INTECH

open science | open minds

ARTICLE

International Journal of Advanced Robotic Systems

Distance Computation
Between Non-Holonomic Motions
with Constant Accelerations

Regular Paper

Enrique J. Bernabeu'’, Angel Valera' and Javier Gomez-Moreno'

1 Instituto Universitario de Automatica e Informatica Industrial. Universitat Politécnica de Valéncia, Valencia, Espana

* Corresponding author E-mail: ebernabe@isa.upv.es

Received 30 May 2012; Accepted 12 Jun 2013

DOI: 10.5772/56760

© 2013 Bernabeu et al.; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract A method for computing the distance
between two moving robots or between a mobile robot
and a dynamic obstacle with linear or arc-like motions
and with constant accelerations is presented in this
paper. This distance is obtained without stepping or
discretizing the motions of the robots or obstacles. The
robots and obstacles are modelled by convex hulls.
This technique obtains the future instant in time when
two moving objects will be at their minimum
translational distance - i.e., at their minimum
separation or maximum penetration (if they will
collide). This distance and the future instant in time
are computed in parallel. This method is intended to
be run each time new information from the world is
received and, consequently, it can be used for
generating collision-free trajectories for non-holonomic

mobile robots.
Keywords Continuous Distance Computation, Gilbert-

Johnson-Keerthi (GJK) Algorithm, Mobile Robots,
Non-Holonomic Motions, Continuous Collision Detection

www.intechopen.com

1. Introduction

Detecting a collision in motion planning is still an open
research area in robotics. Nowadays, powerful motion
planners are developed, where collision tests are an
unavoidable step and represent, in general, a decisive
time-consuming part of the whole planning algorithm.

A recent example and with important social impact is
shown by [1,2]. An estimated motion for an obstacle and
a desired one for the robotized car Boss are stepped.
Next, collision tests between the configurations of both
objects at each considered time instant are run. The
objects are modelled by boxes or circles. This collision-
detection technique has several limitations, as shown by
[3]. Nevertheless, this approach is common in the literatu-
re in order to detect collisions between mobile objects [4].

An extensive group of collision-detection methods is
‘continuous collision detection” (CCD). In general, these
methods provide, when there is a collision, the instant in
time of the first contact [3,5-10]. In particular, when no
collision is presented, the instant in time when both
objects are at their closest position is returned by [10].

Int. j. adv. robot. syst., 2013, Vol. 10, 329:2013

Another remarkable collision-detection technique is
‘reciprocal velocity obstacle” (RVO) [11]. RVO is an oscil-
lation-free navigation method for multiple agents with
similar behaviours. RVO is an extension of the collision-
detection technique “vehicle obstacle’ (VO) [12].

The contribution of this paper consists in obtaining the
future instant in time when a robot and an obstacle or
two robots, both in motion, will be at their minimum
translational distance (MTD) of separation (if they will
not collide) or penetration (if they will collide). The
penetration distance verifies the definition given by [13].

Given that motions are not stepped, this method might be
classified as a CCD technique, but really it is much more.
When two robots or a robot and an obstacle will collide,
the main advantage of computing the MTD of
penetration and the associated instant in time versus the
first time of contact is expressed in terms of generating a
collision-avoidance
penetration positions, a contact (or with a desired
separation) position for the involved objects is obtained
by translating, for instance, one of the robot’s position by
using the translational vector from the computed MTD
[13]. In forcing this robot to be in this new position at the
instant in time of the MTD, a new collision-free trajectory
is proposed for that robot.

trajectory. From the maximum

The robots and obstacles are modelled by bi-dimensional
convex hulls. A trade-off between conservativeness in the
models and computation costs has been set.

Considering the previous work in [14] as a collision
detector, the main contributions of this paper are twofold:
arc-like motions are now considered, and the involved
robots and obstacles follow motions with non-null linear
or angular accelerations.

The method in this paper is fast enough to be run as
frequently as new information from the sensor system is
received and, consequently, it is intended to be used as a
module for collision detection and avoidance in trajectory
planning algorithms dealing with non-holonomic robots.

For this paper, some experiments and simulations were
run. The method was tested on the LEGO NXT
Mindstorms platform. The velocity and acceleration of
each robot is assumed to be measurable or estimable.

The main contributions of this paper with respect to [15]
are an improved version of the support function, which is
explained in Section 4, and a deepest analysis of our
technique by applying it to real and simulated robots.

For convenience, some notations that will be used in this
paper are listed here:

Int. j. adv. robot. syst., 2013, Vol. 10, 329:2013

A,B: two mobile objects, modelled respectively, by a s-
tope;

SA(t), SB(t): the sets of circles (s-topes) that describe the
motions of objects A, B for te[ts ts+At];

si(t)=(ci(t),ri); siP(t)=(c®(t),rM): any circle in SA(t), SB(t);

SA(ts), SB(ts): the start positions of the motions S4(t), S5(t);

SM(t): the Minkowski difference set between two motions;

siM(#)=(ciM(t),riM): any circle or element in set SM(t);

pM(A),pM(L) or piM(L) for Le[0,1]: the trajectory followed
by a centre ciM(t) for te[ts, ts+At];

O: the origin point;

0", O, pM(Le), pM(Ae) or piM(Lo): the point in the trajectory
pM(A), pM(A) or pi(L) which is the closest to O;

doM: the maximum approach (separation or penetration)
achieved by two objects in motion.

toM: the future instant in time when two objects in motion
will be at their maximum-approach positions;

2. Review of the GJK algorithm

Gilbert, Johnson and Keerthi [16] presented an algorithm,
referred to as ‘GJK’, for computing, with linear
complexity, the separation distance between two static
polytopes.

A polytope is the convex hull of a finite set of points. The
convex hull of the set ®={po,py,...,pr1}, pieR3 Vi, contains
infinite points p that verify:

n-1 n-1
{PZP:PO + Z A;(Pi—Po) P; €0, A;€[0,1], Z A 31} M
i i1

i=1
The order of a polytope is the number of points in set ®.

The GJK algorithm obtains the separation between the
origin point O and the Minkowski difference of the
involved polytopes. The Minkowski difference between
polytopes A, B, defined by the sets P/={ai}, PP={bj} with
ai,bie M3, i=0,1,...,n-1 j=0,1,...,m-1, is also a polytope defi-
ned by a set of nxm points PA-8={ai-bj: aic P4, bje PP, Vi,j}.

In the GJK algorithm, set Vi always contains from one to
four points of set PA-. Initially, some points from PA-F are
randomly assigned to Vi. Next, an iterative process starts.

The first step, called the ‘sub-distance algorithm’, consists
of computing the distance from O to the polytope defined
by the points in Vi. This distance is obtained by projecting
O onto the mentioned polytope. This projected point is
called ‘O". The points in Vi, which are not required to
describe the face, edge or vertex where O' is, are
removed from Vi In particular, after this step, if the set Vi
contains four points because O is inside the polytope
defined by Vi then the GJK algorithm will finish
immediately without returning a distance. This situation
means that polytopes A and B are colliding. The GJK
algorithm does not compute a penetration distance.

www.intechopen.com

If the sub-distance algorithm finally returns a distance,
the next step in the GJK algorithm consists of selecting the
closest point in P45 to O in the direction —O*. This point,
sa-B(-0"), is found by applying the support has and
mapping sa-s functions:

h,y_5(-0") =max{(a; ~b;)(-0"), a,~b;<P**, Vi
K 2)
s, p(-O eP* P ih, (-0 =5, 4(-O)-(-O")

Now, if | 10" [2+ha-8(-0*)=0 (final condition) is true, then
the GJK algorithm ends [16]. Otherwise, point sap(-0OY) is
added to Vi and the GJK algorithm iterates once more.

