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Abstract We present an explicit correspondence between quantumaniestand the
classical theory of irreversible thermodynamics as dexaiidoy Onsager, Prigogires
al. Our correspondence maps irreversible Gaussian Markaepses into the semi-
classical approximation of quantum mechanics. Quantunchar@cal propagators are
mapped into thermodynamical probability distributionsheTFeynman path integral
also arises naturally in this setup. The fact that quanturohaics can be trans-
lated into thermodynamical language provides additiomgpsrt for the conjecture that
guantum mechanics is not a fundamental theory but rathemamgent phenomenon,
i.e., an effective description of some underlying degrees @fdioen.
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1 Introduction

Emergent physics as a research topic has drawn a lot ofiatie@etently[10, 25]. The
very spacetime we live in, as well as the gravitational faha governs it, both appear
to be emergent phenomenal[24] (39, 49]. Quantum mechaniedduedseen conjectured
to be the emergent theory of some underlying deterministideh in part because of
its long—standing conflict with general relativity. Thesests a large body of literature
on emergent quantum mechanics, some basic references [Beig), [33]; see also
[By11,12] 14, 19, 22, 29, 30, 34,143, 44] 45] for more recemkw®he hypothesis of
emergence and the holographic principle [20, 46] have bagedas landmarks in the
endeavour to arrive at a consistent a theory of quantumtgravi

Without touching on the difficulties facing quantum grayaynumber of interpre-
tational questions and foundational issues arise and rewigtin a purely quantum—
mechanical setup (or, eventually, within a quantum fieldthasetup, see [23]). In this
article, following earlier work([1], we will focus othe emergent aspects of quantum
mechanics applying a thermodynamical approaehfact the classical thermodynam-
ics of irreversible processes and fluctuation theory wilhtaut to share many com-
mon features with quantum mechanics—surprisingly, witliriR@an’s path integral
approach to quantum mechanics. Some basic references sualijeet of fluctuations
and irreversible thermodynamics arel[28} [37,[38/ 40, 48jigning questions such as
the emergence of macroscopic irreversibility from micagsc reversibility, the arrow
of time, and other related puzzles are analysed in[[31, 41inoke complete list of
references can be found (n [36].

Specifically, the purpose of this article is twofold:
i) to establish an explicit correspondence between quantuwrhanés on the one hand,
and the classical thermodynamics of irreversible processethe other. We claim
validity for this correspondence at least in the Gaussigir@gpmation (which cor-
responds to the linear response regime in thermodynamidstaathe semiclassical
approximation in quantum mechanics);
i) to use the correspondence just mentioned in order to praridedependent proof
of the statement thajuantum mechanics is an emergent phenomenon, at least in the
semiclassical limit

With hindsight, once one has realised that quantum mecbantbe Gaussian ap-
proximation is a classical thermodynamics in disguisegthergent nature of quantum
theory becomes selfevident—after all, thermodynamicsgpiaradigm of emergent the-
ories.

2 The Chapman—Kolmogorov equation in quantum me-
chanics

To begin with we present a collection pfirely guantum—mechanical expressions, for
which there will bepurely thermodynamical reexpressions using the correspondence
we are about to develop. Although the material of this sed8standard, a good gen-
eral reference is [50]. For simplicity we will restrict to adimensional configuration
spaceX coordinatised byt.



The quantum-mechanical propagafd(xs, t2|z1,t1) is defined as the amplitude
for the conditional probability that a particle startingat, ¢1) end at(zs, t2):

K($27t2|£€1,t1) = <£C2|U(t2 - t1)|171>, U(t) = exp (—%tH) . (1)

Above,U (t) is the unitary time—evolution operator, afldis the quantum Hamiltonian
operator. The time—evolution operators satibfy group property

U(t1)U(t2) = Ul(t1 + t2), (2)

an equation known in statistics already since the 1930tk@€hapman—Kolmogorov
equation[13]. Its solutions satisfy the differential equation

au du
ihs = HU(t o= . 3
g = HUQ), "t o ®)

Using [1) we obtain an alternative reexpression of the Claapid{olmogorov equation:

K (z3,t3]z1,t1) = /d£C2K($C37f3|$€2,f2)K($2,t2|$1,t1)- (4)

