of the maximum value of concentration of energy

inside the crystal depending on the frequency of the incident

wave.
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The controlled field enhancement effect is clearly visible

again in Fig. 5. From the analytical estimations in Eqs. (1)–(3)

and from Fig. 5, it follows that for maximal field enhancement

of the wave intensity, the chirp must be as small as possible.

For �1 ¼ 0:3, the maximum field enhancement could be

around 6 times (in terms of intensities) if one compares the

maximal and minimal values of the plot in Fig. 5(b). In order

to realize such enhancement, the “entrance to the sonic crystal”

must be placed to correspond to the deepest minimum of solu-

tion (3), in this particular case at around the point X ’ 10. For

the parameters of the experiment, �1 ¼ 0:3, the enhancement

of more than two times is predicted in this simplified approach.

Also, as Fig. 5(a) shows, a small portion of radiation is trans-

mitted, i.e., “leaks” through the band gap. Such tunneling,

analogous to Landau-Zenner tunneling, is due to slightly too

fast (no more adiabatic) chirp.

Concluding, in this letter, we have predicted and exper-

imentally demonstrated a mechanism for sound field

enhancement in a chirped crystals, specifically in chirped

sonic crystals. The acoustic wave energy can be selectively

concentrated at particular depth of the crystal depending on

the frequency and on the parameters of the structure. At

these bright planes, a substantial increase of the energy was

recorded for linear chirp and for frequencies around the first

gap along the X direction of structure. The experimental

study was performed in a macroscopic sonic crystal irradi-

ated by acoustic waves in audible regime, where the meas-

urements in the interior of the crystal are possible.

In the field of acoustics, the results are independent of the

spatial scale of the structure, and in principle, the phenom-

enon could be scaled-down and observed in micro- or nano-

scale phononic (so called hypersonic) crystals.22 At these

scales, sound waves are described in terms of phonons, and

the ideas presented in this work could find application for heat

management in acoustical or acousto-optical devices. Recent

works in this direction show indeed that manipulation of pho-

non dispersion properties can allow thermal transport con-

trol.23 Generally, the effect of wave energy concentration

demonstrated in the present work opens a possibility of

increasing the efficiency of detectors and absorbers, both in

acoustics and optics, since slow phonons and photons can be

absorbed and harvested with a higher probability.

The work was supported by Spanish Ministry of Science

and Innovation and European Union FEDER through proj-

ects FIS2011-29734-C02-01 and -02 and GVA/2011/055.

V.R.-G. is grateful for the support of post-doctoral contracts

of the UPV CEI-01-11. K.S. acknowledges the grant of UPV

PAID-02-01. We acknowledge the CTFAMA and the Sonic

Crystal Technologies Research Group at UPV for the use of

the anechoic chamber and the 3DReAMS, respectively.

1M. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, Phys.

Rev. Lett. 71, 2022 (1993).
2R. Mart�ınez-Sala, J. Sancho, J. V. S�anchez, V. G�omez, J. Llinares, and

F. Meseguer, Nature 378, 241 (1995).
3X. Zhang and Z. Liu, Appl. Phys. Lett 85, 341 (2004).
4M.-H. Lu, C. Zhang, L. Feng, J. Zhao, Y.-F. Chen, Y.-W. Mao, Y.-Y. Zhu,

S.-N. Zhu, and N.-B. Ming, Nature Mat. 6, 744 (2007).
5V. Espinosa, V. J. S�anchez-Morcillo, K. Staliunas, I. P�erez-Arjona, and

J. Redondo, Phys. Rev. B 76, 140302(R) (2007).
6Y. Zhou, M.-H. Lu, L. Feng, X. Ni, Y.-F. Chen, Y.-Y. Zhu, S.-N. Zhu, and

N.-B. Ming, Phys. Rev. Lett. 104, 164301 (2010).
7A. Khelif, P. A. Deymier, B. Djafari-Rouhani, J. O. Vasseur, and

L. Dobrzynski, J. Appl. Phys. 94, 1308 (2003).
8R. Pic�o, V. S�anchez-Morcillo, I. P�erez-Arjona, and K. Staliunas, Appl.

Acoust. 73, 302 (2012).
9F. Cervera, L. Sanchis, J. S�anchez-P�erez, R. Mart�ınez-Sala, C. Rubio, and

F. Meseguer, Phys. Rev Lett. 88, 023902 (2001).
10X. Li, X. Ni, L. Feng, M. Lu, C. He, and Y. Chen, Phys. Rev. Lett. 106,

084301 (2011).
11E. Cassan, C. K.-V. D. Caer, D. Marris-Morini, and L. Vivien,

J. Lightwave Technol. 29, 1937 (2011).
12M. Kushwaha, B. Djafari-Rouhani, L- Dobrynski, and J. Vasseur,

Eur. Phys. J. B 3, 155 (1998).
13I. E. Psarobas and M. M. Sigalas, Phys. Rev. B 66, 052302 (2002).
14L. Wu and L. Chen, J. Appl. Phys. 110, 114507 (2011).
15E. Centeno, D. Cassagne, and J.-P. Albert, Phys. Rev. B 73, 235119

(2006).
16Y. Shen, J. Fu, and G. Yu, Phys. Lett. A 375, 3801 (2011).
17M. Stockman, Phys. Rev. Lett. 93, 137404 (2004).
18V. N. Smolyaninova, I. I. Smolyaninov, A. V. Kildishev, and V. M.

Shalaev, Appl. Phys. Lett. 96, 211121 (2010).
19P. Martin, Multiple Scattering. Interaction of Time-Harmonic Waves with

N Obstacles (Cambridge University Press, UK, 2006).
20Y. Y. Chen and Z. Ye, Phys. Rev. E 64, 036616 (2001).
21V. Romero-Garc�ıa, J. S�anchez-P�erez, and L. Garcia-Raffi, J. Appl. Phys.

108, 044907 (2010).
22T. Gorishnyy, C. K. Ullal, M. Maldovan, G. Fytas, and E. L. Thomas,

Phys. Rev. Lett. 94, 115501 (2005).
23P. Hopkins, C. Reinke, M. Su, R. O. E. Shaner III, Z. Leseman, J. Serrano,

L. Phinney, and I. El-Kady, Nano Lett. 11, 107 (2011).

FIG. 5. Solutions of Eq. (3), i.e., the intensity of the forward

(continuous line) and backward (dashed line) fields along the

chirped structure. (a) (with � ¼ 3) corresponds to experimental

configuration, (b) (with � ¼ 0:3) is shown for comparison, to

illustrate soft reflections for a substantially smaller chirp. The

vertical dashed lines indicate the center of the bandgap and the

shaded areas the bandgap itself.
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