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Abstract—This paper presents a local sensor fusion technique
with an event-based global position correction to improve the lo-
calization of a mobile robot with limited computational resources.
The proposed algorithms use a modified Kalman filter and a new
local dynamic model of an Ackermann steering mobile robot. It
has a similar performance but faster execution when compared to
more complex fusion schemes, allowing its implementation inside
the robot. As a global sensor, an event-based position correction
is implemented using the Kalman filter error covariance and the
position measurement obtained from a zenithal camera. The solu-
tion is tested during a long walk with different trajectories using a
LEGO Mindstorm NXT robot.

Index Terms—Dynamic model, embedded systems, event-based
systems, global positioning systems (GPSs), inertial sensors,
Kalman filtering, mobile robots, pose estimation, position mea-
surement, robot sensing systems, sensor fusion.

1. INTRODUCTION

OCALIZATION is a fundamental issue in autonomous

mobile robots. Without the knowledge of its exact posi-
tion and heading (pose), the robot would not be able to navigate
in the environment, follow a path, go to a goal point, or return to
its starting point. This is a challenging issue since the robot po-
sition information is obtained from sensors subject to noise and
nonlinearities. If this fact is not taken into account, it could lead
to a big uncertainty in the positions measure. This problem has
been widely studied in the literature [1], [2] in multiple ways.
First, assuming that the initial position prior to the movement
is known, the relative robot pose can be estimated by using the
local information of the robot movement obtained from several
sensors, this is known as Dead Reckoning, Odometry [1], [3],
or Local pose estimation. This procedure has a fast response
time but with it, the estimation error grows unbounded over
time. Second, if the initial position of the robot is unknown,
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but it possesses a sensor that obtains the relative position be-
tween the landmarks in the environment and itself, then, the
robot can build a map of the environment and obtain its abso-
lute position simultaneously using the fusion of the movement
and the environment sensors. These methods are known as si-
multaneous localization and mapping (SLAM) [4]-[6]. These
strategies usually require a high consumption of resources due
to the computational complexity of the solution and in some
cases also because of the processing needed for the landmark
sensor (mainly when it is vision based). This and other issues
such as data association (loop-closure problem) and nonlineari-
ties, make the real time implementation a challenging issue [7].
Third, using a complex sensor like a global positioning system
(GPS, zenithal camera, or a radio-based sensor as seen in [8]),
the absolute robot pose in the environment can be determined
without using any of the local information. This procedure is
known as Global pose estimation and has the disadvantage of
low response time, the limitation of working only indoors (cam-
era) or outdoors (GPS) depending on the sensor used, and, in
the GPS case, the appearance of several problems like multipath
propagation depending on the environment navigated [2].

As the robot position information is needed by the navigation
algorithm, the localization method response time is important.
If the robot location information is missed or delayed, the up-
dated data would not be available for the control algorithm and
it will produce a miss timed control action that can lead the
system to an unstable behavior. Due to that, the local pose es-
timation is commonly used as the main source of information
for the navigation algorithm and the GPS is commonly used
to correct the local estimation when the global information is
available [2], [9]. This is usually implemented using a fusion
scheme based on a version of the Kalman filter (KF) like the
linear KF, extended (EKF), or the unscented (UKF) (algorithms
can be found in [10]-[13]). This takes into account the accuracy
of each sensor and the robot model (Ackermann steering is used
in this paper) to join the information optimally, increasing the
localization accuracy. Although the estimation of the robot pose
is essential, other tasks such as communications (supervision
and coordination), sensor management (reading and calibra-
tion), and control algorithms (actuators drive and navigation)
are also important and require processor time. This establishes
adesign compromise between the complexity of the localization
technique and its precision when the robot is resource limited.
Complex fusion schemes based on nonlinear models and filters
(UKF and other fusion techniques like particle filters [14], [15])
will provide a precise estimation but will require longer execu-
tion times as they perform complex calculations (large matrix
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inverse and square root) and also require a larger number of
parameter identification to obtain the robot model. On the other
hand, linearized fusion schemes using the EKF take less time
to calculate, but if the model is highly nonlinear, it will diverge
quickly.

Considering these factors, a good localization algorithm
should be resource efficient (bandwidth, processor time, and
energy consumption [16]), it must take into account local and
global information using all available sensors with a fusion al-
gorithm, and, ideally, it should work very close in performance
to more complex algorithms in order to provide a good estima-
tion of the robot position. There are several works in this area,
as stated in the next section.

II. RELATED WORK

Mobile robot localization using sensor fusion is a well-
researched topic and there are several examples of localiza-
tion algorithms developed for different types of mobile robots
and sensors. Many of them use local estimation only, mostly
with EKF-based sensor fusion, and present only simulated re-
sults [17], [18] without the real robot constraints; or algorithms
implemented on a computer external to the robot ( [19] and [20]
using Pioneer robots), with the disadvantage of communica-
tion delays and the added weight to the robot. Onboard imple-
mentation of the fusion algorithm is less common, requiring a
robot with a powerful processing unit. This is the case presented
in [21], where a multirate EKF fusion algorithm is used with the
inertial measurements of a three-axis gyroscope and accelerom-
eter and with an optical navigation sensor (laser mice type) with
the advantage of nonslip measurement. The filter is tested us-
ing a custom build Ackerman type mobile robot showing good
performance in the mapping of a 3-D pipeline; but without
autonomous navigation. There are also few implemented exam-
ples on global estimation in indoor environments, using the EKF
with an inertial measurement unit (IMU) and different global
sensors, such as an ultrasonic satellite (U-SAT [22]), a zenithal
camera [23], or radio frequency identification tags (see [24]),
all showing an improvement in the localization over traditional
encoder-only odometry.