The GJK algorithm has a linear complexity O(n+m),
because the Minkowski difference is not computed before
running the GJK algorithm. This is a consequence of the
definition of the support function, since it verifies
ha-B(-O1)=ha(-O")+hs(O").

The GJK algorithm finishes in less than five or six itera-
tions even when dealing with high-order polytopes [16].

The GJK algorithm was updated in [17] to compute the
separation or penetration distance for polytopes and
spherically-extended polytopes (s-topes) [18].

3. Review of continuous distance computation for robots
following linear motions with null accelerations

A technique for obtaining the future instant in time when
a mobile robot and a dynamic obstacle will be at their
minimum translational distance (MTD) is shown by [19].
Robots and obstacles are modelled indistinctively by
polytopes or s-topes and follow linear motions at a
constant speed. The distance and the instant in time are
computed without stepping any robot or obstacle’s
motion.

An s-tope is the convex hull of a finite set of spheres -
circles if bi-dimensional - S={sosi,...,sni-1} with si=(ci,ri),
where ci is the centre and ri is the radius. An s-tope
contains an infinite set of swept spheres s (or circles)
expressed by:

{s =(c,1): C=CO+Z::11 A, (c—cp), =1, +zir:)\i (t,-15),

®)

s,=(c,r)eS, Ael0,1], T7A < 1}
If the radii i are zero, then (3) matches with the polytope
definition (1) (i.e., a polytope is a particular case of an s-
tope).

Let A and B be mobile robots or obstacles whose positions
at ts are given respectively by the sets of circles S4(ts)=
{s0A(ts),514(Es), - .., s 1(ts)} and SB(Es)={soB(ts),18(ts), . .., sBm_1(ts)}
where cid(ts),cif(ts) e R? and 114, rPeR are, respectively, the

www.intechopen.com

centres and radii Vij. The A and B constant velocities are
given by the vectors v, vse R2

Each one of the infinite intermediate positions of the
objects A and B, cA(f) and ¢f(t), from & to f+At are
parameterized by L€[0,1] as:

S (O)=c(t)+A-AtY 5 ; X (B)=c(t)+A-At-vy; Vijj @
Vtit=t +A-At: teft, t+At] and A€[0,1]

The GJK-based algorithm in [19] computes the future

instant in time when A and B will be at their MTD as the

distance between O and the Minkowski difference of all

the infinite intermediate positions of A and B.

The Minkowski difference between all the A and B
infinite intermediate positions for te[tsts+At], called
‘SM(ty, is defined by the set of nxm circles {siM(t)}. siM(t) is
parameterized by A€[0,1] as:

(s O1={(cH' e Yv=civ-o,
®)
tMorAirBs i, t=t +AAL, /\6[0,1]}

i

ci’(t), cf(t) are defined in (4). Each circle siM(t) for all
te[ts, ts+At] sweeps an area consisting of a rectangle whose
ends are capped off with circles. This geometrical figure
is referred to as a ‘stadium’ in [20]. Next, SM(t) is formed
by nxm stadiums, and each one is described by three
parameters: a start point ciM(ts)=ci’(ts)—ci’(ts), a radius riM=
rif+rP and a linear axis pM(L)eR2 pM(A) is parametrically
defined by A€[0,1] as:

pM(A)=c{ (b +AA) -l (1, +AAD)~(c] () —CP(E,)=
=AAY(V) —Vy)

(6)

All the axes of the stadiums have the same length
[1pM(1) | |=At-1 lva—vel |. Figure 1 shows the Minkowski
difference SM(t) with 4x2 stadiums from two constant-
speed and linear motions.

The GJK-based algorithm in [19] mainly requires the
definition of a new sub-distance algorithm and the
support and mapping functions.

The sub-distance algorithm receives one or two stadiums
in set Vi and computes the distance from O to the closest
stadium. The distance between O and the stadium with
the start point ca™(ts)=ca?(ts)—cvP(ts) and the radius raM is
determined by obtaining ot (i.e., by projecting O onto the
stadium’s axis). Therefore:

0'=c/(t)=c,(t)+p" (1)

7
with = (2t)ty OYip a7

Finally, the sub-distance algorithm returns the
parameters O™ and ’Ac and rejects (if it receives two) the
furthest stadium (i.e. this stadium is removed from V).

Enrique J. Bernabeu, Angel Valera and Javier Gomez-Moreno:

Distance Computation Between Non-Holonomic Motions with Constant Accelerations

4

External edges

dovi —

Figure 1. Eight stadiums in the Minkowski difference SM(f) from two constant-speed and linear motions. For clarity, only the axes

(dashed lines) and the capping circles of the stadiums are depicted. c10™(ts), caiM(ts) are the start points of the two stadiums that hold the

external edges of SM(t).

The support hv and mapping su functions determine the
closest stadium in S(t) in the direction given by ~O":

hM(-oi):mi?x{cgﬂ(ts)-(-oi)ﬂw I0*11, (cgﬂ(ts),ri?ﬂ)esM(t)}

s (—OM)=(c, 1)eSM(t) : hy(-O")=—c O +1,1 1O |

®)

where sm(-O") contains the start point of the stadium that
generates the maximum in hm(-O").

The complexity of the algorithm in [19] is linear since
h(-0b)=ha(-O) +hs(O") is true.

This GJK-based algorithm needs less than four iterations
to find the instant in time, to™, when A and B will be at
their MTD, called “do™’. toM and doM are obtained from the
distance between O to the closer external edge of SM(t)
[19] (see figure 1), and mathematically by:

tM=t +A At
O s e ; with thye[t,, t.+At] and A €[0,1] (9)
dy=l 10" I-r}!

Note that raM is finally the radius of the closest external
stadium to O (raM is r10M in figure 1).

Nevertheless, when the sub-distance algorithm receives
two stadiums, and O is inside the area delimited by the
axes of these stadiums, then the distance, doM, between
the inner O and the external edge is reformulated as doM=
~(110*1 I+raM), where O is the projection of O onto the
axis of the stadium in Vi that is the closest to O. doM is
converted into a negative number and the radius has to
be added, since it represents a translational distance of
penetration [13]. toM is computed as indicated by (9).

4. Continuous distance computation between two
mobile objects with constant acceleration

A technique for computing the future instant in time
when two mobile objects (robots and obstacles) are at
their minimum translation distance (MTD) of separation
or penetration is

introduced in this section. The

Int. j. adv. robot. syst., 2013, Vol. 10, 329:2013

mentioned instant in time and MTD are computed
without steeping any involved motion.

An object’s motion is characterized by its initial position,
its start and goal times (time span), its initial velocity, its
constant acceleration, and its linear or arc-like (non-
holonomic) path.

Three situations are considered in this paper: where the
objects follow linear motions (case called LL); where one
object follows an arc-like and where the other one follows
a linear motion (AL); and where both objects follow arc-
like motions (AA).

4.1 Problem Formulation

The s-topes for modelling the robots and obstacles and
their motions are formally defined in this subsection.

