

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

http://dx.doi.org/10.1016/j.tcs.2011.05.058

http://hdl.handle.net/10251/37982

Elsevier

García Gómez, P.; López Rodríguez, D.; Ruiz Ochando, J.; Álvarez Vargas, GI. (2011).
From regular expressions to smaller NFAs. Theoretical Computer Science. 412(41):5802-
5807. doi:10.1016/j.tcs.2011.05.058.

From regular expressions to smaller NFAs ∗

Pedro Garćıa (1), Damián López (1), José Ruiz (1) and Gloria I. Álvarez (2)

(1) Departamento de Sistemas Informáticos y Computación.
Universidad Politécnica de Valencia. Valencia (Spain).
(2) Pontificia Universidad Javeriana. Cali (Colombia).

email: {pgarcia,dlopez,jruiz,galvarez}@dsic.upv.es

Abstract

Several methods have been developed to construct λ−free automata
that represent a regular expression. Among the most widely known are
the position automaton (Glushkov), the partial derivatives automaton
(Antimirov) and the follow automaton (Ilie and Yu). All these au-
tomata can be obtained with quadratic time complexity, thus, the
comparison criterion is usually the size of the resulting automaton.
The methods that obtain the smallest automata (although, for general
expressions, they are not comparable), are the follow and the partial
derivatives methods. In this paper we propose another method to ob-
tain a λ-free automaton from a regular expression. The number of
states of the automata we obtain is bounded above by the size of both
the partial derivatives automaton and of the follow automaton. Our
algorithm also runs with the same time complexity of these methods.

1 Introduction

One of the problems that have been studied in automata theory is the devel-
opment of algorithms to construct automata that represent regular expres-
sions. The solution to this problem permits the efficient implementation of
useful tools in fields like text processing. Recently, programming languages
as Perl, Phython, Java, C♯ or PHP consider regular expressions as an extra
tool that helps to decrease the programming effort.

One of the first methods for this task was the Thompson automaton [15],
which is an inductive tool that defines the automata for the basic regular
expressions together with rules to construct the automata for the different
operations involved in a regular expression α. The cost of this construction
is linear in the number of symbols and operators involved in α, which will

∗Work partially supported by Spanish Ministerio de Educación y Ciencia under project
TIN2007-60769

1

be denoted |α|, whereas in the sequel, ‖α‖ will denote just the number of
symbols.

The position automaton was proposed independently by Glushkov [10]
and McNaugton and Yamada [13]. An intuitive algorithm to construct it
starts considering the linearized version α of a regular expression α, that is,
one in which the symbols are distinguished according to their position in α.
The number of states of the automaton is the number of occurrences of the
symbols in α plus one (the initial state) and (ai, b, bj) is a transition of the
automaton if bj is a successor of ai in a word of L(α) and the symbol in
the position j of α is b. Several methods have been proposed to obtain this
automaton with quadratic time complexity: Ziadi, Ponty and Champarnaud
[16]; Chang and Paige [9]; and Brüggemann-Klein [4].

The partial derivatives automaton was proposed by Antimirov [1]. The
concept of partial derivative can be seen as a non-deterministic extension of
the Brzozowski’s derivatives. The difference with the deterministic version
arises when the result of a derivative is a union of regular expressions. This
union is changed by a set containing the expressions. The construction of the
automaton is very similar to Brzozowski’s construction. Antimirov proposes
a O(|α|2‖α‖3) algorithm to construct the partial derivatives automaton.
Concerning this construction, it is shown in [6] that this automaton is a
quotient of the position automaton by a certain equivalence relation and
that it can be constructed in O(|α|2||α‖) space and time complexities. This
method, aimed to improve the time complexity of the partial derivatives
algorithm, is called the equation automaton method and when it is applied
to α obtains the same automaton as the partial derivatives method applied
to α. Champarnaud and Ziadi propose in [5] an improved algorithm that
runs in O(|α|2) space and time complexity.

