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Abstract

For a set of primes π, a groupX is said to be π-decomposable ifX = Xπ×Xπ′

is the direct product of a π-subgroup Xπ and a π′-subgroup Xπ′ , where
π′ is the complementary of π in the set of all prime numbers. The main
result of this paper is a reduction theorem for the following conjecture: “Let
π be a set of odd primes. If the finite group G = AB is a product of
two π-decomposable subgroups A = Aπ × Aπ′ and B = Bπ × Bπ′ , then
AπBπ = BπAπ and this is a Hall π-subgroup of G.” We establish that a
minimal counterexample to this conjecture is an almost simple group. The
conjecture is then achieved in a forthcoming paper.
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1. Introduction

All groups considered in this paper are finite. In the framework of fac-
torized groups the well-known theorem of Kegel and Wielandt, which states
the solubility of a group which is the product of two nilpotent subgroups,
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has been widely extended from several points of view. For instance, by con-
sidering the situation when the factors are π-decomposable groups, for a set
of primes π. A group X is said to be π-decomposable if X = Xπ×Xπ′ is the
direct product of a π-subgroup Xπ and a π′-subgroup Xπ′ , where π′ stands
for the complementary of π in the set of all prime numbers. Xσ will always
denote a Hall σ-subgroup of a group X, for any set of primes σ.

In this paper we take further the study of products of π-decomposable
groups carried out in [12] and [13]. Motivated by the previous development,
in the second reference we stated the following conjecture:

Conjecture. Let π be a set of odd primes. Let the group G = AB be the
product of two π-decomposable subgroups A = Aπ ×Aπ′ and B = Bπ ×Bπ′.
Then AπBπ = BπAπ and this is a Hall π-subgroup of G.

This conjecture was also announced in [14] and mentioned in [4]. As
a first approach, we had proved in [12] that the conjecture holds in the
particular case when one of the factors is a π-group.

Theorem 1. [12, Theorem 1, Lemma 1] Let π be a set of odd primes. Let
the group G = AB be the product of a π-decomposable subgroup A = Aπ×Aπ′
and a π-subgroup B. Then Aπ = Oπ(A) ≤ Oπ(G).

Equivalently, G possesses Hall π-subgroups and AπB = BAπ is a Hall
π-subgroup of G.

Afterwards, in [13], other progress were achieved and the conjecture
was settled when either the factors have coprime orders or they are soluble
groups. More concretely, the following results were obtained:

Proposition 1. [13, Proposition 1] Let π be a set of odd primes. Let the
group G = AB be the product of two π-decomposable subgroups A = Aπ×Aπ′
and B = Bπ × Bπ′. Assume in addition that (|Aπ′ |, |Bπ′ |) = 1. Then
AπBπ = BπAπ.

Theorem 2. [13, Theorem 2] Let π be a set of odd primes. Let the group
G = AB be the product of two π-decomposable soluble subgroups A = Aπ ×
Aπ′ and B = Bπ ×Bπ′. Then AπBπ = BπAπ and this is a Hall π-subgroup
of G.

Examples in [12] and [13] show that analogous results to Theorems 1,
2 and Proposition 1 do not hold in general if the set of primes π contains
the prime 2. Nevertheless, for this case, related positive results have been
obtained in [13].
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Our results extend previous ones of Berkovich [5], Arad and Chillag [3],
Rowley [17] and Kazarin [10], where products of a 2-decomposable group
and a group of odd order, with coprime orders, were considered. Moreover,
we obtained some π-separability criteria for products of π-decomposable
groups in [12] and [13], which can be seen as extensions of the above men-
tioned theorem of Kegel and Wielandt.

The purpose of this paper is to establish a reduction theorem which
shows that a minimal counterexample for the above conjecture must be an
almost simple group. That is, we reduce our study to a question concerning
simple groups. Then, in a forthcoming paper [15], a case-by-case analysis
will be carried out in order to conclude that no finite almost simple group
can be a counterexample, showing that our Conjecture is true.

The layout of the paper is the following. In Section 2 we present some
preliminaries that will be necessary in the paper, mainly referring to arith-
metical properties of finite simple groups. In Section 3 we will reduce the
structure of a minimal counterexample to our conjecture to the case of an
almost simple group. Along the paper, if n is an integer and p a prime num-
ber, we will denote by np the largest power of p dividing n and by π(n) the
set of prime divisors of n. In particular, for the order |G| of a group G we
set π(G) = π(|G|). Also, Sylp(G) will denote the set all Sylow p-subgroups
of G.

2. Preliminaries

We need specifically the following results on factorized groups, which
will be freely used throughout the paper, usually without further reference.

Lemma 1. [1, Corollary 1.3.3] Let the group G = AB be the product of the
subgroups A and B. Then for each prime p there exist Sylow p-subgroups
Ap of A and Bp of B such that ApBp is a Sylow p-subgroup of G.

Lemma 2. [1, Lemma 1.3.1] Let the group G = AB be the product of two
subgroups A and B. If x, y are elements of G, then G = AxBy. Moreover,
there exists an element z of G such that Ax = Az and By = Bz.

Next we gather some arithmetical lemmas, which will be applied later
on in the paper. The proof of the following result is straightforward.

Lemma 3. Let p be an odd prime and q = pα. If α ≡ 0 (mod 2λ) with
λ ≥ 1, then q−1 ≡ 0 (mod 2λ+2). (Note that the last congruence holds also
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when λ = 0 and q ≡ 1 (mod 4).) In any case it holds that (q−1)(q+ 1) ≡ 0
(mod 23).

The book [7] can be taken as a general source about finite non-abelian
simple groups. In particular, in this paper we will make extensive use of
the detailed knowledge of the orders of the finite simple groups and of their
automorphisms groups. This information can be found in [7] or in [6], and
also in [16, Table 2.1] where it is perfectly collected for our purposes.

We will need the following lemmas on groups of Lie type.