The Ackermann type robot or car is used by many examples
in outdoor environments; most of them use an IMU, a GPS, and
a laptop to perform the fusion algorithm, once again it is EKF
based in most cases. For example, in [25], an EKF is used to
fuse the observations from a DGPS, a linear variable differential
transformer for the steer angle, and the velocity encoder to obtain
the pose estimate of a vehicle, and then use laser scan data
as landmarks to improve the robot localization. A car is used
in [26] with an IMU with two magnetometers and a single GPS
antenna installed. The EKF fusion is performed in a notebook
and the GPS data are used as soon as it is available (constant
rate). A similar setup is used in [27] but aiding the EKF with
a neural network trained using wavelet multiresolution analysis
to aid the localization during GPS outages and performing the
experimental test on road. In [28], a car equipped with a high-
grade IMU and a GPS (with one and two antennas) is used
with a full 3-D bicycle model for the Ackermann vehicle to
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estimate the car pose, a KF is used in the estimation of the model
parameters. Also in [29], a two real time kinematic GPS units
with three antennas and an IMU with a gyroscope is used in an
adaptive EKF to estimate the robot pose. The sensor covariance
is adapted to reflect the GPS outages reducing the estimation
errors. In [30], a cascaded configuration is used: a first EKF is
used to estimate the robot pose, and this is used as input for
the second EKF to estimate the vehicle dynamics required for
control. The system is tested in an Ackermann farm tractor using
a GPS, a fiber-optic gyroscope (FOG), a doppler for longitudinal
velocity measurement, and a potentiometer for measuring steer
angle. Another car like experiment is performed in [31] but
using a numerical algorithm that adapts the model structure
online during GPS availability and works in cascade with a
KF. This case is extensively tested in long distance showing
good performance and low errors during GPS outages. Finally,
a complete general review is presented in [2] for positioning
and navigation, covering the general aspects of the systems
commonly used for sensor fusion and localization improvement.

The examples presented are in most cases computationally
expensive, and not implemented onboard the robot processor
(except in [23] and [21]). Also, most of them use the GPS in
a regular sample time basis, even if the local estimation error
(using the IMU and the encoders) is small. A better approach,
to save computational resources, would be to use the global
information only when the odometry error is big enough (when
it passes a predefined limit). This event-based update can save
the process time and extend the battery life. To deal with these
limitations in the current algorithms, the main objective of this
paper is to develop a new form of the multisensor KF fusion
algorithm, with similar performance when compared to more
complex fusion schemes, but with lower computational cost
and easy implementation on a limited resource mobile robot.
This is achieved by using a new and simpler robot dynamic
model with a cascade KF-EKF technique to perform the local
sensor fusion first, and then use odometry from this fusion to
estimate the robot pose, while using an event based correction
from a zenithal camera when the local error passes a predefined
threshold. As the platform cost is an important factor due to
the current challenge of developing high-performance systems
using low-cost technology [2], for this paper, the LEGO ®NXT
will be used as it provides low-cost sensors and robot.

After this review, the paper is organized as follows. In
Section III, the mathematical models needed by the KF equa-
tions are obtained for an Ackermann-type robot. The main con-
tributions are exposed in Section IV, where the event-based
localization algorithms are presented, and in Section V that
shows the implementation aspects in the proposed platform. In
Section VI, the performance and run time tests comparing the
performance of the proposed methods are presented. Finally,
some conclusions are drafted in the last section.

III. MODELS OF AN ACKERMANN STEERING ROBOT

An Ackermann steering robot consists of a rigid body with
center of mass and gravity denoted by %, turning radius R,
mass M, and moment of inertia I, with two nonorientable



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MARIN et al.: EVENT-BASED LOCALIZATION IN ACKERMANN STEERING LIMITED RESOURCE MOBILE ROBOTS 3

Fig. 1. Ackermann steering mobile robot. (a) Kinematics. (b) Dynamics.

(fixed) rear wheels separated by a distance b between them and a
distance [ from two orientable front wheels (also with a distance
b between them) as shown in Fig. 1(a). The Ackermann steering
system modifies the heading of the front wheels in a way that,
at low speeds, all the tires are in pure rolling without lateral
sliding [32]. This is accomplished when each wheel follows a
curved path with different radius but with one common turn
center C,, as shown in Fig. 1(a). This system is analyzed using
the bicycle model [32] and [33] shown in Fig. 1(b) assuming
planar motion. With this, the mean of the inside and outside
front wheels steer angles (¢; and ¢,) is used (¢) and the back
wheels are considered as one single wheel where the motor
force is applied. The kinematics and dynamics of this robot are
analyzed to obtain the model that will be used in the KF.

