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Abstract

Multichannel acoustic signal processing has undergone major de-

velopment in recent years due to the increased complexity of current

audio processing applications, which involves the processing of multi-

ple sources, channels, or filters. A general scenario that appears in this

context is the immersive reproduction of binaural audio without the
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use of headphones, which requires the use of a crosstalk canceler. How-

ever, Generalized Crosstalk Cancellation and Equalization (GCCE) re-

quires high computing capacity, which is a considerable limitation for

real-time applications. This paper discusses the design and implemen-

tation of all the processing blocks of a multichannel convolution on a

GPU for real-time applications. To this end, a very efficient filtering

method using specific data structures is proposed, which takes ad-

vantage of overlap-save filtering and filter fragmentation. It has been

shown that, for a real-time application with 22 inputs and 64 outputs,

the system is capable of managing 1408 filters of 2048 coefficients with

a latency time less than 6 ms. The proposed GPU implementation can

be easily adapted to any acoustic environment, demonstrating the va-

lidity of these co-processors for managing intensive multichannel audio

applications.

1 Introduction

The growing need to incorporate new effects and to improve the hearing

experience [37] has increased the development of multichannel sound appli-

cations. People want to collaborate through communication with the feeling

of being together and sharing the same environment. Communication envi-

ronments of this kind are considered to be Immersive Audio Schemes [19].

This phenomenon comes from the mix of several acoustic effects: 3D spa-

tial sound [28], crosstalk cancellation, room compensation [33], loudspeaker

equalization, etc.

Until now, most of these effects could be achieved only in theaters or

funfairs, which usually use very powerful computers and consume a large
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amount of energy. Masoumi, in [23], goes so far as to propose a new mathe-

matical model of crosstalk to reduce computational costs. The use of GPUs

makes it possible to achieve such effects, sometimes even faster, while sav-

ing CPU resources. Moreover, the combination of personal computers and

GPUs have the potential to replace dedicated powerful computers.

Multichannel sound signal processing is mainly based on combining the

output signals resulting from convolution operations in such a way that a

given special acoustic effect is achieved.

We define Cin and Cout as the total number of sources and loudspeakers,

respectively. Fig. 1 contains all the operations carried out between channels

and filters of a generalized multichannel reproduction system where xj is

the j-th source, yi is the i-th loudspeaker signal, and the filter implemented

between them has an impulse response given by hij , with j = 0, . . . , Cin − 1

and i = 0, . . . , Cout − 1. All operations of the multichannel reproduction

system are reflected in (1), where ∗ denotes the convolution operation.

yi =

Cin−1∑
j=0

(hij ∗ xj). (1)

Moreover, parameter Ctot represents the number of filters involved in

the application. As there is a filtering path from every source to every

loudspeaker, the number of filters implemented is Ctot = Cin · Cout.

1.1 Generalized Crosstalk Cancellation and Equalization (GCCE)

One application that is especially important in the context of multichannel

acoustic signal processing is the reproduction of binaural audio without the

use of headphones. GCCE plays an important role in this phenomenon by
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inverting the transmission paths between loudspeakers and listeners. As-

suming a reproduction scenario with Q listeners, each listener would receive

contributions from every loudspeaker at both ears. The aim of the appli-

cation is to create a pair of desired signals that are not disturbed by these

contributions at the ears of the listeners. Fig. 2 shows the placement of 2 ·Q

desired signals, one signal per ear (represented by dzR and dzL, z ∈ [0, Q−1],

L=Left ear and R=Right ear) in a room. An application example would be

a scenario where there are several people watching a movie in the same room

and each of them is capable of listening to the audio in a different language

without the use of headphones. The block Crosstalk Canceler and Equalizer

is a filter bank with the same structure as the block shown in Fig. 1. Signal

yi is reproduced through the loudspeaker i, which belongs to an array of

loudspeakers. This signal is the sum of Cin convolutions that have to be

carried out in real time.

1.2 State of the art and Objectives

The use of GPU [7] has always been related to graphic or image applica-

tions since it offers the possibility of carrying out the same operations over

multiple data, such as applications of object tracking [26], image sequences

analysis [11], crowd simulation [42], or even a new approach for automatic

human skin segmentation [22].