Lemma 4. Let L be a simple group of Lie type defined over a finite field
GF (q) of characteristic p. If |L|p = pn and |Out(L)|p = pδ, then either
n > 3(δ + 1) or one of the following assertions holds:

(i) |π(L)| < 5;

(ii) either L ∼= L3(q) or L ∼= U3(q), with q = p ≥ 7 in both cases;

(iii) L ∼= L2(q) with either q ∈ {26, 28, 39, 55} or q = p and |π((q − 1)(q +
1))| ≥ 4;

(iv) either L ∼= L3(24) or L ∼= U3(24).

Note that in all cases (i)-(iv), we have that n ≥ δ + 1.

Proof. Denote by l the Lie rank of L and t = logp(q) = tptp′ . By checking
|L|p for all simple groups of Lie type we can deduce that n ≥ lt. Now by
checking |Out(L)|p we can distinguish two cases:

• Case |Out(L)|p = (logp(q))p = tp and so δ = logp(tp).

Note that in this case q is odd except for the cases L ∼= L2(q), L ∼=
PSp2m(q),m ≥ 3, L ∼= 2B2(q) or L ∼= 2F4(q)′.

It is easy to prove that tp ≥ logp(tp) + 1. Moreover, equality holds only
in the cases tp = 1 and tp = 2 = p. We can consider now the following
subcases:

– l > 3. We have n ≥ lt > 3t ≥ 3tp ≥ 3(logp(tp) + 1) = 3(δ + 1).

– l = 3. Possible exceptions to the fact n > 3(δ + 1) could appear
when tp = 1 or tp = 2 = p. If tp = 1, then δ = 0, and we can see that
|L|p = pn > p3 for all groups of Lie type with rank 3, so n > 3 and we
are done. Now, if tp = 2 = p, the only possibility is L ∼= PSp6(q) and
in this case |L|p = q9, so the inequality n > 6 = 3(δ + 1) holds again.
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– l = 2. In this case it can be proved that 2t > 3(logp(tp)+1) whenever
t ≥ 8, and so n ≥ 2t > 3(logp(tp) + 1). Hence it remains to consider
the cases t < 8.

First assume that tp = 1, that is, δ = 0. By checking the orders of
the Sylow p-subgroups in the groups of Lie type of rank 2 we can see
that the only exception to the fact n > 3 = 3(δ + 1) appears when
L ∼= L3(q) for q = p ≥ 7 (case (ii)).

Therefore we can assume now that tp ≥ p > 1 and t < 8, which means
that tp ∈ {2, 3, 4, 5, 6, 7}. Again by computing |L|p when L is a simple
group of Lie type of rank 2, we can prove that n > 3(logp(tp) + 1) in
all possible cases.

– l = 1. If either L 6∼= U3(q) when q = p or L 6∼= L2(q), it can be seen
that the inequality n > 3(δ + 1) holds. Since the case L ∼= U3(q) with
q = p ≥ 7 is excluded in (ii), and the case L ∼= U3(q) with q = p < 7
is excluded in (i), we may assume that L ∼= L2(q), q = pt. Note that
|L|p = pt and t > 3(logp(t) + 1) ≥ 3(logp(tp) + 1) if t > 10. Moreover,
the cases 5 ≤ t ≤ 10, which do not satisfy t > 3(logp(tp) + 1), are
excluded by case (i). So we need only to check the cases t < 5.
Exceptions to the fact that n > 3(logp(tp)+1) with |π(L)| ≥ 5 appear
when p = 2 and t ∈ {6, 8}, or p = 3 and t = 9, or p = 5 = t. Also
when t = tp = 1, that is, δ = 0, it can occur that |π(L)| ≥ 5 when
|π((q − 1)(q + 1))| ≥ 4. This provides the exceptions in (iii).

• Case |Out(L)|p = p(logp(q))p = ptp and then δ = logp(tp) + 1.

This is the case only when p = 2 or p = 3. Moreover in all possible cases
we have n ≥ 3t, so it is enough to prove t > logp(tp) + 2.

If p = 2, then this inequality does not hold only when t = t2 = 2 or
t = t2 = 4. Moreover, it holds that n ≥ 4t for t = t2 = 4 and n > 4t + 1
for t = t2 = 2, except for L3(4), U3(4), L3(16), U3(16) and PSp4(4). Hence
the possible exceptions to the fact that n > 3(δ + 1) with |π(L)| ≥ 5 are
those appearing in (iv).

If p = 3, then the inequality t > logp(tp) + 2 does not hold only when
t = t3 = 3. But in all these cases n > 9 = 3(logp(tp) + 2).

Note that in all exceptional cases a direct calculation shows that n ≥ δ + 1.
Therefore the lemma is proved.

Lemma 5. Let L be a simple group of Lie type over a finite field GF (q) of
odd characteristic p. If |L|2 = 2n and |Out(L)|2 = 2δ, then n ≥ δ + 1.
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Proof. Let logp(q)2 = 2λ. Clearly, λ ≤ δ. We consider first the following
cases:

• L ∼= Lt(q), t ≥ 2

(i) t odd. In this case δ = λ + 1 and n ≥ (t − 1)(λ + 2), applying
Lemma 3. So n ≥ δ + 1.

(ii) t even. Let d := (t, q−1) and k := log2(t). Here δ ≤ λ+1+log2(d) ≤
λ + 1 + k. Note also that log2(q − 1)/log2(d) ≤ 1. Therefore, by
Lemma 3, we can deduce that n ≥ (λ + k + 2) + (t − 3)(λ + 2) + 1.
Hence, if t ≥ 4, we get n ≥ δ + 1. If t = 2, then δ = λ + 1 and
n ≥ λ+ 2, so we are also done.

• L ∼= Ut(q), t ≥ 3

(i) t odd. Here δ = λ + 1 and n ≥ t−1
2 (λ + 3) − 1. Since t ≥ 3 we get

n ≥ δ + 1.

