
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

http://link.springer.com/article/10.1007%2Fs11947-012-1015-2

http://hdl.handle.net/10251/38426

Springer Verlag (Germany)

Vidal, A.; Talens Oliag, P.; Prats-Montalbán, JM.; Cubero García, S.; Albert Gil, FE.; Blasco
Ivars, J. (2013). In-Line estimation of the standard colour index of citrus fruits using a
computer vision system developed for a mobile platform. Food and Bioprocess
Technology. 6(12):3412-3419. doi:10.1007/s11947-012-1015-2.



                                      

1 

 

In-line estimation of the standard colour index of citrus fruits using 

a computer vision system developed for a mobile platform 

 

A. Vidal
1,2

, P. Talens
1
, J.M. Prats-Montalbán

3
, S. Cubero

2
, F. Albert

4
,                

J. Blasco
2*

 
1 Departamento de Tecnología de Alimentos. Universitat Politècnica de València. Camino de Vera s/n, 

46022 Valencia, Spain.  

2 Centro de Agroingeniería. Instituto Valenciano de Investigaciones Agrarias (IVIA). Cra. Moncada-

Náquera km 5, 46113 Moncada (Valencia), Spain. Email: blasco_josiva@gva.es 

3Departamento de estadística e investigación operativa. Universitat Politècnica de València. Camino 

de Vera s/n, 46022 Valencia, Spain. 

4Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano. 

Universitat Politècnica de València. Camino de Vera s/n. 46022 Valencia, Spain. 

 

Abstract 

A key aspect for the consumer when it comes to deciding on a particular product is 

the colour. In order to make fruit available to consumers as early as possible, the 

collection of oranges and mandarins begins before they ripen fully and reach their 

typical orange colour. As a result they are therefore subjected to certain degreening 

treatments, depending on their standard colour citrus index at harvest. Recently, a 

mobile platform that incorporates a computer vision system capable of pre-sorting 

the fruit while it is being harvested has been developed as an aid in the harvesting 

task. However, due to the restrictions of working in the field, the computer vision 

system developed for this machine is limited in its technology and processing 

capacity compared to conventional systems. This work shows the optimised 

algorithms for estimating the colour of citrus in-line that were developed for this 

mobile platform and its performance is evaluated against that of a spectrophotometer 

used as a reference in the analysis of colour in food. The results obtained prove that 

our analysis system predicts the colour index of citrus with a good reliability 
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(R
2
 = 0.925) working in real time. Findings also show that it is effective for 

classifying harvested fruits in the field according to their colour. 

Keywords: colour analysis, citrus fruits, degreening, machine vision, automatic 

inspection  

1. Introduction 

Colour is one of the most important attributes of agrifood products, since consumers 

associate it with freshness and it is a critical factor in the customer’s preference for a 

particular product over others (Campbell et al., 2004). Producers strive to guarantee 

that the products they put on the market have the attractive colour typical of mature 

fruits of the variety, as well as ensuring that individual products are packed in 

batches with a similar colour (Díaz et al., 2000; Blasco et al., 2009). The analysis of 

the colour of the whole production can be performed automatically using different 

optical technologies (Pathare et al., 2012), but in most cases there is a need to use 

some colour index or criteria to sort the product into different colour categories (Yam 

and Papadakis, 2004). 

When an object is assessed visually, three physical factors must be present: a source 

of light, the object itself and a light-receiving mechanism, the spectral distribution of 

the light source having a strong influence on the perceived colour (Sahin and Sumnu, 

2006). There are different standard sources of light, but the most widely used in 

colour measurement of food is the standard D65 (Noboru and Robertson, 2005), 

which corresponds to the spectral distribution of the midday sun in Western Europe, 

and is recommended for use as the standard daylight illuminant by the CIE 

(Commission Internationale de l'Eclairage). Colorimeters are electronic devices for 



 3 

colour measurement that express colours as numerical coordinates. However, 

colorimeters are limited to the measurement of small regions of a surface or when the 

object has a homogeneous colour (Gardner, 2007). Instead, digital cameras can 

provide images in which the colours of the pixels are determined individually, a 

method that is more suitable for cases where the surface has a heterogeneous colour 

(Cubero et al., 2011; Lorente et al., 2012). The colour of a particular pixel in an 

image is expressed by three coordinates in a colour model. The primary colours red, 

green and blue (RGB) are the most widely used in computer vision. When inspected 

objects have very different colours, sometimes simple ratios between RGB values 

can discriminate between them, thus saving processing time. For instance, Blasco et 

al. (2009) used the R/G ratio to discriminate four categories of pomegranate arils, and 

achieved a success rate similar to those obtained by visual inspection. 

