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Abstract  

Hybrid composites consisting in a hydrogel matrix with silica micro- and nano-particles 

reinforcement were produced and characterized. The strategy proposed in this work to 

obtain these composites consisted in a two-step synthesis, being the polymer network 

formation the first step. Porous poly(hydroxyethyl acrylate) polymer network was 

produced via free radical polymerization. Monomer and crosslinker were diluted in a 

varying amount of ethanol that controls the porosity of the resulting network. Polymeric 

microstructure drives the absorption of a silica precursor solution and the further 

distribution of the inorganic phase which was formed “in situ” in part occupying the 

pores and in part in the form of nanoparticles distributed in the polymer phase. 

Composites with silica content up to 60% by weight were obtained. In the case where 

the silica phase was continuous, samples maintained their integrity after eliminating the 

organic phase by pyrolysis. Water absorbed in the gel was able to crystallize, at least in 
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part, when the silica content was below 30% by weight. Interestingly, for higher silica 

content the glass transition of the polymer phase was suppressed as well. Compliance 

was determined by indentation experiments. A continuous decrease in compliance was 

observed as filler content increased. Improvement of bioactivity of the material in 

simulated body fluid was also assessed. The synthetic route proposed allowed obtaining 

a family of composite hydrogels with variable properties. 

 

Highlights 

 A procedure to synthesize an interconnected silica nanophase in a previously formed 

polymer hydrogel.   

 Silica nano- and micro-domains formed in a polymer nano-and micro-porous 

hydrogel by a sol-gel reaction. 

 Hybrid materials with up to 60% by weight silica content in which both silica and 

organic phases are continuous. 

 

Keywords: A. Hybrid composite, A. Nanocomposite, A. Polymer-matrix composites 

(PMCs), A. Particle-reinforced composites, E. Sol-gel methods. 

 

1. Introduction 

Important properties of cross-linked hydrogels that make them useful as a potential 

biomaterials are their remarkable ability to absorb water and their biocompatibility [1-

3]. Swelling capacity of the hydrogels may be modulated by adjusting cross-linking 

density of the network and controlling porosity. A microporous hydrogel can be 

produced by diluting monomer and cross-linker in a suitable solvent since phase 

separation takes place during polymerization [4,5], being pore size and pore 

interconnectivity highly dependent on polymerization conditions, in particular the 

amount of cross-linker and the solvent content in the reacting mixture [2,3,5,6]. Due to 

their weakness when swollen, some studies have intended to improve their mechanical 

properties by different methods, for instance by copolymerization alternating 

hydrophilic and hydrophobic domains [7]. In this vein, the formation of 

organic/inorganic composites is a promising strategy for improving mechanical 

properties, as the advantages of the inorganic material (e.g., rigidity, thermal stability) 

are combined with those of organic polymers (e.g., flexibility, ductility, water sorption 

capacity, surface tension, processing). Composite properties are function of the strength 
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of the interaction between the inorganic and inorganic phases at the interface as well as 

the amount of interface nanoparticles are expected to favor interface interaction [8, 9]. 

Methods for obtaining polymer/silica nanocomposites include: (a) mixing silica 

nanoparticles and the polymer[10-14], (b) sol-gel processes in presence of a solution of 

the organic polymer [10,13,15-18], and (c) in situ sol-gel process and simultaneous 

polymerization[12,14,19]. Introduction of functional groups along the backbone of the 

polymer can favor the formation of covalent bonds between organic and inorganic 

phases during sol-gel reaction [9, 17, 20]. All these methods have been widely studied 

to prepare hybrid hydrogel-silica nanocomposites. Polymer-silica hybrids have been 

obtained by using homopolymer and copolymer networks based in 

hydroxyethylmethacrylate (HEMA) and hydroxyethylacrylate (HEA) being 

polymerized simultaneously by sol-gel synthesis of the silica network [12-14,19,21, 22]. 

Polymerization of HEMA or HEA is slower than sol-gel reaction and thus, silica 

network formation takes place in presence of the monomer which acts as a template 

determining nano-porous structure of silica phase[23]. 

In previous studies poly(hydroxyethyl acrylate)(PHEA)-silica nanocomposites were 

produced by simultaneous polymerization of the two  phases in a sol-gel process using 

tetraethylorthosilane (TEOS) as silica precursor. It was found that in composites with 

silica content above 15% by weight, organic and inorganic phases are co-continuous as 

probed by atomic force microscopy, nanoindentation and water sorption measurements 

[24,25]. Similar results were obtained in copolymer networks of HEA and ethyl acrylate 

(EA)[26,27]. 