(ii) t even. Let d := (t, q+1) and k := log2(t). Here δ ≤ λ+1+log2(d) ≤
λ+ 1 + k. Moreover, log2(q + 1)/log2(d) ≤ 1. Applying Lemma 3 we
can deduce that n ≥ (λ + k + 2) + ( t−2

2 )(λ + 3). Since t ≥ 4, we get
n ≥ δ + 1, and we are done.

Now, if L is a simple group of Lie type, L 6∼= Lt(q), t ≥ 2, and L 6∼=
Ut(q), t ≥ 3, then a case-by-case checking shows that n ≥ δ + 1 and the
result is proved.

Next we state some arithmetical property of the symmetric groups used
later on.

Lemma 6. Let G be the symmetric group of degree k and let s be a prime.
If sN is the largest power of s dividing |G| = k!, then N ≤ k−1

s−1 .

Proof. The order and structure of a Sylow subgroup of the symmetric group
is well-known (see, for example, [8, Section 5.9] ). If we write k in base s,
k = a0 + a1s+ a2s

2 + · · ·+ ats
t, where 0 ≤ ai < s and some ai 6= 0, then:

N = a1 + a2(s+ 1) + a3(s2 + s+ 1) + · · · at(st−1 + st−2 + · · · s+ 1)

= a1(
s− 1

s− 1
) + a2(

s2 − 1

s− 1
) + a3(

s3 − 1

s− 1
) + · · ·+ at(

st − 1

s− 1
) =

(a0 + a1s+ a2s
2 + · · ·+ ats

t)− (a0 + a1 + · · ·+ at)

s− 1
≤ k − 1

s− 1
.
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We end this section with the following particular result on finite simple
groups.

Lemma 7. Let L be a non-abelian simple group. Then there exists a prime
s ≥ 5 such that s ∈ π(L) and s 6∈ π(Out(L)).

Proof. This follows from an exhaustive and straightforward checking of the
orders of all finite simple groups and of their automorphism groups, which
can be found in [16] Table 2.1, pages 18-20, as mentioned before. For simple
groups of Lie type see also [16, 2.4. Proposition B].

3. The minimal counterexample: Reduction to the almost simple
case

We obtain in this section detailed information about the structure of a
minimal counterexample to our Conjecture and, in particular, we show that
it is an almost simple group.

Hence, from now on we assume that G is a counterexample of minimal
order to the Conjecture, that is, we assume the following hypotheses:

(H1) π is a set of odd primes.

(H2) G is a group of minimal order satisfying the following conditions:

1. G = AB is the product of two π-decomposable subgroups A =
Aπ ×Aπ′ and B = Bπ ×Bπ′ ,

2. AπBπ 6= BπAπ.

For such a group G the following results hold:

Lemma 8. ([13, Proposition 2]) G has a unique minimal normal subgroup
N = N1×· · ·×Nr, which is a direct product of isomorphic non-abelian simple
groups N1, . . . , Nr. Moreover, G = AN = BN = AB, (|Aπ′ |, |Bπ′ |) 6= 1,
Aπ′ ∩Bπ′ = 1 and A ∩B is a π-group. In particular,

|N ||A ∩B| = |G/N ||N ∩A||N ∩B|

and neither A nor B is a π-group or a π′-group.

Lemma 9. Assume that S ≤ X and S is an s-group for X ∈ {A,B} and
a prime number s ∈ σ, with σ ∈ {π, π′}. Then π(|X : CX(S)|) ⊆ σ. In
particular, CX(S) is not an s-group.
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Proof. The first part is clear since Xσ′ ≤ CX(S). Consequently, if CX(S)
were an s-group, X would be a σ-group, a contradiction.

Lemma 10. π(G) = π(N)

Proof. We have |N ||A ∩ B| = |G/N ||N ∩ A||N ∩ B|. Hence |G : A ∩ B| =
|N |2/|N ∩A||N ∩B| and |G : A ∩B| is coprime with any q ∈ π(G) \ π(N).
Since π is a set of odd primes and A ∩B is a π-group, it is a soluble group.
Let π0 = π(G) \ π(N). Then A ∩ B contains a Hall π0-subgroup, say Q.
Since Aπ is a soluble group we can choose some Hall π′0-subgroup of Aπ, say
Ãπ such that Aπ = ÃπQ. Let Ã := Ãπ × Aπ′ and G̃ := ÃN . Consider now
B̃π := Bπ ∩ G̃ = Bπ ∩ ÃπN and B̃ := B̃π×Bπ′ . Since AπN = BπN and Bπ
also contains Q we can deduce that Bπ = Bπ∩AπN = Q(Bπ∩ÃπN) = B̃πQ
and B̃π is a Hall π′0-subgroup of Bπ. Moreover Ãπ ∩ Bπ = Ãπ ∩ B̃π. Since
(|Q|, |N ∩ A|) = 1 = (|Q|, |N ∩ B|) it is easy to see that |G̃| = |G|/|Q| =
|ÃB̃Q|/|Q| = |Ã||B̃|/|Ãπ∩B̃π| = |ÃB̃| and so G̃ = ÃB̃ is a subgroup of G. If
G̃ < G, then by the choice of G we deduce that ÃπB̃π = B̃πÃπ is a subgroup.
Therefore AπBπ = QÃπB̃π = QB̃πÃπ = BπAπ is also a subgroup, which is
a contradiction. This implies that π0 = ∅ and the assertion follows.

Corollary 1. |π(N)| ≥ 5. In particular, |π(Ni)| ≥ 5 for i = 1, · · · , r.

Proof. By Theorem 2 either Aπ′ or Bπ′ is non-soluble. Hence |π′∩π(G)| ≥ 3.
On the other hand, |π ∩ π(G)| ≥ 2 by Lemma 1. So |π(N)| = |π(G)| ≥ 5
and we are done.

The remainder of the section is devoted to prove that N is a simple group
and G is then almost simple.

We introduce some notation and facts which will be used in this section,
related to the action by conjugacy of the subgroups A and B on the set
Ω = {N1, · · · , Nr}. The subsequent results lead to the desired conclusion
that r = 1.

Notation and facts on the action by conjugacy of A and B on the
set Ω = {N1, · · · , Nr}.

