
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6512244

http://hdl.handle.net/10251/38603

Institute of Electrical and Electronics Engineers (IEEE)

Báguena Albaladejo, M.; Toh, CK.; Tavares De Araujo Cesariny Calafate, CM.; Cano
Escribá, JC.; Manzoni, P. (2013). RCDP: Raptor-based Content Delivery Protocol for
unicast communication in wireless networks for ITS. Journal of Communications and
Networks. 15(2):198-206. doi:10.1109/JCN.2013.000033.



1

RCDP: Raptor-based Content Delivery Protocol for
unicast communication in wireless networks for ITS

Miguel Báguena, C. K. Toh, Carlos T. Calafate, Juan-Carlos Cano, Pietro Manzoni

Abstract: Recent advances in Forward Error Correction (FEC)
coding techniques were focused on addressing the challenges of
multicast and broadcast delivery. However, FEC approaches can
also be used for unicast content delivery in order to solve TCP is-
sues found in wireless networks. In this paper, we exploit the error
resilient properties of Raptor codes by proposing RCDP - a novel
solution for reliable and bidirectional unicast communication in
lossy links that can improve content delivery in situations where the
wireless network is the bottleneck. RCDP has been designed, vali-
dated, optimized, and its performance has been analyzed in terms
of throughput and resource efficiency. Experimental results show
that RCDP is a highly efficient solution for environments charac-
terized by high delays and packet losses making it very suitable
for Intelligent Transport System (ITS) oriented applications since
it achieves significant performance improvements when compared
to traditional transport layer protocols.

Index Terms: Application-layer FEC; Raptor codes; unicast con-
tent delivery; testbed.

I. Introduction

Wireless channels are characterized by low signal levels, mul-
tipath interferences, fading signal, etc. that tend to reduce trans-
mission throughput. This has motivated researchers to solve the
specific problems that they produce. Most research effort inthis
area have focused on allowing existing wired network protocols
to operate without changes, or on creating new protocols that are
compatible with the already existing ones. Therefore, a trade off
between compatibility and performance is established where the
former usually has the most importance. However, there are sce-
narios where compatibility is not critical but performanceis of
capital importance. In these scenarios other ways of actionmust
be explored.

The classic TCP [16] protocol is a perfect example of the
performance losses experienced when attempting to use clas-
sic wired network protocols and applications over wirelessnet-
works. TCP uses packet losses for congestion detection be-
cause this is the main reason for packet losses in wired networks.
However, in wireless networks, channel problems are the most
frequent cause for loss. This characteristic means that TCPis
unable to efficiently use the whole bandwidth available in the
channel. The research community [14], [9], [6], [10] has pro-
posed different strategies to adapt TCP to wireless networks, be-
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ing the main trend to avoid retransmissions since such strategies
generally does not scale well in large deployments, and the delay
introduced by retransmission adversely affects performance.

On the other hand, Application Layer Forward Error Correc-
tion (AL-FEC) is a coding technique that allows generating vir-
tually infinite recovery symbols which can be used to recover
data at destination even if part of the data is lost. The AL-FEC
strategy differs from other FEC approaches in that it operates at
the application layer, and so no changes are required at the lower
network layers. This technique has been used mostly for broad-
casting and multicasting purposes, due to the effectiveness of
fountain coded data at recovering missing data with a minimum
overhead.

In this paper we propose RCDP, a unicast content delivery
protocol based AL-FEC. It uses Raptor codes, a particularlyef-
ficient class of AL-FEC codes, to create a solution nearly im-
mune to channel losses. Basically, RCDP relies on packet trains
to estimate the end-to-end capacity instead of using a window
based rate control like TCP. Data are partitioned into indepen-
dent blocks, which are protected by as many FEC symbols as
necessary for successful block recovery at the receiver. Through
a real implementation and testbed tests we validate our solution,
proposing optimizations at different levels.