Since wavefunctiong are unconditionalprobability amplitudes, they are related to
propagatordg< (which areconditionalprobability amplitudes) as follows:

(w2, t2) = /dﬂCl K (xa,to|z1,t1) Y(z1,t1). 5)

Propagators can be computed via path integrals over coafigarspaceX,

I(tQ):Ig

K (zo,to]x1,t1) = /

z(tl):zl

. to

Da(t) exp{% / dtL[x<t>,:e<t>1}, ©)
ty

whereL is the classical Lagrangian function. Two simple examptestiich the path

integral [6) can be evaluated exactly are the free partiotethe harmonic potential.

For a free particle we have

: 2
K(free) t t — m ﬂ (‘T2 B xl) 7
(w2, 2|21, 1) mih (to — 1) (ts — t1) exXp o 7152 “ ) (7)
while for a harmonic potential we have, ignoring the causstic
K(harmonic) t ) = mw 8
(@2 baloss 1) = o ot — 1)) ®

<o g st g [+ oo ette —0) —2vm]

When the path integrd[6) cannot be computed exactly, aroappate evaluation can
still be helpful. Forh — 0 we have the semiclassical approximation to the propagator,
denoted byK :

. to
Ka (z2,ta]x1,t1) = Z71 exp {%/ dt L [xcl(t),jrcl(t)]} , 9)

t1



wherez,,(t) stands for the classical trajectory betwéen, t1) and(x, t5), andZ !
is some normalisation factdr.

3 Fluctuations and irreversible processes

For the benefit of the reader, with an eye on later applicatiare include below a
summary of ref.[[38].

3.1 Thermodynamic forces

Let a thermodynamical system be given. If we are interestamhly a single instant,
the probabilityP of a given state is given by Boltzmann’s principle,

kpIn P = S + const, (20)

whereS is the entropy of that state. If we are interested in two imstavidely separated
in time, the probability of given states at each instant isaédo the product of the
individual probabilities. A long time lapse makes the stagtatistically independent.
Hence the joint probability of the succession is relatedhtostum of the two entropies.
But if the time lapse is not long, the states will be statadticcorrelated. It is precisely
the laws for irreversible behaviour which tell us the caatigns.

Let the thermodynamical state of our system be defined by af gatensive vari-
ablesy!,...,y"™. The entropys = S(y!,...,%") will be a function of all they*. Its
maximum (equilibrium) value will be denoted I8, and they* will be redefined to
vanish for the equilibrium statef, = S(0, ..., 0). The tendency of the system to seek
equilibrium is measured by ththermodynamic forces;, defined as

oS
Yo =—, k=1,...,N. 11
k aykv ) ) ( )

TheY), arerestoring forceshat vanish with they”.

Fluxes are measured by the time derivatives ofithe The essential physical as-
sumption made here is thisteversible processes are linear, i.e., they depend lilyea
on the forces that cause theffherefore we hale

N

o dyt .
yzzdyT:ZL”Yj, i=1,...,N. (12)

j=1
Onsager’s reciprocity theorem states thas a symmetric matrix [37],

L = [t (13)

1we will henceforth use the collective notatiéfi! to denote all the different normalisation factors that
we will not keep track of.

2We user to denote time in the theory of irreversible thermodynamimsd¢ to denote time in the
quantum theory. As will be seen in{44)andt are related by a Wick rotation.



Further assuming that is nonsingular one can solve for the forces in terms of the
fluxes:

N
Y; =Y Ryy, i=1,...,N. (14)
j=1
Thus the rate of production of entropy,
N N
. oS .. i
§=2 559 =2 Vi, (15)
j=1 j=1

can be expressed in either of two equivalent ways:

N N
S=Y" Ryj'y =Y LYY (16)
i,j=1 i,j=1

One defines thdissipation functior as the following quadratic form in the fluxBs:

1 & -
=g > Ry 17)

i,7=1

This function is a potential for th&y, becaus@® /9y’ = R, Y). The corresponding
quadratic form of the forces,

N
1
=g > LYy, (18)

ij=1

has a similar property, but it should be noticed that it is icfion of thestate(since
theY}, depend only on thg?), whereas the numerically equblis a function of itsate
of change