The following facts will be often used: A and B act transitively on Ω,
A = Aπ ×Aπ′, B = Bπ ×Bπ′ and |N ||A ∩B| = |G/N ||N ∩A||N ∩B|.

Set {σ, σ′} = {π, π′}.

(i) The orbits of Aσ and the orbits of Bσ are the same.
This is clear since BσN = AσN and N normalizes each Ni, for i =
1, . . . , r.
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(ii) Let 4σ be an orbit of Aσ on Ω of minimal length. Since 4σ
va =

4σ
av = 4σ

v for any a ∈ Aσ and any v ∈ Aσ′, we deduce that 4σ
v

and also 4σ ∩ 4σ
v are orbits of Aσ. But the choice of 4σ having

minimal length implies that 4σ ∩ 4σ
v is either empty or coincides

with 4σ, for each v ∈ Aσ′. Hence there is a partition of Ω of the form

Ω = 41 ∪ . . . ∪4k,

where 4i = 4σ
vi for some vi ∈ Aσ′, for i = 1, . . . , k, and v1 = 1.

In particular, 41, . . . ,4k are the orbits of Aσ, and the orbits of Bσ,
on Ω and they all have the same length.
Note that Aσ′, and also Bσ′, act transitively on the set {41, . . . ,4k}.

(iii) It follows from (ii) that r = km, where k ≥ 1 and m ≥ 1 are divisors
of r, and m is the length of any orbit of Aσ on Ω.

(iv) The length of an orbit of Aσ′ on Ω is k. In particular, m is the number
of different orbits of Aσ′ on Ω, and (k,m) = 1.
Denote by Θ an orbit of Aσ′ on Ω. Clearly |Θ| ≥ k and |Θ| divides
r = km. Now, since σ ∩ σ′ = ∅ and the length of an orbit of Aσ on Ω
divides |Aσ| it follows that |Θ| divides k. But then the equality holds.

(v) Without loss of generality we may set M4σ =
∏
Ni∈4σ ,i=1,...,mNi.

Then M4σ is a minimal normal subgroup of NAσ.
Moreover, if R ≤ N , R � NAσ, there exists a subset {vi1 , . . . , vid} ⊆
{v1, . . . , vk} such that R = M

vi1
4σ × . . .×M

vid
4σ .

The same assertion is true for Bσ instead of Aσ.

(vi) With M4σ = N1 × . . . × Nm, if m > 1, define the subgroups F1 =
N2 × . . .×Nm and Fi = F vi1 for i = 2, . . . , k. Note that, in this case,
the subgroup F4σ := F1 × . . . × Fk does not contain any Mvi

4σ for
i = 1, . . . , k.

(vii) If m > 1, then F4σ ∩Aσ′ = 1 = F4σ ∩Bσ′.
Observe that F4σ ∩ Aσ′ ≤ E := ∩a∈Aσ(F4σ)a and E ≤ F4σ is a
normal subgroup of N normalized by Aσ. Hence F4σ ∩ Aσ′ = E = 1
by (v) and (vi).
Analogously it follows that F4σ ∩Bσ′ = 1.

(viii) If k > 1, then Aσ ∩M4σ = 1 = CAσ(M4σ).
If Aσ∩M4σ 6= 1, since this is an Aσ′-invariant subgroup, we have that
for any vi, i = 2, . . . , k, Aσ∩M4σ = (Aσ∩M4σ)vi ≤M4σ ∩M

vi
4σ = 1,

a contradiction.
Now, since CAσ(M4σ) = CAσ((M4σ)a) for every a ∈ A , we deduce
that CAσ(M4σ) ≤ CG(N) = 1.
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Lemma 11. Let s ∈ π(N)∩ σ′ and let m be the length of an orbit of Aσ on
Ω. Suppose that |N1|s = sn and |Out(N1)|s = sδ. Then

n(m− 2) ≤ δ +
k − 1

k(s− 1)
.

In particular, n(m− 2) < δ + 1.

Proof. We recall that r = km, with the previous notation. If m = 1, then
the assertion holds. Assume that m > 1. Let As be a Sylow s-subgroup of
A and Bs a Sylow s-subgroup of B, As ≤ Aσ′ and Bs ≤ Bσ′ . Recall that
the subgroup F4σ defined in (vii) above is a normal subgroup of N and
has trivial intersection with N ∩ Aσ′ . Hence |N ∩ As| ≤ |N : F4σ |s = skn.
Analogously, |N ∩Bs| ≤ skn.

On the other hand, from (v) and (viii) above, and replacing σ by σ′, we
have that the subgroup M := M4σ′ is a normal subgroup of N normalized
by Aσ′ and Aσ′ ∩M = 1 = CAσ′ (M). Hence Aσ′ ∼= Aσ′CG(M)/CG(M) .
Aut(M). We may assume that M = N1 × · · · × Nk and so Aut(M) ∼=
[Aut(N1)× · · · ×Aut(Nk)]Sk ∼= Aut(N1) oSk, the natural wreath product of
Aut(N1) with Sk, the symmetric group of degree k. Since s ∈ σ′ we deduce

that |As| divides |Aut(M)|s and so s(δ+n)ks
k−1
s−1 by Lemma 6.

Now denote |G/N |s = sγ and recall that |G/N |s = |AsN/N | = |BsN/N |.
We have that |G|s = |N |s|G/N |s = snrsγ . On the other hand, |Bs| =
|N ∩Bs||Bs/N ∩Bs| divides sknsγ . Since |G|s divides |A|s|B|s we deduce

snr+γ ≤ s(δ+n)ks
k−1
s−1 skn+γ .

Consequently, rn ≤ δk + 2kn + k−1
s−1 . Since r = km we get kn(m − 2) ≤

δk + k−1
s−1 , that is:

n(m− 2) ≤ δ +
k − 1

k(s− 1)
.

In particular, n(m− 2) < δ + 1.