All the audio convolutions and sums shown until now can be performed

independently. In this sense, if GPU is used as a co-processor that carries

out audio processing tasks, CPU resources can be released and used in other

tasks [18]. Obviously, this could only happen if there are free GPU resources
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and no graphic intensive application is overusing the GPU.

GPU computing has already been applied to different problems in acous-

tics and audio processing. Studies of computing room acoustics were carried

out by Webb and Bilbao in [44] and [43], as well as geometric acoustic mod-

elling like ray-tracing [20] [29]. Two inmersive-audio technologies: wave

field synthesis (WFS) [6] and beamforming (BF) [41] have also been imple-

mented on GPU in [35], where a comparison among different platforms of

these applications can be found. Detailed GPU-implementations of WFS

and BF are reported in [34] and [24], respectively. Spatial sound through

head-related transfer functions (HRTFs) has also made use of GPUs. The

first studies date from 2004 by [14]. In [31], the GPU is used for delay, gain,

air absorption, and HRTFs filtering in real-time auralization. A Comparison

of HRTFs performance between CPU and GPU can be seen in [9] and [8].

An overview of more applications is enumerated by Tsingos in [39] and [40].

Focusing on the convolution operation, there are some publications in

the literature in which convolution on GPU is involved. In 2005, Smirnov

and Chiueh presented an early investigation of FIR filtering on a GPU [32].

Development of recursive filters in a GPU was presented by Trebien and

Oliveira [38]. Cowan and Kapralos implemented a convolution algorithm

on GPU [10] using the OpenGL shading language [2]. Moreover, the study

of [30] reveals that at a buffer size of 1024 samples, the maximum length

for a single channel FFT on a GPU was around 4 million samples. The

convolution algorithm shown in [45] has the feature of reducing the latency

of the system by subdividing the filters into several subfilters. Their GPU-

implementation is able to convolve 352 channels in a time of 10.53 ms.
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First approaches to our real-time convolution algorithm were carried out

in [5]. In that article, it was presented a GPU implementation that exe-

cutes multiple convolutions concurrently. That work had a lot of limitations

regarding the latency times and number of channels that a multichannel

application would require. Also, that implementation on the GPU did not

use the CUDA resources efficiently, since there were many accesses to the

GPU global-memory instead of using GPU shared-memory [1]. It offered

a good approach to multiple convolutions but it did not fit with a GCCE

application where not only is it necessary to execute multiples convolutions

but also it is required combining the convolution results. Furthermore, the

implementation only focused on the possibility of using pre-defined sizes of

data and of filters, without considering other common scenarios in which

the filters sizes are larger than the data sizes.

On the other hand, filters sizes larger than data sizes were neither con-

sidered in [3]. In that article, it was implemented on GPU a crosstalk

application, which is a particular case of a GCCE application with two in-

put channels and two output channels with fixed sizes of both filters and

data. The purpose of the article was to validate the use of the GPU as a

co-processor that frees up CPU resources.

A similar work was showed in [4]. The peculiarity of that article was that

the filters changed in real-time. It was described a spatial audio application

that interacts with the user who was able to change the location of the

sound.

The implementation of the multichannel convolution is a new step in

order to develop audio applications that requiere to combine the result of
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multiple real-time convolutions. A thorough analysis regarding the temporal

characteristics, the number of sources and the number of loudspeakers had

not been performed so far using a GPU accelerator in a real environment.

This kind of analysis is mandatory in order to asses the performance of the

GPU in a real-time audio applications.

The main contribution of this paper consists of configuring a complete

study that extrapolates the implementation of multiple convolutions to a

GCCE application on a GPU attending to different and common situations:

the size of data buffers that are much larger than the size of filters and the

size of data buffers that are much smaller than the size of filters.

The paper is organized as follows: Section 2 is devoted to tackling audio

real-time applications on GPU, offering a brief description of the architec-

tural characteristics of the GPU. Section 3 describes suitable data structures

for efficient convolution on GPU. Section 4 advances one step further and

extrapolates the convolution algorithm presented in Section 3 to GCCE

applications. Section 5 shows the performance of the practical developed

systems. Finally, some concluding remarks are presented in Section 6.