In this work, we explore a different way of producing PHEA-silica composites in which 

the first step is to produce the polymer network and then the solution containing silica 

precursor is absorbed in the bulk hydrogel using sol gel reaction to produce silica 

nanoparticles in the nanopores of the hydrogel structure. Higher silica contents can be 

obtained producing macro porous PHEA hydrogel. In this way, nanocomposites with 

silica content up to 60% by weight were obtained.  When this gel is immersed in the 

precursor solution sol-gel reaction produces silica nanoparticles inside the polymer 

matrix as in the case of bulk hydrogel but, in addition silica is formed in micropores. 

The result is a double micro- and nanocomposite with silica content from 20% to 60% 

by weight. Bioactivity, some physical properties (as water and polymer mobility) and 

some thermal and mechanical properties were analyzed. 
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2. Materials and Methods 

2.1 Materials: 

2-Hydroxyethylacrylate, (HEA, from Aldrich 96%) was polymerized at room 

temperature under UV radiation for 6 hours using  0.5% wt of  benzoin ( from Scharlau 

98% ) as photo initiator and  1%  of ethyleneglycol dimethylacrylate   (EGDMA, from 

Aldrich, 98%) as crosslinker to obtain bulk PHEA. In order to obtain porous PHEA 

films monomers were diluted in ethanol (from Scharlau, synthesis grade). The weight 

fraction of ethanol in the monomer mixture ranged between 0 and 50%. The sheets 

produced, around 1 mm thick, were subjected to a post curing treatment at 90º for 24 

hours. Samples were washed with distilled water for 24 hours at approximately 60-

70ºC, changing water every 8 hours, dried at room temperature for 24 hours and then in 

a vacuum desiccator for  additional 24 hours. Samples will be designed PHEAXX, 

being XX the weight fraction of ethanol in the monomer solution.  

Hybrid composites were prepared by sol-gel reaction using TEOS (from Aldrich, 98%) 

as silica precursor and hydrochloric acid, HCl as catalyzer.  Solution of silica precursor 

consisted in TEOS/water/ethanol/HCl mixtures with molar ratios 1/15/1/0.0185. TEOS 

was mixed with water and ethanol under continuous stirring for 5 minutes, then HCl 

was added and the solution was stirred 60 additional minutes. Porous or bulk PHEA 

were then immersed in this solution and allowed to swell at room temperature for 24 

hours in order to attain constant weight and let to take place hydrolysis of silica 

precursor simultaneously. Sol gel reaction continued then at 40ºC for another 24 hours. 

Finally the samples were washed in water/ethanol 15/1 mixtures and dried in vacuum at 

40ºC to constant weight. The samples were designated PHEAXXSI, where XX has the 

same meaning as above.  

2.2 Materials Characterization  

2.2.1Inorganic Hybrid composition 

Silica content of the hybrid composites was determined by weighing of the dry samples 

before and after sol-gel reactions. Residues after pyrolysis up to 850ºC in oxygen 

atmosphere and residues after thermogravimetric analysis, TGA in nitrogen atmosphere 

(measured in a heating scan at 10ºC/min up to 850ºC in a SDT Q600 analyzer, TA 

Instruments, United States) were also measured.  

2.2.2 Water Sorption  

Equilibrium water sorption was measured by immersion of pieces of materials in 

purified water at 37ºC. Sorption kinetics was measured by weighing at 1, 2, 8, 16 and 24 
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hours (time at which all PHEA sample compositions attained an equilibrium plateau). 

Computed equilibrium water content EWC was calculated as the weight of water 

absorbed at 24 hours per gram of dry sample.  

2.2.3 Scanning Electronic Microscopy (SEM) 

A Scanning Electron Microscope Jeol JSM-5410 equipped with a cryounit Oxford CT 

1500 using the low-temperature freeze drying technique (cryoSEM), was used to 

examine surface and cross-sections of samples which were swollen in water after 24 h 

in order to open the pores of hydrogels and composites. Water was sublimated at -90 ºC 

for 90 minutes.  Samples were cryo-fractured inside the microscope, and sputtered with 

a gold layer. Micrographs were taken at an accelerating voltage of 20 kV in order to 

ensure a suitable image resolution. 

Homogeneity of silica phase distribution was assessed both at the surface and cross-

section by Energy Dispersive X ray Spectroscopy, EDS (from Oxford Instruments), 

performed over the surface and over cross section samples. Samples were previously 

sputter-coated with carbon using an acceleration voltage of 10 KV and a distance of 15 

mm. Silica was used as optimization standard. 