Let us consider two mobile objects A and B, each
modelled respectively by a s-tope. The A and B positions
at the start time # are given by S4(t) and SB(ts)
respectively. S4(ts) and SP(ts) are defined by the set of
circles SA(ts)={s0A(ts),514(ts), - ., Sn_14(1s) } and
SB(ts)={s05(ts),518(ts), ..., sm15(ks)} where c¢id(Es), ¢if(fs)eR? and
ri4, rifeR are the centres and radii of the circles si’(ts) and
si(ts), Vi,j, respectively.

Motions are considered from fs to fs+At, where At is a time
horizon.

When A and B are following linear motions, their initial
velocities - i.e., at s - are va(ts) and vs(ts) e R?, respectively,
and their constant accelerations are a4, aseR.

If A and B are following arc-like motions centred at c4 and
cseR?, respectively, then each ci’(fs), ¢f(ts), Vi,j can be
rewritten in polar coordinates by using the arc radius, 0,
PP - i.e, its respective distance to the arc centre - and its
initial angular position, 0i(fs), 0%(ts), as:

cM(t)=c +p (cos(O(t,)),sin(O:(t,)))

i (1
C]B(ts)=CB+ij(cos(@?(ts)),sin(e?(ts))) ; Vij o (10)

www.intechopen.com

A and B’s angular speed at ts are, respectively, wa(ts) and
o8(ts) e R. Their constant angular accelerations are o4 and
aseR, respectively.

Each one of the infinite intermediate positions of A from
ts to t-+At is parameterized by L€[0,1] as:

cA)=cMt)+AALY (1) +0.5A% At a, T, (t) 5 Vi (11)

c?(t)chmA(cos(e;*(t)),sin(e;*(t))); Vi)
with 04(t)=0(t)+A-At-w , (t)+0.5-A%-At> ot

VEi=tAA-At, re[0,1], te[ts ts+AL] and
Valt)=v At)/ v, (t)l . A is following a linear motion in
case (11) and an arc-like motion in (12). (11) and (12) are
analogously modified for B.

A constraint is contemplated from the motions in (11) and
(12). A motion with a change from forward to backwards,
and from counter-clockwise to clockwise, or vice versa, is
not considered. In this case, the motion is properly
divided.

The proposed GJK-based algorithms deal with SM(t), with
te[ts,ts+At]. SM(t) is the Minkowski difference between all
the A and B infinite intermediate positions while A and B
are following their respective motions. SM(t) has been
defined in (5) and, independently of the involved
motions, SM(t) is defined by nxm stadiums, and each
stadium is described by its start point cid(ts)—cf(ts), a
radius riM=ri*+ri# and an axis pM(A) e R? with L€[0,1].

The future instant in time when A and B are located at
their MTD of separation or penetration is obtained by
computing the distance between O and SM(t) (specifically,
from O to its closer external edge of SM(t)).

4.2 Dealing with Two Straight-Line Motions (LL)

Two GJK-based algorithms are introduced in this sub-
section. They deal with mobile objects (robot or
obstacle) A and B with linear motions and constant
accelerations. The LL-GJK algorithm obtains the future
instant in time, toM, when A and B will be at their MTD
of separation, doM, or it returns a failure if A and B will
collide at te(fs,ts+At]. In case of a collision, the LLi»-GJK
algorithm is then run and returns the future instant in
time toM when A and B will be at their MTD of
penetration, doM.

The Minkowski difference between these two motions is
SM(t), te[ts ts+At], and it has nxm stadiums whose axes,
pM(A), are parabolic with (see (6)):

pM(A)=A-AL (v, (t) V(L))+

+0.5A%A (2,05 (t)-ag V(L)) 3
. A YV A\'s B YB\'s

www.intechopen.com

Any GJK-based algorithm to design requires: a sub-
distance algorithm, the support and mapping functions,
and a final condition.

The sub-distance algorithm computes the distance, do,
between O and the axis of the stadium whose start point
is in Vi Let us consider the stadium with a start point
c(ts)—coP(ts), then such a distance do is determined by
finding the parameter A that verifies:

d

cMt) - Bt)+pM)| faA =0 (14)

Ae is found by applying the root-finding technique,
termed the ‘Secant method’ [21]. Experimentally, Ao=0.45
and Ai=0.55 have been confirmed as good choices as
initial values for the Secant method. The searching
accuracy has been set to 10-.

After finding A, OceR? (the axis’s closest point to O) and
do are obtained as:

O, =c(t)—cpt)+pM(A,) ; do=IlOl1 (15)

Set Vi contains as maximum of two start points
(stadiums). Only when the LL-GJK algorithm is being run
and the set Vi contains two stadiums, the sub-distance
algorithm first checks whether O is inside the area
delimited by the axes of these two stadiums. If the result
of this test is true, A and B will collide [16,17,19], and the
LL-GJK algorithm finishes immediately with a failure and
returns the set Vi. It the result of this test is false, the sub-
distance algorithm returns the distance, do, from O to the
closest stadium in Vi together with the corresponding
parameters Ac, Oe.

When the LLin-GJK algorithm is being run, the sub-
distance algorithm returns the distance from O to the
furthest stadium do, if more than one in Vi and A, O.

In any case, the sub-distance algorithm rejects and
removes from Vi the stadium whose distance to O has not
been returned.

The support hm and mapping sm functions are used for
finding the furthest stadium in a given direction ne)?2.
This stadium is theoretically the candidate to be the
closest stadium to O.

The GJK-based algorithm in [19] deals with stadiums
whose axes are straight lines. Moreover, and for this
reason, the support function in (8) works properly. Note
that this support function uses the start points of the
involved axes, ciM(ts).

Now, we are dealing with non-convex (parabolic) axes.
Therefore, the support function in (8) is not valid here.

Enrique J. Bernabeu, Angel Valera and Javier Gomez-Moreno:

Distance Computation Between Non-Holonomic Motions with Constant Accelerations

6

This difficulty is overcome by applying the support
function to different points of a given axis instead of just
to the start point. These points are characterized by the
golden ratio parameter r, with r:(\/g -1)/2 [21].

Let caA(ts)—ciB(ts) be the start point of a stadium with a
radius r+rf and axis pM(A) with A€[0,1], the support
function hu is applied to the points in the axis:

A B My . o _ .

¢ (t)—¢(t)+p (1) ; with u=0,1-r,r,1,A; A €[0,1] (16)
Then, the support function hm is defined as:
hM(q,p)zm_ax{(CiA(ts)fc?(ts)ﬁLpM(p))-q+(riA+er)~| nl I}

ij

with (¢'(t),1M)eS™(t); (]t r)es™(t)

(17)

The parameter Ac to be used in (17) is that returned by the
last execution of the sub-distance algorithm.

The mapping function sm(n,1) contains the start point of
the stadium that generates the maximum in hm(n,w).
Consequently, according to p, sm(n,u) represents up to
five different stadiums. The stadium with the minimum
distance to O is selected and called sm(n) in the LL-GJK
algorithm. Conversely, sm(n) contains the stadium with
the maximum distance to O for the LLi-GJK algorithm. In
any case, the other stadiums are rejected.

These new hm and sm functions are an improvement of
those introduced in [15].

If the LL-GJK algorithm is being run, then 7 is substituted
by —O: in (17). Conversely, if the LLin-GJK algorithm is
being run, then Oc is used in (17) instead of 0.