2 Real-Time Application on GPU

Dealing with real-time audio applications on GPU requires a basic under-

standing of the GPU programming features. This section provides a basic

description of the GPU data flow and some relevant issues that must be

taken into account when programming a real-time application.
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2.1 Graphics Processing Units

Compute Unified Device Architecture is a software programming model

property of NVIDIA [1] that presents the massive computation potential

offered by the programmable GPU. GPUs can have multiple stream multi-

processors, where each stream multiprocessor consists of either eight cores

if CUDA capability is 1.x, or 32 cores in the case of 2.x (GPU with Fermi

architecture), or 192 cores in case of 3.x (GPU with Kepler architecture).

GPU devices may have a large amount of off-chip device memory (global-

memory) and have a fast on-chip memory (shared-memory, registers). De-

vices of compute capability 2.x come with an L1/L2 cache hierarchy that

is used to cache global-memory accesses. The L2 cache is 768 kB, whereas

L1 is selected by the programmer, between 16 kB and 48 kB. Sizes of L1

cache and shared-memory are related. Therefore, if L1 cache is set to 16

kB, the shared-memory size is 48 kB, whereas if L1 cache is set to 48 kB,

the shared-memory size is 16 kB. Depending on the application, one of the

two previous options will give better performance.

Following Flynn’s taxonomy [13], from a conceptual point of view, a GPU

can be considered as an SIMD machine (Single Instruction, Multiple Data);

that is, a computer in which a single set of instructions is executed on dif-

ferent data sets. Implementations of this model usually work synchronously,

with a common clock signal. An instruction unit sends the same instruction

to all the processing elements, which then simultaneously execute this in-

struction on their own data. In the CUDA model, the programmer defines

the kernel function. The code that will be executed on GPU is written in

the kernel.
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For the implementations, we used the Nvidia TESLA C2070 GPU with

2.0 CUDA capability. Because there are variables that are used by multiple

threads, the selected configuration for L1 cache is 16 kB and 48 kB for

shared-memory. The CUDA toolkit and SDK version is 4.0. The operations

carried out in the algorithm use intensive floating-point arithmetic in single

precision.

2.2 Real-Time Application

In a real-time audio application, audio samples come from their respetive

sources and are saved in different input-data buffers, one per source. Once

the input-data buffers are filled, they are transferred through the PCI ex-

press bus [25] to the GPU where all the processing of the block Crosstalk

Canceler and Equalizer of Fig. 2 is carried out. Once the execution on GPU

ends, audio samples are saved in output-data buffers and are subsequently

sent back to the CPU in order to be played by the loudspeakers. The pro-

cessing algorithms implemented on the GPU are based on block filtering

and take into account the size of buffers and filters seeking the most efficient

performance in any situation [36].

The size of input-data buffer n determines the time spent to fill it, which

we call tbuff . Time tbuff is equal to n/fs, where fs is the audio sampling fre-

quency. We define tproc as the execution time since the input-data buffer is

sent to the GPU until the output-data buffer comes back to the CPU, which

includes the transfer times GPU ⇔ CPU and the buffer processing on the

GPU. The times tproc and tbuff allow us to calculate two important param-

eters on audio signal processing: latency and throughput. Latency indicates
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the time from which the processing starts until an output-response is given

after processing, while throughput expresses the number of input samples

processed per second. Fig. 3 shows a time diagram of the processes involved

for a multichannel application with Cin=4 and Cout=2. It can be observed

that in order to avoid losing audio samples in a real-time application, the

time tproc must be less than tbuff . Therefore, the minimum throughput in

this case is achieved when tproc = tbuff .

3 GPU data structure for efficient convolution

The most relevant operation in a generalized crosstalk Cancelation is con-

volution. We implement the convolution on GPU focusing on two different

environments based on the size of the filter (lf represents the size of the

filter) and the size of the input-data buffer (defined previously as n). An

implementation where the size of the input-data buffer is much larger than

the size of the filter (n ≫ lf ) is described in Scheme 1 and is based on the

the fragmentation of the input-data buffer. On the other hand, Scheme 2

deals with the opposite case, (n ≪ lf ) and is based on the fragmentation of

the filter. The main goal of fragmentation is to obtain the best performance

from the resources on the GPU, which maximally exploits the parallelism.