Lemma 12. Let s ∈ π(N) ∩ σ′. Suppose that |N1|s = sn, |Out(N1)|s = sδ

and assume that n ≥ δ + 1. Then the length of an orbit of Aσ on Ω is at
most 2.

Proof. Let m be the length of an orbit of Aσ on Ω. From Lemma 11, if
m ≥ 3, then δ + 1 > n(m− 2) ≥ n. So the assertion holds.

Corollary 2. Let |N1|s = sn, where s ∈ π(N1) does not divide |Out(N1)|.
If s ∈ σ′, then the length of an orbit of Aσ on Ω is at most 2.
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Proof. Note that such a prime exists by Lemma 7. Now the result follows
from Lemma 12.

Lemma 13. If there exist primes s1 ∈ π ∩ π(N1) and s2 ∈ π′ ∩ π(N1) such
that (s1s2, |Out(N1)|) = 1, then either r = 1 or r = 2.

In particular, this is the case when N1 is either a sporadic group or an
alternating group.

Proof. Let m be the length of an Aπ-orbit on Ω and k be the length of an
Aπ′-orbit on Ω. Since s1 ∈ π, s2 ∈ π′ and (s1s2, |Out(N1)|) = 1, applying
Corollary 2 we have that m ≤ 2 and k ≤ 2. But the length of an Aπ-orbit
must be odd since |Aπ| is odd. Therefore, m = 1 and r = km = k ≤ 2, by
(iii) and (iv) in the notation above.

Lemma 14. The case r = 2 is not possible.

Proof. Suppose that r = 2. Then the length of an Aπ-orbit must be 1 since
|Aπ| is odd. This means that Aπ normalizes each Ni ∈ Ω. Denote by L the
normalizer in G of N1. It is clear that Aπ, Bπ ≤ L, |Aπ′ : L∩Aπ′ | ≤ 2, |Bπ′ :
L ∩Bπ′ | ≤ 2 and |G : L| = 2, because r = 2. Clearly G = AL = BL = AB,
since N ≤ L. Hence

2 = |G/L| = |L||A ∩B|
|L ∩A||L ∩B|

.

But, since A∩B = Aπ ∩Bπ by Lemma 8, we have that A∩B ∩L = A∩B.
Therefore:

2 = |G/L| = |L|
|(L ∩A)(L ∩B)|

.

Take now any g ∈ G and write g = ba with a ∈ A, b ∈ B. We have
(L∩A)∩ (L∩B)g = (L∩A)∩ (L∩B)a = (L∩A∩B)a and so |(L∩A)∩ (L∩
B)g| = |L ∩ A ∩ B|, for any g ∈ G. Hence |(L ∩ A)(L ∩ B)| = |(L ∩ A)(L ∩
B)g| = |(L ∩ A)g(L ∩ B)| for any g ∈ G, and consequently the number of
(L∩A,L∩B)-double cosets in L should be 2. If N ⊆ (L∩A)(L∩B), then
(L∩A)(L∩B) = (L∩A)N(L∩B) = (L∩AN)(L∩B) = L, a contradiction.

Hence we may assume that (L ∩ A)N1(L ∩ B) 6= (L ∩ A)(L ∩ B) and
(L∩A)N1(L∩B) = L. Now, sinceN1 is normal in L, we can consider L/N1 =
((L ∩A)N1/N1)((L ∩B)N1/N1) which is a product of two π-decomposable
groups. By the choice of G we can deduce that K := AπBπN1 = (L∩Aπ)(L∩
Bπ)N1 is a subgroup of G. Set H = 〈Aπ, Bπ〉 ≤ K. By [1, Lemma 1.2.2],
NG(H) = NA(H)NB(H) and hence, if NG(H) were a proper subgroup of G,
we could deduce that AπBπ is a subgroup, a contradiction. So 1 6= H � G
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and N ≤ H. But this means that K = AπBπN1 = H � G. Therefore, the
soluble residual KS of K is a normal subgroup of G contained in N1, which
implies that KS = 1, that is, K is soluble. But this is a contradiction since
N1 ≤ K.

Corollary 3. If N1 is either sporadic or an alternating group, then r = 1
and G is an almost simple group.

Lemma 15. If N1 is a simple group of Lie type defined over the field GF (q)
of characteristic p ∈ σ′, then the length of an orbit of Aσ on Ω is at most 2.

Proof. Let |N1|p = pn and |Out(N1)|p = pδ. By Lemma 4, it holds that
n ≥ δ + 1. Then by Lemma 12 and Corollary 1 we have that the length of
an Aσ-orbit on Ω is at most 2.

Lemma 16. Let N1 be a simple group of Lie type. Then the length of an
Aπ-orbit on Ω equals 1.

Proof. Let m be the length of an Aπ-orbit. We will prove that m ≤ 2 and
since m divides |Aπ| and |Aπ| is odd, we may assume that m = 1.

Let p be the characteristic of the group N1 of Lie type. If p ∈ π′, then
we get the conclusion from Lemma 15. So we may assume that p ∈ π and,
in particular, p is odd.

Let |N1|2 = 2n and |Out(N1)|2 = 2δ. Then, by Lemma 5, it holds that
n ≥ δ+1. Therefore, we get m ≤ 2, by using Lemma 12 for the prime s = 2,
and we are done.

Lemma 17. Assume that N1 is a simple group of Lie type of characteristic
p. If p ∈ π, then r = 1. If p 6∈ π, then A ∩B = 1.

Proof. Assume that p ∈ π. By Lemma 15 the length of an orbit of Aπ′ on
Ω is at most 2. But since the case r = 2 is not possible and the length of an
Aπ-orbit on Ω equals 1 by Lemma 16, we get that Aπ′ has orbits of length
1 on Ω and then N = N1, that is, r = 1.