The biggest drawback is that RGB is a device-dependent colour model. For this 

reason, other colour models closer to the human perception of colour are frequently 

employed, like HSI (Kang et al., 2008; Quevedo et al., 2010; Hashim et al., 2011). In 

addition, RGB or HSI are non-uniform colour models. This means that the same 

numerical distance between two colours of these models may produce distinct 

differences in human perception, depending on the position of such colours in the 

space. Uniform spaces like CIELAB or HunterLab define distances that produce the 

same differences in perception regardless of the position of the colours (Smith and 

Guild, 1931), and for this reason they are very well suited for colour comparison. 

Several works have compared different colour spaces and the conclusion is that the 

most appropriate for measuring or representing the colour of fruit is CIELAB 

(Mendoza et al., 2006; Arzate-Vázquez et al., 2011; Lang and Hubert, 2011). In most 
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cases, however, a better way to give comparable measurements of colour is by using 

colour indices, which combine these coordinates in one single ratio that is easier for 

operators to handle (López-Camelo and Gómez, 2004; Quevedo et al., 2011; 

Cavazza et al., 2012). In this work, the HunterLab system was selected because this 

is the colour space used to determine the standard citrus colour index (CCI) 

(Jiménez-Cuesta et al., 1981).  

A practical application where the inspection of the colour is needed is the assessment 

of citrus fruits. Fruits are harvested manually, then loaded in boxes and transported to 

a packing house, where the fruit is sorted. In the early season, this sorting focuses on 

classifying by colour, because fruit is treated separately (orange fruits go directly to 

market, orange-green undergo a 24-hour degreening process, and green fruit is 

submitted to 72 hours’ degreening). The CCI is the parameter used in the citrus 

industry to determine the harvesting date or to decide which fruit should undergo a 

degreening treatment (DOGV, 2006).  

In this work, the development of a computer vision system for in-line colour 

assessment (to be used on a mobile harvest-aid platform capable of automatically 

inspecting and sorting citrus) is described and compared with a reference colour 

acquisition device. The aim of this comparison is to determine whether the system 

can potentially be used for this purpose and also the accuracy achieved by this new 

sorting system when working under some restrictions due to the working in the field.  

2. Material and methods 

2.1 Hardware used for data acquisition 
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The computer vision system of the machine was composed of a smart camera (Sony, 

XCI-SX 100C/XP), which has a built-in microprocessor and therefore does not need 

an external processing unit, such as a computer. The camera operates under the MS 

Windows XP operating system
©
, and the software to acquire and process the images 

was programmed specifically for this purpose in programming language C. The main 

advantage of this camera is that it can be powered directly from the battery of the 

mobile platform and there is no need to use an external processing unit (computer), 

since the camera already has this capability. This makes this configuration optimal 

for working in the field, where there is no external power supply. In contrast, the 

computational power is very low compared with a standard personal computer and 

this makes it necessary to develop highly optimised image-processing algorithms.  

The light source used to acquire the images was composed of four strips, each 500 

mm in length, with 50 LEDs per strip. Each 0.3 W LED produces light with a colour 

temperature of 6000 K and a colour reproduction of 70 Ra, the Gamma Correction 

parameter of the camera being set to 1.0. Due to the limited energy sources available 

in the field, to achieve a sustainable system we powered the LEDs using a 

stroboscopic mode synchronised with the image acquisition, which allowed a saving 

of about 90% of the energy in comparison with standard powering using direct 

current. This was done using the strobe output of the camera and controlled by a 

specific electronic board designed for this purpose. Polarising filters were used to 

avoid bright spots. 