We have organized this paper as follows: in section II we
present related work. In section III we explain our protocolat-
tending to its main characteristics. In section IV we propose
new improvements for our RCDP protocol. In section V we per-
form the intensive set of proofs that evaluates the behaviorof
the protocol. Finally section VI concludes the paper.

II. Related Work

Many proposals to mitigate TCP problems or to expose an
alternative protocol to TCP were proposed recently. Those tech-
niques can be classified [2] into five categories: (i) link-layer so-
lutions, (ii) split-connection solutions, (iii) TCP-enhancements,
(iv) MANET-specific proposals and (v) FEC based solutions.

In terms of link layer solutions, the AIRMAIL protocol [1]
combines both retransmission and error correction to improve
performance; the Snoop protocol [3] relies on an agent to detect
channel losses; additionally, Tulip [15] enforces retransmission
acceleration at the MAC level.

With respect to split-connection approaches, which divide
each TCP connection into two separated ones, Mobile TCP [4]
has a three-layered structure which routes, reconnects, and con-
trols the transmission rate; Wireless-TCP [20] adopts a different
approach, avoiding the use of a window-based flow control.

Concerning those solutions that enhance the original TCP im-
plementation, TCP SACK [14] informs the sender node about
packet loss by providing more details than TCP; SMART [9]
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combines the Go-Back-N approach and the selective ACK; Cac-
eres and Iftode [5] propose a fast retransmission solution specif-
ically focused on mobile communications.

In terms of MANET-specific proposals, TCP-F [6] uses RFN
and RNN packets to stop and start packet transmission, while
Ad-hoc TCP [10] also defines states in the sender; both are
examples of research efforts specifically focused on improving
TCP performance in MANETs.

Finally, focusing on FEC-based solutions, Luby et al. [11]
propose a solution for reliable file delivery over mobile broad-
cast networks, concentrating on Raptor codes for Multimedia
Broadcast and Multicast Services (MBMS) within the scope of
the 3GPP specification. Authors emphasize on the goodness of
the solution, and consider that Raptor codes are applicableto
other scenarios such as video broadcasting over the Internet and
peer-to-peer distribution. Overall, authors predict that, with the
availability of powerful and low-complexity Raptor codes,many
innovative applications and services are enabled in a very effi-
cient and reliable manner. In this paper, we adopt these guide-
lines, although relying on Raptor codes for unicast contentde-
livery instead.

Our proposal differs from previous solutions by addressing
reliable two-way communications following a completely novel
approach. In particular, our solution is based on a novel trans-
port protocol which relies on Forward Error Correction to com-
pletely avoid retransmissions, along with an end-to-end band-
width estimation technique to perform rate control. The solution
we offer does not require intermediate nodes to actively partic-
ipate in the process, nor introducing any hardware changes.In
terms of implementation, no windowing or retransmission con-
trol has to be performed, which simplifies the tasks on both
transmitter and receiver sides. To the best of our knowledge,
no similar solution has been proposed so far that offer efficient
and robust content delivery while supporting reliable and bi-
directional communications.

III. The RCDP protocol

Nowadays, there are a lot of application layer protocols used
for content delivery purposes, such as HTTP [7], FTP [17], and
RTP [18]. When end-to-end reliability is required, most solu-
tions rely on the TCP protocol at the transport layer becauseit
is the most widely used, from operating systems to specific ap-
plications. However, when attempting to deliver contents over
wireless networks, TCP-based solutions suffer from low perfor-
mance since TCP is unable to distinguish whether the packet
losses detected are due to network congestion or channel-related
problems. Thus, efficient content delivery solutions should be
sought to optimize performance in wireless environments.