The follow automaton, proposed by Ilie and Yu [14] is the quotient of
the position automaton by the following equivalence relation: two states are
equivalent if they have the same successors (follow) and the same member-
ship to the set of final states. The algorithm they propose constructs an
automaton in a similar way to the Thompson automaton, but with fewer
states and without λ-loops. This allows the authors to develop an algorithm
to eliminate the λ-transitions that works in O(|α|2).

We note that all these methods have quadratic time complexity. There-
fore, in order to compare all these approaches it is important to take into
account the size of the resulting automaton. Under this criterion, the best
behavior is achieved by the partial derivatives and the follow methods. In
[8] the authors prove that, when a normal form version of the regular expres-
sions is considered, the partial derivatives method obtains automata with
size bounded above by the size of the follows automaton. This transforma-
tion into a normal form can be carried out in linear time. When general
expressions are considered, the size of the automata obtained from these
methods can not be compared.

2

In this paper we propose a new method to construct a λ-free automaton
from a regular expression whose size is bounded above by the size of both the
partial derivatives and of the follow automaton. Our method runs also with
quadratic time complexity with respect to the size of the regular expression.

2 Definitions and Notation

Let A be a finite alphabet and A∗ the free monoid generated by A with
concatenation as the binary operation and λ as neutral element. A language
L is any subset of A∗, the elements x ∈ A∗ are called words.

For any given language L over A∗ and a word u ∈ A∗, the left quotient
of L by u is defined as u−1L = {v ∈ A∗ : uv ∈ L}.

A regular expression can be recursively defined as follows:

1. ∅, λ and a ∈ A are regular expressions.

2. if α and β are regular expressions then α + β, α · β, α∗ and (α) are
also regular expressions.

3. All regular expressions can be obtained by applying the rules 1 and 2
finitely many times.

The regular language denoted by a regular expression α is L(α). Then
L((α)) = L(α), L(∅) = ∅, L(λ) = {λ}, L(a) = {a} for a ∈ A, L(α + β) =
L(α) ∪ L(β), L(α · β) = L(α) · L(β) and L(α∗) = L(α)∗. The alphabet of a
regular expression α will be denoted with Aα. We define Λ(α) = {λ}∩L(α).
Derivatives and left quotients are denoted in the same way. This should not
lead to confusion as L(u−1α) = u−1L(α).

The linearized expression of a regular expression α, denoted by α, is
obtained by marking each letter with a subindex denoting its position in α.
Thus, if the set of positions of α is pos(α) = {1, 2, · · · , ‖α‖} and pos0(α) =
pos(α) ∪ {0}, then Aα is the alphabet of symbols ai such that there is an a
in position i of the regular expression α.

A finite automaton (NFA) is a 5-tuple A = (Q,A, δ, q0, F), where Q is
a finite set of states, A is an alphabet, q0 ∈ Q is the initial state, F ⊆ Q
is the set of final states and δ : Q × (A ∪ {λ}) → 2Q is the transition
function, which will also be seen as δ ⊆ Q × (A ∪ {λ}) × Q. Given an
automaton A and a state q ∈ Q, we denote the right language of q in A as
RA

q = {x ∈ A∗ : δ(q, x) ∩ F = ∅}.
If an automaton has no empty transitions and for every state q and

every symbol a, the number of transitions δ(q, a) is at most one, it is called
deterministic (DFA).

Given a NFA A and any two states p q, the equivalence relation ≡R

defined as p ≡R q if and only if RA
p = RA

q . This relation defines a partial re-
duction of A. When a DFA is considered, this equivalence relation produces
the minimal DFA.

3

Given two equivalence relations E1 and E2, the join relation, denoted
with E1 ∨ E2, is defined as the smallest equivalence relation that contains
E1 and E2, that is, E1 ∨E2 is the transitive closure of the relation E1 ∪E2.
Finally, we say that E1 refines E2 (denoted E1 � E2) when p ≡E1

q implies
that p ≡E2

q.

3 Position, follow and partial derivatives automa-

ton

In this section we summarize the most relevant previous results on this
matter. We also recall a previous method by Champarnaud and Ziadi [5]
that runs with quadratic time complexity.