The LL-GJK and LLi-GJK algorithms finish when the
stadium in sm(n) is the same as that represented by
sm(n,Ac) - i.e., sm(n)=sm(n,Ac) - and a final condition is also
verified. Therefore, the LL-GJK algorithm finishes
successfully, after obtaining the separation distance from
O to the closest external edge in SM(t) (see figure 1), when
the conditions sm(-Oc)=sm(—Oc,Ac) and gm(—Oc,Ac)=0 are
true, with:

gu(-0.A,)=l 10| P-radius(sy,(-O_A_))+hy(-O_A,) (18)

Given that the LLi»-GJK algorithm deals with O inside the
area delimited by the axes from SM(t), it finishes when the
conditions sm(Oc)=sm(Oc,Ac) and §m(Oc,Ac)=0 are true, with:

{;M(OC,/\C):—I (o} Iz—radius(sM(OC,/\C))+hM(OC,)\C) (19)
The function radius returns the radius of the stadium

represented by sm(n,Ac). The final conditions gmand gmare
updated from their equivalent in [19].

Int. j. adv. robot. syst., 2013, Vol. 10, 329:2013

If the LL-GJK algorithm finishes with a failure (A and B
will collide), it returns a set Vi containing two stadiums.
Next, the LLn-GJK is run twice to obtain the MTD of
penetration and the associated instant in time. Each
execution is started by providing as initial set, namely an
element from the mentioned set Vx.

Each execution of the LLw-GJK algorithm returns a
parameter Ac and a negative distance doM (computed as
indicated in the last paragraph of Section 3). The maxi-
mum of these two negative distances holds do™ (i.e., the
MTD of penetration between A and B). From the
execution that gives value to doM, the future instant in
time toM is calculated by using the returned Ac as
indicated by (9).

The parameter O returned by both the LL-GJK and LLi-
GJK algorithms holds a translational vector (i.e., if, for
instance, the position of A at toM is translated as do™ in the
direction O, then A and B will be in contact at foM).

For clarity, the LL-GJK and LLiw-GJK algorithms are
presented in pseudocode.

A discrete motion representation of a mobile robot A
and a dynamic obstacle B, both following linear
motions with constant accelerations, is shown in figure
2.a. The positions where A and B are at their MTD of
penetration, are depicted in red. The Minkowski
difference SM(t) between both continuous motions is
shown in figure 2.b. A is modelled by a fourth-order s-
tope (polytope) and B is a second-order s-tope. doM and
toM have been obtained in 5.1 ps in an Intel® Core™ i5
650 processor at 3.2 GHz.

Input: S4(t), S5(t), b, At, pM(L), r=(N5 1) /2
Output: (A, toM, doM,Oc, Vi) or (failure, Vi)

1: k=0, Vi={coA(ts)—coB(ts), ror+roB} with (coA(fs),rot) e SA(ts),
and (coB(s),roB) e SB(ts)
2: do
31 (e do,0c, Vi, O_inside) «— sub-distance_algorithm(Vx)
4: if O_inside then return(failure, Vi)
5: compute hm(=Oc,p), sm(—=Okc,p) for p=0,1-,r,1,Ac
6: sm(=Oc)=select_closest_stadium_to_O(sm(=Oc, 1))
7: if sm(=Oc)=sm(=Oc,Ac) & gm(=Oc,Ac)=0 then exitloop endif
8: Vier=Viu{sm(-Oc)}
9: k=k+1
10: while true
11: toM=ttdeAt; doM=do—(rpA+rq)
where Vi={cpA(ts)—cqB(ts), rpd+reP);
with (@A), 1) eSA(E), (e (E)rP)eSH(E)
12: return(\c, toM, doM, Oc, Vi)

Algorithm 1. LL-GJK algorithm

www.intechopen.com

Input: S4(ts), SB(ts), ts, At, pM(L), r=(\/g —1)/2, and a one-element
set Vin
Output: (e, doM’,Oc, Vi)

1: k=0, Vi=Vin

2: do

3: (Aedo,Oc, Vi) < sub-distance_in_algorithm(Vi)

compute hm(Oc,p), sM(Oc,p) for p=0,1-7,7,1,Ac

sm(Oc)=select_furthest_stadium_to_O(sm(Oc, 1))

if smM(Oc)=sm(Oc,Ac) & §m(Oc,Ac)=0 then exitloop endif

Vien=Vilo{sm(Oc)}

8 k=k+1

9: while true

10: doM'=—(do+(rpA+rqeB)) with Vi={cpA(ts)—cqB(ts),rp+reP);
and (cpA(t:), ") € S4(ts), (caP(ts),re) € SB(Es)

11: return(ic, doM', Oc, Vi)

Algorithm 2. LLi-GJK algorithm
4.3 Dealing with Arc-like and Straight-line Motions (AL)

Now, a mobile robot A is following an arc-like motion
while the other mobile robot or obstacle B follows a linear
motion. These motions are described in subsection 4.1.

The future instant in time, when the mobile A and B will
be at their MTD of separation, is obtained by applying the
AL-GJK algorithm. If it fails, because A and B will collide
at a time instant te(t;ts+At], then the ALi-GJK algorithm is
run to obtain their MTD of penetration and the
corresponding instant in time.

at 2.75¢ Aat 2.755@
: B at 2.75s . A at35s

- ,,Iﬂlﬁgi

Batts _ Bat125s

O
Bat03s p 5
A at 25 B at 3.5s
A at 0.5s
Aat1.25s

A atts

(b)

Figure 2. The distance between two mobile objects A and B
following linear motions, with |lva(ts)l1=2.2 m/s, aa=1 m/s?,
| lvs(ts)| 1=3 m/s, ag=—-0.5 m/s?, t=0s and At=5s. (a) The A and B
positions are only depicted at £, 0.5s, 1.25s, 2s, 2.75s and 3.5s. The
positions at toM=2.75s where A and B are at their MTD of
penetration, doM, are in red. (b) The Minkowski difference
between the A and B motions. SM(t) has eight stadiums. For
clarity, only the SM(t) external edge close to O, its associated
capping circles, its distance, doV, to O, and all the axes, are
depicted.

www.intechopen.com

As already mentioned, this future instant in time and the
corresponding MTD are obtained by computing the
distance from O to the closest external edge of the
Minkowski difference of the involved motions.

The AL-GJK and ALi-GJK algorithms are, respectively,
analogous to the LL-GJK and LLi-GJK algorithms. Only
the subtle differences are pointed out here.

In accordance with the motion definition in (11) and
(12), the Minkowski difference SM(t) between both
motions has nxm stadiums whose axes are now
cycloid-like. Furthermore, there are n different cycloid-
like axes. Each of these n axes piM(L)eR? Vi is described
by A€[0,1] as:

P}'(A)=p{* (cos(@7'(1)),sin© (1)) —A-At-vy(t) - 0)
—0.5A% At ag-Ip(t); i=0,1...n-1

6i(f) depends upon A - see (12) - with t=t-+tA-At. Let us
consider a stadium described by ciA(ts)—coP(ts), rad+rP and
pM(h) with (ca(ts),ra4)eSA(ts) and (coB(ts),7P) e SB(ts). The
sub-distance algorithm obtains the desired distance by
finding the Ac that minimizes ||ca—co®(ts)+pM(A)I1 by
solving:

dHcA—cE(ts)+p§’I()\)H /d)\ =0 1)

Ac is then found by applying the Secant method to (21),
but this method will work properly if there is one
minimum in | lca—co®(ts)+paM(L) | |. Given that the axes of
the stadiums are cycloid-like, if A’s angular displacement
is lower than 7, then |lca—cB(ts)+pM(A)I 1 for all Ae[0,1]
contains, in the worst case, one maximum and one
minimum (apart from the extremes of the search
interval). Consequently, if such a condition is false, then
the A and B motions are properly divided before running
the AL-GJK and ALin-GJK algorithms.