A. Kinematic Model

This model represents the robot velocities evolution in a
fixed inertial frame. The robot pose is defined by its position
Py = (z,y) with the heading angle 6 in the Global reference
frame (X¢,Y) in Fig. 1(a). By knowing the linear and angular
velocities (v and w) in the Local frame (X,Y7), the global

velocities are defined as

i cosf —sinf 0 Vg
Y| =|sinf cosf 0 vy |- (D
0 0 0 1] |lw

By discretizing and recursively integrating (1) with sample time
T, the following robot global pose L is obtained:

T T cosfp_1 —sinf,_; 0
L=y | = |y + T, | sin@._y cos@p_1 0O
O 01,4 0 0 1
U
X | vy )
Wk

The absolute linear acceleration of Py in the global frame a, with
components (a,, a, ), is expressed in terms of the accelerations
(¥, ¥y) and velocities in the local frame using its normal and
tangential components (a,,, a;) [32]

Qy = Uy — Vyw
ay = by + Vw. 3
The kinematic relation between ¢ and w is shown in
w = (v, tan @) /1. 4)

With this, the robot dynamics are analyzed next.

B. Dynamic Model

This model represents the robot linear and angular accelera-
tions (a,a) evolution in terms of the forces applied to it in the
front (Fy) and rear (F.) wheels and the angular moment (7).
The models in the literature represent the dynamics in the global
reference frame (for example [34]-[38]) but these yield too com-
plex nonlinear models that cannot be implemented in a fusion
scheme using a limited resources mobile robot, or a model with
many unknown parameters that have to be identified for each
used robot and motor (they are not provided by most manu-
facturers). As the limitation in computational resources is quite
common when working with mobile robots, a simpler model
is needed to implement the fusion scheme. Also, as no direct
measurements of the motor forces or input currents are avail-
able in most robots, obtaining the dynamic model in terms of
the linear accelerations is convenient. These accelerations can
be measured by two 3-D accelerometers placed above the cen-
ter of each wheel axis, using a similar configuration of the one
proposed in [39], where two one-axis accelerometers are used
to obtain w, but using the accelerometers to obtain v,,v,, and
w with the new dynamic model. Instead of using directly the
second Newton’s Law to obtain a and « in the center of mass,
the robot rigid body can be studied as a dynamically equivalent
particle system, formed by three mass particles M,, M., and
My joined by two massless connectors of constant length I2,
and Ry (with Ry = ly = R, = [, = 0.5]) as shown in Fig. 1(b).
Using this equivalence and the conditions stated by [40] (full
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development in Appendix), the accelerations are obtained as

Ay = )\a (a.ﬂz‘ + anw)
ay = Aa (agy + ary)
a = Ay (ajy - ar‘y) . (5)

The parameters of the particle system depend on Mg, I, and
the robot shape. In the case of a robot with rectangular form,
with length ¢ and width b, they are obtained as

Y= S Bf). 2 =05
6 1
a = T o a) = —- 6
aroen) e ©)

Taking into account the normal acceleration components by
substituting (5) into (3)

i)m = VyWw + )\(1 (af,az + ar.a:) = UyWw + )Vaul
Q.Jy = —U;w+ Aq (af,y + ar,y) = —V,w + A Uz
w= )»M’ (a,f.y - a7‘.y) = )»(NU?)- @)

By discretizing and recursively integrating (7), the robot local
dynamical model is obtained as

Vg Uy Uyw + )‘a Uy
v, = | vy, + T, | —vpw + Ayus . (®)
w g P Aayus k-1

By substituting (8) as inputs of (2), the robot global dynamical
model is written as

T T [ v, cos@ — v, sin ]
Y Y v, sin @ + vy cos 6
0 0 w
= + T )
Uy Uy Vyw + )‘«aul
vy Uy —Viw + Agug
LWl LWlra Aayus dr-1

Finally, in case the robot travels at low speed, the nonslip condi-
tion [32], [33] can be assumed (v, ~ 0), leading to the simplified
local and global models

0 D R PO R
w1y wlp hayus 1y,

x x v, cos 6

y y v, sin 6

0 =146 + T w (11)
Vg Vg Aq Uy

w g Wl Aayuz 1)

The models (2), (5), and (8) to (11) are used in conjunction with
the KF to estimate the global pose of the robot as shown in the
next section.
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Algorithm 1: Recursive EKF algorithm

Input . uk,Zk,J}kfl,Pkfl

Output: zx,P;

Data: f and h form model (9),Qx,Ry
Initialization: x¢,P,

for current time k do

Prediction Step:

&y = f (Tp—1,up—1,0)

Ay = % [Kr—1,uk-1,0

Hy, = 9 [%,.0

W, = TJ; |Xp—1,ux1,0

Vi = 28 [%,,0

Py = ApP_1 AL + WiQp W
Correction Step:

Ky = P HT (Hy P.HT + ViR VE) ™
T = T + K5 [Zk —h (i‘k,O)]

P, = - KiHy) Py

end

IV. EVENT-BASED LOCALIZATION

In this section, the proposed event-based localization schemes
are described, but first a short review of the time-based method
is presented. To simplify the notation, the models used in the
algorithms are referred as linear when it can be written as (12a)
with input u; € R*, measurement z; € R, and state x; €
R™, or nonlinear when a nonlinear function f is needed to
relate the state at time k& with the previous time step £ — 1 and
h to relate the xj to z; as shown in (12b). Also, the terms wy,
vy, represent the process and measurement noises at time k that
have an independent, white probability distribution with zero
mean.

zr = Hxp + v, (12a)
(12b)

xz, = Az + Buy 1 +wy g,

. = f(xp_1,up—1,wr—1), 2zr=h(xp,vp).