2.2.4. Atomic Force Microscopy (AFM) 

AFM, was performed in a NanoScope IIIa from Digital Instruments, operating in  

tapping mode in air. Si-cantilevers from Nanoworld were used with constant force of 

2.8 N/m and nominal resonance frequency of 92-95 kHz. The phase signal was set to 

zero at the resonance frequency of the tip. The tapping frequency was 5–10% lower 

than the resonance one. Drive amplitude was 3.0 -4.0 V and the amplitude set point 2.7-

3.8 V 

2.2.5 Fourier Transformed Infrared Spectroscopy (FTIR)  

FTIR spectra were obtained between 600 and 4000 cm
_1

 with a Nexus Spectrometer 

(Nicolet Instruments LTD, Warwick, UK) at room temperature using Attenuated Total 

Reflectance technique, ATR (in case of soft PHEA films), or Smart Diffuse Reflectance 

technique, SDR, (in case of the composites) depending on the sample. All the recorded 

spectra are the averages of 64 scans for each specimen. As a reference it was used silica 

gel 0.06-0.2mm from Scharlau. 

2.2.6. Differential Scanning Calorimetry, DSC 

DSC heating and cooling scans were performed in a Mettler Toledo 823e DSC at a scan 

rate of 10 º/min under a dry nitrogen atmosphere. The sample weights ranged between 5 
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and 10 mg.  Amount of crystallizable water in the samples was determined calibrating 

heat flow with the melting heat of pure water.  

2.2.7 Mechanical Test  

2.2.7.1Indentation Test  

Mechanical tests were performed at room temperature using dry samples (aprox.5mm x 

6 mm x 1 mm) in a Seiko Extar TMA 7ss6000 (Seiko Instruments) in indentation mode. 

A 0.785 mm
2
 plane ended circular indenter and ramp forces at a rate of 0.005 – 0.05 

N/min for PHEA films and 0.5 – 2.0 N/min for hybrids were applied to reach 

penetration of at least 45 μm in each of the samples.  Poisson coefficient of the samples 

was determined from the shape of prismatic samples during a tensile experiment. Finite 

element  simulation, assuming isotropous deformation of the cross section of the sample 

allowed to determine an average value of =0.4 that was used in the calculation of the 

compliance from indentation results (see below)  

2.2.7.2 Dynamic Mechanical Analysis  

Dynamic mechanical measurement was performed in a DMS210 Seiko Analyzer in 

stretching mode, using a dry prismatic sample of 16*6*1.3mm of PHEA0SI. Samples 

were scanned at 1Hz in a heating rate at 1ºC/minute between 25 to 120ºC and after an 

isotherm of 20 minutes, a cooling scan at 1ºC/min to 25 ºC. 

2.2.8 Bioactivity Assay  

Simulated Body Fluid (SBF) with the following ion concentration’s was prepared: 142 

mM of Na
+
, 5.0 mM of K

+
, 2.5mM of Ca

+2
,1.5 mM of Mg

+2
, 148.8mM of Cl-, 4.2 mM 

of HCO3
-
, 1.0 mM of HPO4

-
 and 0.5 of SO4

-2
,  pH of 7,4 and temperature of 37 ºC 

[28].Dry weighted PHEA or composite pieces of around 6 x 6 x 1 mm were immersed 

in approximately 3 ml of SBF suspended in the middle of the glass flask using a plastic 

thread and placed in an oven at 37 ºC. The SBF solution was renewed the third 3 day. 

After 7 days, half of the samples were gently rinsed with purified water, let to dry first 

at room conditions for 24 hours  and then in vacuum desiccators at room temperature. 

The immersion solution of remaining samples, was changed by a similar volume of 

SBF*2 (containing double ions concentration), and let stand at the same temperature for 

an additional week. The SBF*2 solution was renewed the 10th day. At day fourteen the 

samples were washed and dried as indicated above. Sample’s final weight was made 

and, morphology (SEM) and composition of the apatite coating (EDS) were assessed.  

 

3. Results  
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“In situ” absorption of a silica precursor solution and sol-gel reaction in the PHEA gel 

allowed obtaining nano-composites with silica content from around 20 to 60% w/w. A 

series of samples were obtained ranging from soft hydrogels to high stiff and brittle 

materials whose water sorption capacity decreased with respect to the matrix polymer as 

silica content increased. All hybrid materials have a high transparency, a fact that can be 

understood as a previous reliable argument indicating that silica particle size is very 

small. 