The selected data structures in both schemes seek to obtain maximum ben-

efit of the coalesced access to global-memory [21]. Note that, although both

approaches are described independently here, the user does not have to be

aware of this issue since the system would choose the most efficient one in a

real application for the given task. The following subsections describe both
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schemes in the easiest situation, a simple convolution of one source with one

filter.

3.1 Scheme 1: Fragmentation of the input-data buffer.

The implementation we present is based on the overlap-save technique [27].

A matrix S is configured using the samples within the input-data buffer.

Matrix S has P rows and L columns. This kind of configuration is detailed

in [5]. The value P indicates the number of the overlap-save frames that is

configured from the n samples of the input-buffer. The value L is the size of

the frames. In order to exploit GPU resources, P must be properly selected;

its value determines L, which also depends on n. The filter must have the

same size as the frames. Thus, the filter length will be zero-padded from lf

to L. In this scheme, the filter is also considered to be a matrix, which we call

F. Hence, matrix F has 1 row and L columns. The reason for configuring

data in a matrix structure is to allow the same operation to be executed with

different data portions and to allow data to be reused when an element-wise

multiplication is carried out between the frames and the filter (Convolution

Theorem, [27]). For this operation, matrix S stays in global-memory and

matrix F is moved to shared-memory on GPU, since filter values are shared

for all the frames during the element-wise multiplication (see Fig. 4 (a)).

It is important to point out that the element-wise multiplication must be

carried out in the frequency domain. To this end, FFTs of all rows of matrix

S (P FFTs) and of matrix F (one FFT) had to be executed previous to the

element-wise multiplication.

There are some recent publications about FFT in GPU as in [12], but
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the NVIDIA FFT library, CUFFT [1], is used for our application. This GPU

library allows multiple one-dimesional FFTs to be obtained simultaneously.

3.2 Scheme 2: Fragmentation of the filter.

This scheme occurs in applications where latency plays an important role

and the filter size is much larger than the size of input-data buffer. There-

fore, it is necessary to split the filter into blocks in order to obtain a fast

system response. Fragmentation could be done uniformly as in [15] and [16]

or non-uniformly as in [17]. For this implementation, we use the algorithm

presented in [46] which is based on the Uniformly-partitioned fast convo-

lution algorithm using the overlap-save technique. The filter is uniformly

fragmented into blocks whose size is the same as the size of the input-data

buffer. Hence, the sizes of the matrices of Scheme 1 change in Scheme 2.

Matrix F now has P rows and L columns, where P=lf /n is the number

of fragments obtained from the filter and L is twice the size of the input-

buffer L=2·n, that is, each subfilter is zero-padded to length L. In this case,

matrix S has one row and L columns and contains samples of the current

input-data buffer and the previous one.

One of the operations of this algorithm refers to an element-wise mul-

tiplication in the frequency domain between all the fragments of the filter

and the input-data buffer. Matrix F stays in global-memory and matrix S is

moved to shared-memory for this operation since input samples are shared

for all the element-wise multiplications with the filter fragments (see Fig. 4

(b)). As in Section 3.1, FFTs of all rows of matrix S and of matrix F had

to be executed previous to the element-wise multiplication.
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4 GPU data structure for GCCE applications

This section analyzes and describes in detail the implementation of the two

schemes on GPU extrapolating to a multichannel system. In the case of

a GCCE application, tridimensional structures are used. The implementa-

tions are generalized for any value of sources Cin and loudspeakers Cout. In

order to make the configuration and the implementation on GPU more un-

derstandable, the figures presented throughout this section illustrate a multi-

channel application with Cin=4 sources, Cout=2 loudspeakers and, therefore,

Ctot=8 different filters. Thus, following (1), the output signals in the two

loudspeakers are:

y0 = h00 ∗ x0 + h01 ∗ x1 + h02 ∗ x2 + h03 ∗ x3, (2)

y1 = h10 ∗ x0 + h11 ∗ x1 + h12 ∗ x2 + h13 ∗ x3.

As in Section 3, we distinguish two schemes, but now the fragmentation

will be carried out in every input-data buffer (Scheme 1: Fragmentation of

multiple input-data buffers) and every filter (Scheme 2: Fragmentation of

multiple filters).