To achieve this goal, we introduce our novel Raptor-based
Content Delivery Protocol (RCDP). RCDP is a full-duplex con-
tent delivery solution which encompasses sending and receiving
processes at both client and server sides. To achieve an error-
resilient solution, RCDP combines the use of the UDP protocol
at the transport layer with an AL-FEC strategy. The use of an
AL-FEC strategy allows the creation of a content delivery solu-
tion which is nearly immune to packet losses, and also avoids
the well known TCP problems in wireless networks. In partic-
ular, RCDP’s AL-FEC relies on Raptor codes. This encoding

technique allows us to recover the original data even when part
of the information is lost. This behavior, mapped into a com-
puter network, makes us able to ignore packet losses completely.
Therefore, the original information is recovered through newly
incoming packets, not requiring any information to be retrans-
mitted by the sender. Note that such characteristic is common
to all fountain codes [13], being Raptor codes [19] a particularly
efficient FEC scheme within this group.

Another important feature of RCDP is the use of UDP to
implement a rate control strategy that avoids TCP-like window
based rate control. Instead, RCDP generates packet trains with
a very regular pattern, and uses an end-to-end bandwidth mea-
surement strategy to determine the available bandwidth. This
strategy allows the receiver to detect changes on the channel’s
bandwidth simply by measuring the time differences between
consecutive packet arrivals. The receiver can then send this in-
formation back to the sender, allowing it to adjust its sending
rate to the most appropriate value in order to maximize through-
put. Note that this strategy is not applicable to any broad-
cast/multicast based content delivery scheme previously pro-
posed [11].

Another important difference between RCDP and previ-
ous solutions based on Raptor codes proposed for multi-
cast/broadcast information dissemination is the protocolsym-
metry on both sides in the communication process. In previ-
ous proposals, each endpoint only assumes one role: sender or
receiver. With RCDP, we provide flexibility by allowing both
sides to send and receive data in the same communication pro-
cess.

In order to follow the standard protocol layering strategy,
we split the implementation of RCDP into different sublayers
according to the different tasks required, namely FEC coding
and rate control. Figure 1 shows the complete structure of the
RCDP protocol, highlighting the most important elements and
their combination. Below, we discuss the most relevant design
issues, and how the different elements of the architecture have
been implemented in software.

A. Raptor encoding and decoding process

In RCDP, information is encoded to protect it against packet
loss. The selected coding scheme, Raptor codes, uses a fixed
block coding strategy where information to be sent must be di-
vided into fixed size blocks, calledsource blocks,which are then
encoded separately. From each block of data, smaller pieces
are generated; these pieces, calledsymbols, are encapsulated in
data packets and delivered to the destination. We use a system-
atic Raptor coding scheme where the first set of symbols, called
source symbols, are an exact replica of the content in the source
block itself, and so they can be directly obtained before theac-
tual encoding process starts. An unlimited number ofrecovery
symbolsare then generated through encoding of the source sym-
bols to allow filling-in the information gaps caused by transmis-
sion losses.

The coding process is divided in two complementary sub pro-
cesses: the encoding process in the data sender and the decoding
process in the data receiver. Additional information must be in-
cluded in a header by the encoding process in order to make
possible the decoding process. The packet header defined at this
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Fig. 1: RCDP implementation diagram.

Algorithm 1 Raptor data processing at the sender.
1. While (there is information to send)do
(a) Read next data block from upper sublayer
(b) Split data block into source symbols
(c) For (all symbols created)do
i. Packetize symbol
ii. Send packet
(d) Perform Raptor encoding of data block
(e) While not (receivedsuccessfully recovered blockmessage)

do
i. Generate recovery symbol
ii. Packetize recovery symbol
iii. Send packet

level consists of four fields: (i) the number of source symbols
in the original message, (ii) the first symbol identifier, (iii) the
block identifier, and (iv) the block size.

The sender, as described in algorithm 1, starts by retrieving
the information to be sent from the application interface sub-
layer. It then splits this information into one or more source
blocks. Each source block is subdivided into pieces called
source symbols. The symbols size is typically the maximum size
that fits in one packet (header included). We add a header to each
symbol to create an RCDP packet, which will be handled by the
lower sublayer. Note that, since we rely on systematic Raptor
codes, source symbols can be sent immediately, without waiting
for the recovery symbols generation process to complete.