This mobile platform, which is described in Cubero et al. (2010), is capable of pre-

sorting the harvested fruit into three different categories of quality in the field using 

the computer vision system. To do so, a series of rotating elements individualise the 
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harvested fruit and separate the pieces into two lanes. Fruit enters the inspection 

chamber on rollers that allow the fruit to be transported and rotated under the camera 

while images are captured. The camera captures 1280 x 969-pixel images with a 

resolution of 0.31 mm/pixel that contain up to eight fruits from the two lanes. Image 

acquisition is synchronised with the movement of the fruit using an optical encoder 

that supplies the camera with one trigger pulse each time a new roller enters the 

scene. In this way, four images of each fruit are acquired in different views while the 

fruit rolls along under the camera at a speed of 0.4 m/s. To freeze the movement, a 

shutter speed of 1/500 was set on the camera. Figure 1 shows the image arrangement 

with the four positions of the fruit where the images are captured.  

 

Figure 1. The scene captured by the camera is marked in red. The figure shows the positions 

in which the four images of the fruit are acquired 

 

Once the fruit has been inspected, it is sorted according to the data extracted from the 

images. Figure 2 shows the actual system built to acquire the images. Even though 

this system was developed for capturing and inspecting the images in real time, and 
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to provide results in-line, in this case the four images taken of each fruit were also 

stored in BMP graphic file format. 

 

 

Figure 2. Computer vision system developed for the mobile platform 

 

To take reference measurements, a Minolta spectrophotometer CM-700d was used to 

obtain the spectral reflection curve of the fruit. The equipment uses a pulsed xenon 

lamp (with an ultraviolet cut filter) as the light source and a silicon photodiode array 

as a detector. The instrument utilises the di:8º/de:8º geometry. The instrument was 

calibrated with a white reference tile (L = 97.10, a = -4.88, b = 7.04) before the 

measurements.  

2.2 Fruit used in the experiments 

Experiments were carried out with a set of 225 oranges cv. ‘Navelina’. Fruits were 

chosen randomly from the production line of a packing house and had colours 

ranging from green to the typical orange colour of the cultivar. Fruit included pieces 

that presented a homogeneous green colour with yellow spots or a homogeneous 

orange colour with some green or yellow spots so as to cover most of the possibilities 
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that can be found in the real world. Each fruit was labelled and the colour measured 

with the two devices. Figure 3 shows some illustrative samples of the fruit used for 

the experiments. 

 

Figure 3. Representative samples of the colour of the fruit used for the experiments 

2.3 Feature selection 

The aim of feature selection is to calculate the CCI, which is defined by equation (1). 

 
bL

a1000
  CCI






 

(1) 

The first step is to separate the fruit from the background, which is achieved using a 

threshold in the green channel (G), because this colour is high for all possible skin 

colours in the range of the fruit studied. The threshold was empirically determined by 

analysing the histogram of the images of fruit. Two clear peaks appear in the green 

channel of the images, one corresponding to the background and the other 

corresponding to the fruit. The image is divided into eight areas corresponding to the 

expected location of each fruit, which is an operation that can be performed since the 

position of the fruits is known due to the synchronisation mechanism. Areas on the 

left represent the first view of the fruit while areas on the right show the fourth and 

last view of the fruit. For the first three images, the data is just acquired and stored in 

the memory of the computer and only when the last image has been acquired is the 

CCI calculated. 
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The colour of the pixels in the image is codified in RGB coordinates and, therefore, 

they need to be converted to HunterLab coordinates. The first step is to convert the 

RGB value to XYZ coordinates using the standard equations described in Mendoza 

et al. (2006). Then, the XYZ values are converted to L,a,b coordinates using the 

equations corresponding to illuminant D65 and standard observer 10º described in 

(Hunterlab, 2008). This conversion is computationally very costly in terms of 

processing time if it is performed for each pixel in the image. As the processing time 

is a critical restriction for in-line applications, mainly due to the low-power but 

energetically efficient solution adopted for the mobile platform, in order to speed up 

the colour space conversion, this operation was performed previously off-line by 

calculating the CCI of all possible RGB values in the image, these values being 

stored in a Look-Up Table (LUT). This table is preloaded in the memory of the 

computer, so that during in-line processing the HunterLab value of each pixel can be 

obtained just by consulting the LUT, which dramatically reduces the computational 

cost and makes it very effective for in-line processes.  

To decide the CCI of a fruit, two different algorithms were tested in order to know 

the accuracy and performance of each one: 

1. The RGB values of all pixels in the image segmented as fruit were converted 

to HunterLab (the LUT was consulted for each pixel). Then the CCI was 

calculated for each pixel. The CCI of the image was calculated as the mean of 

the CCI of all the pixels of the fruit. The result was called LUT-CCI. 