A. Global EKF Localization With Time-Based Update

This method is the “traditional” one, which uses the model
(9) [or (11)] and all the available measurements to estimate the
robot pose at every time k. If the available measurements are
Ug,encs Vy,enc, and wey from the encoders, wy,, from a gyro-
scope, u1 , ug, us from two 3-D accelerometers [placed as shown
in Fig. 1(a)] and the global position information (x,y,0)c s,
obtained from a zenithal camera or other global sensor, then
Zp = [QjGM yam Oam Uz,enc Vy,enc Wenc Wgyr]T is used
with wy = [u1 ug U3]T in (9). This model is used in the EKF
algorithm (Algorithm. 1) which performs the sensor fusion at
every time k (time based) using the process and measurement
noises covariance matrices Qi and Ry, respectively, and obtains
the state vector estimate &y, i.e., the robot pose in (9) and the
covariance of the estimation error Pj,. This method has all the
available information at any time k (all available sensors are
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used in zj, and wuy ) but requires large matrix inversion to obtain
the filter gain K ; thus, large memory and resources are needed.

B. Local EKF Localization With Global KF
Event-Based Update

A first approach to reduce the communication, processor and
memory requirements is to reduce z; dividing it into the local
and global measurements. With this, the robot pose is deter-
mined every time k& using (9) in the EKF and the local z; =
[vm‘,ﬁnc vyﬁﬁn(z Wene Wgyr]T with wup = [Ul Uz u;ﬂT, and us-
ing the global position Loy = [zem yem Yo M]T to correct
the local estimation on an event-based scheme. The basic idea is
to use L s only when the error in the estimation is big enough,
indicated by an event that uses the pose section of P, in the EKF.
This Py, ., is used to obtain the area of the 3 — o error interval
ellipsoids using (13), where the ellipsoids axis are a, and b,
and [, = 3 for the 3 — o error. With this, the event is generated
using the ratio R, of the ellipsoid area A.;;;, and the robot
area Ay x7. This is a normalized indicator of the moment in
which the error in the robot position is as large as the size of the
robot. For example, when R4 exceeds a certain level R4 ;i ,
e.g., 1.6 (indicating that the error area is 1.6 times the robot
area), then L/ is used to correct the robot pose. This limit is
chosen as a compromise between the number of calls (energy
and processor time consumption) and the desired precision of
the estimated position, being a reasonable range 0.6 < R4 < 2
for the LEGO NXT

p o7 ol 202 | Pry |
by = g = | 55 7
ez, o2 ol +ol+T,
212 | Pyy|
Ty = \Jod +of — 2030} tdod,, b = |t
r Ty
Anxr =b-c Ay = maghsy. (13)

To correct the pose with Lg s, the estimated pose xy, , of the
EKF output can be replaced by Lgys and Py, = Py 1.0 by
the corresponding values of F. But a better approach is to
fuse the EKF output with L, taking into account the global
sensor accuracy. This is done by using the EKF output (pose
states and error covariances) as the prediction step of a linear
KF. The model used in the fusion is (12a) with A and H,, both
being the identity matrix I3 3 and no input. The Ry ¢y val-
ues are obtained from the global sensor accuracy. With this, the
KF will fuse the local estimate with the global measurement.
The resulting P, decreases when the pose is corrected, re-
setting the event. The event-based EKF is shown in Algorithm
2. A cascaded model approach can also be used, as described
next.

C. Local Cascaded EKF Localization With Global
KF Event-Based Update

This approach takes a further step in reducing compu-
tational requirements. Instead of using (9) with the full
state, the velocities in (8) are used to perform the local fu-
sion, and then, (2) is used to obtain the robot pose. With

Algorithm 2: Recursive EKF algorithm with an event-based

global KF update

Input : wg,zp,26—1,P—1,Lam

Output: 2,P;

Data: f and A from model (9),Qx,Ri,AnxT

Initialization: x¢,P,

for current time k do

Prediction Step EKF (same as Alg. 1)

Correction Step EKF:

Ky = P HE (Hy PLHT + Vi R VE) ™

Ty = 2 + Ky, [z — h (24, 0)]

P.=( - KiHy) Py

3 — o ellipsoid area A, using (13)