If we expand the entropy in a Taylor series around equilibrive have

N
1 i
S:SO_i E Sijny—F... (19)

ij=1

The matrixs;; is symmetric and positive definite. Neglect of the highemigin y*
means the assumption that fluctuations are Gaussian: fazrBahn’s principle[(Z]0)
states that the logarithm of the probability of a given flation is proportional to its
entropy, or

N
_ S _ 1 i
P(y',...,y") = Z " exp (E) =Z texp kg Z siy'y’ | - (20)

i,j=1

SWe assumeR;; to be positive definite. This ensures that> 0 as expected of a dissipative process.
Indeed, the dissipation functich can be identified with a kinetic enerdy, = Zg\szl gij;'pi‘;bj/Q, w‘here
gij is a certain Riemannian metric on the space spanned by theities 7. Identifying #7 with 37 we
havegij = Rij-



The assumption of Gaussianiky {19) then implies thafithare linear in they’:
N
Yi==> sy, (21)
j=1

Thus the phenomenological lais{14) become

N
(Riji + sijy?) = 0. (22)

J=1

3.2 Fluctuations

Let us now modify the deterministic equatiohsl(14) to inédidctuations by the addi-
tion of a random forceé;,

N

Z Ry’ =Yi+&, (23)

j=1
which turns[(I4) into the set of stochastic equatign$ (233. réquire that the; have
zero means, which implies that the right—-hand side[of (23) iandom force with
meansy;. For simplicity, as in the quantum—mechanical case, leetid/s= 1, so we
have a single variablg obeying the stochastic equation

Ry + sy =¢. (24)

We will be concerned with the path gfin time under the influence of these random
forces. Our aim is to calculate the probability of any pathor & instants of time
1 < T <...< T, we denote theumulative distribution functiohy F,,:

Fn<y1'”yn)—P(y(Tk)§yk,k—l,...,n). (25)
T ... Tn

The functionF,, tells the probability that the thermodynamical path) lie below the
barriersy,, ..., y, at the corresponding instants, ..., 7,. A stationaryprocess is
defined as one whose cumulative distribution functignis invariant under arbitrary
time shiftsdr:

Fn<y1y”>_Fn< Jroeee i > Vér € R. (26)

T ... Tn T+ 0T ... Th + 0T

Physically this describes aaged system, one that has been left alone long enough
that any initial conditions have worn off, or been forgott@ihus we consider entropy
creation as a loss of information: a dissipative systemdtsgs past.

AlongsideF,,, the probability density functiorf,, is defined such that the product

T1...Tn

gives the probability that a thermodynamical path passutdngates of widthly.



We will also be interested in conditional probabilities.eldonditional probability
functionfor the (n + 1)th event given the previous

F (yn+1 ) yn) _p (y(Tn+1) — yir ‘ y(r) = yg, k = 1n) (28)
Tn4+1 171 ... Tn
is defined implicitly as follows:

Foi1 <y1"'y”+1> (29)

71+« Tn+1

Y1 Yn T T T T
:/ dgl"'/ dg, Fy <y”“ n U") dF, (Uly”)

— 0 — 0 Tpn+1!17T1 ... Tn T «..Tn
Correspondingly, theonditional probability density functiofy is defined such that
() e (30)

T | Th—1

equals the probability that a thermodynamical path passitiir a gate of widtkly, at
time 7, giventhat it passed through a gate of width,_; at timer;_;.

3.3 Markov processes

A Markov process is defined as one whose conditional proitiabiare independent of
all but the immediately preceding instant[13]:

P (yn+1 vlvn) _ R (yn+1

Tpn+1 171 ... Tn Tn+1

y”). (31)

Tn

Intuitively: a Markov system has a short memory. For a Margmcess[(29) and (81)

imply
. (ylyn) 5 (yn yn—l) o (yz‘yl) h (yl) (32)
T1...Tn Tn ! Tn—1 21T m

Now f; (T) is known from Boltzmann'’s principld_(10). Hence, by statdiy, all

1

that is needed in order to obtain the distribution functiondn arbitrary number of
gates is to evaluate the conditional probability densityction

Y2 Y1
f1<7'—|—67‘7)7 (33)

which depends only ofir, being independent af. Thus then—gate problem reduces
to the 2—gate problem.