2. The mean of all the RGB values of the pixels belonging to the fruit was 

calculated. The resulting value was transformed into the CCI value using the 

LUT. The result was called PIX-CCI.  
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The CCI of the fruit was then calculated as the mean of the CCI of the four partial 

images of the fruit. Figure 4 shows the flowchart of these two algorithms. 

 

Figure 4. Algorithms developed to estimate the CCI values of the fruit. Left) obtaining the 

CCI value from the average of the CCI of each pixel (n = total number of pixels in the image 

belonging to fruit). Right) obtaining the CCI value from the average of the RGB values 

 

To obtain the reference values, the spectral data of six points on each fruit were taken 

using a spectrophotometer. The acquired areas were chosen randomly in an attempt 

to cover the whole surface, but including coloured spots when they were present. The 

average of these spectral data was calculated to obtain the colour reflectance curve of 

each orange. The data of this reflectance curve were multiplied by a CIE standard 

illuminant D65 and by the CIE standard observer 10º and converted into the 
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tristimulus values of XYZ (Hutchings et al., 2002). The XYZ coordinates were 

converted to HunterLab using the same equations as those implemented in the image 

processing algorithm (Hunterlab, 2008). Later, the corresponding CCI value is 

calculated using Equation 1.  

2.4 Test 

The CCI values estimated for each fruit by the laboratory and industrial vision 

systems were compared with those obtained using the spectrophotometer by means 

of a quadratic regression. 

Two tests were carried out during this work: 

1. To assess which approach for image analysis provides a more accurate 

prediction of the CCI. 

2. To determine the behaviour of the vision system towards the 

spectrophotometer.  

The statistical analysis of data was performed through multiple regression models 

using Statgraphics Centurion (StatPoint Technologies, USA). 

3 Results and discussion 

In terms of processing speed and computational cost, this system cannot be compared 

with a standard configuration for image processing composed of a camera and a 

computer, as is commonly used in a packing house. Using this standard equipment 

would allow more complex algorithms to be implemented, but on the other hand the 

power supply would become a problem, as a power inverter would be needed to 

convert the supply from the battery to the standard 220 V used by this equipment. 

Table 1 shows the processing time needed by the system for each image. By 
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estimating the average RGB of the fruit and then making just one conversion to 

HunterLab, an in-line process of eight images per second can be achieved. 

Table 1. Time required by the different algorithms to process one image 

Operation Time (ms) 

Estimating the CCI of each pixel without using LUT 1171 

Estimating the CCI of each pixel using LUT (LUT-CCI) 189 
Estimating the CCI from the average RGB (PIX-CCI) 125 

 

3.1 Prediction models for LUT-CCI 

In order to assess the goodness of the imaging system developed, a multiple linear 

regression model (Montgomery, 2005) was built on a training set of 150 out of the 

225 oranges. The remaining 75 oranges (all of them of the same colour ranges as the 

ones used for the calibration set) were used for validation. Table 2 presents the 

corresponding Regression model and ANOVA table.  

The determination of the model can be performed in different ways. In this case, the 

method chosen was to inspect the statistical significance of both the linear and 

quadratic effects of the computer vision system, which have a p-value of 0% – a 

value that gives complete confidence in the model that was built. When a new term 

(cubic) was included, the R
2
 value did not improve from a statistical point of view 

(general test for hypothesis testing), which meant that this new term should not be 

included. 

The R
2
 is very good, which offers confidence in the computer vision acquisition 

system that was developed. The model for the LUT-CCI algorithm presents 

statistically significant linear and quadratic coefficients, which means that there is 

some curvature in the relation between the spectrophotometer and the vision system. 

