

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

http://link.springer.com/chapter/10.1007/978-3-642-38628-2_104

http://hdl.handle.net/10251/38423

Springer Verlag

Mansanet Sandin, J.; Albiol Colomer, A.; Paredes Palacios, R.; Mossi García, JM.; Albiol
Colomer, AJ. (2013). Estimating Point of Regard with a Consumer Camera at a Distance.
En Pattern Recognition and Image Analysis. Springer Verlag. 7887:881-888.
doi:10.1007/978-3-642-38628-2_104.

Estimating Point of Regard with a consumer
camera at a distance

Jordi Mansanet1 ?, Alberto Albiol1, Roberto Paredes2, Jose Manuel Mossi1,
and Antonio Albiol1

1 iTEAM - Instituto de Telecomunicaciones y Aplicaciones Multimedia
alalbiol@iteam.upv.es

2 ITI - Insitituto Tecnológico de Informática
rparedes@dsic.upv.es

Universitat Politècnica de València
Valencia Spain

Abstract. In this work, we have studied the viability of a novel tech-
nique to estimate the POR that only requires video feed from a consumer
camera. The system can work under uncontrolled light conditions and
does not require any complex hardware setup. To that end we propose a
system that uses PCA feature extraction from the eyes region followed
by non-linear regression. We evaluated three state of the art non-linear
regression algorithms. In the study, we also compared the performance
using a high quality webcam versus a Kinect sensor. We found, that de-
spite the relatively low quality of the Kinect images it achieves similar
performance compared to the high quality camera. These results show
that the proposed approach could be extended to estimate POR in a
completely non-intrusive way.

Keywords: point-of-regard, human computer interaction (HCI), gaze
estimation, eye tracking

1 Introduction and related works

The problem of gaze estimation and tracking has attracted increasing attention
recently because of its many potential applications. Since eye gaze provides rele-
vant information about the user’s attention and intention, the applications of eye
gaze trackers are usually categorized into diagnostic or interactive [11]. A few ex-
amples of diagnostic applications include ophthalmology, neurology, psychology
and more recently advertisement and marketing. In the context of interactive
applications eye gaze can be used for eye typing, computer control, and gaming
among many others.

Gaze tracking, also commonly referred to as Point of Regard (POR) esti-
mation, is used to identify the exact point where the person is looking at. The

? The work presented in this paper has been funded by the Spanish Ministry of Edu-
cation under the CICYT contract TEVISMART, TEC2009-09146.

2 Jordi Mansanet et al.

two components that determine the POR are the head pose and the relative
orientation between the eyes and the head.

The problem of POR estimation still remains a challenge due to some inherent
problems such as occlusion, variability between different people’s eyes, lighting
conditions, variation in scale, etc. In addition, other related problems such as
face tracking, eye tracking and head’s pose estimation need also to be addressed.

There are many techniques in the literature to estimate the POR [6]. Many
of them are quite intrusive, using infrared illumination or complex and expensive
hardware systems [12] [16]. Also, some of them require a controlled environment
to work properly. Although these techniques achieve high precision, there are
some kind of applications where other aspects, such as the intrusiveness, the
illumination requirements, the complexity of the hardware, the cost, etc. are
more important at the expense of lower precision.

Most of the POR estimation techniques are based on extracting feature points
on the eyes, like the pupil or the glint (using active light). Once the feature
points are detected, the techniques are grouped into model and regression-based
methods. In the first case, gaze direction is obtained using a geometric model of
the eye [17] [13]. On the other hand, interpolation-based methods assume that
the mapping from eye feature points to gaze coordinates can be estimated by
regression techniques. A few examples of regression techniques used to estimate
the POR are the polynomial parametric model [11] and the neural network model
proposed in [7].

Appearance-based POR estimation techniques do not detect any feature
points on the eyes. Instead, they build a function that maps the eye image
pixels to the POR directly. Baluja and Pomerleau [1] use multilayer network
to estimate the regression. Tan et al. [15] employ Local Linear Embedding to
learn the eye image manifold. Williams et al. [18] use a sparse Gaussian process
interpolation method on filtered visible spectrum images. Typically, these meth-
ods do not require camera calibration since the mapping is made directly from
the image pixels. Also, the error is minimized because is not necessary to locate
specific features on the eyes.