3.4 Gaussian processes

A Gaussian stochastic process is one whose probabilityitgénaction is a Gaussian
distribution. Let us set, in(24),

Then the conditional probability function for a Gaussiaaqass is given by [38]
1 k — e 10my,)?
f1 ‘yl - */ _B exp _i_(yQ - —2 6y1) - (39)
T+5T V21 /1 — e=2707 2kp 1 —e2707

Now eqn. [(35), together with (82), constitutes the solutmithe problem of finding
the probability of any path in a Gaussian Markov process. & @emark that[(35)
correctly reduces to the one—gate distribution func{id (ar 67 — oo.

Next let us divide the intervdlr, 7 + 7) into n equal subintervals of length/n:

]
T =T, T2:T1+—T, cery  Tn4l =T+ 0T, (36)
n
Then we have

i (yn+l ) /dyn- /dygf (yn+1 )"'fl (yz‘yl)_ (37)
Tn+1 Tn+1 T2 1T1
This is again the Chapman—Kolmogorov equation. The integjvave extends over

all then — 1 intermediate gates. Using_(37) one can reexpieds (35) ifotloeving
alternative form([38]:

Ynt1|Y1\ _ R s - Rlilr 2
fl(Tn+1 ﬁ)—Z 1e><p{ 4,{3/71 dr R[y(7) +7y(7)] } (38

min

subject toy(m1) = y1, Y(Tht1) = Ynt1. The subscripmin refers to the fact that
argument of the exponential is to be evaluated along thedi@y that minimises the
integral.

Y2 | Y1

The one—gate distribution is obtained from the conditiatistribution f; (72 o

by takingr; = —oo andy; = 0 (because the aged system certainly was at equilibrium
long ago). Thus we set = 1 in ([38) and define théhermodynamical Lagrangian
function£ as

L1,y = o [ + ) (39)

The dimension ofL is entropy per unit time, instead of energy. However, our map
between mechanics and thermodynamics will justify the d@nation “Lagrangian”.
The Euler—Lagrange equation for a minimum value of the iratidg (38) is

j—~*y=0. (40)

The solution to the above that satisfies the boundary camditi(r = —oc) = 0 and
y(T = Tg) = Y2 is
y(7) =y 77T, (41)



Evaluating the integral in (38) along this extremal tragegtieads to

0 S
A2 = A () =27 exp |———(12)?] . (42)
To | —00 To 2kp
This result is in agreement with what one expects from Badizns principle[(ID) in
the Gaussian approximatidn {19).

Finally substituting[(4R) intd(37), we obtain the thermadynical analogue of the
guantum—mechanical relatidd (5):

(D) fos(mm)s() e
T2 T21T1 T1

This concludes our summary of ref. [38].

4 The map between quantum mechanics and irreversible
thermodynamics

The Wick rotation
T=1it (44)

between the thermodynamical evolution parameteand the quantum—mechanical
time variablet is the first entry in our dictionary between classical irmsiae ther-
modynamics and quantum mechanics.

4.1 Path integrals in irreversible thermodynamics

The concept of a path integral can be traced back to the Chagfadmogorov equa-
tion. Indeed lettingr — oo in (@8) and usind(37), the right-hand side[ofl(38) becomes
a path integrabver the thermodynamical configuration space

()= " byt exp i [ ar Rl 20} )

(T1)=y1 T1

Thus it turns out thaf(38) actually equals the semiclabsigproximation (as pef19))
to the path integral{45). This latter expression for theritistion functionf; in terms
of a path integral is implicit in ref [38]—but actually naveritten down explicitly in
that paper; see however[18].