4.1 Scheme 1: Fragmentation of multiple input-data buffers.

Matrix S turns into a tridimensional matrix whose dimensions will be (P

× L × Cin) for multichannel convolution, where overlap-save frames from

the Cin input-data buffers are located in different layers, see Fig. 5 (a). The

matrix F also turns into a tridimensional structure whose dimensions are (1

× Cout · L × Cin). Filters h00 and h10 are placed on the same layer because
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their respective operations refer to different outputs. In contrast, filters h00,

h01, h02, and h03 are located on different layers because they take part in

calculating the output y0. The same occurs with the output y1. This can

be checked in (2) and Fig. 5 (a).

Following the overlap-save technique, the FFT of each frame in matrix S

must be carried out (In Fig. 5 (b), Xj represents samples of sound source j,

input-data samples of xj in the frequency domain). The same occurs with

the filters hij , which are transformed into Hij in the frequency domain.

Thus, Cin · P FFTs are calculated for each new input-data buffer while

Ctot FFTs of filters will be executed (one for each filter) only once at the

beginning of the algorithm. Two different kernels are launched to carry out

the rest of the algorithm.

4.1.1 Kernel 1

Once the data are in the frequency-domain, the placement of matrix F in

the shared-memory allows each frame to be simultaneously element-wise

multiplied by its corresponding filter. Taking into account the content in

Section 2, and using a thread for processing a sample of input-buffer, we use

the grid configuration shown in Fig. 6 (a). This kernel launches Cin·P ·Cout·L

threads. Each thread will only make a complex multiplication between a

value of matrix S and its corresponding complex-component in matrix F.

Each component of the filter is accessed P times, while each component of

a frame is accessed Cout times. The result of the operation causes that S

has now these dimensions (P × Cout · L × Cin) (see Fig. 5 (b)).
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4.1.2 Kernel 2

The next step consists of adding up all the layers in order to calculate the

outputs in the frequency domain Yi (Yi represents samples of loudspeaker i,

output-data samples of yi in the frequency domain). In this case, we use a

bidimensional grid configuration where a thread processes an output sample.

Thus, P · Cout · L threads are required to sum the layers (see Fig. 6 (b)).

Each thread will make Cin complex sums reducing all the layers to one layer

(see Fig. 7). Now, matrix S shows two dimensions given by (P × Cout · L).

Finally, the CUFFT library is applied again Cout · P times in order to

obtain IFFT from all the output frames of all the outputs yi, according to

the multichannel system in (2). All the frames in the time domain are then

sent back to the CPU to be reproduced.

4.2 Scheme 2: Fragmentation of multiple filters.

In this scenario, the size of the input-data buffers is much smaller than the

size of filters. Following the algorithm presented in [46], the filters hij are

split into P fragments (as in Scheme 2 of section 3), each of which has

the same size as the input buffers. As in Scheme 1, matrix F turns into

a tridimensional matrix with dimensions (P × Cout · L × Cin). All the

fragments that belong to the same filter are placed within the same layer.

The filters used for calculating the same output yi remain in different layers.

Matrix S configures another tridimensional structure with dimensions (1 ×

L × Cin). Fig.8 (a) clarifies the setting of data on GPU.

In this scheme, Cin FFTs are carried out every time the input-data

buffers are transferred to GPU. At the beginning of the processing, Cout ·P
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FFTs are executed in matrix F only once. As in the previous scheme, two

different kernels are executed on GPU.