Ry = Acuip/AnxT

if Ry > Raim then
Global Correction Step, pose KF
Ki,xr =P pH) (HpPk,pH,7T+Rk,GM)_1
Tep=%k-1p+Ki,kr (Lam—HpEr—1,p)
Prp=(I—Ki,xrHp) Pr.p

end

end

this xj, = [v,, vy, w], and again w, = [u; uy ug}T and z), =
[Vs enc Uyenc Wenc wgy,,.]T. Also L¢ s is used to correct the
local estimation in the event-based scheme. This reduction in
both z;, and z;, (comparing to the time based scheme) allows a
fast calculation in the matrix inversion required for K, reduc-
ing the memory use and leaving resources for other tasks. As
the uncertainty in the velocity measurement is not propagated
to the pose estimation as does the previous methods, a linear re-
cursive approximation is used to propagate the covariance from
the velocity Py, ,, v, .w to the pose Py, ,, and also propagate it
in time [13], [41] as shows (14). In this, VF, is the gradient
operator applied to (2) with respect to the inputs (v,,v, ,w) and
Q. are set equal to the Q}; 5. terms in the EKF. The cascaded
event-based EKF is shown in Algorithm 3. A final algorithm
can be proposed with a smaller z, as described next

Pk,,p - Pkfl,p + VFUP,I{,‘,U.,,?J_U.DJVFE + QJL (14)

D. Local Cascaded KF Localization With Global
KF Event-Based Update

This approach takes advantage of the nonslip condition (
[33], [32]) in case the robot travels at low speed, using the
velocities in (10) to perform the local fusion, and then uses
(2) to obtain the robot pose. As (10) is linear, the fusion is
performed using the KF instead, saving more computational
resources (compared to Algorithms 1 to 3) as the linearization
step of the EKF is not needed. With this z, = [v,,w] and u; =
[y U3]T. In replacement of the v, measurement, we,,, from
a compass is used in z; = [Uy ene Wene Woyr wwmp]r. Also
Ly 1s used to correct the local estimation in the event-based
scheme by using the covariance propagation of (14). Without
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Algorithm 3: Recursive-cascaded EKF algorithm with an
event-based global KF update

Il’lpllt :uk,zk,xk,l,Pk,l,LGM
Output: z,P;
Data: f and h from model (8),Qx,Rr,Anx7,Qx
Initialization: x¢,FP,
for current time k do
Prediction Step EKF (same as Alg. 1)
Correction Step EKF (same as Alg. 1)
Pose estimation using (2)
Covariance propagation using (14)
3 — o ellipsoid area A3, using (13)
Ry = Actip/AnxT
if Ry > Raim then
Global Correction Step, pose KF
(same as Alg. 2)

end
end

Algorithm 4: Recursive-cascaded KF algorithm with an
event-based global KF update

Input : wp,2k,06—1,Pe—1,Lam
Output: Ty, Py
Data: A, B and H from model (10),Q, R, AN x7,Q2
Initialization: x,F
for current time k do
Prediction Step KF:
Ty = AZp_1 + Bug—q
P, = AP, 1 AT + Qy,
Correction Step KF:
T T -1

K = Pka (HkPka —|—Rk)
T = T + K, [Zk — Hik]
Py = (I — K Hy,) Py,
Pose estimation using (2)
Covariance propagation using (14)
3 — o ellipsoid area A.;;p using (13)
RA = Actip/ANnxT
if Ry > R A im then

Global Correction Step, pose KF

(same as Alg. 2)

end
end

the estimation of the slip, this method is less accurate in the case
of high-speed movements or in certain surfaces, but this can be
compensated (within certain limit) by using a low 24 i, value.
The cascaded event-based KF is shown in Algorithm 4. With
this, the selected platform, the LEGO NXT is described below
along with the experimental results.
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V. IMPLEMENTATION IN THE LEGO NXT

The tests are performed in an Ackermann drive LEGO NXT.
In this section, the platform is described along with the local
sensor calibration and preprocessing, the navigation algorithm,
and the global sensor scheme. Finally, the platform and filter
parameters are exposed.

A. Test Platform Description

The LEGO Mindstorms ®NXT is a low-cost mobile robot
platform. Its control unit, the NXT, is based on an ARM7
32-bits microcontroller with 256-kB FLASH and 64 kB of
RAM. For programming and communications, NXT has an
USB 2.0 port and a wireless Bluetooth class II, V2.0 de-
vice, and four inputs and three analog outputs. The basic
pack offers four electronic sensors: touch, light, sound, and
distance. But in addition of these default sensors, nowa-
days a great variety of different sensor is available, as for
example vision cameras, magnetic compass, accelerometers,
gyroscopes, infrareds searchers, etc. (www.mindsensors.com,
www.hitechnic.com). The actuators consist of dc motors that
have integrated the encoder sensors with a 1° resolution. A more
detailed description about LEGO NXT motors can be found
in www.philohome.com/motors/motorcomp.htm. The LEGO
NXT robot used in the tests is shown in Fig. 2. The sensors
used in the fusion scheme are two accelerometers placed above
the center of each wheel axis [for the dynamic model, Fig. 1(b)],
one gyroscope, one magnetic compass, and the wheels encoders.
The programing platform used is the Java-based LeJOS, due to
the programming advantages in the communications between a
robot and a supervising PC. Although the microcontroller can
perform many tasks given enough time, the main limitation of
this robot is the memory. It has a limit of 255 local variables,
1024 constants, 1024 static fields, and a maximum code length
of 64 kb when programing with LeJOS. Because of this, it is an
excellent option to implement the proposed filters as it does not
have enough memory to implement a large KF with many states
and measurements.

