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Abstract—In photogrammetry applications, camera parameters 

must be as accurate as possible to avoid deviations in 
measurements from images. Errors increase if wide angled lens 
cameras are used. Moreover, the coupling between intrinsic and 
extrinsic camera parameters and the lens distortion model 
influences the result of the calibration process notably. This paper 
proposes a method for calibrating wide angle lens cameras which 
takes into account the existing hard coupling. The proposed 
method obtains stable results which do not depend on how the 
image lens distortion is corrected. 
 

Index Terms— close-range photogrammetry, camera 
calibration, lens distortion, distortion model, metric calibration, 
robust estimators 
 

I. INTRODUCTION 
EOMETRIC camera calibration consist of computing the 
mapping between points in the scene and their 

corresponding points in the image. This mapping is basically 
represented with the pin-hole model, composed with intrinsic 
and extrinsic parameters. Extrinsic parameters represent the 
transformation between the scene and camera coordinates 
systems and intrinsic parameters give the projective 
transformation of points in the scene to points in the image. If 
image is distorted the mapping between both set of points is 
improved if distortion is corrected previously. Lens distortion 
is corrected by using a lens distortion model which transforms 
distorted pixels locations in the image to corrected ones. When 
camera is calibrated both pin-hole and lens distortion models 
are computed.  
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Extrinsic and intrinsic camera pin-hole model parameters 
present high correlation. This means that several models can 
represent accurately the mapping between points in the scene, 
if a reprojection error is used for validating it. Moreover, lens 
distortion correction influences the computed pin-hole model 
notably. Fig. 5 shows a distorted image which has been 
corrected using two of existing lens distortion correction 
methods. Depending on which image is used to calibrate the 
pin-hole model, results are different since calibration data is 
different obviously. These differences are reflected in the 
calibrated camera parameters. If a wide angle lens camera is 
calibrated, variations increase significantly since images are 
high distorted. 

To represent low distortion in the image, Brown [1] 
proposed the radial, decentring and prism distortion model 
which has been widely used [2]-[4]. With high distortion, 
higher order terms of radial, decentering and prism distortion 
do not fully represent the camera lens distortion [4]-[6]. 
Therefore, to represent the high distortion effect in the image 
Basu and Licardie [7] proposed the logarithmic distortion 
model. Also, Devernay and Faugeras [4] introduced the field-
of-view distortion model for fish-eye lenses. Fitzgibbon [8] 
recommends the use of the division model to express high 
distortion with just one parameter. Hartley and Kang in [9] 
propose the nonparametric model which only considers radial 
distortion but compensates distortion in all types of lenses, 
from standard low-distortion to high distortion fish-eye lenses. 
Claus and Fitzgibbon [10] proposed a lifting strategy to build 
the rational function distortion model for a wide range of 
highly distorted cameras.  

Normally existing camera calibration methods compute the 
pin-hole and lens distortion in a two step process where first 
lens distortion is corrected and second pin-hole is computed 
[11-16]. Other methods compute both distortion and pin-hole 
models in one step [17-18]. Any described method do not 
consider the coupling of pin-hole and lens distortion models 
except in [19], where the coupling between intrinsic and 
extrinsic camera parameters is taken into account but the 
coupling with the distortion model is not considered.  

In this work we propose a calibration process in which the 
coupling between pin-hole intrinsic and extrinsic camera 
parameters and lens distortion models is considered. To avoid 
the coupling between both models, locations of pixels which 
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are going to participate in the calibration process are corrected 
previously. Using the basic mapping projection functions and a 
set of constraints which define the image formation, pixel 
locations in the image are corrected before pin-hole and lens 
distortion models are computed. The result is the pin-hole and 
the lens distortion model which represent the calibrated 
camera really.  

Paper is organized as follow. First, the coupling between 
intrinsic, extrinsic and lens distortion models is briefly 
explained. Second, the pixel location correction method and 
the calibration process are described. Third, experimental 
results are presented. Paper ends with some concluding 
remarks.  