These source symbols are used as input for a two stage cod-
ing process. In the first stage, pre-coded symbols are gener-
ated. Then, through an arithmetic combination of these pre-
coded symbols, an infinite number of recovery symbols can be
generated.

The Raptor encoding output includes both source and recov-
ery symbols; the latter are also packed and handled to the end-to-
end management sublayer for delivery. The latter task goes on
uninterruptedly until a successfully recovered block notification
is received. The sender repeats this process with the following

Algorithm 2 Raptor data processing at the receiver.
1. While (information is coming)do
(a) Receive symbol
(b) If (belongs to current block)do
i. Store it in memory
ii. If (received enough symbols to recover the data block)do
A. Recover the data block
B. Handle it to the upper sublayer
C. Generatesuccessfully recovered blockmessage

block until the information flow from the top sublayer ends, or
the connection is lost.

With regard to the receiver, it takes the sequence of steps de-
scribed in algorithm 2. Thus, it is continually awaiting to receive
the symbols of a block (both source and recovery symbols),
which are stored in memory. When it has enough symbols to
recover the source block, it proceeds with the recovery process
and sends asuccessfully recovered blocknotification back to the
sender; such notification also serves for flow control purposes.
The recovered block is then handed over to the top sublayer, and
this entity goes back to the symbol reception state. Note that,
in case the channel is lossless, successful decoding takes place
immediately after all the source symbols are received, meaning
that recovery symbols are not necessary. In those situations the
Raptor-related delays are reduced to a minimum, as desirable.

To recover information at the destination, any combinationof
the original symbols and the recovery symbols allows retrieving
of the original information. In fact, for the most recent version
of the Raptor libraries [12], the probability of successfully de-
coding a total ofr symbols received is shown by equation 1,

Pdec > 1− 10
−2(r−k+1), r ≥ k (1)

which means that, to recover a source block with symbol size
k, the probability of a successful decoding is greater than 99%
if k encoded symbols are received, greater than 99.99% if k + 1
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symbols are received, and greater than 99.9999% if k + 2 sym-
bols are received.

B. The rate control scheme

In wireless networks, channel bandwidth is continuously
changing due to variable link quality, variable congestionstates,
or even variable paths. Therefore, we have to create a rate
control system that can easily adapt to highly variable network
states, taking advantage of additional bandwidth available or re-
ducing the bandwidth consumption in the presence of other data
flows.

The rate control algorithm we proposed is based on channel
bandwidth estimations made by the receiver. These estimations
are calculated based on packet arrival patterns, and are returned
to the sender as soon as they are obtained in order to allow the
sender to quickly respond to the bandwidth changes detected.

The proposed strategy consists of grouping data packets in
packet trains, and sending them at a rate higher than the one
estimated by the receiver as being supported by the end-to-end
path. This way, when there is more bandwidth on the chan-
nel than the one previously estimated, packets arrive at there-
ceiver faster than expected. In such case, the receiver sends back
a new bandwidth estimation reporting that transmission condi-
tions have improved; this allows the sender to increase the send-
ing rate to take advantage of that situation. Otherwise, if the
channel conditions have become worse, packets will arrive at
a rate lower than expected because of the higher delays expe-
rienced. Likewise, the receiver sends back a report so that the
sender proceeds to decrease the sending rate accordingly.

To implement this idea, we have devised the following al-
gorithm: while the sender is injecting packets, the receiver is
continuously doing bandwidth estimations, one for each packet
train, and sending back bandwidth reports (Ci). These band-
width reports are used by the sender as a reference for its rate ad-
justments. It applies them a correction parameter (β), as shown
in equation 2, to obtain a target data rateRi . Parameterβ varies
between 0 and 1, and its purpose is to slightly reduce the target
data rate to avoid saturating the channel, thus offering available
channel room for other best-effort traffic. The target data rate
will be the one we expect to measure at the receiver side. A
correction factor (α) allows the determination of train rate (Ωi)
from the target data rate (see equation 3), whereα is a value be-
tween 0 and 1. The train rate will be the actual rate used to send
the packets of a train.