In this work, we have studied the viability of a novel appearance-based POR
estimation technique using a low cost consumer camera at a distance. Our ap-
proach does not require any particular lighting conditions nor expensive hard-
ware. As mentioned above, POR estimation depends on both head pose and eyes
orientation. In this paper we only focus on the second component, i.e. the eyes
component. For this reason, in our experiments we used a metallic structure to
fix the user’s head to it. In our study we also want to know the effect of the
image quality on the POR estimation. For this reason a comparison between
different consumer cameras is presented.

The rest of the paper is organized as follows. A system overview is described
in section 2. Section 3 details the databases created with the different consumer
cameras compared. In section 4, we explain the non linear regression techniques
employed and the feature extractor process. The results of the study are pre-

Estimating POR with a consumer camera at a distance 3

sented in section 5, and we make a conclusion and discuss the future work in
section 6.

2 System overview

FEATURE
EXTRACTOR

ACQUISITION
ENVIRONMENT

TRAIN

TEST

TRAIN SAMPLE SET

 PREPROCESSING

TEST SAMPLE SET

REGRESSION

Fig. 1: Flowchart of proposed approach.

Figure 1 shows the general flowchart of the proposed approach. In the first
stage, the person is situated in front of the screen and his head is fixed to a
metallic structure to avoid pose changes. To generate training, validation and
test data, the user is requested to look at different points of the screen. During
the training, the screen points are distributed on a regular grid. We selected a
4 × 3 grid which we found was a good compromise to avoid a long and tedious
calibration process and obtain a representative training sample set, as shown in
Fig. 1. For the validation and test data, the points are randomly located on the
screen to obtain more realistic error measures.

Once the images are obtained, eyes are located and cropped. To do this, we
used the software developed by Jason M. Saragih [14]. Finally, the eyes images
are transformed to grayscale and normalized to zero mean and unit variance.

Since the image pixels are highly correlated, it’s convenient to use dimension-
ality reduction techniques to extract relevant features, as we will explain later.
Using these features, we trained and compared a few regression algorithms to
obtain the POR estimation. Because this estimation may be noisy, we could use
a Kalman filter [8] that smooths the POR values along time. It is important
to mention that the models are trained independently for each person of the
database.

4 Jordi Mansanet et al.

(a) Logitech (b) Kinect

Fig. 2: Example of person’s eye obtained with both consumer cameras.

3 Database

To study the viability of the algorithms employed, we have created two databases
using two different consumer cameras. The first one was the Logitech webcam
HD C525 [3], which provides color images at a resolution of 1280 × 720 . The
second camera was the Microsoft Kinect sensor [9], which additionally to depth
information provides 640 × 480 RGB images. In Figure 2, we can compare the
quality of the images obtained with both cameras. Although it is evident the
better quality of the Logitech images, the Kinect sensor has the advantage of
providing depth information, which can be very useful to compensate head pose.

In our experiments, we collected images from seven different people without
any particular restriction (persons are allowed to wear glasses and any gender
and age). As we mentioned above, during the training the user is requested to
look at 12 positions located on a grid over the screen (see Fig. 1 for an example
of the eyes images obtained from each position). For the validation and test,
each user was requested to look at 10 random positions on the screen. It is
worth to mention, that in our experiments we used a 20 inches screen with a
1680x1050 resolution, and the face is situated about 50cm from the screen. This
information is important because in the results section we evaluate the error as
a pixel distance to the ground truth.

In the Table 1, we summarize the specifications of the databases.

number of images images number of distribution
persons per person per position positions points

train 7 360 30 12 grid
validation 7 150 15 10 random

test 7 150 15 10 random

Table 1: Databases specifications.

4 Feature extractor and non linear regression

After normalization, we obtain 82×31 cropped eyes images, what yields a total of
2.542 pixel features. To reduce the dimensionality of this feature vector we used
Principal Component Analysis (PCA) [10]. The number of principal components

Estimating POR with a consumer camera at a distance 5

is chosen to keep the 95% of the energy of the training samples, what allows to
obtain 18 PCA features.