The position automaton of a regular expression α, which we will denote
Apos(α), was introduced independently by Glushkov [10] and McNaughton-
Yamada [13]. This construction, for a given a regular expression α, for
u,w ∈ A∗

α and i ∈ pos(α), uses the following mappings:

• first(α) = {i : aiw ∈ L(α)}.

• last(α) = {i : wai ∈ L(α)}.

• follow(α, i) = {j : uaiajw ∈ L(α)}.

Berstel and Pin [3] related this construction to the concept of local lan-
guages. They established that the position automaton could be obtained
from a standard local automaton for α, applying a strictly alphabetical
morphism h : A∗

α → A∗
α that erases the subindexes in α. Clearly h(α) = α.

Although they were not concerned on the development of efficient algo-
rithms, Berstel and Pin [3], and also Berry and Sethi [2] in an implicit way,
have proved that α defines a local language for any regular expression α.

The partial derivatives automaton of an expression α, denoted Apd(α)
in the following, was introduced by Antimirov [1]. Champarnaud and Ziadi
propose in [5] an efficient method to build the position and the partial deriva-
tives automaton. Their method is based in the notion of c-continuations of
a linear regular expression. Intuitively, for any linear regular expression α,
the computation of ca(α) traverses the regular expression, and searches for
a non-empty derivative with respect to any word whose last symbol is a.
Note that, given any linear regular expression α, the c-continuation of α
with respect to a returns an expression of all the (non-null) derivatives with
respect to (ua), no matter which u ∈ A∗

α is considered.
The c-continuations allows the definition of the c-continuation automa-

ton Ac(α) = (Q,Aα, δ, q0, F), where:

• Q = {(ai, cai
(α)), where ai is the symbol in the i-th position in α or λ

and cai
(α) is the c-continuation of α with respect to the symbol whose

position is i.

4

• q0 = (λ, α)

• F = {(ai, cai
(α)) : Λ(cai

(α)) 6= ∅}

• δ((ai, cai
(α)), b) = {(bj , cbj

(α)) : h(bj) = b ∧ j ∈ follow(α, i)}

The c-continuation automaton by Champarnaud and Ziadi provides an
efficient way to obtain the partial derivatives automaton. Briefly, given
a regular expression α, the method considers equivalent those states p =
(ai, cai

(α)) and q = (bj , cbj
(α)) (i.e. p ≡pd q) such that h(cai

(α)) = h(cbj
(α)),

with h : A∗
α → A∗

α where h(ai) = a. In other words, those states whose c-
continuation are identical when the subindexes are erased.

The authors propose a quadratic algorithm to obtain the c-continuation
automaton. This algorithm allows them to obtain (also with quadratic time
complexity) both the position and the partial derivatives automata for a
given regular expression.

An example of the c-continuation automaton for a regular expression α
is shown in Figure 1. The depicted automaton is the position automaton
for α. Example 1 illustrates the process to obtain the partial derivatives
automaton.

(λ, α)

(a1, (a
∗
3 + b4a

∗
5 + b∗6)

∗)

(b2, (a
∗
3 + b4a

∗
5 + b∗6)

∗)

(a3, a
∗
3(a

∗
3 + b4a

∗
5 + b∗6)

∗)

(b6, b
∗
6(a

∗
3 + b4a

∗
5 + b∗6)

∗)

(b4, a
∗
5(a

∗
3 + b4a

∗
5 + b∗6)

∗)

(a5, a
∗
5(a

∗
3 + b4a

∗
5 + b∗6)

∗)

a

b

a

b
b

a
b

b

a

b

ba

b

b

a
b

a

b

a

a

b

b

Figure 1: C-continuation automaton for α = (a + b)(a∗ + ba∗ + b∗)∗.

Example 1 Let α = (a + b)(a∗ + ba∗ + b∗)∗. The linearized expression is
α = (a1 + b2)(a

∗
3 + b4a

∗
5 + b∗6)

∗. The partial derivatives automaton can be
obtained from the c-continuation automaton shown in Figure 1.