Ri = β × Ci (2)

Ωi =
1

α
×Ri (3)

When the packet train is sent, it is followed by a pause pe-
riod (inter-train gap) so that the data rate over one period (Tk)
matches with the target data rate (Ri), which is the data rate we
expect to find in the channel on the long term. Thus,Tk is cal-
culated based on the target data rate, the number of packets in
a train (N ), and the packet size expressed in bytes (Psize) as
shown in equation 4.

Tk =
8×N × Psize

Ri

(4)

Note that the Raptor encoder generates symbols of the same
size, which must be initially defined. In our solution,Psize is
optimized according to the layer-2 MTU, similarly to the ap-
proach followed by most TCP implementations.

C. Implementation details

To accelerate the development of the proposed RCDP pro-
tocol, we relied on the UDT library [8], which is a commu-
nications library written in C/C++ that is available for Linux,
Solaris and Windows platforms. This library offers all the fea-
tures required to implement RCDP, including socket creation
and configuration for communication with applications, connec-
tion startup and closing, information delivery and reception, etc.
Thus, we took advantage of the support code of the UDT library
as a starting point to develop RCDP.

Concerning the Raptor modules, they were developed using
the libraries provided by Digital Fountain Inc.1, released un-
der an academic research agreement. In particular, we relied
on version 11 of the Raptor libraries for Linux to perform cod-
ing/decoding tasks.

We have implemented our RCDP solution in a four-layer ap-
proach, following the architecture shown in figure 1. Our im-
plementation combines a multilayered approach with a multi-
threaded approach, where different modules are combined and
different threads cooperate to achieve an efficient and robust so-
lution.

At the top, we have the application interface sublayer, which
offers the typical sockets interface, thus allowing the developer
to easily update any application. It also simplifies the devel-
opment of new applications due to the use of a standard inter-
face. It encompasses the API module, which acts as an interface
between top level applications and the services offered by the
library. At the sender side, it receives and stores the data to be
sent, making these data available to lower layers. At the receiver
side, it supplies incoming information to the application.

The second layer is the Raptor sublayer. It encompasses
both data encoding and decoding modules, and offers encod-
ing/decoding services to upper layers. These modules rely on
Raptor codes to generate a virtually infinite flow of symbols
which can be used to fully recover sent data blocks, if needed;
this will be the actual data sent to the destination. Raptor en-
coding introduces loss resilience by shielding the transmission
against packet corruption or loss. At the sender side, the en-
coding module encodes the information received by the applica-
tion interface sublayer, handing packets over to lower sublayer
buffers. At the receiver side, the decoding module is responsi-
ble for decoding the information received by the lower sublayer,
and for handling it to the application sublayer.

The third layer is the end-to-end bandwidth management sub-
layer. It encompasses both sending and receiving modules,
which are responsible for rate control purposes, determining
the end-to-end available bandwidth and tuning the transmission
rate accordingly. Such mechanisms allow obtaining feedback

1Licensed by Qualcomm Inc.
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about the network state, a strategy which strongly differs from
the TCP’s approach, which is based on packet loss detection.

Finally, the bottom layer is the channel abstraction sublayer,
which includes a channel abstraction module that simply sends
and receives packets to and from an UDP pipe.

Note that all these modules are executed at the user space,
being the interaction with the kernel limited to UDP exchanges.

IV. Protocol improvements

RCDP uses Raptor codes (which incur a linear cost in the
coding algorithms) that will require efficient implementation.
Moreover, since we adopt a user-level development approach,
there are additional delays associated with the switching be-
tween kernel and user modes that do not appear in kernel level
approaches, and whose effects should be mitigated.

A. Baseline optimizations

To optimize the performance of the solution presented above
we have to tackle several issues. Below we describe three inde-
pendent improvements that are able to boost performance.