 

3.1Scanning Electron Microscopy (SEM) 

The images recorded using cryo SEM technique were in first stage used for verifying 

the microstructure of PHEA films and PHEA-silica composites. Figure 1a shows the 

pore structure of PHEA polymerized with 50% ethanol. The pore size observed, up to 5 

microns approximately corresponds to the hydrogel swollen in liquid water. 

Nevertheless, cross-section of silica nanocomposites is smooth without any sign of 

pores (Figure 1b). To check the homogeneity of silica distribution in the whole sample, 

EDS spectra were recorded both at the surface and in cross-sections of the sample (see 

the inset in Figure 1b). The peaks corresponding to Si (in addition to oxygen) were 

observed in diverse points of the surface and cross section evidencing the homogeneity 

of the composite. The atomic ratio between oxygen and silicon was around 2 in most of 

the points analyzed although but in several points of the sample values between 0.5 and 

3 were obtained.      

               

   

Figure 1. CryoSEM image of a) PHEA50 film   b) PHEA50SI hybrid. In the inset a 

typical EDS analysis used to assess the homogeneous presence of silicon in 

PHEASILICA hybrids is shown   
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3.2 Atomic Force Microscopy (AFM). 

 AFM was used to obtain information about silica distribution.  Figure 2 presents AFM 

amplitude images of hybrid materials. Figure 2a shows the structure of the composite 

obtained by sol-gel reaction prepared from a bulk (non-porous) PHEA hydrogel, 

scanning an area of 1 x1 μm. Nanometric dispersed domains are clearly shown in the 

sample cross-sections. In the composites prepared from a porous PHEA hydrogel in 

addition to these nanometric silica domains, larger micrometric aggregates could be 

observed (arrows in Figure 2b), corresponding to hybrid prepared from the hydrogel 

with 50% ethanol scanned in a 10x 10 μm area.  

 

Figure 2. Amplitude AFM images of a) PHEA0SI and b) PHEA50SI hybrid composites. 

Arrows in PHEA50SI image shows the micrometric aggregates of silica particles 

produced in the macropores of PHEA50 hydrogel. 

3.3 Water sorption  

The equilibrium water content (EWC), defined as g water/g dry sample determined by 

difference in weighing after immersion of the samples in purified water for 24 hours 

(equilibrium time in agreement with previous PHEA hydrogels studies) [2,29]. As it is 

shown in Table 1 EWC grows rapidly with the amount of ethanol used in the 

polymerization due to the extra water that can accommodate in pores.  

The swollen system is considered to consist of two phases, one formed by the polymer 

network with absorbed water occupying a volume, Vswollen polymer. The other phase is 

formed by pure liquid water occupying the volume of the pores Vpores. Thus, the volume 

fraction of pores in the swollen hydrogel can be calculated as: 

 (1)  

 

)ww()w1(

)ww(

  BwaterBswollenB

Bwater

polymerswollenpores

pores

swollen
vv

v

VV

V
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where vwater is the specific volume of pure water, vswollenB and wB are the specific volume 

and the water uptake of the non-porous sample with the same crosslinking density 

respectively, and w is the water uptake of the porous sample after immersion. vswollenB 

was estimated assuming zero excess volume in the polymer/water blend, thus: 

                      (2) 

 

where vB is the specific volume of the non-porous sample in the dry state and B is the 

mass fraction of water in the sample in the swollen state, calculated as B = wB / (1 + 

wB). Then EWC can be used to estimate the volume fraction of pores in the swollen 

sample, using Equation (1) [5]. Values obtained are shown in Table 1.  

The same procedure was followed to determine EWC for hybrid materials and as shown 

in Table 1, once silica is introduced in PHEA films, the ability of the hybrids to absorb 

water decrease dramatically.  

 

Table 1. Some measured physical properties of PHEA films and PHEASILICA hybrids 

MATERIAL 

% of Silica 

content 

(calculated 

by 

weighing) 

Residual 

TGA 

(N2 

atmosph

ere) 

Residual 

pyrolysis 

(O2 

atmosphe

re) 

Porosity 

of 

swollen 

sample  

(%) 

EWC/ g 

of sample 

(%dry 

basis) 

EWC / g 

of PHEA 

(%dry 

basis) 

% 

of  

crystalliza

ble water 

Creep Compliance 

(m2/N) 