Using the PCA features, we estimate the POR value using a non linear re-
gression technique. We have compared three state of the art methods: k-Nearest
Neighbor Regression (kNNR), Support Vector Regression (ε-SVR) [5] and Ran-
dom Forest Regression (RFR) [2].

In kNNR, the values of the k nearest neighbors are averaged to get the
estimation. To increase the performance, the contribution of each neighbor is
weighted according to its distance. In particular, a weight of 1/d2 is used, where
d is the distance to the neighbor. We evaluated three common distances: L0, L1
and L2. The other parameter that was optimized was the number of neighbors
(k).

ε-SVR [5] is a supervised algorithm based on SVM. To perform non linear
regression we compared three different kernels: polynomial, radial basis function
and sigmoid. For each kernel the parameter C was optimized.

RFR [2] is a regression algorithm that uses a set of regression trees. We
have compared two types of weak binary classifiers. The first one, which we call
original, compares a random PCA feature with a threshold. The second one,
(dif), uses the difference between two random PCA features. Finally, the output
of the regression forest is obtained by averaging the prediction of each single tree.
For this reason, an important parameter to optimize is the number of trees of
the forest (nt).

5 Results

In our experiments, we used training and validation data to train and tune the
parameters of the different regression algorithms. To measure the POR per-
formance for a person of the database, we used the Mean Absolute Deviation
(MAD), which can be computed as:

MAD =
1

N

N∑
n=1

|fxn
− fθ(xn)| (1)

where N is the number of samples, fxn
is the ground truth, and fθ(xn) is the

value estimated by the regression function. The overall system performance is
obtained by averaging the MAD results of all the people in the database.

Figure 3 displays the results of the parameter optimization process for all
the proposed regression algorithms. Note that the ε-SVR implementation used
in this work (LIBSVM [4]) optimizes the gaze position for each spatial dimension
independently.

After parameter tuning using the validation data, we choose the following
configuration for each algorithm that provides the best performance. In the case
of ε-SVR we selected a polynomial kernel with Cx = 2 and Cy = 0.25 for each
dimension, respectively. For kNNR we choose k = 45 with the L2 distance.
Finally, for RFR we have used 100 trees and dif as a weak binary classifier.

6 Jordi Mansanet et al.

 150

 155

 160

 165

 170

 175

 0.0625 0.125 0.25 0.5 1 2 4 8 16

M
AD

 e
rro

r (
pi

xe
ls

)

C

Dim x

(a) MAD error as a function of the pa-
rameter C for x-dimension for the ε-SVR
algorithm.

 130

 140

 150

 160

 170

 180

 190

 200

 210

 0.0625 0.125 0.25 0.5 1 2 4 8 16

M
AD

 e
rro

r (
pi

xe
ls

)
C

Dim y

(b) MAD error as a function of the pa-
rameter C for y-dimension for the ε-SVR
algorithm.

 160

 180

 200

 220

 240

 260

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

M
AD

 e
rro

r (
pi

xe
ls

)

k

L0
L1
L2

(c) MAD error as a function of the num-
ber of neighbors (k) using different dis-
tances (L0, L1 and L2) for the kNNR al-
gorithm.

 100

 120

 140

 160

 180

 200

 220

 240

 5 10 20 50 100 500

M
AD

 e
rro

r (
pi

xe
ls

)

nt

original
dif

(d) MAD error as a function of the num-
ber of trees (nt), comparing original and
dif as a weak classifiers, for the RFR al-
gorithm. Each plotted point is an average
computed from 4 repetitions of the exper-
iment.

Fig. 3: Results of the training process for each regression algorithm.

Estimating POR with a consumer camera at a distance 7

Fig. 4: MAD error bars for each algorithm for both consumer cameras. The result
is an average computed from all candidates of the database.