A.1 Encoding module optimizations

An in-depth analysis of the encoding tasks reveals the follow-
ing sequence of actions: first, the pre-coding task is performed.
Afterward, source codes are delivered to the next module. Then,
the coding task takes place and recovery symbols are generated,
being fed to the sending module’s buffer. At the receiver side,
symbols are received and are also stored in a buffer. When the
necessary number of symbols is received, the decoding process
begins. When a block is successfully recovered, asuccessfully
recovered blocknotification is embedded in each packet train re-
port that is returned to the sender, telling the latter to switch to
the next block upon receiving it, in order to establish the flow
control.

This encoding process can be further optimized. Since we
are using systematic Raptor codes [19], the first output symbols
from the encoder are the source symbols themselves, and so no
pre-processing for this first set of symbols is required, meaning
that they can be sent without actually requiring any encoding to
take place. However, the Raptor encoding process is mandatory
to create the recovery symbols. We can see this series of tasks in
a sequential way, as shown in figure 2a. Following this data flow,
a delay between the first (source) and the second (recovery) set
of symbols is introduced. To optimize this sequence of tasks,
we reconfigure the encoding process so as to eliminate the delay
between the two sets of symbols, thereby avoiding additional pe-
riods when no packets are sent. In figure 2b, we schematize the
target parallelized solution, where partitions indicate that both
sending and coding processes are performed in parallel.

There are several ways to implement this optimization. The
most intuitive one is to execute them using different threads.
However, this approach increases the software overhead, adding
function calls that may introduce thread creation and wake up
delays. Therefore, we would go with other optimizations that
do not imply adding extra software overhead.

Another one could be splitting the coding process into smaller
slices, interleaving them with the delivery of source symbols.
This technique is possible since we use a Raptor Coding library

that allows defining the amount of coding work to perform step
by step. By applying this enhancement, we avoid the need to
perform encoding only after the sending of source symbols is
complete, introducing a pseudo-parallel processing without the
need of using threads. However, this approach could introduce
additional problems related to the regularity with which the sys-
tem is able to deliver the packets of a train due to the high CPU
usage and low granularity level at this point. As explained in
section III, packet trains play an essential role in our solution
to assess bandwidth availability in an end-to-end basis, and so
their regularity is critical.

The last approach that we have explored is to optimize the
buffer’s size. If we consider the encoding process as an irregu-
lar injection of source and recovery symbols to be sent, instead
of two periods of symbol generation followed by an intermedi-
ate pause, we can use a buffer to regulate symbol generation to
the lower layers. In this case, the only parameter that must be
correctly tuned is the buffer size. We must ensure that the trans-
mission time of buffered packets will be greater than the coding
time to avoid starvation at the queue level. The buffer size could
be estimated empirically or analytically, using equation 5.

Bs ≥
Tc ·BW

Ps

(5)

whereBs is the minimum size that the queue buffer should
have, in number of packets,Tc is the block coding time,BW

is the maximum bandwidth that the channel can achieve (in bits
per second), andPs is the packet size (in bits).

If the buffer size is chosen according to equation 5, the impact
of the coding process could be completely mitigated, and the
sender may operate without delays, as if the stream of symbols
was continuous.

A.2 Packet generation time accuracy

A second issue that must be considered is related to the timing
accuracy for the packet generation process. The most precise
way to send packets at regular intervals, as required to create
a packet train, is to implement abusy waitingscheme until the
time when a packet must be sent. However, this technique would
involve an inadmissible CPU overhead. An alternative is intro-
ducing a lower CPU overhead to put the sender thread to sleep
between two consecutive packet generation events. That is,if
packets of a same train are to be sent everyt milliseconds, the
thread sends a packet, sleeps fort milliseconds, and then wakes
up to send another packet. The main drawback of this approach
is that there is an additional delay in this sleeping and awakening
procedure caused by non instantaneous awakening. Therefore,
a delay between the programmed awakening time and the real
awakening time takes place, negatively affecting the precision
of this procedure.