Table 2. Regression and ANOVA analyses for the LUT-CCI implementation 

 
Multiple Regression Analysis 

----------------------------------------------------------------------------- 
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                                       Standard          T 

Parameter               Estimate         Error       Statistic        P-Value 

----------------------------------------------------------------------------- 

CONSTANT                 7.85188       0.162265        48.3893         0.0000 

LUTCCI-VISION           0.380083     0.00996238        38.1518         0.0000 

LUTCCI-VISION^2       0.00227994    0.000495653        4.59987         0.0000 

----------------------------------------------------------------------------- 

 

                           Analysis of Variance 

----------------------------------------------------------------------------- 

Source             Sum of Squares     Df  Mean Square    F-Ratio      P-Value 

----------------------------------------------------------------------------- 

Model                     4110.14      2      2055.07     775.37       0.0000 

Residual                  389.613    147      2.65043 

----------------------------------------------------------------------------- 

Total (Corr.)             4499.76    149 

 

R-squared = 91.3415 percent 

 

In order to validate the models properly, the next step was to use the regression 

models to predict the colour values of the validation set. Figure 5 presents the 

corresponding validation results. In this case, the validated R
2
 value is even a little 

bit higher than the one obtained for the calibration set. This result indicates that the 

vision system developed for working on a mobile platform under field conditions is 

completely reliable.  

 
Figure 5. Vision system (LUT-CCI) vs. spectrophotometer values plot. The x coordinates 

correspond to the reference values, whereas the y coordinates relate to the computer vision 
system  

 

3.2 Prediction models for PIX-CCI 

 

Table 3 presents analogous results for the multiple linear regression model in the 

case of the PIX-CCI vision algorithm. The R
2
 is practically the same in this case, 

thus giving the impression that both algorithms perform in the same way. The 
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determination of the model was carried out using the same procedure as previously 

explained for the LUT-CCI system. 

 
Table 3. Regression and ANOVA analyses for the PIX-CCI implementation 

 
Multiple Regression Analysis 

----------------------------------------------------------------------------- 

                                       Standard          T 

Parameter               Estimate         Error       Statistic        P-Value 

----------------------------------------------------------------------------- 

CONSTANT                 9.43425       0.158145        59.6558         0.0000 

PIXCCI-VISION           0.370914      0.0093459        39.6874         0.0000 

PIXCCI-VISION^2       0.00134088    0.000432616        3.09947         0.0023 

----------------------------------------------------------------------------- 

 

                           Analysis of Variance 

----------------------------------------------------------------------------- 

Source             Sum of Squares     Df  Mean Square    F-Ratio      P-Value 

----------------------------------------------------------------------------- 

Model                     4117.19      2       2058.6     791.01       0.0000 

Residual                  382.567    147      2.60249 

----------------------------------------------------------------------------- 

Total (Corr.)             4499.76    149 

 

R-squared = 91.4981 percent 

 

 

When computing the R
2
 value for the validation set, we can see in Figure 6, which 

shows the reference vs. predicted values for the vision system, that it is similar to that 

provided by the LUT-CCI algorithm. 

 

 
Figure 6. Vision system (PIX-CCI) vs. spectrophotometer values plot. The x coordinates 

correspond to the reference values, whereas the y coordinates relate to the vision system 

 

Finally, Table 4 presents the 95% confidence interval for the comparison of the 

(percentage) determination coefficient values. From this information, it is possible to 
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see that all models provide comparable prediction R
2
 values, so they can all be used 

with the same reliability. 

 

Table 4. Confidence intervals (95%) for the comparison of percentages, for the validated R
2 

 LUT-CCI  PIX-CCI 
 LCL UCL LCL UCL 

Industrial vision system 88.03% 96.57% 88.30% 96.72% 

 

4 Conclusions  

A computer vision system allowing the colour index of citrus fruits to be measured 

automatically while the fruit is being harvested has been developed and tested. This 

system allows pre-sorting the fruit in the field according to the amount of degreening 

that is needed. The main advantages are the high speed of processing the fruit using 

low computational performance equipment and the ability to include the colour of 

the entire surface of the fruit. To determine the system’s capability to reproduce the 

colour of whole fruits, they were compared with the measurements obtained using a 

spectrophotometer (reference system in colour measurements of food). The colour of 

the fruits was measured by the imaging systems using two different algorithms: from 

the average of the CCI values and from the average RGB values, the latter being 

faster and more reliable. High correlations were achieved in all cases. In both cases a 

well-adjusted R
2
 value was obtained: 92.30% for the LUT-CCI system and 92.51% 

for the PIX-CCI system. Being faster the latter, it is the recommended method. These 

results are promising and demonstrate the feasibility of a computer vision system to 

inspect the colour of citrus fruits in field conditions while the fruit is being harvested, 

which is a valuable step forward for this industrial sector. 
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