5

α q1

q2

q3

a, b

a, b

b

ba, b

a, b

b

Figure 2: Apd(α) for α = (a + b)(a∗ + ba∗ + b∗)∗.

Note that the states (a1, (a
∗
3 + b4a

∗
5 + b∗6)

∗) and (b2, (a
∗
3 + b4a

∗
5 + b∗6)

∗) are
merged. The resulting state is identified with the state q1 in Figure 2. In the
same way, the states (a3, a

∗
3(a

∗
3 + b4a

∗
5 + b∗6)

∗), (b4, a
∗
5(a

∗
3 + b4a

∗
5 + b∗6)

∗) and
(a5, a

∗
5(a

∗
3 + b4a

∗
5 + b∗6)

∗) are also merged (state q2 in Figure 2). The state
(b6, b

∗
6(a

∗
3 + b4a

∗
5 + b∗6)

∗) of the c-continuation automaton is not merged with
anyone and is denoted with q3 in the partial derivatives automaton.

Proposition 2 (Champarnaud and Ziadi [6]) Apos(α)/ ≡pd= L(α)
Proof. The proof is based in the fact that ≡pd�≡R. �

In [14], Ilie and Yu propose a new algorithm to construct NFAs from
regular expressions named follow automaton. The authors propose a con-
structive algorithm, and also prove that the follow automaton is a quotient
of the position automaton by the equivalence relation ≡f defined as:

ai ≡f aj ⇔

{

ai ∈ last(α) ↔ aj ∈ last(α) and
follow(α, i) = follow(α, j)

That is, given a NFA A = (Q,Σ, δ, q0, F), for any pair of states p and q,
p ≡f q if and only if ∀a ∈ Σ, δ(p, a) = δ(q, a) ∧ (p ∈ F ⇔ q ∈ F). Thus, it
is easy to see that ≡f�≡R. Proposition 3 follows from this fact.

Proposition 3 (Ilie and Yu [14]) L(Apos(α)/ ≡f) = L(α).

We note here that the quotient automaton Apos(α)/ ≡f (i.e. the fol-
low automaton) can also be computed efficiently using the c-continuation
automaton.

Example 4 Let us consider the position automaton shown in Figure 1. We
identify three equivalence classes of the follow relation: {λ}, {a1, b2, a3, b6}
and {b4, a5} (for the sake of brevity, we don’t show the second component
of the states). The quotient of the position automaton by the relation ≡f is
depicted in Figure 3.

6

{0} {a1, b2, a3, b6} {b4, a5}
a, b

a, b a, b

b

a, b

Figure 3: Follow automaton for α = (a+ b)(a∗ + ba∗ + b∗)∗. The equivalence
classes are inside the states.

4 A new method to obtain λ-free NFAs from reg-

ular expressions

In this section we will describe a new method that obtains finite automata
from regular expressions. It uses the concepts of follow [14] and equation
automata [6]. The size of these automata for a given regular expression
are upper bounds of the size of the automaton obtained by the method we
propose below.

Let us define ≡∨ as the join of the relations ≡pd and ≡f .

Proposition 5 L(Apos(α)/ ≡∨) = L(α).
Proof. To prove the proposition it will be enough to prove that ≡∨�≡R.
Given any pair of states p and q of Apos(α), if p ≡∨ q, then two cases

arise:

1. if p ≡f q or p ≡pd q, then p ≡R q.

2. if p 6≡f q and p 6≡pd q, then there exists r such that p ≡f r and
r ≡pd q. Due to the fact that, ≡f�≡R and ≡pd�≡R, it follows that

R
Apos
r = R

Apos
p and R

Apos
r = R

Apos
q , therefore, R

Apos
p = R

Apos
p and

p ≡R q.