Assume now that p ∈ π′. There exists a Sylow p-subgroup P = ApBp of
G which is a product of some Ap ∈ Sylp(A) and some Bp ∈ Sylp(B). Since
A ∩ B is a π-group by Lemma 8, it centralizes each Sylow p-subgroup of
both A and B, and so it centralizes also P . Consequently, A∩B centralizes
1 6= P ∩ N1 ∈ Sylp(N1). But A ∩ B ≤ Aπ normalizes N1 by Lemma 16,
which implies that [A ∩ B,N1] = 1, since a Sylow p-subgroup of N1 is
self-centralizing in Aut(N1) by [11, 1.17]. Hence [A ∩ B,Na

1 ] = 1 for each
a ∈ Aπ′ , and then A ∩ B ≤ CG(N) = 1 because Aπ′ acts transitively on Ω;
i.e., A ∩B = 1.
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Lemma 18. Assume that N1 is a simple group of Lie type. If r ≤ 3, then
r = 1.

Proof. Assume that r = 3. Hence N = N1×N2×N3 and A and B act tran-
sitively on the set Ω = {N1, N2, N3}. Let R := ∩3

i=1NG(Ni) the subgroup of
G normalizing every Ni. By Lemma 16 the subgroups Aπ and Bπ are in R.
Clearly, G/R is isomorphic to a transitive subgroup of S3, the symmetric
group of degree 3, and hence isomorphic either to S3 or C3.

Let A0 := R∩A and B0 := R∩B. Recall that by Lemma 17 we have that
|A ∩B| = 1 = |Ay ∩B| for every y ∈ G. Then, since G = RA = RB = AB,
we have that

|R||A ∩B|
|R ∩A||R ∩B|

=
|R|

|A0||B0|
= |G/R|.

On the other hand, the size of a double coset A0yB0, for any y ∈ G, is equal
to |A0||B0|/|Ay0 ∩ B0| = |A0||B0|. Hence |G/R| is equal to the number of
different double cosets in R with respect to the pair (A0, B0).

We claim that there exists a subgroup X = NiNj , i, j ∈ {1, 2, 3} (even-
tually, i = j and X = Ni), such that A0XB0 is a subgroup of G. Assume
this is not true. In particular, A0NiNjB0 6= R for each choice of 1 ≤ i, j ≤ 3.

We will now count the number of different double cosets with respect to
(A0, B0) in R. We will prove first that for each i 6= j we have A0NiB0 6=
A0NiNjB0 and A0NtB0 6⊆ A0NiNjB0, for t ∈ {1, 2, 3} \ {i, j}.

Indeed, if A0NiB0 = A0NiNjB0, then for t ∈ {1, 2, 3} \ {i, j} we have
A0NtNiB0 = NtA0NiB0 = NtA0NiNjB0 = A0NtNiNjB0 = A0NB0 = R.
This is a contradiction. Hence A0NiB0 6= A0NiNjB0 for each i 6= j.

Suppose now that A0NtB0 ⊆ A0NiNjB0, for t ∈ {1, 2, 3} \ {i, j}. Then
A0NiNjB0 = A0(NiNj)

2B0 = NiNjA0NiNjB0 ⊇ NiNjA0NtB0 = A0NB0 =
R. This is also a contradiction.

It follows that A0NiB0 contains at least two different (A0, B0)-cosets,
including A0B0.

We will prove now that A0NiNjB0 contains at least 4 different (A0, B0)-
cosets. Indeed, if n1 ∈ N1, n1 6∈ A0N2B0 and n2 ∈ N2, n2 6∈ A0N1B0, then
n1n2 6∈ A0N1B0 ∪A0N2B0. Hence A0N1N2B0 6= A0N1B0 ∪A0N2B0. Since
A0N1B0 ∪ A0N2B0 contains at least 3 different (A0, B0)-cosets, it follows
that A0N1N2B0 contains at least 4 different (A0, B0)-cosets. Note that the
sets A0N1N2B0 and A0N1N3B0 are different and do not contain each other.
Hence the number of double cosets contained in A0N1N2B0 ∪A0N1N3B0 is
at least 5.

Moreover, A0N2B0 is not contained in A0N1N3B0 and A0N3B0 is not
contained in A0N1N2B0. Hence we can choose elements n′2 ∈ N2 and
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n′3 ∈ N3 such that n′2 6∈ A0N1N3B0 and n′3 6∈ A0N1N2B0. We claim that
n′2n

′
3 6∈ A0N1N3B0 ∪ A0N1N2B0. Indeed, if n′2n

′
3 ∈ A0N1N3B0, then n′2 ∈

A0N1N3B0(n′3)−1 ⊆ A0N1N3B0N3 = A0N1N3B0 which is not the case. By
the same reason n′2n

′
3 6∈ A0N1N2B0.

Hence the set A0N1N3B0 ∪A0N1N2B0 ∪A0N2N3B0 consists of at least
6 different (A0, B0)-cosets. Now we choose elements n′′i ∈ Ni such that
n′′i 6∈ A0NjNtB0 with {i, j, t} = {1, 2, 3}. As above it is easy to see that
n′′1n

′′
2n
′′
3 6∈ A0N1N2B0 ∪A0N1N3B0 ∪A0N2N3B0. This means that the num-

ber of different (A0, B0)-cosets in R is at least 7, a contradiction (recall that
the number of (A0, B0)-cosets in R is |G/R| ≤ 6). The claim is proved.

Now, if T = A0XB0 is a subgroup of R for some proper normal subgroup
X ofN , then T/X = (A0X/X)(B0X/X) is a product of two π-decomposable
groups and, by minimality, we have that AπBπX/X is a Hall π-subgroup of
T/X. In particular, AπBπX is a subgroup of G. Consider now the subgroup
U := 〈Aπ, Bπ〉 ≤ T . If NG(U) = NA(U)NB(U) is a proper subgroup of G,
then AπBπ is a subgroup, a contradiction. So 1 6= U �G and N ≤ U . But
this means that AπBπX = U � G and the soluble residual US of U is a
normal subgroup of G with US ≤ X. Then US = 1 and U is soluble. But
this is a contradiction since X ≤ U .

Hence r < 3 and applying Lemma 14 we deduce that r = 1.

Lemma 19. Assume that r > 1 and let N̂i =
∏r
j=1, j 6=iNj, for i = 1, 2, · · · , r.