4.2.1 Kernel 1

Once the data are in the frequency-domain, the placement of matrix S in

the shared-memory allows every fragment in matrix F to be simultaneously

element-wise multiplied by its corresponding input-data buffer, thus ob-

taining a resulting matrix R with the same structure as matrix F. If the

processing in GPU is carried out on the k -th input-data buffer, the resulting

matrix R is called Rk (see Fig. 8 (b)). This matrix Rk must be accumulated

with the previous one, Rk−1, which was obtained from the (k-1)-th input-

data buffer. However, this element-wise sum is not straightforwardly carried

out but depends on a parameter that we call PointOut ∈ [0, P − 1]. This

parameter is a modular counter that increases incrementally with each new

input-data buffer PointOut=k%P (% represents the rest of the division). It

indicates that a generic row of matrixRk Rkrow ( Rkrow ∈ [0, P−1]) must be

element-wise sum with the row (Rkrow + PointOut)%P of Rk−1. We carry

out the addition between matrices Rk−1 and Rk in this peculiar way because

of the audio processing with partitioned filters [46]. Fig. 9 (a) exhibits the

particular case when PointOut=1. For these operations, Cin · P · Cout · L

threads are used. Each thread performs a complex multiplication between

a value of matrix F and its corresponding complex component in matrix S,

and then accumulates the result with the corresponding value in Rk−1. As

a thread per sample of every fragment is used, the same grid configuration

as kernel 1 from Scheme 1 is applied, (Fig. 6 (a)).
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4.2.2 Kernel 2

The next step consists of adding up all the layers; however, in this case,

only the values on the row indicated by PointOut are used. The resulting

vector is copied to other memory positions called OutVect. This vector

represents the output-data buffers in the frequency-domain. After the IFFTs

are applied, the outputs yi are obtained, and are sent back to the CPU. The

matrix Rk takes the role of matrix Rk−1 for the next input-data buffer.

Nevertheless, to take this role, the row indicated by PointOut will be set

to 0 and the parameter PointOut will be increased incrementally after the

copy to OutVect from the matrix Rk. Fig. 9 (b) reflects all these operations.

This kernel launches Cout ·L threads. Each thread sums Cin complex values,

saves the result in OutVect, and sets its corresponding elements to 0 on all

layers of the row marked by PointOut. In this case, a unidimensional grid

configuration is used where there is one thread for each processing sample

(see Fig. 6 (c)).

5 Results

Several tests can be carried out with both implementations in order to find

the best performance for a given environment. There are many parameters

to set, both in terms of computation (CUDA parameters such as grid size,

block size, number of threads, block dimensions) and of the audio signal pro-

cessing aspect (latency, size of input-data buffer, number of sources, number

of loudspeakers).

In this article, two different schemes have been presented depending on
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the size of both the input-data buffer and the filter (n and lf, respectively).

When the input-data buffer is much larger than the filter size, it is frag-

mented into different overlap-save frames (Scheme 1). On the other hand,

when the input-data buffer is much smaller than the filter size, the filter is

the one that is fragmented (Scheme 2).

This second scheme aims to reduce the latency time by reducing the

time of response of the system tproc. Note that tproc contains not only the

execution time of the kernels but also the data transfers between GPU and

CPU and all the data overhead in order to carry out a real-time application.

5.1 CUDA aspects

Before testing our acoustic multichannel application, it was necessary to set

two CUDA parameters: the number of threads per block and the distribution

of the threads within the block (blockDim.x, blockDim.y, and blockDim.z ).

The choice of these two parameters has a vast impact over timing in exper-

iments. The different configurations tested varying these two parameters

offer results that follow the same tendency. As a summary, Table 1 shows

the tproc obtained in a specific multichannel application with Cin = 72 and

Cout = 32 using different numbers and distributions of threads within a

block.

The best performance was achieved when blockDim.x=32, blockDim.y=8,

and blockDim.z=2. As can be observed, the block is configured with 512

threads and not with 1024, which is the maximum number of threads per

block in CUDA with Fermi architecture. According to [21], setting the num-

ber of threads to 512 makes the thread blocks be executed faster by the SMs
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on GPU.

On the other hand, the greater the number of blockDim.x, the greater

the performances. Therefore, not only is the number of threads per block

important, but also how they are distributed. Hence, for the experiments

related to audio aspects, we will use the configuration blockDim.x=32, block-

Dim.y=8, and blockDim.z=2.

5.2 Audio aspects

1. n ≪ lf

Once the CUDA parameters are set, we will leave aside the compu-

tational aspects and focus on the scheme when the size of input-data

buffer is much smaller than the size of filters. The most significant test

revolves around the maximum number of filters Ctot that a GPU, given

a specific latency time tbuff , can manage in a real-time multichannel

GCCE. Among the different tests, we detail the time tproc used by the

GPU to process a system configured with a different number of sources

Cin combined with a specific number of loudspeakers Cout (2, 4, 8, 16,

32, 64, and 96) using filters whose size is lf=2048 coefficients.