�

Proposition 6 The size of the automaton Apos/ ≡R is bounded above by
the size of Apos/ ≡f and Apos/ ≡pd

Proof. Note that it follows from the fact that ≡∨ is coarser than both
≡pd and ≡f . �

Algorithm 4.1 shows how the new automaton can be obtained. This
algorithm first merges the states of the c-continuation automaton that are
equivalent under the follow relation. In this merging step the algorithm does
not discard the different c-continuations of the merged states. This provides,
for each state q in the resulting automaton, several expressions for the same
language. The second step uses the morphism that erases the subindexes of
the expression in each state. Those states that have in common a regular
expression (i.e. their right languages are the same) are also merged.

7

Algorithm 4.1 Algorithm to obtain small NFA for any given regular ex-
pression.

Input: A regular expression α.
Output: A non-deterministic automaton A such that L(A) = L(α) .

Method:
Obtain the c-continuation automaton Ac(α)
Compute the relation ≡f

Obtain Ac(α)/ ≡f .
(* The c-continuations of the merged states are not discarded *)

Erase the subindexes to each c-continuation
Merge those states which have at least one expression in common
Return the resulting automaton

EndMethod:

Example 7 Let us consider the regular expression (a + b)(a∗ + ba∗ + b∗)∗.
Figure 1 shows the c-continuation automaton for α. The quotient of this
automaton by the relation ≡f is shown in Figure 4.

{α}







(a∗3 + b4a
∗
5 + b∗6)

∗,
a∗3(a

∗
3 + b4a

∗
5 + b∗6)

∗,
b∗6(a

∗
3 + b4a

∗
5 + b∗6)

∗







{a∗5(a
∗
3 + b4a

∗
5 + b∗6)

∗}

a, b

b

a, b

a, b

a, b

Figure 4: Quotient automata Ac(α)/ ≡f , for the expression (a + b)(a∗ +
ba∗ + b∗)∗. First step performed by our algorithm.

Note that h(a∗3(a
∗
3 + b4a

∗
5 + b∗6)

∗) = h(a∗5(a
∗
3 + b4a

∗
5 + b∗6)

∗). Thus, the
resulting automaton is shown in Figure 5.

Our algorithm can take profit from the result in [5] to achieve also
quadratic complexity with respect to the size of the regular expression. Note
that computing the relation ≡f as well as obtaining the quotient automaton
does not increase the quadratic complexity. The c-continuations are not dis-
carded in the first step, therefore the quotient automaton has, at most, the

8

q0 q1
a, b

a, b

Figure 5: Automaton for α = (a + b)(a∗ + ba∗ + b∗)∗ with our method.

same number of c-continuations than the c-continuation automaton, and
thus it is possible to check which states to merge without increasing the
complexity.

4.1 Relations between approaches

As mentioned, for any given regular expression, the follow and partial deriva-
tives methods are not comparable with respect to the size of the output au-
tomata. In [14] Ilie and Yu state the difficulty of such a study and propose
an empirical study using real-life applications.

In [8] the authors tackle this comparative task, and they prove that,
whenever the regular expression is normalized, then the partial derivatives
automaton is a quotient of the follow automaton.

For any given regular expression α, it is said that α is a normalized
expression if it is reduced and it is in Star Normal Form (SNF) [4]. A
expression is reduced if it contains neither ∅ nor unnecessary λ and it has no
nested star operators. For any expression, it is possible to use the syntactic
tree of it to obtain a reduced version in linear time.

We refer the interested reader to [4] for more details on the algorithm to
obtain the SNF version of any given regular expression. We only note that:
first, this computation can be done in linear time; and second, a regular
expression α is said to be in SNF if and only if, for every subexpression β∗

of α the next condition holds:

∀i ∈ last(β), follow(β, i) ∩ first(β) = ∅

Proposition 8 (Champarnaud, Ouardi and Ziadi [8]) When normal-
ized expressions are considered, ≡f�≡pd.

Proposition 9 When normalized expressions are considered. The size of
Apos/ ≡∨ is equal to the size of Apd.

Proof. By Proposition 8 and the definition of ≡∨. �

When normalized expressions are considered, our algorithm returns the
same automaton output by the partial derivatives method. Note that this is
easy to prove because our approach applies the follow and partial derivatives
equivalence relations.