The support function hwm is also required to be modified
as:

h = -c? M))+ +B) Il
i p=max{ (et 490 e 1) it 1] -
with u=0,1-r,r,1,A; A_€[0,1]

An example of the execution of these algorithms is shown
in figure 3. A is modelled by a fourth-order s-tope
(polytope), while B is a second-order s-tope. do and toM
have been obtained in 10.2 ps in an Intel® Core™ i5 650
processor at 3.2 GHz.

Enrique J. Bernabeu, Angel Valera and Javier Gomez-Moreno:

Distance Computation Between Non-Holonomic Motions with Constant Accelerations

7

Aatts

Batts

™
B at 0.6s
Bat1.1s

@

cA
Aat2l1s

b)

Figure 3. The distance between A and B. A follows an arc-like
motion. B follows a linear motion. The motions are defined by
®Aa(ts)=—18°/s, 0.a=—0.5°/s2, | lvs(ts)| 1=3 m/s, ap=1 m/s?, t=0 s and
At=5 s. (a) The A and B positions are stepped at £, 0.6s, 1.1s, 1.6s
and 2.1s. The positions where A and B are at their MTD of
penetration, doM, are in red with toM=1.1s. (b) The Minkowski
difference between the A and B motions. S¥(t) has eight stadiums
and four different cycloid-like axes. For clarity, only the SM(t)
external edge close to O, its associated capping circles, its
distance, doM, to O, and all the axes, are depicted.

4.4 Dealing with Two Arc-like Motions (AA)

In this subsection, a mobile robot A and a robot or
obstacle B are following arc-like motions with constant
angular accelerations. These motions have been described
in subsection 4.1.

The future instant in time, when the mobile A and B will
be at their MTD, is also obtained by computing the
distance from O to the closest external edge of the
Minkowski difference of the involved motions.

The AA-GJK algorithm computes the future instant in
time when A and B will be at their MTD of separation. If
this algorithm fails - i.e., if it detects that A and B will
collide at fe(ts,ts+At] - then the AAw-GJK algorithm
computes the future instant in time when both objects
will be at their MTD of penetration. These algorithms are
analogous to the previous ones. Only the differences are
shown here.

The axes of the stadiums in SM(t) are now rose-like (a
rhodonea curve) [22]. SM(t) has nxm different axes
piM(L)eR? Vi,j. These axes are parameterized by Ae[0,1]
as:

pM(A)=p(cos(O2(1)),sin(0: (1))~ (cos(6 (1)) sin(6”
t=t +A-At ; te[t, t +At]

() 23,

where 0:(t) and 0j%(t) are described by (12).

Int. j. adv. robot. syst., 2013, Vol. 10, 329:2013

Let ca\(ts)—cvP(ts), ra*+reP and paM(A) be a stadium in SM(t)
with (caA(fs),7a4)eSA(ts) and (cvB(ts),1P) e SB(fs). The sub-
distance algorithm computes the distance from O to the
mentioned stadium by finding Ac that minimizes
| lca—ctpaM(X) |1, i.e., by applying the Secant method to:

dfes-c+plA)| /A =0 (24)

If A and B’s angular displacements are lower than =, then
| lca—coP(ts)+paM(A) | | with Ae[0,1] contains, in the worst
case, a maximum and a minimum (apart from the
extremes of the interval of the search). If the mentioned
condition is not verified, then any involved arc-like
motions have to be divided before running any
algorithm.

The support function /m has to be updated to:

gy p)=manx{ (e ey +p) 40 1) i1 1]
with u=0,1-r,1,1,A; A_€[0,1]

(25)

An example dealing with a mobile robot A and a mobile
obstacle B with arc-like motions and with constant
angular accelerations is shown in figure 4. Its MTD of
separation, do™, and the corresponding instant in time,
toM, have been obtained in 9.7 ps in an Intel® Core™ i5
650 processor at 3.2 GHz.

5. Algorithm analysis and experimental results

All the support functions in this paper verify:

hM(T]/ H):hSA(t)(n' H)+ hSB(t)(_ T]/ H) (26)
A’s motion is described by n stadiums, while B’s motion
is defined by m stadiums. For this reason, the support
functions can be applied separately to A’s motion (i.e.,
hsAw(m,1)) and to B’s motion (i.e., hsPy(—n,u)).
The condition in (26) is true and is proved for the case of
A and B following, respectively, arc-like and linear

motions. The proof is entirely similar to the other two
cases.

In accordance with the definition of A’s motion in (12),
then:

hga (t)(n,p):n;ailx{(cA+piA(cos(6iA(t)),sin(@iA(t)))mriAl Inf |} 27)
with 02(t) = 0/(t)+ p-At-w ,(t)+0.5u% At -, .
According to the definition of B’s motion in (11), then:

hgs o (-NH)=

(28)
mvzjix{(C?(tsﬁ-p.At.wB(ts)+O.5p2At2aB)(—q) +er| Inl I}

www.intechopen.com

Adding (27) and (28), the hm definition given by (22) is
reached. piM(p) verifies the definition in (20).

The condition in (26) has an important consequence: the
Minkowski difference SM(t) does not need to be computed
before running any of the LL-GJK, LLin-GJK, AL-GJK, ALin-
GJK, AA-GJK or AAin-GJK algorithms. Therefore, the
complexity of all these algorithms is linear, namely
O(n+m) instead of O(nxm)

These algorithms have been implemented in C and run in
an Intel® Core™ i5 650 processor at 3.2 GHz. S-topes A
and B, and their motions, have been randomly generated
in order to analyse all of these algorithms. The s-tope
orders, n and m, have been fixed in order to consider the
following situations: n+m= 10, 50, 100, 250, 500, 1,000,
1,500 and 2,000.
experiments have been run.

Approximately 5,000 different

It is important to note that when the two involved s-topes
do collide, then the corresponding LLin-GJK, ALin- GJK and
AAin-GJK algorithms will be run twice, returning two
penetration distances. Next, the collision cases have a
significant influence on the analysis of the algorithms.

Figure 4. Distance between A and B with arc-like motions. The
motions are described by ®a(fs)=50°/s, 0a=5°/s?, ws(ts)=—30°/s,
ap=—2.5°/s2, t=0s and At=3s. (a) The A and B positions are stepped
at t5, 1s, 1.5s, 2s and 2.5s. The positions at toM=2s, where A and B
are at their MTD of separation, do¥, are in red. (b) The rose-like
axes of the eight different stadiums in S™(t) and the distance do™
(at a different scale). For clarity, only the SM(t) external edge
close to O, its associated capping circles, its distance, do, to O,
and all the axes, are depicted.

www.intechopen.com

The runtime of the algorithms per computed distance is
shown in figure 5. The linear complexity of these
algorithms is verified in figure 5. The sub-distance
algorithm (the Secant method) requires more time when
dealing with arc-like motions and, for this reason, the LL-
GJK and LLa-GJK algorithms present a
computational cost.

minor

The total number of iterations for all the algorithms is
convex, as with the original GJK algorithm [16]. Figure 6
shows the average number of iterations per distance. The
number of collision cases affects the linearity in the
number of iterations.

The average number of iterations in the Secant Method
for finding a minimum is shown in figure 7. The results in
figure 7 show that the number of iterations in the Secant-
method procedure is also convex.