 

II. THE COUPLING BETWEEN INTRINSIC, EXTRINSIC AND LENS 
DISTORTION MODEL 

Pin-hole model is defined as follows: 
 

ptrrrKptRKqs iaaaaiaaai ]··[]··[· 3210
, ==  (1) 
 
where i,aqo represent the image coordinates of a point ip in 

the scene. [aR at] is a 3x4 matrix containing the extrinsic 
parameters which transform both the world and the camera 
coordinate systems (rotation matrix aR and translation vector 
at=(tx, ty, tz)’). a represents one camera location. K is a 3x3 
matrix with the camera intrinsic parameters.  
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with (u0, v0) the coordinates of the principal point, f is the 

focal length (distance from the focal point F to the image 
plane) and u and v the scale factors according to image axes 
(mm to pixels scaling). s is an arbitrary scale factor since 
coordinates are in the projective space and γ is the skew factor. 
Fig. 5 shows how a distorted image is corrected with two 
existing methods. Fig. 5(a) shows the original captured 
distorted image and Figs. 5(g) and 5(j) are corrected using two 
different lens distortion correction methods. After correction, 
image of Fig. 5(g) seems closer to the camera than image of 
Fig. 5(j). However original image is the same in both cases. 
Which one is the precise image correction? How does this 
effect influence the calibration of the camera parameters? 
From the point of view of the camera parameters, this effect is 
reflected in the focal length f and in the translation in the Zc 
axis. Fig. 1 shows this influence as follow. Without lose of 
generality, we assume an ideal camera where u=1, v=1 and 
γ=0, ru is the radius of the point location iqo in the image 
without distortion of the projected point ip with radius ri. f and 
tz represent the exact camera parameters which are computed 
when camera is calibrated using ru and ri. If a distorted image 
is captured, lens distortion is corrected and rc is the radius in 
the corrected image of the projected point ri. Camera 

calibration using rc and ri, will compute f’, tz’ which does not 
represent the exact camera parameters. From the point of view 
of the camera calibration process, results are correct since the 
computed model represent the transformation between rc and 
ri, accurately. However, the computed parameters are just 
adapted to the calibration data but they do not represent the 
calibrated camera not at all. Consequently, lens distortion 
correction influences the camera calibration seriously and 
especial care should be taken into account to correct it. 
Camera should be calibrated with corrected points which are 
closer to the ideal point locations. If corrected points are 
deviated from the ideal ones, calibration result will be 
erroneous. 

 

III. THE PROPOSED CAMERA CALIBRATION PROCESS 
The proposed calibration process corrects the pixel location 

in the distorted image of those pixels which are going to 
participate in the calibration process. This correction is done 
before pin-hole and lens distortion is calibrated. When pixels 
locations are corrected, pin-hole and lens distortion models are 
calibrated with some of existing methods. 

To correct the location of distorted pixels in the image, the 
basic mapping projection functions and a set of constraints 
which define the image formation are used. Projective 
geometry constraints are shown in Fig. 2. Since points in a 
chessboard are located in equally distanced straight lines 
which are perpendicular and parallel each other, images of 
these equally distanced perpendicular and parallel straight 
lines must fulfil theses constraints under perspective 
projection. These are the cross-ratio, straight lines, vanishing 
points, horizon line and focal length constraint. 

 
Fig. 1. The projection in the image plane iqo of a point in the scene ip is 
defined with the pin-hole model. Also, the rectilinear projection function 
describes the undistorted location in the image plane ru which depends on 
the incidence angle θ. The variation of radial distance from the centre of the 
image influences the focal length f and the translation distance tz since both 
parameters are coupled. If iqo is moved to iqc, focal length is f’ and the 
translation distance is t’z. The central area of the image (CAI) is defined with 
an incidence angle of θ=25º.  
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A. Cross-ratio 
If CR(p1,p2,p3,p4) represents the cross-ratio of four points in 

the template, this cross-ratio is equal to all four set of points 
which are equally distributed in the planar template. Points in 
the template are separated in n sets of m points which form 
straight lines, where n is the number of straight lines in the 
calibration template (horizontals and verticals) and m is the 
number of points in each line. So, qk,l is a point k of the 
straight line l in one image, l=1..n, k=1..m, the following index 
measures how a set of points are equally separated under 
perspective projection.  
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Taking into account that the chosen planar template has 

straight lines in vertical and horizontal directions, this index 
must be true for horizontal and vertical straight lines. Each 
point detected in the image i,aqd belongs to two lines and it 
represents the intersection. Thus, the cross-ratio of the point 
i,aqd with all its neighborhoods must be true in both directions. 
CR(p1,p2,p3,p4) is computed previously when the planar 
template is designed. 