PHEA0 0   0 190±7 190±7 88 4.6E-06 

±2.2E-07 

PHEA20 0   24 274±8 274±8 87 7.1E-06 

±3.2E-07 

PHEA30 0   40 369±14 369±14 83 8.5E-06 

±6.3E-07 

PHEA40 0   51 474±25 474±25 91 9.4E-06 

±9.2E-07 

PHEA50 0   69 794±33 794±33 89 1.3E-05 

±5.6E-07 

PHEA0SI 21.7 18.8 19.6 - 86±3 109 79 1.4E-06 

±4.9E-07 

PHEA20SI 32.6 31.6 30.6 - 47±8 70 66 7.7E-07 

±4.0E-08 

PHEA30SI 41.1 42.5 38.1 - 27±1 46 - 1.9E-07 

±2.0E-07 

PHEA40SI 48.9 45.6 44.8 - 19±2 37 - 1.9E-07 

±3.2E-08 

)1( BBBwaterswollenB vvv
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PHEA50SI 58.8 54.5 52.4 - 12±4 30 - - 

EWC: Equilibrium Water Content 

 

3.4 Weight fraction of silica phase in the composite. 

The amounts of silica phase in the composite determined by weighing before and after 

precursor absorption and sol-gel reaction are listed in Table 1. The rapid increase in 

silica content with the increase of the porosity of PHEA network is evident, reaching 

~59 % by weight.  

The sol-gel conditions selected for “in situ” hydrolysis and condensation of TEOS do 

not yield to full conversion of orthosilicate groups into silica, and thus the silica phase is 

expected to contain a certain amount of organic unreacted groups. This is revealed by 

measuring the weight residue after TGA (performed in nitrogen atmosphere) or 

pyrolysis (which is performed in oxygen atmosphere and thus yield a complete 

decomposition of organic components) being  smaller than the fraction of inorganic 

phase calculated by weighing after sol-gel reaction. This conclusion is supported  by the 

fact that the elastic modulus of the sample, measured in a DMTA heating scan, grows 

continuously when the temperature increases above 40ºC indicating the progress of 

silica condensation at higher temperatures than those used to produce hybrids (see 

Figure 3). Modulus increase is irreversible as shown in the cooling scan. On the other 

hand, pyrolysis residue was a consistent method for confirming the homogeneous 

distribution of silica phase inside the polymer because hybrid samples submitted to the 

thermal process retained the original sample shape, being dissimilar only in their 

translucent  appearance (Figure 4).  
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Figure 3. Temperature dependence of storage modulus ( E’) of  PHEA0SI sample 

subjected to a heating scan at 1Hz between 25 and 120ºC followed by cooling from 120 

to 25ºC. 

 

 

Figure 4. Macroscopic appearance of the pyrolysis PHEA50SI residue. 

3.5 Infrared spectroscopy 

 

Figure 5. FTIR spectra of PHEA film and PHEA50SI composite. The spectra were 

shifted in the Y axis for the sake of clarity.  

The FT-IR spectrum of PHEA network, (Figure 5), is in agreement with previous 

available results for the PHEA films [30]. A characteristic carbonyl peak (C=O 

stretching) appears at 1710-1720 cm
-1

,Peaks in the range of 2900-3000 cm
-1 

correspond 

to the aliphatic C-H stretching, the peak at 1410-1450 cm
-1

 is due to -CH
2; 

and the peak 

at 3415 cm
-1 

corresponds to O-H stretching. Furthermore, O-H bending is observed at 
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1298 cm
-1 

and ester peak (C-O stretching) can be seen at 1200 cm
-1

. The broad peak at 

around 3500 cm
-1 

corresponds to O-H bond stretching and also O-H bending can be 

seen at around 1390 cm
-1. 

The ester peak of the polymer is observed at 1160-1180 cm.
-1

  

As shown in Figure 5, in PHEASI nanocomposites spectrum presents the characteristic 

carbonyl peak at 1710-1720 cm
-1

 .Peak at around 3500 cm
-1

 corresponding to O-H bond 

tend to decrease with increasing silica content in the samples (results not shown). The 

bands at 973 cm
-1

 and 798 cm
-1

 are ascribed to bonds Si-OH and that at 1074 cm-1 to 

Si-O-Si. The spectrum of a silicon dioxide standard is also shown for comparison.  

 

3.6. Thermal Behavior  

The glass transition of the hybrid materials was only noticeable up to 20% wt silica 

content (results not shown). In the hybrid materials PHEA0SI and PHEA20SI it covers 

a broader temperature interval than in PHEA films and shifts towards higher 

temperatures as shown in the DSC thermograms of the inset of Figure 6. On the other 

hand, the heat capacity in the glass transition normalized by the weight fraction of 

polymer, cp(Tg)/wPHEA, is 0.42 0.01 for bulk and porous PHEA, while decreases until 

0.39 for PHEA0SI and to 0.3 in PHEA20SI.  