If Aσ has an orbit on Ω of length 1, then Aσ ∩ N̂i = 1, for each i ≤ r.

Proof. If Aσ has an orbit on Ω of length 1, then Aσ′ acts transitively on
Ω. If Aσ ∩ N̂i 6= 1, then N̂i contains an Aσ′-invariant subgroup, which is a
contradiction.

Lemma 20. Assume that N1 is a simple group of Lie type. If r > 1, then
π ∩ π(N1) ⊆ π(Out(N1)).

Proof. Let s ∈ π ∩ π(N1) and assume that |N1|s = sn and |Out(N1)|s = sδ.
In particular, n ≥ 1. From Lemma 16 we have that the lenght of an Aπ-orbit
on Ω is m = 1 and so the length of an Aπ′-orbit on Ω is k = r. Hence by
Lemma 11 it follows that (r − 2)n ≤ δ. Now if δ = 0, that is, s does not
divide |Out(N1)|, we get a contradiction, since we are assuming r > 1 and
so r > 2 by Lemma 14.

Lemma 21. If N1 is a non-abelian simple group of Lie type of characteristic
p, then r = 1.
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Proof. Assume that N1 is a non-abelian simple group of Lie type of charac-
teristic p and r > 1. We recall that 2 6∈ π and |π ∩ π(G)| ≥ 2 by Lemma 1.
Consequently, there exists s ∈ π ∩ π(G) such that s ≥ 5. Let P be a Sylow
s-subgroup of G. We may write P = AsBs, for some As ∈ Syls(A) and some
Bs ∈ Syls(B). Since P ∩ N ∈ Syls(N), P ∩ N � P and AπN = BπN it
follows easily that P = AsBs = As(P ∩N) = Bs(P ∩N).

We know from Lemma 16 thatG = RAπ′ , whereNAπ ≤ R = ∩ri=1NG(Ni).
In particular, Aπ′ acts transitively on Ω. Then G/N is isomorphic to a
subgroup, say Ḡ, of Out(N1) o Sr, the natural wreath product of Out(N1)
with Sr, the symmetric group of degree r. We denote by Āπ and Āπ′ , the
images of AπN/N and Aπ′N/N in Out(N1) o Sr, respectively, and F :=
L1 × L2 × · · · × Lr, where Li = Out(Ni) for every i = 1, . . . , r, the base
group of the wreath product. Set E = Ḡ∩F . Then Āπ ≤ E and FĀπ′ ∩ Sr
acts transitively on {L1, L2, . . . , Lr}. In particular, for each i = 2, . . . , r,
there exists an element ai ∈ Āπ′ such that Lai1 = Li. We claim that
CE(Āπ′) ≤ {y1y

a2
1 · · · y

ar
1 | y1 ∈ L1} ∼= L1. Let z ∈ CE(Āπ′). We have

z = y1y2 · · · yr ∈ F , where yi ∈ Li, for every i = 1, . . . , r, and this expres-
sion is unique. Then z = y1y2 · · · yr = zai = yai1 y

ai
2 · · · yair , which implies

that yi = yai1 , for every i = 2, . . . , r. Consequently, z = y1y
a2
1 · · · y

ar
1 , with

y1 ∈ L1, and the claim follows.
Therefore, Āπ ≤ CE(Āπ′), which implies that AπN/N is isomorphic

to a subgroup of Out(N1). In particular, a Sylow s-subgroup of G/N is
isomorphic to an s-subgroup of Out(N1) and has order dividing |Out(N1)|s.

Let Lεn(q), where ε = ±, as follows: L+
n (q) = Ln(q), whereas L−n (q) =

Un(q). Similarly, let GLεn(q), for ε = ±, as follows: GL+
n (q) = GLn(q),

GL−n (q) = GUn(q).
By checking the structure of Out(N1), we distinguish two possibilities:

(i) AsN/N = BsN/N is cyclic, or

(ii) AsN/N = BsN/N is metacyclic (non cyclic). This is the case only
when N1

∼= Lεn(q), n ≥ 5, with s dividing (q − ε1, n, logp(q)).

Note that P ∩N = (P ∩N1)×· · ·×(P ∩Nr) and Φ(P ∩N) = Φ(P ∩N1)×
· · ·×Φ(P ∩Nr) char P ∩N �P , where Φ(X) denotes the Frattini subgroup
of any group X. We also denote by ˜ the corresponding factor subgroups of

P over Φ(P ∩N). In particular, the group U := P̃ ∩N = (P ∩N)/Φ(P ∩N)
is an elementary abelian s-group. We consider the group

P̃ = P/Φ(P ∩N) = UÃs = UB̃s = ÃsB̃s.
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If we let
|P̃ ∩Ni| = |(P ∩Ni)/Φ(P ∩Ni)| = st, t ≥ 1,

it is clear that |U | = srt. Moreover, we claim that |Ãs ∩ U | ≤ st and,

analogously, |B̃s∩U | ≤ st. Since Aπ′ acts transitively on Ω, we may assume
that for each i = 2, . . . , r, there exists an element xi ∈ Aπ′ such that (P ∩
N1)xi = P ∩ Ni and Φ(P ∩ N1)xi = Φ(P ∩ Ni). Now, since s ∈ π and
[Aπ, Aπ′ ] = 1, if we let N̂i =

∏r
j=1, j 6=iNj for each i = 1, 2, · · · , r, we have

that:

As ∩ Φ(P ∩N1)(P ∩ N̂1) = (As ∩ Φ(P ∩N1)(P ∩ N̂1))xi ≤
≤ Φ(P ∩N1)xi(P ∩ N̂1)xi ≤ Φ(P ∩Ni)N̂i

for each i = 2, . . . , r. Therefore:

As ∩ Φ(P ∩N1)(P ∩ N̂1) ≤ ∩ri=1(Φ(P ∩Ni)N̂i) =

= Φ(P ∩N1) · · ·Φ(P ∩Nr)(∩ri=1N̂i) = Φ(P ∩N)

and so, As∩Φ(P ∩N1)(P ∩ N̂1) = As∩Φ(P ∩N). Using this fact, it follows
that

Ãs ∩ U =
(As ∩N)Φ(P ∩N)

Φ(P ∩N)
∼=

(As ∩N)Φ(P ∩N1)(P ∩ N̂1)

Φ(P ∩N1)(P ∩ N̂1)
,

which is isomorphic to a subgroup of

P∩N
P∩N̂1

Φ(P∩N1)(P∩N̂1)

P∩N̂1

∼=
P ∩N1

Φ(P ∩N1)

where |(P ∩N1)/Φ(P ∩N1)| = st. So the claim follows.