B. Straight lines 
On the other hand, since points in the image have been 

separated in n straight lines of m points, they must fit in the 
lines perfectly. So, if a set of points qk,l=(uk,l, vk,l, wk,l) fits in a 
straight line, the following expression is true: 
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where k=1..m and al, bl, cl represent the set of parameters 

which defines the straight line l. In a matrix from we have 
A·l=0, where A is a mx3 matrix and l=(al, bl, cl)T. If line 
parameters are computed with the m points which belong to 
the line l, the orthogonal distance of the m points to the line l 
must be zero. Following equation measures how a set of points 
fit in lines. 
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Again, vertical and horizontal straight lines are taken into 

account. 
 

C. Vanishing points 
It is well known that parallel lines in the scene will meet in a 

vanishing point in an image. Also, all vanishing points in one 
image fit in the horizon line since we have an image of a 

planar template. Therefore, straight lines which are parallel in 
the calibration template will intersect in a unique vanishing 
point in the image. If the template has horizontal, vertical and 
both diagonals parallel lines, four vanishing points exist in any 
template image. Moreover, these four vanishing points should 
fit in a horizon line perfectly if projective transformations are 
taken into account. These constrains are used in the point 
correction process.  

If al, bl, cl represent the set of parameters which defines the 
straight line l in the image, following expression defines the 
vanishing point in the image for a set of lines. 
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l=1..t where t represent the number of parallels lines and 

qvp=(uvp, vvp, wvp) is the vanishing point in homogeneous 
coordinates. Expressed in a matrix form we have: 

 
0· =vpqB  (13) 

 
Since an image has four set of parallels lines, 1qvp, 2qvp, 3qvp, 

4qvp represent the four corresponding vanishing points in an 
image which are computed with the eigen vector of matrix B. 
Following function should be zero if all parallel straight lines 
intersect in the corresponding vanishing point. 
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D. Horizon Line 
The orthogonal distance of a vanishing point to all parallel 

straight lines is zero. If these four vanishing points fit in the 
horizon line, the following expression is true. 

 

 
Fig. 2. Perspective projective constraints used for correcting points detected 
in the image. Cross ratio guaranties that parallel lines remain parallels under 
perspective projection. Points are corrected to belong to straight lines. All 
parallel lines meet in a vanishing point in an image. All vanishing points 
form the horizon line. 
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where lh=[ah, bh, ch] represents the set of parameters which 

defines the horizon line computed as an eigen vector of matrix 
C. Matrix C is formed with the four vanishing points 
coordinates. According to perspective projection constraints 
all vanishing points fit in the horizon line perfectly. Following 
expression must be true: 
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E. Focal Length 
Proposed previous constraints are true for any image of the 

template alone. If several images are captured with the same 
camera, points should be corrected taking into account 
constrains concerning the camera intrinsic parameters. If we 
keep the principal point fixed at the center of the image, and 
assume orthogonal axis, intrinsic parameters matrix K contains 
only the focal lengths fx and fy. 
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Revising [14-16] works, the four vanishing points 1qvp, 2qvp, 

3qvp, 4qvp, provide two scalars constrains in the focal lengths fx 
and fy, since they are the vanishing points of mutually 
orthogonal lines in the scene. These two scalars constrains are: 
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where 1uvp, 1vvp, 1wvp , 2uvp, 2vvp, 2wvp, 3uvp, 3vvp, 3wvp, 4uvp, 4vvp, 

4wvp, are the known pixel coordinates of the vanishing points 
1qvp, 2qvp, 3qvp, 4qvp respectively.Expressed in a matriz form we 
have: 
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Given several images captured with the same camera, the 

camera focal length can be computed as a least squares 
minimization problem as f=-(DT·D)-1·DT·E where: 
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i,aqvp=(i,auvp, i,avvp, i,awvp) represents the vanishing point i, in the 
image a. i=1..4 and a=1..s where s is the number of images. If 
the four vanishing points in all images are defined with the 
same camera, following function is zero: 

 
GGJ T

FL ·=  (21) 
 

where G=-D·(DT·D)-1·DT·E+E. G contains the error of the 
focal length computed with a given set of vanishing points. 
The minimization principle of least square method (LSM) has 
been used. 
 