The first test was done setting an input-buffer size n of 128 samples,

with tbuff = 2.9 ms. The results in Fig. 10 (a) show that the obtained

tproc times increase linearly as the number of sources increases. Fo-

cusing on real-time applications, the maximum number of filters of

this size that this implementation can manage is 1408 filters, which is

obtained when Cin=22 and Cout=64.
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The system can also carry out applications involving more filters, but

they would not satisfy the real-time condition tproc < tbuff . Therefore,

the configurations below the dotted line (tbuff) in Fig. 10 (a),(b),(c),

and (d) allow real-time applications to be carried out. Fig. 10 (a)

also shows the maximum number of filters that can be achieved with a

specific number of loudspeakers, 1344 filters for 96 sources and 32 loud-

speakers among others. In any case, every configuration would work

for off-line processing; even the ones that are above the dotted line.

For example, as Fig. 10 (a) shows, for a Cin=38, Cout=64, Ctot=2432,

the processing time tproc is 4.830 ms. This means that using Cin=38

audio wav file sources of mono systems of 2 MB each (a mono audio

wav file is composed of audio samples of short int, 2 bytes), the time

spent to process 38 audio wav file sources with 64 loudspeakers using

buffers of 128 samples would be 158.27 s. This time could be used as a

processing reference for other kinds of applications that do not require

real-time.

If we increase the number of input-data buffer samples to 256, as

Fig. 10 (b) shows, the maximum number of filters increases to 3136,

obtained when Cin=98 and Cout=32. By doubling the input-buffer

size, the limit is achieved with 6336 filters (see Fig. 10 (c)).

Fig. 10 (d) shows the maximum number of filters with input-data

buffer sizes of 1024. The maximum number of filters is obtained using

Cout=96, which achieves up to 12480 filters in a GCCE.

Following the operations shown in Fig. 3, the latencies and through-
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puts from the maximum number of configurations are shown in Ta-

ble 2. The latencies are calculated as tproc + tbuff , where tbuff=(input-

buffer size)*(1/44.1) ms. It can be observed that the latency values

are approximately double the tproc. Generally, the greater the number

of sources Cin, the greater tproc, and the greater throughput, whose

values revolve around 1 and 10 million samples processed per second.

When the input-buffer is 128 samples, maximum throughput achieves

9.977 · 105 samples/s; when the input-buffer is 2048 samples, maxi-

mum throughput achieves 8.185 · 106 samples/s.

2. n ≫ lf

In this case, the input-data buffer is divided into overlap-save frames.

The test we show looks for the most efficient number of frames in

order to exploit GPU parallelism. Among the different configurations

tested in a multichannel application, we selected the one that fixes a

tbuff = 92.86 ms (4096 samples) and a filter size of 129 coefficients.

Fig. 11 shows tproc in multichannel applications with 2, 4, 32, and 64

loudspeakers. In each implementation, a sweep of number of sources

was carried out dividing the input-data buffer into a different number

of overlap-save frames (2, 4, 8, 16, and 32). The best performances,

which exploit the maximum GPU resources, are obtained when the

input-data buffer is divided into 4 overlap-save frames, as Fig. 11 shows

in (a), (b), (c), and (d).
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6 Conclusions

This work analyzes different environments in the field of multichannel audio

processing and implements them using Graphics Processing Units. Achiev-

ing the best performance using GPUs is not as easy as just enumerating

threads and executing them; it also requires a meaningful analysis of CUDA

aspects (number of threads per block and distribution of threads within the

blocks) and how to set data on GPU. In this paper, we have detailed the

implementation of a multichannel convolution on GPU using tridimensional

data structures, (tridimensional blocks and tridimensional grids). The algo-

rithm implemented on GPU responds to a massive convolution or a gener-

alized crosstalk cancellation and equalization. The placement of data inside

the GPU changes depending on the size of the input-data buffer and the size

of the filters. When the size of filters is much larger than the size of input-

data buffer, the filters are fragmented and the parallelism is exploited by

the element-wise multiplication of the fragments with the input-data buffer.