Dropping in [39) the term proportional ty (a total derivative), we redefine the
thermodynamical Lagrangian functighto be

L)) = 5 [0 + 2270 (46)

We observe thaj?(7) andy?(7) in £ carry the same relative sign. Similarly dropping
in (48) the term proportional tgy, we can rewrite the path integral usifgl(46) as

A= [ b oo { o [Careimaei}. @n

(T1)=y1 T1



The path integral(47) is the thermodynamical analogue efgdith integral[{6) that
defines the quantum—mechanical propagator. Thus settiad in (38), dropping the
total derivativeyy, and replacing the integrand with the thermodynamical aagran

(48) leads to the Gaussian approximatioriid (47):

P20 =zt oo [ artlia@aaml}. @

T21T1 i

Here L [g.1(7), ya (7)] stands for the evaluation di(46) along the classical ttajgc
ye1(7) that satisfies the equations of motiénl(40). In this viay (4&)gien to correspond
to the semiclassical approximation for the quantum—mechbpropagator, given in
(@). On the thermodynamical side, the qguantum—mecharecaidassical approxima-
tion translates as the assumption of Gaussianity for thehasiic forceg and for the
entropy .S, as well as the assumption of linearity between forces anadligwhich
leads up to the quadratic formis{17) ahd|(18)).

4.2 Propagators from thermodynamical distributions

The next entry in our dictionary relates quantum-mechéawniaaefunctions and prop-

agators to thermodynamical distribution functions. Wittie Gaussian approximation
we use throughout, this entry will refer to the free partetel the harmonic oscillator.

We first we need to identify certain mechanical variableshitir thermodynamical

partners. Specifically, we will make the following repla

mw S
wey, o o

2 . 49
W H2k3’ Ty (49)

To begin with, one expects the squared modulus of the waegtm||? to be
related to the 1—gate distribution functigin (2) while the propagatoK” must cor-

respond to a 2—gate distribution functig?p(%jj |2 ) Indeed the 1-gate distribution

function [42) gives the squared modulus of the ground stgte) = exp (—mwa?/2h)
of the harmonic oscillator once the replacemenis (44), #4@ppplied:

bil (i) = 7" exp (_%gﬁ) _ |wéharmonic)(x)|2. (50)

With the appropriate choices for the constantandw, (50) can also represent a free
wavepacket. Next we turn to propagatéisElementary algebra brings the conditional
probability function for a Gaussian proceiss](35) into therfo

yT/2 VT 200 — 6=V 24,) 2
f (yz‘zg) s e exp [ S (e Y2 — € yl) ] . (51)
T

" 2kp Jrsmh(yr) | 2k 2sinh(y7)
We will also be interested in the limit — 0 of the above:
92‘91) o5 1 5 (yp—m)? 52
h (7' 0/~v=0 2kp /7T P { 2k 291 ' (52)

4A dimensionful conversion factor must be understood asiitlyl contained in the replacement<s v,
whenever needed.
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Using [44) and[{49), the free quantum—mechanical propa@tdollows from [52):

k T
K (25 t]21,0) = ?B fi ( it2

0

The case when is nonvanishing requires some more work. Agaid (44) antl §1eyv
one to relate the conditional probabilify {(51) to the haringmopagator(8) as follows:

iwt AV [2 N
f (xf xl) — exp (—“" - —) S pe(harmonic) (1) ¢y 0),  (54)
1

o )HO . (53)

0 2 hw h

whereV (x) = k2?/2 is the harmonic potential anfdV = V' (x2) — V(x1). As had
to be the casel (54) correctly reducedtd (53) when 0. The square roots present in
(53) and[(54) ensure that these two equations are dimerigicoarect.

4.3 Integrability vs.square—integrability

Under our correspondence, the squared modulus of the wastéda|+/|? gets mapped
into theunconditionaprobability densityf; (-Zi ) , while the propagatak” gets mapped

into theconditionalprobability densityf; (-Zj | ) One should bear in mind, however,

that the quantum—mechanical obje¢tsK are probabilityamplitudeswhile the ther-
modynamical objectg; are true probabilities. Therefore quantum mechanics is not
just the Wick rotation of classical, irreversible thermaodynics—it is also thequare
root thereof, so to speak, because of the Born rule. In order toeaddhis question
in mode detail we need to recall some background mathematesref. [[4]7] for a
physics—oriented approach, and also [5] for a recent disou®f some of the issues
analysed later in this section.

Let M be a measure space, and denotd.By\/ ) the Banach spale

1/p
0 = {f: =il <oob o= ([ 1) 0<p<s

(55)

It turns out thatL? (M) is a Hilbert space only whep = 2. Moreover,L? (M) and
L%(M) are linear duals of each other whenevép+1/¢ = 1. Two particular cases of
this duality will interest us. The first onejis= 2, ¢ = 2, the otheroneis = 1, ¢ = oco.