F. Defining the scale factor 
Proposed constraints are true if points are scaled in the 

image. Control points of images of Figs 5(g) and 5(j) could 
satisfy all proposed constraints. Therefore it is necessary a 
scale factor which defines the exact pixel location in the 
image. To define the exact scale factor mapping projection 
functions are used. Since, lens manufacturers attempt to design 
lenses which respond to any mapping projection function, the 
mapping projection function will help us to decide how the 
correction should be done. Several mapping projection 
functions exist depending on the field of view of the lens. 

The rectilinear projection function preserves the linearity 
and is distortion free. Rectilinear projection is also called pin-
hole and is given as: 

 
)·tan(θfru =  (22) 

 
If wide field of view lens is necessary, the size of the 

projected image becomes very large under rectilinear 
projection. A field of view of 180º will need an image of 
infinite size. For wide angled lens other projection functions 
exist such as equidistant, orthographic, equisolid or 
stereographic. The equidistant projection function computes 
the distance on the image plane rq proportional to the angle in 
radians of the incident ray as follows: 

 
θ·frq =  (23) 

 
The orthographic projection function maps the incident ray 

in the image as: 
 

)·sin(θfro =  (24) 
 
The equisolid projection function is also known as equal-
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area and is defined as: 
 

( )2·sin·2 θfre =  (25) 
 
The stereographic projection function is: 
 

( )2·tan·2 θfrs =  (26) 
 
In all cases, f is the distance between the focal point and the 

image plane, θ is the incidence angle of the projected ray to 
the optical axis of the camera and ru, rq, ro, re and rs, is the 
distance from the focal point on the image plane. Equidistant, 
orthographic, equisolid and stereographic projection functions 
distort images differently, and the manner of distortion is 
referred to as their mapping function. Images from a wide 
angle or fish-eye lens camera have significant radial lens 
distortion where points on the image plane are displaced from 
their ideal position along a radial axis from the distortion 
centre. 

The rectilinear projection function defines the right focal 
length of a lens only. If camera is calibrated with pixels which 
satisfy the rectilinear projection function, the computed focal 
length will be correct. Therefore, the focal length of a lens 
constructed under the equidistant, orthographic, equisolid and 
stereographic projection functions will be defined with the part 
of the lens which has a performance similar to the rectilinear 
projection function. If we find an area in the image plane 
where any wide angle mapping projection functions have 
similar performance than the rectilinear projection function, all 
pixels in this area will give the correct focal length of a wide 
angle lens if they are used in the calibration process. If we use 
pixels located in another part of the image to calibrate the 
camera, the computed focal length will be erroneous. 

Comparing all mapping projection functions, projected ray 
is the same ru=rq=ro=re=rs when θ=0. To obtain an area in the 
image plane, a nonzero incidence angle θ is needed. A nonzero 
angle θ is computed if a deviation between rectilinear ru and 
distorted rd projection is accepted. Considering a 10% of 
deviation between both radial distances, an incidence angle 
θ=25 degrees gives a difference between both radial distances 
under 10%. Therefore, radial distances in the distorted image 
with an incidence angle θ under 25 degrees can be used to 
obtain the focal length f of the wide angle lens. This value is 
computed using the rectilinear and orthographic projection 
functions assuming that ro=0.9·ru. 

 

º25)9.0arccos(
)·sin()·tan(·9.0

≈=
=

θ
θθ ff  (27) 

 
If equidistant, equisolid or stereographic projection functions 
are used, similar value of θ is computed. We call the central 
area of the image (CAI), the area of the image which has an 
incidence angle under θ=25º. Fig. 1 shows this CAI area. Since 
CAI could represent the ninth part of the image or less, 
calibration data will be reduced notably. To increase the 

calibration data, we propose to correct all remaining pixels in 
the image using the location of pixels in CAI assuming that an 
image of a known calibration template is used to calibrate the 
camera. If a chessboard is used as a calibration template, 
points in the image plane which are in CAI will be located 
correctly and the remaining points can be corrected according 
with the location of the points in CAI. To correct the 
remaining points in the image, projective geometry constraints 
which define the image formation of a chessboard are used. 