Sometimes, the interval of searching in the Secant method
contains a maximum and a minimum; moreover, if the
Secant method first finds a maximum, then it is started
again in order to search for the desired minimum,
increasing the total number of iterations in the procedure.
This situation is presented randomly as a consequence of
how the data for this analysis has been created.
Consequently, the experiments where a maximum is
found by the Secant method have not been considered in
the analysis shown in figures 5, 6 and 7.

—
= |
%’ 08l o LeK L, -GK
2 : : o AL-GIK, AL,,-GIK
2
S 06| o araik A4 -GIK
E T T
g 04 i—I— — 4 -~~~ |=—~ — =
£ I
£ 02fI-I- — 4+ — ——=F——=
R — | |
0 — | I I
10 100 250 500 1000 1500 2000

Total number of circles (n+m) from the involved s-topes
Figure 5. Computational cost of the algorithms by distance.

2.8

Algrithm Iterations
(Average)

i ! !
O LL-GIK LL-GIK & AL-GIK AL -GIK O AA-GIK, AAm-GJK‘

oli 1 T T T T
10100 250 500 1000 1500 2000

Total number of circles (n+m) from the involved s-topes

Figure 6. Average number of iterations in the algorithms.

725

[

e T
[&
[

ed
©

o

Secant Method
Iteraton (Average)

I
~

e — S —— S
O LL-GIK LL,-GIK O AL-GIK, AL-GIK O AA-GIK AA,"-GJK‘
;

2 T T T
6 10100 600 800 1000 1500 2000

Total number of circles (n+m) from the involved s-topes

Figure 7. Average number of iterations in the Secant method,
with the searching accuracy set to 1076.

Enrique J. Bernabeu, Angel Valera and Javier Gomez-Moreno:

Distance Computation Between Non-Holonomic Motions with Constant Accelerations

9

In order to validate and analyse the proposed algorithms,
two wheeled mobile robots have been used. These robots
are based on the LEGO NXT Mindstorms platform. They
are differential vehicles, and so they use independent
velocities in both left and right wheels to move in the 2D
plane.

The control unit of the Lego robots is based on an ARM7
microcontroller. This 32 bit CPU provides most of the
control logic for the robot, including analogue-to-digital
converters, timers, Bluetooth and USB communications
ports, 256 Kbytes of FLASH memory and 64 Kbytes of
static RAM. The actuators of these robots are high quality
permanent-magnet dc motors that can provide torques of
about 16.7 N.cm working at 117 rpm.

Different can be chosen for
programming the NXT microcontroller. In this work,
RobotC has been used. It is a powerful programming
language based on C that works in a Windows
environment. RobotC is a cross-platform language that
also allows for the debugging of the robot’s applications
in real-time.

development tools

Using RobotC, a pure-pursuit control algorithm for the
path following was implemented. This algorithm follows
any kind of path given by a series of points. In this case,
linear and arc-like paths were specified.

Assuming that the initial position prior to the movement
is known, the actual robot position can be estimated by
using the local information of the robot motion (the
wheels’ velocities) obtained from several sensors in order
to calculate the distance travelled from the initial point.
This procedure has the benefit of a fast response time but
also a disadvantage: between two position estimations, an
error (between the actual and the estimated positions) is
accumulated over time. Due to this, and after some
navigation time, the position estimation can be very
different from the actual value.

As it is important to have good local position estimation,
the several sensors available on the robot - measuring the
variables associated with the motion - should be used to
increase the reduce the
measurement noise and correct the deviation of the actual
position value. In this case, the problems about how to

measurement accuracy,

integrate the different sensors into a single measurement
that can be used by the control algorithm - taking into
account the different accuracy and noise levels of the
sensors or else how to determine which information
should be discarded and which should be used to
perform control - arise.

One of the most well-known and efficient techniques for
data fusion is the Kalman Filter (KF) [23-24].

10 Int.j. adv. robot. syst., 2013, Vol. 10, 329:2013

In this work, a linear KF has been used to obtain the
global position of the robot. The implemented
technique performs the sensor fusion locally by means
of the wheel encoders (to measure the displacement of
the left and right wheels), a gyroscope (to obtain the
robot’s angular velocity), a compass (to measure the
heading angle) and two accelerometers placed above

each wheel.

The main advantage of the linear KF proposed is its low
computational cost. Because it uses small-sized matrices
to obtain the Kalman gain, it can be calculated in real-
time in the LEGO control unit.

Three different experiments were run. Each LEGO
robot, La and Ls, has been simply modelled by a circle
(a first-order s-tope). La and Ls’s radii are r4=110 and
rB=140 mm. Each radius is 25 mm greater than
necessary for security.

Two linear motions with constant acceleration are
considered in the first experiment (LL). La and L&’s
motions’ parameters are ca(ts)=(933,400), va(ts)=(-58,0),
a4=0.42 mm/s?, ¢s(ts)=(400,1051.6), vs(ts)=(0,~57), a5=0.95
mm/s? with t=0 s and At=11 s. La and Ls’s positions at fs
are given by ca(ts) and cs(ts), respectively. Figure 8 shows
three plots: the centres’ abscissa, their ordinates and the
distance between them minus La and Lg’s radii. The toM
and doM obtained from the algorithm and the experiment
differ, respectively, 55 ms and 5.5 mm. As the robots
collide, the experimental MTD of penetration was
obtained by running one of the robots with a delay. See
figure 9. Figure 10 shows the control actions for the
motors of robot Ls. Because the robot executes a linear
trajectory with constant acceleration, the left and right
wheels’ control actions increase uniformly with the same
slope.

In the AL experiment, La follows a linear motion with
cA(ts)=(597,400), va(ts)=(—60,0) and 24=0.42 mm/s?, while Ls
follows an arc-like motion centred at (400,400) with an arc
radius of 400 mm, 05(t)=—90°, ws(ts)=24.2°/s and
o=0.79°/s2. 85(ts) holds L#’s initial angular position. The
time parameters are t=0 s and A#=5 s. La and Ls’s
positions and their respective distances are shown in
figure 11. The toM and doM obtained from the algorithm
and the experiment differ, respectively, 98 ms and 3.9
mm. Some snapshots of this experiment are shown in
figure 12. Figure 13 shows the control actions of robot La
for this experiment.

www.intechopen.com

1000 800
) 2
se se
% 52 o
[ek=} S}
as a3
58 S 3 400
S X gz
oc o
200 s ‘ s s s s s s s
0.5 1 1.5 2 2.5 3 35 4 4.5 5
: : 700 T
I [— 2 —
se — L L S B00f — - —
@S 750 - - ————————— R G A 8l 2 £
o5 - g —
a3 —_ £
58 B0l - mm o _lITe_____ _ 5V oo s 1
58 —~— 2 P L, Ly
o o —_—
250 | | | | | | | | | | 0 L —1 L L L L L L 1
0 1 2 3 4 5 6 7 8 9 10 11 0 0.5 1 1.5 2 2.5 3 35 4 4.5 5
2 600 T T T T T T T T T T g
R — 5
] k2]
R S — a
@ 2
I - g
C20F - - -~-r--f--f--f--5--5--53--5-==- -
0 1 2 3 4 5 6 7 8 9 10 1 -
Time (seconds) Time (seconds)
. . P .
Figure 8. Experiment LL. The robots’ positions and their Figure 11. Experiment AL. The robots positions and their
distances (in millimetres) £=0 s. to t+At=11s. distances (in millimetres) £=0 s. to t+At=5s.

Figure 9. Experiment LL until collision. L4’s motion is delayed
two seconds for appreciating the maximum penetration instant.