9

It is worth to be noted that, when a normalized regular expression is
considered, there is no difference between the output obtained by ours and
the partial derivatives methods. We also note that, normalized expressions
does not offer always an advantage. The following example illustrates this
fact.

Example 10 Let us consider the regular expression of Example 1. The
normalized version of this expression is αn = (a + b)(a + ba∗ + b)∗. Both
the follow and partial derivatives methods output the automata shown in
Figure 4 when they run with the normalized expression as input. We recall
that the partial derivatives method output a four-states automaton when the
non-normalized version of α is used.

Algorithm 4.1 returns the same automaton when the normalized version
of α is used. Nevertheless, as shown in Example 7, it is possible to obtain a
smaller automaton using the original expression.

5 Conclusions

Although the time complexity of both the follow automaton and the equa-
tion automaton (partial derivatives) method is the same, taking into ac-
count general expressions, the size of the automata they obtain can not be
compared. When normalized expressions are considered, the size of the au-
tomata output by the partial derivatives method is upper bounded by the
size of the follows automaton.

In this paper we propose a new method to construct automata from
regular expressions. The algorithm runs also with quadratic time complexity
and assures that the size of the automata obtained is upper bounded by the
size of the smallest automata obtained by the previous methods.

References

[1] Antimirov, V., Partial derivatives of regular expressions and finite automata con-

structions. Theoret. Comp. Sci. 155, pp. 291-319. 1996.

[2] Berry, G., and Sethi, R., From regular expressions to deterministic automata. The-

oret. Comp. Sci. 48(1), pp. 117-126. 1986.

[3] Berstel, J., and Pin, J-E., Local languages and the Berry-Sethi algorithm. Theoret.

Comp. Sci. 155(2), pp. 439-446. 1996.

[4] Brüggemann-Klein, A., Regular expressions into finite automata. Theoret. Comp.

Sci. 120, pp. 117-126. 1993.

10

[5] Champarnaud, J. M., and Ziadi, D., From c-continuations to new quadratic algo-

rithms for automaton synthesis. International Journal of Algebra and Computation

6, pp. 707-736. 2001.

[6] Champarnaud, J. M., and Ziadi, D., Canonical derivatives, partial derivatives and

finite automaton constructions. Theoret. Comp. Sci. 289, pp. 137-163. 2002.

[7] Champarnaud, J. M., Nicart, F., and Ziadi, D., From the ZPC structure of a regular

expression to its follow automaton. International Journal of Algebra and Computa-

tion 16(1), pp. 17-34. 2006.

[8] Champarnaud, J.M., Ouardi, F. and Ziadi, D., Normalized Expressions and Finite

Automata. Intern. Journ. of Alg. and Comp., 17(1), pp. 141154. 2007.

[9] Chang, C. H., and Paige, R., From regular expressions to DFA’s using compressed

NFA’s. Theoret. Comp. Sci. 178, pp. 1-36. 1997.

[10] Glushkov, V. M., The abstract theory of automaton. Russian Math. Surveys 16, pp.

1-53. 1961.

[11] de Luca, A., and Restivo, A., A characterization of strictly locally testable languages

and its application to subsemigroups of a free semigroup. Information and Control.

44, pp. 300-319. 1980.

[12] McNaughton, R., Algebraic decision procedures for local testability. Math. Sysr. The-

ory. 8(1), pp. 60-76. 1974.

[13] McNaughton, R., and Yamada, H., Regular expressions and state graphs for au-

tomata. IEEE Trans on Electronic Computers 9(1), pp. 39-47. 1960.

[14] Ilie, L., and Yu, S., Follow automata. Information and Computation 186, pp. 140-162.

2003.

[15] Thompson, K., Regular expression search algorithm. Comm. ACM 11(6), pp. 419-

422. 1968.

[16] Ziadi, D., Ponty, J-L., and Champarnaud, J. M., Passage d’une expression ra-

tionnelle à un automate fini non-déterministe. Bull. Belg. Math. Soc. pp. 177-203.

1997.

11