G. Distorted pixel location correction 
Joining all proposed geometrical constraints, the following 

equation measures how a set of undistorted points of one or 
several images, correspond to the points of a “chessboard” 
template under perspective projection rules.  

 
FLHLVPSTCR JJJJJJ ++++=  (28) 

 
The non linear minimization has as inputs the cross ratio 

value of the template points CR(p1,p2,p3,p4), locations of 
points in CAI area and the set of points in the image or images 
i,aqd. For a given set of points, straight lines parameters (al, bl, 
cl), vanishing points 1,jqvp, 2,jqvp, 3,jqvp, 4,jqvp, horizons lines jlh, 
and focal lengths fx, fy are computed. With the computed 
parameters, equation (28) is evaluated and points locations i,aq 
are corrected to minimize (28). This process is repeated until a 
minimum is reached. When (28) is minimized, distorted points 
extracted from the image i,aqd have been undistorted to i,aqo. 
Fig 3 shows distorted points i,aqd in blue and corrected ones 
i,aqo in red. Points located in the CAI area are not moved. A 
Levenberg‐Marquardt non linear minimization algorithm is 
used which starts with the set of points in the image or images 
i,aqd and ends with the set of undistorted points i,aqo.  

To improve the condition of the non-linear minimization 
process, points coordinates are referred to the center of the 

 
Fig. 3. Blue dots represent detected points i,aqd in the distorted image of Fig. 
5(a). Red dots represent undistorted points i,aqo corrected with the proposed 
method. Pixels located in the central area of the image are not moved while 
pixels located in the border of the distorted image are moved to accomplish 
all projective geometry constraints.  
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image and not to the left top corner. If point’s coordinates are 
referred to the center of the image, the evaluation of JFL is 
direct also. 

If this non linear minimization process is compared with the 
non linear minimization step of any calibration method, this 
process is better conditioned notably. Non linear minimization 
looks for points coordinates in pixels only. This means that all 
variables produce equal alteration of error function value when 
a variation of 1 unit is done with any of them. The non linear 
minimization step of existing calibration methods looks for 
values of the principal point, focal lengths and rotation and 
translation vector parameters. Obviously, a variation of 
translation vector in 1 meter has different effects in the error 
function than a variation of principal point value in 1 pixel. 
With the proposed method, risks of finishing the non linear 
minimization step in a local minimum decrease. On the 
contrary the number of variables increases and the 
minimization time enlarges notably. Since the calibration 
procedure is an off-line process this fact does not represent any 
inconvenience. 

 

H. Computing the lens distortion and the pin-hole models 
The connection between corrected points i,aqo and detected 

ones symbolized with i,aqd is done with the lens distortion 
model. Several distortion models exist. Revising the lens 
distortion model evaluation in [20], the rational function lens 
distortion model presented by Claus and Fitzgibbon in [10] 
can represent low distortion and high distortion accurately. 
The logarithmic of Basu and Licardie in [7], the division of 
Fitzgibbon in [8], and field-of-view of Devernay and Faugeras 
in [4] distortion models have similar performance. The radial, 
tangential and prism distortion model does not work properly 
if high distortion is present.  

The rational function model is given by: 
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It can be expressed in a linear combination of the distortion 

parameters as: 
 

),(·),( dddd vuxAvud =  (30) 
 

where d is a vector in the camera coordinates that represents 
the ray direction along which pixel qd=(ud, vd) samples. A is a 
3x6 matrix containing distortion parameters and x is 6-vector 
of monomials in ud and vd which define the lifting of the image 
point (ud, vd) to a six dimensional space: 

 
[ ]Tdddddddd vuvvuuvux 1·),( 22=  (31) 

 
Undistorted image coordinates qo=(uo, vo)  are computed by 

the perspective projection of d(ud, vd): 
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where rows of A are denoted by aT