The proposed solution to this problem relies on a two phase
approach, where, in the first phase, a timed waiting period cor-
responding to a fraction of the sleeping time takes place. Ina
second phase, the last part of the idle period is a busy waiting.
By varying the ratio between both periods we are able to achieve
different trade-offs between packet injection time accuracy, and
CPU load.
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(a) Initial sequential process. (b) Parallel-like process.

Fig. 2: Proposed coding process enhancements.

A.3 Early decoding feedback

A third element prone to optimization is the instant when the
source is warned about the correct decoding of the current block.
By default, this occurs only when the block decoding procedure
is successfully completed. However, since the Raptor libraries
provide feedback about the viability of the decoding process
even before this process starts, the receiver can warn the sender
about it much earlier, thus avoiding wasting time and network
resources by preventing the generation of additional recovery
symbols when they are no longer required.

B. Multithreading support

Since hardware architecture trends clearly follow the multi-
processor path, we therefore take advantage of this feature. In
our original implementation, blocks are sequentially loaded for
encoding. Some library initialization procedures must be per-
formed for every block, thus introducing a startup overheadto
the encoding process. In this section we propose a performance
improvement strategy that exploits parallel processing toavoid
this problem.

Figure 3a shows the original design for the Raptor cod-
ing module in RCDP, where a sequential processing design is
adopted. To take advantage of multithreading capabilities, an
alternative design is proposed. Figure 3b shows the alternative
design when adopting multithreaded coding for both sender and
receiver. In both schemes, threads are represented as circles, and
data structures as rectangles.

Concerning parallel encoding, it uses two independent
threads to encode data blocks in parallel. We will use this
new feature to overlap two different encoding processes, thereby
avoiding idle periods in the network. To achieve this goal, when
a block is being sent, the following block starts being encoded.
Due to this preloading of the next block, the sending processwill
be improved by parallelizing all the management structures.

Parallel decoding adds to the previous one the ability to de-
code up to two blocks in parallel. This can be used, as parallel
coding, to get a decoder ready to work without delay while the
previous block is being decoded.

(a) Sequential coding design.

(b) Multithreaded coding design.

Fig. 3: Coding design options in RCDP.

When several threads are working cooperatively, as in the
aforementioned cases, processing overhead associated with
thread management can become a problem. As occurs in all
processes whose complexity is incremented, additional software
overhead must be considered. Therefore, these additional pro-
cessing delays, which could downgrade performance compared
to simpler, sequential implementations. It is important todeter-
mine the optimal trade-off between parallelization and overhead
to achieve the maximum performance.
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Fig. 4: Throughput vs. available bandwidth in a network witha
10 ms end-to-end delay (null error rate).

V. Performance evaluation

In this section, we will quantify the difference between the
original implementation, described in section III, and theopti-
mized one described in section IV.

Our experiments were made with real working software on
the GNU/Linux platform. To ensure that the test sequences were
reproducible, we created a controlled environment for testing
using channel emulation. We created a network black box over
an Ethernet connection that emulates a configurable point-to-
point connection between two wireless hosts. It can be con-
figured by setting parameters such as the packet loss rate, the
available bandwidth or the end-to-end delay in order to emulate
different wireless channel conditions. The proposed network
black box was initially validated to make sure that test results
were reliable, and that all the comparisons we made were fair.

A. Performance evaluation under different conditions

In this section, we study the performance of both RCDP ver-
sions when varying the available channel bandwidth, the end-to-
end packet loss ratio, and the size of the contents to be delivered.

Figure 4 shows the throughput achieved when varying the
available bandwidth. We observe how, in general, the differ-
ent RCDP versions tested behave as expected, experiencing an
almost linear throughput increase as the available bandwidth in-
creases. We find that the optimized version is able to achievea
higher degree of productivity compared to the original one.In
particular, when compared to the original RCDP implementa-
tion, combining baseline optimizations with parallel coding al-
lows increasing throughput by about 45% in the best case, which
is a very substantial improvement. Besides throughput enhance-
ments, the block preload technique described in section IV-B,
along with the buffer size optimization described in section IV-
A, enables the generation of a continuous symbol flow which
contributes to a more regular transmission rate compared tothe
original RCDP.