The evaluated tests show that, with only an input-data buffer of 128 sam-

ples, it is possible to achieve up to real-time multichannel applications with

1408 filters of 2048 coefficients. This number gets larger as the input-data

buffer increases. Otherwise, when the size of the filters are much smaller

than the size of the input-data buffers, these buffers are fragmented into

ovelap-save frames. In this case, parallelism is exploited by the element-

wise multiplication of the frames with the filter in the frequency domain.

The figures shown for this test indicate that when the input-data buffers are

fragmented into four frames, minimun tproc time is achieved.
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The selection of the correct placement of data in the different GPU

memories is crucial to achieving good performance. This paper describes

an efficient way to do it by exploiting parallelism and taking advantage

of shared-memory. As a result of the good performances offered by these

implementations on GPU, it has been demonstrated that a GPU can be

used as a co-processor. This co-processor carries out audio processing tasks,

even in a real-time environment, freeing up CPU resources in the same way

the GPU is currently used for graphic tasks.
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Table 1: tproc in a multichannel application with Cin = 72 and Cout = 32

using different distributions of thread blocks: blockDim.x, blockDim.y, and

blockDim.z

blockDim.x blockDim.y blockdDim.z threads per block tproc (ms)

64 8 2 1024 5.219

32 16 2 1024 5.243

32 8 2 512 4.573

16 16 2 512 4.742

16 8 2 256 4.822

8 16 2 256 5.258

Table 2: Latencies and Throughputs from the maximum number of Ctot

that are obtained under real-time conditions.

Input-data Ctot tproc Latency Throughput

buffer size (ms) (ms) (input samples/s)

128 1408 2.822 5.724 9.977 · 105

512 6336 11.551 23.159 2.925 · 106

256 3136 5.625 11.429 4.459 · 106

1024 12096 22.531 45.745 8.271 · 106

2048 17472 45.537 91.966 8.185 · 106
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• Fig. 1: The signal at loudspeaker yi is composed of a combination of

all the sources xj filtered through their respective hij .

• Fig. 2: 2 · Q desired signals are set to each ear of Q listeners in a

room. Cross paths and room effects are canceled because of the use of

the Crosstalk canceler and Equalizer block.

• Fig. 3: Important parameters in a real-time multichannel application,

with Cin=4, Cout=2 and Ctot=8.

• Fig. 4: (a) shows Scheme 1 where matrix S is located in global-memory

and matrix F in shared-memory ; (b) shows the opposite case, Scheme

2 where matrix F is located in global-memory and matrix S in shared-

memory.

• Fig. 5: (a) shows matrices S and F in GPU. Then, frequency-domain

transform and element-wise multiplication are applied. (b) shows that

the resulting matrix is stored at the same memory position.

• Fig. 6: (a) Tridimensional thread block grid structure launched in

kernel 1. There is a thread for every component of the frames. (b)

Thread block grid structure for accumulating the resulting values ob-

tained from kernel 1 in Scheme 1. (c) Thread block grid structure for

accumulating the resulting values obtained from kernel 1 in Scheme 2.

• Fig. 7: Addition of all the planes to obtain the different outputs (in

this case, Y0 and Y1).

• Fig. 8: (a) shows matrices S and F in GPU. Then, frequency-domain
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transform and element-wise multiplication are applied. (b) shows that

the resulting matrix Rk is stored in a different memory position.

• Fig. 9: (a) Element-wise sum between Rk and Rk−1. Row 0 of Rk

is element-wise sum with the row indicated by PointOut ; row 1 is

element-wise sum with the row indicated by PointOut+1 ; and so on.

(b) Copy of the row indicated by PointOut in Rk to OutVect, which

is later set to 0. PointOut increases incrementally and gets prepared

for the next input-data buffer.

• Fig. 10: tproc used by GPU in a GCCE for different values of sources

Cin and loudspeakers Cout, using a sampling frequency of fs=44.1 kHz

with: tbuff=2.9 ms in (a), tbuff=5.8 ms in (b), tbuff=11.6 ms in (c),

and tbuff=23.2 ms in (d).

• Fig. 11: tproc in a multichannel application fragmenting the input-

buffer in different overlap-save frames: (a) for 2 loudspeakers; (b) for

4 loudspeakers; (c) for 32 loudspeakers; and (d) for 64 loudspeakers.
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