In the DSC heating thermograms recorded in PHEA wet samples (Figure 6), the melting 

peak of water is quite apparent in all PHEA samples. The onset of the peak is at 0ºC, 

although the thermogram starts deviating from the base line several degrees before. The 

area of the endotherm grows with the porosity of the sample as expected due to the 

increasing amount of water filling the pores. The average fraction of crystallizable water 

calculated from the melting heat and the water content of the PHEA samples was 

87.6±2.3 (obtained from data in Table 1) being independent of porosity. In the hybrid 

composites, the behavior with respect to water crystallization and melting is in some 

way parallel to that of the glass transition of the dry polymer phase: Sample PHEA0SI 

presents a fraction of crystallizable water that is similar to that of pure PHEA samples. 

In PHEA20SI a significant fraction of the water content is still able to crystallize (66%) 

but it is smaller than in pure PHEA. A small melting peak is detected at -20ºC in 

PHEA30SI and no melting or crystallization is observed for higher silica content. 

Interestingly, the heating thermogram of PHEA20SI shows a first endotherm below 

0ºC, which is followed by a sharp peak with onset a 0ºC. The thermogram of PHEA0SI 
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is similar but the low-temperature peak appears as a shoulder of the high-temperature 

one (Figure 5).  

 

 

3.7. Mechanical Properties.  

Indentation Test 

Indentation test, with a cylindrical shape plane-ended indenter with a contact surface 

much smaller than the sample, allows characterizing the mechanical behavior of the 

material through the measured relationship between the applied force and the indenter 

penetration. As in other mechanical testing configuration if a controlled deformation 

profile is applied, what can be called stress indentation test (usually penetration at 

constant rate) the value of the Elastic Modulus of the material could be computed. In 

this case, a controlled time dependent force is applied, which can be called creep 

indentation test (a linearly increasing compression force is applied to the indenter) and 

in this way the experimental force-penetration curve allows calculating the material 

Compliance[31,32]. For the indentation of a plate with thickness h of an elastic material 

with a stiff plane-ended cylindrical indenter with radius a, Hayes et. al. found the 

solution for the load ( )-penetration ( ) relationship as presented in equation 3. 

             

    (3)  

 

 

Figure 6. DSC heating 

thermograms of wet bulk and 

some porous PHEA and wet 

PHEASILICA hybrids 

composites. Inset: DSC 

heating thermograms of dry 

PHEA0 and PHEA0SI. 
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where  is a non dimensional parameter which depends on the ratio a/h and the 

Poisson coefficient  of the material [33] and G is the elastic shear modulus.  

The response of a linear viscoelastic solid to a creep indentation of any load history can 

be determined following the technique proposed by Lee and Radok[34]. This method 

was used by Wang et. al. [31] to find the solution of the load-penetration curve in the 

case of a conical or a spherical indenter. Following their method and using Hayes 

equation (3) for a plane-ended cylindrical indenter [33], it can be found  

 

     (4) 

 

The values of  were evaluated at time that corresponds to a penetration 45 μm in the  

sample. The results are shown in Table 1.   

 

3.8. Bioactivity Assay 

The bioactivity assay evaluated by SEM images of the samples surface after one week 

immersion in SBF did not show any clear deposition of apatite, nevertheless after two 

weeks apatite crystals with cauliflower morphology can be observed both in pure PHEA 

and in the composites, with a clear increment of apatite deposition in the composites 

with respect to pure PHEA samples. Figure 7 shows comparative SEM images for 

PHEA30 and PHEA30SI. Elemental analysis by EDS shows that the ratio 

calcium/phosphorous was higher for PHEASILICA samples (between 1.6 and 2.2) 

comparing to PHEA pure (~1.4). The sample weight of pure PHEA sample increased by 

immersion in SBF due to apatite deposition. However the weight of the composites 

decreased due to the loss of silica solved in the SBF medium, being nearly independent 

of silica content in hybrids with silica content below 45% but higher for those with a 

higher amount of silica. This interpretation is further confirmed by an important 

increase of the ratio oxygen/silicon measured by EDS (Table 2).  
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Figure 7. SEM microphotographs of PHEA30 (a) and PHEA30SI (b) after two weeks 

immersion in SBF. Dimension bar corresponds to 20 m. 

 

 

Table 2.  Bioactivity results after two weeks immersion in SBF. 