Using the previous configurations, we evaluated the regression algorithms
with the test set. The obtained results are displayed in the Fig. 4 for each
consumer camera. As we can see in the bar chart, the Logitech camera performs
slightly better than the Kinect, as it could be expected due to its better image
quality. Regarding the regression algorithms, ε-SVR and RFR obtain very similar
results. On the other hand, kNNR works worse probably because the regular grid
to map the regression space is not dense enough. In any case the smallest achieved
MAD error is around 150 pixels. Considering our screen size, the proposed system
is able to distinguish around 10 horizontal and 7 vertical zones on the screen,
which is more than enough for many applications.

6 Conclusions and future work

In this work we have shown the viability of POR estimation using a consumer
camera at a distance. The proposed system does not require any active source
of illumination and can adapt to any person after a simple personal calibration
process. The evaluation results show that the system achieves a relatively high
accuracy even if just a few points are used to train the regression algorithms.

We also found that the Kinect sensor performance is not much worse than
the Logitech webcam, despite the poor quality of its RGB images. This opens
the door to the possibility of using Kinect depth information to correct head’s
pose variations.

It is worth to mention that we have built a database containing images of the
Logitech camera and the Kinect sensor from seven different people. This database

8 Jordi Mansanet et al.

allows us to train and test the regression algorithms to estimate the POR, and
to compare the performance of the system using both consumer cameras.

Once the viability of the technique has been proved, the next step would be to
remove the limitation of head’s fixation by coupling head pose estimation. Also
different dimensionality reduction techniques could be explored, in particular
algorithms that preserve the topology of the original space are very promising
in this context.

References

1. S. Baluja and D. Pomerleau. Non-intrusive gaze tracking using artificial neural
networks. Technical report, 1994.

2. L. Breiman. Random forests. Machine Learning, 2001.
3. Logitech HD Webcam C525. http://www.logitech.com/es-es/

webcam-communications/webcams/hd-webcam-c525.
4. Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector

machines. ACM TIST, 2011. Software available at http://www.csie.ntu.edu.

tw/~cjlin/libsvm.
5. H. Drucker, C. Burges, L. Kaufman, A. Smola, and V. Vapnik. Support vector

regression machines, 1996.
6. D.W. Hansen and Qiang Ji. In the eye of the beholder: A survey of models for

eyes and gaze. PAMI, IEEE Transactions, 2010.
7. Q. Ji and X. Yang. Real-time eye, gaze, and face pose tracking for monitoring

driver vigilance. Real-Time Imaging, 2002.
8. R. E. Kalman. A new approach to linear filtering and prediction problems. Trans-

actions of the ASME–Journal of Basic Engineering, 1960.
9. Microsoft Kinect. http://www.microsoft.com/en-us/kinectforwindows.

10. Timmerman M.E. Principal component analysis (2nd ed.). i. t. jolliffe. Journal of
the American Statistical Association, 2003.

11. C.H. Morimoto and M.R.M. Mimica. Eye gaze tracking techniques for interactive
applications. Comput. Vis. Image Underst., 2005.

12. F. Pirri, M. Pizzoli, and A. Rudi. A general method for the point of regard
estimation in 3d space. In Proceedings of the IEEE Conference on CVPR, 2011.

13. M.J. Reale, S. Canavan, L. Yin, K. Hu, and T. Hung. A multi-gesture interaction
system using a 3-d iris disk model for gaze estimation and an active appearance
model for 3-d hand pointing. IEEE Transactions on Multimedia, 2011.

14. J.M. Saragih, S. Lucey, and J.F. Cohn. Face alignment through subspace con-
strained mean-shifts. In International Conference of Computer Vision (ICCV),
2009.

15. Kar-Han T., D.J. Kriegman, and N. Ahuja. Appearance-based eye gaze estimation.
In Applications of Computer Vision, 2002.

16. K. Takemura, Y. Kohashi, T. Suenaga, J. Takamatsu, and T. Ogasawara. Es-
timating 3d point-of-regard and visualizing gaze trajectories under natural head
movements. In Symposium on Eye-Tracking Research and Applications, 2010.

17. A. Villanueva, R. Cabeza, and S. Porta. Eye tracking: Pupil orientation geometrical
modeling. Image and Vision Computing, 2006.

18. O. Williams, A. Blake, and R. Cipolla. Sparse and semi-supervised visual mapping
with the s3gp. In IEEE Computer Society Conference on CVPR, 2006.