1..3. 
Using detected distorted i,aqd points and corrected 

undistorted i,aqo, parameters of the rational function lens 
distortion model (elements of matrix A) are computed. 
Rearranging (30) we have: 
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which can be expressed in a matrix form as: 
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Given n·m points, we can stack all equations together to 

obtain a total of 2·n·m equations or in matrix form as W·a=0, 
where a=[a11, a12, a13, a14, a15, a16, a21, a22, a23, a24, a25, a26, 
a31, a32, a33, a34, a35, a36]T. The solution is given by the 
eigenvector associated with the small eigenvalue of matrix W. 
To refine this solution through maximum likelihood inference, 
the following error function is minimized: 
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(29) is a non-linear minimization problem solved with the 
Levenberg-Marquart algorithm. Initial guess of matrix A is 
obtained by using the closed-form solution and cu, cv is 
initialized with the principal point. The non-linear 
minimization always converges to a solution also solving the 
distortion centre. 

To compute the pin-hole model, method proposed by Zhang 
in [9] is used since this method computes the camera 
parameters if one or several images of a planar calibration 
template have been taken. In this case, calibration template 
points ip and undistorted corrected points i,aqo are used (see [9] 
for details of the calibration method). 

 

I. Degenerate configurations 
In general, the proposed algorithm for points location 

correction obtains good results. However if images are taken 
under specific conditions, points locations cannot be corrected 
accurately. This case is when images of the planar template are 
taken with the camera in a zenital location, straight lines in the 
image are parallel and therefore they will not meet in any 
vanishing point. In consequence, since the vanishing points do 
not exist, the horizon line disappears. As a result constraints 
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described in subsections C, D and E do not exist and the point 
location correction algorithm cannot be used as it has been 
described in this subsection. Taking in to account that camera 
locations from where images are taken are free defined, zenital 
location should be avoided if the proposed algorithm is wanted 
to be used successfully. 

Also, since the calibration process is based on a planar 
template, special care should be taken into account when the 
calibration template is built. Obviously, any deformation in the 
planar calibration template will perturb the computed 
parameters. 

From the point of view of the camera parameters calibration 
algorithm, image plane of several images should not be 
parallel to provide more constraints on the camera intrinsic 
parameters (see [9] for details). 

 

IV. EXPERIMENTAL RESULTS 
The proposed calibration method is tested with real and 

simulated data. The proposed method is compared also with 
four existing lens distortion correction methods, the non metric 
calibration of lens distortion (NMC) proposed by Ahmed in 
[21], the polynomial fish-eye lens distortion correction (PFE) 
presented by Devernay and Faugeras in [4], the lens distortion 
correction from a single image (DCSI) presented in [16] by 
González-Aguilera et al. and the parameter-free radial 
distortion correction (PFR) proposed by Hartley and Kang in 
[9]. With these five methods, lens distortion is calibrated and 
images are undistorted. Each calibration method computes a 

different distortion model named as Dm in equation (36). The 
NMC computes the traditional radial, decentering and prism 
lens distortion model. The PFE computes a set of coefficients 
of a polynomial which do not have the radial or decentering 
meaning. The DCSI computes two parameters k1 and k2 which 
do not have the radial meaning. The PFR determines the radial 
distortion in a parameter-free way, not relying on any 
particular radial distortion model. The parameter free feature 
makes the method useful for fish-eye, wide angle, and narrow 
angle lenses. After, the pin-hole is calibrated with the method 
proposed by Zhang in [3] using corrected images. The 
calibration template is a 210mm x 297mm checkerboard with 
165 corners points (11x15), similar to that shown in Fig. 5. 
Images are taken from 20 different locations. 15 images are 
used to compute parameters and 5 to test results. Results are 
evaluated comparing the computed camera parameters values 
with the simulated or physical ones and evaluating the 
calibration error. Calibration error is given with the well-
known reprojection error. 

( )∑∑ −
a i

m
aa

p
ai

d
ai DtRKqq 2,, ),,,(          (36) 

where i,aqp(K, aR, at, Dm) is the projection of point ip in image 
a according to equation (1), followed by distortion according 
to the computed distortion model Dm. 