                                

MATERIAL 

CHANGE OF 

WEIGHT( %)   

AVERAGE FINAL 

ATOMIC RATIO O/Si 

AVERAGE FINAL 

ATOMIC RATIO Ca/P 

PHEA0SI -5.0 31.2 2.2 

PHEA20SI -4.3 30.5 1.6 

PHEA30SI -4.5 79.8 2.2 

PHEA40SI -10.5   

PHEA50SI -15.5   

PHEA CONTROL 3.2  1.4 

 

 

4. Discussion 

Bulk PHEA, prepared by radical polymerization with 1% EGDMA as cross-linker, is a 

polymer network with an equilibrium water uptake of 190% measured on dry basis. The 

distribution of water in the swollen polymer has been extensively studied in the past 

using calorimetry and dielectric spectroscopy [12,25], showing that a first layer of water 

molecules is bonded to adsorption sites of the polymer chains, but successive adsorption 

layers form water clusters with nanometric size in which water preserves its physical 

properties, including the ability to crystallize and melt. To form the hybrid composite, 

the polymer hydrogel was used as a template for the synthesis of silica phase through 

the absorption of a solution of silica precursor into the polymer matrix, and it was 

expected a uniform distribution of silica in nanometric scale, in regions as water does. 
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In fact when sol-gel reaction takes place silica aggregates are uniformly distributed in 

the polymer phase as can be observed in AFM pictures (Figure  2a). The composite 

finally contains 22 % wt of the inorganic phase. Formation of silica was probed by 

FTIR (Figure 5) and EDS analysis (Figure 1). The reaction conditions used do not yield 

full conversion, as proved by the irreversible increase of the elastic modulus of the 

sample on further heating (Figure 3). On the other hand the weight of the composite 

sample after reaction allows determine that 22% corresponds to the inorganic phase 

while the residue after thermal degradation in nitrogen atmosphere in TGA or in oxygen 

atmosphere in the pyrolysis experiment is slightly smaller, what can be ascribed to the 

advance of condensation reaction and lost of unreacted ethyl groups. The composite 

thus obtained, can be considered a hydrogel, with a water sorption capacity around of 

86% wt measured on dry basis. This means that the polymer phase is still able to swell 

absorbing important amounts of water, what indicates that silica nanoparticles are 

dispersed in the polymer phase and did not percolate to form a continuous silica 

network that would be unable to swell. Indentation experiments also supports this 

conclusion since creep compliance of the sample decreases from 4.6 10
-6

 to 1.4 10
-6

 

m
2
/N, but the difference is moderate because silica nanoparticles do not join to each 

other. DSC thermograms in the region of the glass transition of PHEA reflect the close 

packing of silica nanoparticles and polymer chains; glass transition is shifted towards 

higher temperatures and broadens. Glass transition is ascribed to the cooperative 

rearrangements of the polymer chains in regions with some nanometers or tens of 

nanometers size [35,36]. The fact that the temperature interval in which the transition 

takes place becomes broader means that the cooperative rearranging regions become 

more heterogeneous because of the presence of silica nanoparticles. But interestingly 

the onset of the transition is shifted towards higher temperatures. It may be interpreted 

in the sense that no rearranging region behaves as in the pure polymer and so all the 

polymer chains have silica particles at distances in the order of several nanometers what 

speak about the homogeneous distribution of silica in the composite. As a consequence, 

it could come to conclude that the formulation used for the silica precursor is 

homogeneously absorbed by PHEA. In the swollen composite sample water is still able 

to crystallize as can be seen by the melting peaks shown by the heating thermogram of 

Figure 6. When the melting peak of the composite is compared with that in pure PHEA 

swollen network, the differences are quite clear. In PHEA, the onset of melting is 

situated at 0ºC, as corresponds to a water phase separated of the polymer chains. 
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Nevertheless, in the composite the thermogram starts deviating from the baseline in the 

endothermic direction around -40ºC, producing a broad endotherm on which another 

endotherm, very sharp, overlaps at 0ºC. During water crystallization, on cooling, the 

part of the absorbed water that is distributed in separated water domains already in the 

liquid phase form solid structures large enough to melt as pure water. Nevertheless, the 

homogeneous liquid polymer-water mixture on cooling forms two separated phases: a 

polymer glass and water crystals. Melting of these structures initiate at lower 

temperatures, as it is shown in Figure 6. The different melting behavior in PHEA and in 

silica composite shows the different capacity of water to migrate from the polymer 

phase to incorporate to the large water crystals.  