B. Local Sensors Calibration and Preprocessing

The used local sensors must be calibrated to remove any bias,
this can be accomplished by doing a preliminary test with the
robot, with the sensors measuring the same value for some time.
Also, their values must be in the same units of measurement
(S.I. in this paper). The preprocessing is done to obtain v and
w from the sensor data. Integrating the encoders reading with a
sample time of Ty, = 50 ms, v, is obtained from the rear encoder,
and ¢ from the front. With this, w,,,. is obtained from (4) and
Uy,ene = Uy tan ¢. The gyroscope directly measures wg,,,-. and
Ocomp 1s measured from the compass in a range [0, 27], so it
must be accumulated to obtain a continuous measure of 6 and
then derivate it to obtain wc,.,,. As both, the calibration and
the preprocessing steps, depend on the sensors, these processes
should be done for every robot that is used in the experiments
and also when a sensor or a motor is replaced. The robot sensors
are marked in Fig. 2. Also, two gears are placed at the motors
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Fig. 2. LEGO NXT mobile robot used in this paper.
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trajectory is stored in the robot memory (for example a square, a Fig. 4. Hardware setup, global position measurement.

circle, etc.) as a set of global points. Knowing the initial position
of the robot, the algorithm calculates the distance Diy,ip rer tO
the trajectory points to determine the nearest one, then, a look
ahead distance is added to obtain the objective point (z,y),,.
This point is used by the navigation algorithm, a pure pursuit
controller (see examples in [1] and [3]), or a decentralized point
controller, to determine €. This reference is followed by a
PID controller that generates the control action for the motors
U, to follow the reference velocities, and so the desired path.
One sample time later, the sensors in the robot measure all the
inputs for the KF fusion scheme which estimates the actual
position x;, ,,. This is used again by the algorithm to obtain a
new objective point and keep the robot moving in the desired
trajectory.

D. Global Sensor Scheme

This is the system shown in Fig. 4 being composed by the
camera (640 x 480, 30 frames/s), the server that processes the
image (camera server—C.S.) and the server that communicates
with the robot (supervision server—S.S.). The C.S. executes a
Java-based program that constantly gets the image from the we-
bcam, and makes the image processing to obtain the globally
measured pose along with the time taken by the server to obtain

this value T¢,,,, (50 ms in average but the sent value is the ac-
tual measured time). This information forms the message that is
communicated to the S.S. This server also stores every measure
in a file and a video for the later analysis of the robot move-
ment. When the event is generated, the robot asks the S.S. via
Bluetooth for a global measurement. As the S.S. executes a Java
program that is continuously listening for the robot calls, the
request is processed immediately, so it sends the last message
(pose and time) received from the C.S. to the robot.

To deal with the communication delay, several actions are
taken when an event occurs. First, the output provided is the
EKF/KF estimation until the message from the S.S. arrives,
while a timer counts the time elapsed between the camera call
and the reception of the S.S. message 7. Also the velocities in
the global axis V., Vy, of the robot at the event time are stored
in the robot memory. When the message arrives with the global
position, (15) is used to obtain the displacement caused by the
delay A (z,y) adding it to the received (z;,y, ) from the camera
to obtain the L¢ s used by the event-based filter, assuming that
the camera measure is performed as soon as the message is
received by the S.S. The received heading 0, is assumed to be
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TABLE I
FILTER PARAMETERS FOR THE LEGO NXT
State Alg 1 Alg2 Alg3 Alg4
T
y 0.0001 0.0001 (Qg)
Q 6
Vg 0.01 0.01
vy -
w 0.03 0.9
Measurement Alg 1 Alg2 Alg3 Alg4
ram 0.015 0.015 (event based)
Yyem
R (el 0.00001 0.00001 (event based)
Vz,enc 0.01
Vy,enc 0.098 -
Wenc 0.038
Wayr 0.013
Wecomp - 0.97

constant during T
AT = Toam + 0.5 (T
AX = (Vz AT)
AY = (Vy.AT)

- Tcam) LG]\'[.ZL‘ =x, + AX

LGAM,‘I/ =Y+ AY

Laug =0, (15)

Finally, to preserve the linear displacement assumed by (15), a
final condition is checked by the algorithm. There must be no
global updates performed when the robot is in a hard movement
(i.e., when applying a big control action to the steer motor
to negotiate a curve or to avoid an obstacle). This is done by
checking the PID control. If the error (difference between the
desired and real value) in the steer motor velocity exceeds a
certain value (|es| > 2), then the robot is assumed to be in a
hard curve. In this case, the algorithm waits 1 s and then checks
again this condition. If it is false, then it makes again the global
update procedure and outputs the corrected position.