A. Computer Simulations 
The simulated camera has an image scale factor sx=1.5 and 

an effective focal length f=8, resulting in pixel focal lengths of 
fx=750, fy=750. Image resolution is 640x480 and deviations 
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Fig. 4. Result with simulated data varying the number of images. The translation vector varies depending on the lens distortion correction method. Reprojection 
error is small. This means that the mapping from template points to distorted image points is correct for calibrating data. However translation vector varies since 
calibration data is different since the lens distortion correction is different depending on the chosen method.  



 8 

between the CCD and the lenses are represented with the 
principal point at (318, 243) pixels and the skew factor γ=1.09 
equivalent to 89.95º.  

Images of the checkerboard are generated according to pin-
hole model and they are distorted using the stereographic 
projection function. Gaussian noise of mean 2 pixels and σ=1 
is added. The distortion centre is simulated at cu=315, cu=267 
pixels.  

To test the proposed calibration method, we vary the 
number of images from 3 to 15. Table I shows the computed 
parameters with 10 images. The column named with ‘Real’ 
represents the real simulated values. All computed values 
varying the number of images are shown in Fig. 4. To show 
errors in each camera parameter and to reduce the number of 
figures, error in the translation vector is expressed as the mean 
distance in cm between the known translation vector and the 
computed one of all used images. Error of the computed 
rotation matrix is defined as the mean of the angles in degrees 
between the line which gives the known orientation and the 
line which gives the computed orientation. 

Reprojection error has similar values with all compared 
calibration methods. Since reprojection error is close to zero, 
this means that the mapping from template points ip to 
detected points in the image i,aqd is correct for calibrating data 
with all tested methods. However, significant differences exist 
with the computed camera parameters, especially with the 
translation vector. The computed translation vector depends on 
how the lens distortion is corrected. Obviously, since 
undistorted images vary the distance to the camera, this 
variation is reflected in the translation vector. This effect is 
shown in Fig. 5 where undistorted images vary the distance to 
the camera significantly (chessboard of Fig 5-d is closer to the 
camera than the one of Fig 5-j). Clearly, the translation vector 
computed with control points of Fig 5-d,e,f will be different 
than the translation vector computed with the control points of 
Fig 5-j,k,l. This difference is reflected in the Fig 4 in the 
translation vector graph. Specifically, the absolute error in the 
translation vector computed with the proposed method is under 
10 cm. This result is computed with the control points of Fig 

5-d,e,f. On the contrary, the translation vector computed with 
the control points of Fig 5-j,k,l, obtains an absolute error over 
50 cm.  

Since translation vector is correlated with the focal length 
parameter fx as was shown in Fig 1, differences between Fig 5-
d and Fig 5-j are reflected in the focal length parameter also. 
According with the simulated results which are shown in Fig 4 
in the graph of ‘focal length’, relative error in the computed 
focal length varies from 0.2% to 0.3% depending on which 
control points are used. The principal point Uo and the rotation 
parameter do not vary significantly if different control points 
are used, since they are not influenced by the distance of the 
camera to the calibration template. Parameters computed with 
the proposed method are closer to the real ones since distortion 
correction does not move points located in the CAI area of the 
image. Points located in CAI are moved significantly if NMC 
or PFE are used to correct the lens distortion. 

B. Real Data 
We have used an IP camera Axis 212 PTZ with 2.7 mm lens 
mounted which gives 85° field of view. Fig. 5 shows three 
acquired images of 640x480 pixels with considerable 
distortion. Again, 20 images have been taken, 15 to calibrate 
the camera and 5 to test the calibration results which are 
shown in table II. Using different calibration methods, 
computed values of intrinsic and extrinsic camera parameters 
and the calibration error are compared. Results are quite 
similar to the simulation step. The computed principal point Uo 
and the rotation parameters  have similar values with all tested 
methods. Also, reprojection error is small with all methods and 
therefore all calibration results are valid a priori. However, the 
translation vector changes significantly depending on the lens 
distortion correction method. A calibration with control points 
of Fig 5-j,k,l gives a translation in the Z axe of 145.7 mm 
while a calibration with control points of Fig 5-d,e,f obtains 
76.56mm. Obviously, a calibration error exists since the 
original image is the same in both cases. Also, differences 
exist with the focal lengths fx and fy which are not so 
significant. Since corrected images are in different distances 