Hybrid composites can be obtained with this procedure starting with a hydrogel with 

increased porosity. Growth of the polymer network in the polymerization of 

hydroxyethyl acrylate diluted with a certain amount of ethanol yields a phase separation 

between the growing network and a liquid phase containing ethanol and the unreacted 

monomer. At the end of the reaction, the sample is washed in water which substitutes 

ethanol swelling the polymer and filling the pores. The huge increase of water content 

in the samples equilibrated in liquid water demonstrates that the sample is highly 

porous. In fact water uptake allows calculating the volume fraction of pores. As Table 1 

shows the addition of up to 50% ethanol to the monomer in the polymerization allows 

obtaining hydrogels with equilibrium water content up to 800% wt measured on dry 

basis, in which the pores occupy a 69% of the sample volume. It is important to note 

that if the sample is dried the pore structure collapses and the apparent density of the 

polymer is that of non-porous material. Pore collapse is reversible by immersion in 

liquid water reopening pores and attaining original values of water uptake. 

Nevertheless, the properties of the xerogels, depends on the original porosity when 

swollen. When pore collapses leaves inside the sample discontinuity surfaces that make 

the material more deformable than it would be expected, as Table 1 shows, the creep 

compliance of dry samples polymerized with different amounts of ethanol increases 

linearly with the amount of diluent added in the polymerization, explained by the 

increase of pore size with the amount of diluent. That fact was observed by cryo-SEM, 

where samples immersed in water were frozen and observed after water sublimation in 

SEM. Thus, the pore is observed as it is in the swollen sample. Figure 1 show the 

microphotograph obtained in the sample with the highest porosity, giving evidence that 

pore structure consists in interconnected pores with micrometric dimensions.   
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When porous hydrogels are swollen in silica precursor, it is absorbed in part by the 

polymer and in part filling the macropores, the sol-gel reaction forms dispersed silica 

nanoparticles distributed in the polymer phase and nano or micro-particles inside the 

macropores. When the sample is dried, pores collapse and the silica particles that were 

inside them agglomerate, as can be observed in the AFM pictures of Figure 2b. Arrows 

in this picture indicate the silica aggregates. In this way, the structure of the hybrid 

composite is that of a double nano- and micro-reinforced hydrogel. It can be said that it 

consists of a phase similar to PHEA0SI composite (we will call it the PHEASI phase) 

and another one consisting of silica micrometric aggregates. The amount of silica in the 

composite can be increased up to 60% wt. Water sorption capacity decrease 

monotonously with increasing silica content as expected because water is absorbed in 

the polymer phase, but it is worth note that the amount of water per gram of PHEA 

decreases with total silica content as well. Interestingly the water content per gram of 

polymer in the porous composite goes below that of PHEA0SI, what means that the 

PHEASI phase is not able to absorb the same amount of water as the pristine polymer. 

Furthermore, about 79% of absorbed water in PHEA0SI is able to crystallize, a fraction 

that decreases to 66% in PHEA20SI, while in composites prepared from more porous 

hydrogels freezing or melting of water cannot be detected by DSC. These results 

supported that pore connectivity in the original hydrogel produces a continuous 

inorganic phase that hinders swelling of the PHEASI phase. Continuity of silica phase is 

still confirmed by the coherence of the sample after the polymer phase is eliminated by 

pyrolysis (Figure 4). In addition the small values of creep compliance of dry sample 

further support that silica percolates and impedes polymer deformation.  As Cryo-SEM 

images show, the hybrid composites obtained from porous hydrogels are no longer 

porous or at least pores do not reopen when samples are immersed in liquid water 

(Figure 1). Bioactivity assessment according to Kokubo’s method shows significant 

differences in the microscopic appearance of the surfaces of PHEA hydrogels and the 

composites after two weeks immersion in SBF. EDS analysis and SEM images indicate 

the formation of a calcium phosphate layer on the surface and at the same time the loss 

of silica which is dissolved in SBF. The weight loss of the sample (not observed in pure 

PHEA hydrogels) must be due to silica dissolution.   

 

5. Conclusions 
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PHEA hydrogel can be swollen with a silica precursor solution and by a sol-gel reaction 

a nanocomposite can be produced that in spite of containing around 20% wt silica it is 

compliant and able to absorb up to 80%wt of water measured on dry basis. Silica 

content of the composite can be increased up to 60% wt by absorption over a porous 

hydrogel. Then a two phase structure results, one of them consisting of a PHEA/silica 

nanocomposite similar to that formed from a non-porous hydrogel, while the second one 

consists of interconnected silica agglomerates. The continuous silica phase is 

responsible for the high stiffness of the composite and hinders water sorption since 

impedes swelling of the polymer phase. Then a broad range of hydrogel composites 

with varying mechanical and water sorption capacities can be produced by the method 

proposed in this work. The possibility of forming the inorganic phase in an already 

shaped hydrogel opens many possibilities of obtaining materials formed by alternating 

soft and hard phases.   
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