In figure 5, we can see the throughput performance when
varying the packet loss rate in the network. The desired behavior
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Fig. 5: Throughput vs. packet loss rate in a 50 Mbps channel
with a 10 ms delay.
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would show a linear throughput decrease for increasing packet
loss ratios. We find that, in general, both RCDP versions ap-
proximately follow this trend. Results show that error immunity
remains similar to the original RCDP implementation in the op-
timized one, although actual throughput values basically depend
on the different enhancements proposed, as explained above.

In figure 6, we can see the throughput performance when
varying the size of the delivered content. Note that, when the
file size is small, the average throughput is low because the ini-
tial startup time overhead is similar to the transmission time. A
similar effect occurs with TCP as well. For greater files sizes,
the impact of the startup times on throughput become negligible.
Once again, actual throughput values depend on the different en-
hancements proposed.

B. Resource consumption analysis

We now focus on the computational resources required by
RCDP and our proposed optimizations. The results were ob-
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Table 1: Resource consumption
CPU utilization RAM Consumed

Version Client Server Client Server

RCDP 13 % 57 % 10 MB 77 MB

Optimized RCDP 23 % 60 % 58 MB 120 MB

tained using the Linux “ps” tool as a background process, which
periodically measure the CPU utilization (CPU time used di-
vided by the time the process has been running) and RAM uti-
lization at the both client and server. Note that, despite sim-
ilar software is running on both client and server, and despite
communication is bidirectional, data is being transferredmostly
from server to client. The server will mostly be performing data
encoding tasks, while the client will be performing decoding
tasks instead. Thus, for our baseline RCDP implementation,the
server CPU load is about 40% greater than the load at the client.

Table 1 shows the additional CPU overhead of both original
and optimized RCDP. We can see how CPU utilization is incre-
mented in both client and server. However, it is a little increment
if compared to the throughput increment shown in previous sec-
tion. Focusing on RAM usage, RAM increment is bigger due
to structure duplication needed to perform optimized tasks, but
it is maintained at very low values compared to current RAM
availability in most devices.

Overall, results show that, despite both client and server share
the same protocol architecture, the emphasis on either encoding
or decoding tasks results in different behaviors. In both cases,
the requirements and complexity of Raptor encoding impose
more overhead on the server compared to the client: about 40%
in terms of CPU, and around 60 MB in terms of RAM.

VI. Conclusions and future work

TCP has the gift and curse of being the most widely used
transport protocol in the world. It was created when wired net-
works were dominant and it was designed primarily for that en-
vironment. However, as we move towards the wireless era, we
find that TCP is not highly efficient under certain wireless chan-
nel conditions. In fact, to maximize performance in an envi-
ronment characterized by high delays and high packet loss rates
such as those where ITS are deployed, other alternatives must
be sought. In this article, we present RCDP - a content delivery
solution designed to exhibit a higher throughput than TCP under
those conditions.

RCDP is a full-duplex content delivery protocol which intro-
duces a bidirectional communication scheme following a com-
pletely novel approach. It encompasses the sending and receiv-
ing processes at both client and server, using an AL-FEC strat-
egy to provide a reliable transmission without any retransmis-
sion requirements.

Experimental results in a realistic testbed show that even the
most basic implementation of RCDP achieves a high degree of
throughput. RCDP also shows a near ideal throughput curve
when varying the packet loss rate. When applying different en-
hancements proposed in the paper, we find that throughput levels
are further improved. Overall, we consider RCDP as an useful
alternative to TCP in wireless environments such as vehicular

and ad hoc networks while offering performance levels similar
to TCP in low loss environments. Therefore, it represents a good
alternative to apply this protocol in intelligent transport systems.
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