TABLE II 
CAMERA PARAMETERS COMPUTED WITH THE FIVE CALIBRATION METHODS 

(REAL DATA) 

Camera Parameters Proposed NMC PFE DCSI PFR 

Pin-
hole 
model 

fx 252.9 295.9 279.5 283.5 287.5 
fy   253.6 302.8 284.2 298.6 275.6 
u0 (pixels) 314.9 309.7 302.8 307.8 298.5 
v0 (pixels) 261.3 248.1 257.6 252.4 237.8 
tx (mm) 104.3 109.1 106.5 105.8 101.2 
ty (mm) -86.9 -83.8 -84.5 -87.5 -79.2 
tz (mm) 76.56 145.7 105.6 135.6 125.5 
Ψ (deg) 170.1 174.5 175.8 171.2 169.5 
θ (deg) 0.1 1.5 3.7 2.5 5.6 
φ (deg) 174.9 176.5 179.4 175.6 168.2 

Rep. error (training data) 0.786 1.026 1.568 1.125 1.452 
Rep. error (testing data) 1.964 2.214 2.967 2.365 2.865 

 

TABLE I 
CAMERA PARAMETERS COMPUTED WITH THE FIVE CALIBRATION METHODS 

(SIMULATED DATA – 10 IMAGES) 

Camera Parameters Proposed NMC PFE DCSI PFR Real 

Pin-
hole 
mod. 

fx 753.5 858.9 819.6 813.6 807.8 750.0 
fy   745.7 852.8 804.1 814.5 805.4 750.0 
u0 (pixels) 321.4 299.4 314.4 325.9 318.7 318.0 
v0 (pixels) 247.2 251.8 245.8 257.3 236.4 243.0 
tx (mm) 50.4 50.9 56.2 47.9 43.9 50.0 
ty (mm) 189.5 188.2 185.8 185.4 192.7 190.0 
tz (mm) -46.6 -105.7 -75.3 -83.4 -91.3 -50.0 
Ψ (deg) 15.8 14.2 17.4 17.8 16.0 15.0 
θ (deg) 90.5 88.1 97.5 95.2 96.7 90.0 
φ (deg) 184.4 186.2 189.6 185.4 188.6 180.0 

Rep. err. train. dat. 0.053 0.252 0.182 0.127 0.197  
Rep. err. testing data 1.652 4.576 3.982 2.465 5.957  
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from the camera, these differences are reflected in the 
translation in the Z axe and the focal lengths. Variations in the 
focal lengths are less significant than variations in the 
translation in the Z axe. The correlation between the lens 
distortion and the pin-hole models influences the translation 

vector and the lens distortion parameters mainly. 

V. CONCLUSION 
A specific method for calibration of wide angle lens 

cameras has been defined. One or several images of a planar 

(a) (b) (c) 

 
(d) (e) (f) 

 
(g) (h) (i) 

 
 (j) (k) (l) 

 
Fig. 5. Results with real data. (a)(b)(c) show 640x480 captured images with an Axis 212 PTZ with 2.7 mm lens mounted which gives 85° field of view. (d)(e)(f) 
show images corrected with the proposed method. (g)(h)(i) show images corrected with the polynomial fish-eye lens distortion correction (PFE) presented by 
Devernay and Faugeras in [4]. (j)(k)(l) show the results with the non metric calibration of lens distortion (NMC) proposed by Ahmed in [21]. The proposed 
method does not move the pixels located in the central area of the image. 
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calibration template are taken and pixels locations in distorted 
images are corrected. Correction is done taking into account 
that pixels located in the central area of the image should not 
be moved significantly. When pixels locations are corrected 
pin-hole and lens distortion models are computed. Distortion 
model is adjusted to map from points detected in the images to 
the corrected ones. Pin-hole is computed with corrected points 
and points from calibration template. This method avoids the 
correlation between intrinsic, extrinsic and lens distortion 
models which influences significantly the result of the 
calibration process, especially in the camera translation vector. 
To obtain successful results, zenital images of the planar 
template should be avoided.  
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