Control action (V)

Time (s)
Figure 10. Control actions of the Lz robot’s motors for the LL Figure 12. Snapshots from the AL experiment. The robots’
experiment. positions at: (a) t=0s, (b) 1 s, (c) 1.75 s (minimum separation) (d)
2.5s,(e)3.25sand (f)4s
www.intechopen.com Enrique J. Bernabeu, Angel Valera and Javier Gomez-Moreno: 11

Distance Computation Between Non-Holonomic Motions with Constant Accelerations

2.5

N n i ma\\‘n
H l il

Figure 13. Control actions of the Ls robot’s motors for the AL
experiment.

In the AA experiment, robot La follows an arc-like motion
centred at (1250,200) with an arc radius 200 mm,
04(ts)= —147.5°, wa(ts= -19.4°/s and aa=—-0.21°/s%. Robot Ls
follows the arc-like motion shown in the AL experiment. The
time parameters are =0 s and At=6 s. La and Ls’s positions
and their respective distances are show in figure 14. The toV
and doM obtained from the algorithm and the experiment
differ, respectively, 75 ms and 0.9 mm. The experiment
results are shown in figure 15. Figure 16 shows the control
actions for the motors of robot Ls. Because the robot executes
a circular (arc-like) trajectory with constant acceleration, the
left and right wheels” control actions increase uniformly, but
in this case the slopes of each action are different.

A simulation involving five different robots with non-
holonomic motions is also shown. Robot R1 is modelled
by a circle and follows a linear motion with
cri(ts)=(19.5,45.6), k=7 mm, vri(ts)=(4.4,8.9),
I lori(ts)11=9.95 mm/s and ari=0.4 mm/s2. Robot R> also
follows a linear motion, but it is modelled by a fourth-
order s-tope whose position SR at £ s
SR2(t:)={(169.6,180.3), (176.4,176.5), (181.5,185.1) and (174.6,
189.1)}. The radii of the circles in SR(ts) are, respectively,
2,2, 3 and 3 mm. R’s initial velocity and acceleration are
vra(ts)=(-10.3,-17,4), | lvre(ts)!1=20.25 mm/s and ar=—0.8
mm/s2. Robots Rs, R4 and Rs follow arc-like motions. R3’s
motion is centred at (1,0) and it is modelled by a second-
order s-tope. The two circles” centres are given in polar
coordinates as 00%%(ts)=14.4° where the arc radius @?3=170
mm, and 01%3(#)=9.3° where pi®=170.7 mm. The radii of
the two circles are, respectively, 5 and 3 mm. Rs’s initial
angular speed and acceleration are wrs(fs)=6.1°/s and
or3=—0.25°/s2. R4’s motion is centred at (-115,120) and it is
modelled by a third-order s-tope. R4's position at fs is
given by 60f4(t:)=15.5° where pf*=240 mm, 6:%%(t;)=18.2°
where piR*=233.9 mm, and 02R(t;)=18.1° where ,R*=246.8
mm. The radii of the circles are, respectively, 3, 0, and 0
mm. R«'s initial angular speed and acceleration are
wra(ts)=—2.7°/s and ar=—-0.1°/s%. Finally, Rs's motion is
centred at (210,210) and modelled by a fourth-order s-

12 Int.j. adv. robot. syst., 2013, Vol. 10, 329:2013

tope. Rs’'s position at ts is given by 00%(ts)=—169.2° where

R=192 mm, 01%(t)=—173.9° where m*=192.7 mm,

0285(ts)=—173.7° where pR=203.6 mm, and 03%(t;)=—169.2°
where p3*=203 mm. The radii of the four circles are 0 mm.
Rs’s initial angular speed and acceleration are wrs(ts)=4°/s,
ors=0.15°/s2. The time parameters are #=0 s and At=12s.

1300

5
S
=]

T

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
~

700f - - - - — - - e —~—— -

400

Robot Positions
(x-coordinate)

Robot Positions
(y-coordinate)

Robots Distance

Time (seconds)

Figure 14. Experiment AA. The robots’ positions and their
distances (in millimetres) £=0 s. to ts+At=6s.

Figure 15. Experiment AA. La and Ls are shown at t==0, 1, 2, 3
(minimum separation), 4, 5 and 6s.

6

IS
T
|
|
|
|
|
|
|
|
|
|

J

Control action (V)
@
T
|
|
|
|
|
|
|
|
|
|
1
|
|

~

I

I
——

—

i
Y
I

I

I

I

I
-t
I

I

I

I

I

- T
I

I

I

I

|

1) ,: ,,,,, O 4 L right wheel |
| | | | | left wheel
| | | | |
| | | | |
0 I ! I ! !
[5 10 15 20 25 30
Time (s)

Figure 16. Control actions of robot Ls’s motors for the AA
experiment.

www.intechopen.com

For clarity, the positions of the involved mobile robots
have been stepped into two different figures (see figures
17.a and 17.b).

For each pair of robot motions, the future instant in time,
toM, when both robots will be at their MTD, doM, has been
computed. The results are shown in a matrix. See (29). The
upper triangular submatrix contains the obtained doM. The
lower triangular submatrix shows the corresponding to'.
In this way, for instance, the MTD between robots Rz and
R4is 6.63 mm and it is presented at 5.36 s.

Rs at =0 D @ Reat tzo//Rz at =0
B &

Rs at t=0
. Rsat t=1~
Rs at t=1 a @ S Reatt=l
@ &
L
SN,
Ri at t=1® @ Rs at t=1

(b)
Figure 17. Simulation with five robots. (a) The robots’ positions
att=0, 2, 4, 6, 8, 10 and 12 s are shown. (b) The positions at t=1, 3,
5,7,9 and 11 s are shown.

R R R, R R

1 2 4 5
R, 56.24 -836 56.81 -13.15

R,| 6.96 -14.98 6.63 -15.06 (29)
R,[10.26 4.72 -11.1 59.05

R,| 7.27 5.36 5.93 -10.33

R,| 5.44 9.5 723 10.88

[’

The distances between each pair of robots while they are
following their respective motions is shown in figure 18.
Observing this figure, robot R1 collides with Rs and Rs; R2
also collides with Rs and Rs; Rs collides with Rs; and Rs
collides with Rs (see the negative distances in figure 18).

The evolution of the linear speed (in mm/s) of robots Ri

and Rz, and the angular speed (degree per second) of Rs,
R4 and Rs is shown in figure 19.

www.intechopen.com

6. Discussion

Our proposed collision detection technique is compared
with some representative continuous collision detection
(CCD) techniques.

Comparing our algorithms with the reciprocal volume object
(RVO) in [11], the RVO is a robust collision-avoidance
technique based on the VO concept [12]. VO contains the set
of all the velocities of a robot that will result in a collision
with another Determining VO implies the
computation of the Minkowski difference of the involved
objects. Our technique does not compute the Minkowski
difference, otherwise its complexity would be O(nxm)
instead of O(n+m). The RVO considers neither explicitly
non-holonomic motions nor the current agents’ accelera-
tions. RVO has been applied to thousands of disc-shaped
agents, while our technique is suitable for robots modelled

robot.

by convex-hulls defined by thousands of spheres (circles).