Observe that Ãs ∩ U is a normal subgroup both of Ãs and U , so it
is normal in P̃ = UÃs. Analogously, B̃s ∩ U is normal in P̃ . Hence the
subgroup V := (Ãs ∩ U)(B̃s ∩ U) is normal in P̃ and |V | divides stst = s2t.

Consider now the group

P̃ /V = (ÃsV/V )(B̃sV/V ) = (U/V )(ÃsV/V ) = (U/V )(B̃sV/V ).

It follows from [9, Theorem III.11.5] and [2, Theorem 1.3] that:

(i) If AsN/N = BsN/N is cyclic, then the Prüfer rank of P̃ /V is at most
2,
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(ii) If AsN/N = BsN/N is metacyclic (non cyclic), then the Prüfer rank
of P̃ /V is at most 4. This is the case only when N1

∼= Lεn(q), n ≥ 5,
and s divides (q − ε1, n, logp(q)).

On the other hand, in any case the Prüfer rank of P̃ /V is at least rt− 2t =
(r − 2)t, since |U/V | ≥ srt−2t. Hence we deduce that:

(i) If AsN/N = BsN/N is cyclic, then (r − 2)t ≤ 2.

(ii) If AsN/N = BsN/N is metacyclic, then (r − 2)t ≤ 4.

From now on we will study each case separately:

(i) AsN/N = BsN/N is cyclic.

First observe that the case (r − 2)t = 2 is not possible, because the

cyclic subgroups ÃsV/V and B̃sV/V intersect trivially with the normal
subgroup U/V of the metacyclic group P̃ /V . Hence we deduce:

(r − 2)t ≤ 1

where t ≥ 1. Then r ≤ 3, and so r = 1 by Lemma 18.

(ii) AsN/N = BsN/N is metacyclic (non cyclic).

Recall that this case can happen only if N1
∼= Lεn(q), n ≥ 5, with s

dividing (q − ε1, n, logp(q)). Assume that r > 3. We have that U/V
is an elementary abelian group of order at most s4. On the other
hand, ÃsV/V ∩U/V is trivial and C

ÃsV/V
(U/V ) is also trivial. Hence

|ÃsV/V | ≤ |Aut(U/V )|s ≤ |GL4(s)|s. In particular |ÃsV/V | ≤ s6.

Note also that ÃsV/V ∼= AsN/N . Hence we have:

|As| = |AsN/N ||As ∩N | ≤ s6|Ni|s

since As ∩ N̂i = 1 by Lemma 19, and so As ∩N ∼= (As ∩N)N̂i/N̂i ≤
N/N̂i

∼= Ni.

If we denote by su the order of a Sylow subgroup of Ni, it follows that:

sru ≤ |P | ≤ |As||Bs| ≤ s12s2u.

This implies 4u ≤ ru ≤ 12 + 2u and u ≤ 6.

Now recall that there exists a non-cyclic abelian s-subgroup of GLεn(q)
of rank at least n with elements of the form diag(λ1, λ2, . . . λn), where

17



λi ∈ GF (q) for ε = + and λi ∈ GF (q2) for ε = −. Since s divides
q − ε1 this implies that a Sylow s-subgroup of Lεn(q) has an abelian
s-subgroup of rank at least n− 2. Hence it follows that n− 2 ≤ u ≤ 6,
that is n ≤ 8.

Therefore in this case we can deduce that either r ≤ 3 or n ≤ 8. This
latter case can be discarded since we may choose s ∈ π ∩ π(Out(N1))
(by Lemma 20), s ≥ 5, such that s does not divide (n, q− ε1, logp(q)).
Hence r ≤ 3 and we deduce that r = 1, applying Lemma 18.

From Corollary 3 and Lemma 21 we conclude that r = 1 and then N is
simple and G is an almost simple group, as desired.

We gather in the next result the gained information about the structure
of our minimal counterexample G.

Theorem 3. Assume that G is a counterexample of minimal order to our
Conjecture, that is:

(H1) π is a set of odd primes.

(H2) G is a group of minimal order satisfying the following conditions:

1. G = AB is the product of two π-decomposable subgroups A =
Aπ ×Aπ′ and B = Bπ ×Bπ′,

2. AπBπ 6= BπAπ.

Then G is an almost simple group, i.e., G has a unique minimal normal
subgroup N , which is a non-abelian simple group; in particular, N � G ≤
Aut(N).

Moreover, the following properties hold:

(i) G = AN = BN = AB; in particular, |N ||A∩B| = |G/N ||N∩A||N∩B|.

(ii) (|Aπ′ |, |Bπ′ |) 6= 1, Aπ′ ∩Bπ′ = 1 and A ∩B is a π-group.

(iii) Neither A nor B is a π-group or a π′-group.

(iv) π(G) = π(N) ≥ 5.

(v) If, in addition, N is a simple group of Lie type of characteristic p and
p 6∈ π, then A ∩B = 1.
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the Kegel-Wielandt theorem through π-decomposable groups, in:
C.M. Campbell et al.(Eds.), Proceedings of Groups St Andrews
2009 in Bath. Lond. Math. Soc. Lect. Note Ser. 388, Vol. 2, Cam-
bridge University Press, 2011, pp. 415–423.

[15] L.S. Kazarin, A. Mart́ınez-Pastor, M.D. Pérez-Ramos, On the
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