E. Platform and Filter Parameters

The required parameters for the fusion scheme are obtained
for the Lego NXT. For the dynamic model, the parameters cor-
respond to the solid box robot with b = 154 mm, ¢ = 167 mm,
and A, = 0.5 in (6). The measurement noise covariance matrix
R and the system error covariance matrix @ are obtained from
the experimental tests, doing a trial and error tuning using the
sensor data obtained from the robot when a square and a circular
trajectory are followed. The criteria used to make the adjustment
were that the most suitable parameters are the ones that make
the KF trajectory estimated very similar to the one measured
by a zenithal camera. The adjustment was done knowing that a
small value in a term of these matrices means that the KF will
consider this value more relevant for the estimation than the oth-
ers. For example, a low value of the wg,, means that the filter
will perform the estimation based mainly in this measurement,
so the others w sensors and model will be less relevant. The
matrices () and R are both diagonal, with the corresponding
values for the states and measurements showed in the Table I.
After discussing the implementation issues, the preformed tests
are presented next.
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Fig. 5. Algorithms performance, simulation test.

VI. EXPERIMENTAL TESTS WITH THE LEGO NXT

To test the performance of the proposed algorithms with the
event-based global update (EBGU), several tests are performed
in an Ackermann drive LEGO NXT. In this section, the local-
ization performance and execution time test are presented.

A. Performance Tests

A first test is performed without using the event-based cor-
rection. The robot is set to follow a square reference trajectory,
while recording the local measurements and the information
of the C.S. to use in an offline MATLAB simulation. This is
shown in Fig. 5, where all the algorithms show good perfor-
mance. The closest estimation to the camera measure is the one
for Algorithm 1, the EKF with six states and seven measure-
ments (EKF6e7m), as it has access to the global measurement.
The other algorithms, EKF6e4m in Algorithm 2, EKF3e4m in
Algorithm 3, and KF2e4m in Algorithm 4, show a close esti-
mation to the camera measurement, but it is clear that the lo-
calization accuracy is degraded when using only a less resource
demanding estimation scheme (simpler model or less measure-
ments) without the global information. Also, using only the
encoders is insufficient in this platform.

The proposed event-based localization scheme will increase
the accuracy of these algorithms to be close to EKF6e7m, as
the second test in Fig. 6 shows. In this, the proposed EKF/KF
fusion schemes are implemented (onboard) on the LEGO NXT
(Algorithms 2 to 4, using the EBGU) to follow a square trajec-
tory. Algorithm 1 is not implemented as it exceeds the 7, and
the memory limit. Again, good performance is observed as the
localization solution is closer to the camera measurement than
when the event-based update is not used.

The final performance test, a long-distance run, is done by
using the less resource demanding algorithm, KF2e4m, setting
the robot to follow a double square and a square trajectory for
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Fig. 7. 30-minutes run, double square trajectory. (a) Odometry. (b) KF2e4m. (c¢) KF2e4m+EBGU, R4 = 1.2.

30 min, as the experimental results of Figs. 7 and 8 show. In
Fig. 7(a), the localization is done only using odometry from
the encoders. Thence, the estimated position quickly diverges
from the actual one. With the KF2e4m without the EBGU [see
Fig. 7(b)], the pose estimation diverges slowly as the error co-
variance increases. But in the case of the KF2e4m with the
EBGU [see Fig. 7(c)], the position is estimated properly as the
trajectory remains very similar to the double square reference
and the position covariance does not increase indefinitely. This
is observed again in Fig. 8 for the square trajectory. Although
the error bound for the KF2e4m may seem large [see Figs.
7(c) and 8], it can be decreased to fulfill the mission require-
ments by lowering the R4 value. This is done as a compromise
between the method accuracy and the available resources and
bandwidth in the robot and S.S. With these tests, the stabil-
ity and convergence of the KF2e4m with EBGU are observed
for large distance runs, and so the more complex schemes
(KF6e4m and KF3e4m) will also perform well under similar
circumstances. A video of the long-distance runs can be found
in http://wks.gii.upv.es/cobami/webfm_send/6. The execution
time of the different algorithms is analyzed next.
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Fig. 10. Execution time test, experimental results onboard the LEGO NXT.

B. Run Time Test

To evaluate the run time efficiency of the proposed algorithms,
the mean execution time of the simulation performed in Fig. 5
is measured, using MATLAB running on a computer (2.4 GHz
with 4-GBRAM). This is shown in Fig. 9. From this test, it is
clear that the proposed methods with the cascaded configuration
(EKF3e4m and KF2e4m) have less computational effort (as they
use less ms of processor time) to estimate the robot pose, when
comparing with methods that use a full state estimation approach
(EKF6s4m and EKF6s7m). Although EKF3e4m and KF2e4m
use less time, they have similar performance to that of the more
complex ones, as it was shown in the performance tests.

A second test, where the execution time is measured for the
different tasks running inside the robot, is performed. In this, the
proposed algorithms (with and without the EBGC) are compared
with the EKF6s7m (which, due to the limit in the robot memory,
was executed by sections to obtain the different task times). The
measured tasks are the sensor reading (with calibration and
preprocessing), the KF, the control algorithm (navigation and
motor control), and the write task which stores the variables
needed for supervision in a text file. This is shown in Fig. 10.