200

L |
dstRyR)|]
dist(R;,Ry)
dISI(R1.R4)
dist(R,,R,)
distRyRy) | — — — — — - 7
dist(R,R,) |

- - - =
dist(R,R,) | g
dist(RyR,) |

dstRyRy | / T

dist(R, Ry)

N\
180FN----F-----

160 it el

LT O N

120F ---

8
YW
4

Distance (mm)

Time (seconds)

Figure 18. Distances between each pair of robots for t€[0,12].

n
o
T

o
T

)

o
T

Speed (mnvs for H‘, H2
*/s for Ry, R, and R)

o
T

&

o
n
[N
o
N

Time (seconds)

Figure 19. Speed evolution of the robots in motion for t[0,12].

The work in [9] is also a CCD technique. The objects are
modelled by swept sphere volumes and follow translational
and rotational motions with constant velocities. The method
returns the first time of contact if the objects collide. If not,
the minimum separation is calculated. The method
requires a separation distance computation function and a
motion bound calculation. The method assumes that one of
the objects is fixed (without motion) and computes a lower
time bound. The mobile object is advanced according to the
mentioned lower bound. This method does not compute
penetration distances and does not consider trajectories
with non-null accelerations.

Enrique J. Bernabeu, Angel Valera and Javier Gomez-Moreno:

Distance Computation Between Non-Holonomic Motions with Constant Accelerations

The first contact time, the contact positions and the normal
contact between two mobile rigid objects which are going to
collide are obtained in [5]. The technique relies upon the
effective interpolation of interval arithmetic and hierarchies
of oriented bounding boxes. This CCD method finds the first
time of contact by applying collision tests between object
features (vertex, edge and face). The features are in motion
and, iteratively, the time interval is reduced until the
discovery of the instant in time when they are in contact.
This technique does not consider non-null acceleration
motions and is not intended to find the minimum
separation when the objects do not collide. The method
applies the same test each time with a minor interval of time.

7. Conclusions

This paper has given a method for more than detecting a
collision between two mobile robots or between a mobile
robot and a dynamic obstacle without stepping their
motions. Specifically, this method obtains the future
instant in time when two mobile objects will be at their
distance of separation or
penetration (if collision). The mentioned translational
distance and instant in time are computed in parallel.
These results have been returned by certain proposed
algorithms with linear complexity.

minimum translational

The involved robots and obstacles are modelled by
spherically-extended polytopes (convex hulls). Their
motions are non-holonomic (linear or arc-like) with
constant accelerations. The positions of the robots or
obstacles are assumed to be measurable and their motions
(path, speed and acceleration) are estimable.

Some simulations and experiments with real robots have
been run to conclude that the method is fast, robust,
convex in the number of iterations, and accurate.

Additionally, our method is so fast that it can be run as
frequently as any new information from the sensor
system is received.

A direct extension of this work consists of updating these
algorithms to compute, in the case of collision, the first
time of contact. Another future and challenging work will
be to deal with three-dimensional motions.

8. Acknowledgments

This work was partially funded by the Spanish
government CICYT projects: DPI2010-20814-C02-02, and
DPI12011-28507-C02-01.

9. References

[1] Ferguson D, Howard T.M, Likhachev M (2008) Mot-
ion Planning in Urban Environment: Part I, IEEE/RS]
Int. conf. on intell. robots and systems. pp. 1063-1069.

14 Int. . adv. robot. syst., 2013, Vol. 10, 329:2013

[2] Urmson C, Anhalt J, Bagnell D, Baker C, et al. (2008)
Autonomous Driving in Urban Environments: Boss
and the Urban Challenge. Journal of field rob. 25(8).
pp. 425-466.

[3] Schwarzer F, Saha M, Latombe J-C (2005) Adaptive
Dynamic Collision Checking for Single and Multiple
Articulated Robots in Complex Environments. IEEE
trans. on robotics 21(3). pp. 338-353.

[4] Jimenez P, Thomas F, Torras C (2001) 3D Collision
Detection: A Survey. Comput. graph. 25. pp. 269-285.

[5] Redon S, Kheddar A, Coquillart S, (2002) Fast
Continuous Collision Detection Between Rigid
Bodies. Computer graphic forum 21(3). pp. 279-288.

[6] Canny] (1986) Collision Detection for Moving
Polyhedra. IEEE trans. pattern anal. machine intell.
8(2). pp. 200-209.

[7] Choi Y-K, Wang W, Liu Y, Kim M-S (2006)
Continuous Collision Detection for Two Moving
Elliptic Disks. IEEE trans. robotics, 22(2). pp. 213-224.

[8] Buss S.R (2005) Collision Detection with Relative
Screw Motion. The visual computer 21. pp. 41-58.

[9] Tang M, Kim Y.], Manocha D (2009) C2A: Controlled
Conservative Advancement for Continuous Collision
Detection of Polygonal Models. IEEE Int. conf. on
robotics and autom. pp. 849-854.

[10] Chakraborty N, Peng], Akella S, Mitchell J.E (2008)
Proximity Queries Between Convex Objects: An
Interior Point Approach for Implicit Surfaces. IEEE
trans. on robotics 24(1). pp. 211-220.

[11] Berg J.v-D, Lin M, Manocha D (2008) Reciprocal
Velocity Obstacles for Multi-agent
Navigation. IEEE Int. conf. on robotics and autom.
pp- 1928-1935.

[12] Fiorini P, Shiller Z (1998) Motion Planning in
Dynamic Environment Using Vehicle Obstacle. Int.
journal of robotic research 17(7). pp. 760-772.

[13] Cameron S, Culley RK (1986) Determining the
Minimum Translational Distance between Two
Convex Polyhedral. IEEE Int. conf. on robotics and
autom. pp. 591-596.

[14] Bernabeu E.J (2009) Fast Generation of Multiple Coll-
lision-free and Linear Trajectories in Dynamic Envir-
onments. IEEE trans. on robotics 25(4). pp. 967-975.

[15] Bernabeu E.J (2010) Continuous Distance Compu-
tation for Planar Non-holonomic Motions with
Constant Accelerations, IEEE Int. conf. on robotics
and autom. pp. 4028-4034.

[16] Gilbert E.G, Johnson D.W, Keerthi S.S (1988) A Fast
Procedure for Computing the Distance between
Complex Objects in Three-dimensional Space. IEEE
journal robot. and autom. 4(2). pp. 193-203.

[17] Bernabeu E.J, Tornero J (2002) Hough Transform for
Distance Computation and Collision Avoidance.
IEEE trans. on robotics and autom. 18(3). pp. 393-398.

[18] Hamlin G.J, Kelley R.B, Tornero] (1992) Efficient
Distance Calculation Using Spherically-extended

Real-time

www.intechopen.com

Polytope (s-tope) Model. IEEE Int. conf. on robotics
and autom. pp. 2502-2507.

[19] Bernabeu E.], Tornero], Tomizuka M (2001) Collision
Prediction and Avoidance amidst Moving Objects for
Trajectory Planning Applications. IEEE Int. conf. on
robot. and automat. pp. 3801-3806.

[20] http://www.mathworld.wolfram.com/Stadium.html

[21] Mathews J.H (1987), Numerical Methods for
Computer Science, Engineering and Mathematics.
Prentice Hall.

www.intechopen.com

[22] http://www.mathworld.wolfram.com/Rose.html

[23] Welch G, Bishop G (2007) An Introduction to the
Kalman Filter. University of North Carolina at
Chapel Hill, http://www.cs.unc.edu/~welch/kalman/

[24] Simon D (2006) Optimal State Estimation: Kalman,
Heo, and Nonlinear Approaches. John Wiley & Sons.

Enrique J. Bernabeu, Angel Valera and Javier Gomez-Moreno:

Distance Computation Between Non-Holonomic Motions with Constant Accelerations

15