IEEE/ASME TRANSACTIONS ON MECHATRONICS

Execution times are measured every cycle over a 1 min test, and,
as they are not constant, three cases are presented. Case a shows
the mean task time per cycle, case b shows the time of the worst
execution, and case ¢ shows the maximum task times measured
during the test, although they do not occur at the same time at
any cycle (or through the 30 min run), but these are an indicator
of the worst case possible. This test shows that only the proposed
event-based methods fulfill the sample time of 50ms for cases
a, b, and c, being the KF2e4m the less resource consuming of
all filters. The EKF6s7m exceeds the 7T in all the cases, and
so is not suitable for being implemented in this robot because
of the low available memory (when the calculation of K is
performed in every cycle) and also, when this sample time is
needed.

VII. CONCLUSION

Three efficient sensor fusion scheme using the KF and EKF
with a new particle dynamical model of an Ackermann wheel
mobile robot, along with an event-based global position update,
have been presented as a solution for the localization problem.
The results show that the performance of the proposed algo-
rithms with the new model is similar to those obtained by using
the more complex EKF with larger state and measurement vec-
tors, but with a faster execution and less memory usage, allowing
the implementation of the algorithm inside a limited resource
robot, while leaving enough resources for other tasks that must
be executed inside the robot. Also, as the event-based update
uses less bandwidth for the localization task, more can be al-
located to other data transmissions, such as robot coordination,
formation control, system monitoring, diagnostics, etc.

The local sensor fusion can be adapted to add more or less
sensors according to the robot capabilities and the available
sensors, adjusting the KF matrices (dimensions and values of
Table I) as needed. If the robot has very limited resources, this
method can work using only the encoder measurements and
one heading angle/rate sensor. Also, both accelerometers can be
substituted for a model (identified from the experimental data)
that relates the motors control action and the linear accelerations
of the real wheels and the steering, to use them as inputs in
the proposed dynamic model. On the other hand, if the robot
has large resources availability, the proposed Algorithm 2 can
be used to estimate the pose, while saving bandwidth when
communicating to a zenithal camera (or a similar off-board
global sensor). In this case, it can also be adapted to a more
complex sensor fusion filter like the UKF or the Cubature KF,
to improve the accuracy of the pose estimate.

In all the performance and execution time results, improved
pose estimation over the traditional odometry and EKF6e7m
fusion method was observed. Also, the proposed algorithms re-
duce the processor usage and battery consumption in the mobile
robot, as it updates the position only when it is necessary.

As future work, the method can be extended into different
mobile robots configurations such as the Omnidirectional, by
adding particles to the proposed equivalent dynamical model.
Also, different sources of global information can be used, for
example, a GPS to develop the outdoor case, or a scanning
laser rangefinder to extend the method into a SLAM algorithm.
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Finally, the proposed algorithms can be modified to solve a
multirobot localization scenario, using the relative robot pose
information in the event-based scheme as mobile landmarks
while saving bandwidth and resources.

APPENDIX
DYNAMICALLY EQUIVALENT PARTICLE SYSTEM

To study the robot rigid body as a dynamically equivalent
particle system, formed by three mass particles M,., M., and M
joined by two massless connectors of constant length R, and
R [see Fig. 1(b)], the following conditions must be met [40]:

1) Mass Conservation: Mg = My + M, + M,

2) Mass Center Conservation: My Ry = M, R,

3) Moment of Inertia Conservation: My R; + M, R} = I

By defining Ry = R, = Ry = 0.5/, the masses are obtained
in (A.1), where My and M, are proportional to the total mass
Mg expressed by the constant ~y. This is true for M, but with
the constant d. Also the constant 1, is defined from ~y and ¢, and
Ao from Mg, Ry, and I

Ig v
M :MT:7: M7 )\,azi
/ ory, ¢ 1-6
Iq Mg Ry
M, = Mo — (25 ) =My, »y = 2SN (AL
, G (RJQV) G To (A.1)

The parameters of the particle system are obtained in (A.2)
for a robot of rectangular shape with length ¢ and width b, by
substituting I in (A.1). The simplified parameters are shown
in (6). This procedure can be extended to other robot shapes
substituting the corresponding I in (A.1)

1 1
Io = Mg (B2 +¢), v=2 (1+0/))
2
PO (Pl 720 T S
3 c(l—|— (b/c)Z)
ha =05, Aoy=1/c. (A.2)

To obtain the dynamic model, the second Newton’s law is
applied to both the rigid body and the particle system [see
Fig. 1(b)] to obtain (A.3) and (A.4)

YF, = (Fyycos¢ — Fyysing) + F,, = Mga,
YF, = (Fyycos¢ + F,psin¢) + F,, = Mga,
Y1 =1 (Fypcos¢p+ Fppsing) — . Fy, = Iga
(Foycos¢—Fyrsing)+Fy =Mras,+Meac,+Mar,

(A3)

(Fyscos ¢+ Fypsing)+F,, =May,+M.ac,+Ma,,
R; (Fyfcoso+F,ysing)—R, Fy, =Ry Msay,—R, M.a,,.
(A4)

D’ Alembert’s principle is used and (A.3) is set equal to (A.4).
They are dynamically equivalent when using (A.2) and when
Ry =1y, R, =1, = 0.5l. This is the distance used to place the
accelerometers in the robot structure. Using these conditions

and solving for the accelerations (with a. = a), the equation (5)
is obtained.
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