Whenp = 2 we have thaf.?(M) is selfdual, the duality being given by the scalar
product: (-|-) : L?(M) x L?*(M) — C. The corresponding algebra of bounded
operators isC(L?(M)), a noncommutativé'*—algebra with respect to operator mul-
tiplication. Complex conjugation if(L?(M)) consists in taking the adjoint operator,
while the noncommutativity is that of matrix multiplicatio

The operator algebr&(L?(M)) is also a Banach algebra for apy> 0, and not
just forp = 2. However, only whemp = 2 is aL(LP(M)) aC*—algebra, because only
whenp = 2 doesL(LP(M)) possess a complex conjugation.

5The spacel.? (M) is complex or real according to whether its elemefitare taken to be complex—
valued or real-valued functions dv. For quantum—mechanical applications we will considerctiaplex
case, while thermodynamical applications require the caaé. For generality, this summary assumes all
spaces complex.

11



Set nowp = 1. The dual ofL! (M) is L>°(M). Elements of the latter are measur-
able, essentially bounded functiofisvith a finite norm|| f||:

LX¥M) ={f: M = C, [|fllo <o}, |[flloc = sup.end{[f(2)[}.  (56)

The duality betweed! (M) andL>° (M) is
(1) D=0 x L) — €, (Al = [ 1 (57)
M

forany f € L>°(M) and anyp € L'(M). Now L>(M) also qualifies as &*—
algebra, the multiplication law being pointwise multigtmon of functions (hence com-
mutative), and the complex conjugation being that of thefiems f. An important dif-
ference with respect to the previous case is fi{dt?(M)) is noncommutative, whereas
L°° (M) is commutative.

We will henceforth writeX for the spacel when dealing with the mechanical
configuration space, aiid when referring to the thermodynamical configuration space.

Textbook quantum mechanics regards quantum states asaysitvithin L2(X),
while physical observabl& are represented by selfadjoint operatrs L£(L*(X ))ﬁ
On the other hand, the natural framework for the theory ef/rsible thermodynam-
ics is thereal Banach spacd.!(Y) and its dual, theeal Banach algebrd,>°(Y).
Thermodynamical states are probability distributigns L!(Y"), that is,real func-
tions, normalised as pg"g/ p = 1. Thermodynamical observables aeal functions
f e L>(Y). Thus |, fpin (57) equals the average value of the physical quarftity
the state described by

Clearly the thermodynamical setup is not quite as sophistétas its mechanical
counterpart. As opposed to tkemplexHilbert spacelL?(X), thereal Banach space
L'(Y) does not know about the existence of the imaginary unih the absence of
a complex conjugation to implement time reversal, the tloglynamical setup nec-
essarily describesreversible processes. Moreover, there exists no scalar product on
LY(Y). Correspondingly there is no notion of a selfadjoint oparat £(L!(Y))—in
fact, thermodynamical observables are elements of a végreint spaceLOO(Y)E

The previous differences notwithstanding, we can establimap between quantum—
mechanical states/observables and their thermodynaodoaterparts, as we do next.
We treat observables first, and discuss states later.

It is reasonable to identify real thermodynamical averdgés) with quantum me-
chanical expectation valuég|O|y) of selfadjoint operator®, something like

/m=umwwwm=/¢ww (58)
Y X

where the correspondence denotedbyhas yet to be given a precise meaning. For
this we can assume diagonalisiGby a (complete, orthonormal) set of eigenstates
¥; € L*(X), so we can replace the right-hand side[of (58) with the cpameding

6We ignore the mathematical subtleties due to the fact¢hit generally an unbounded operator, hence
generally not an element af(L? (X)), because this fact is immaterial to the discussion.
7In particular, thereal spaceL. > (Y) is a Banach algebra but not —algebra.

12



eigenvalue);. We want to define a functiondl for the left—-hand side of(38). A
sensible definition actually involves a collection of camgtfunctionalsf;, each one of
them equal to the corresponding eigenvalie

Since the eigenvalueg are constants and the densitgan be normalised to unity, the
imprecise corresponden¢e]58) can be replaced with thésprdictionary entry

/ Jip = (Flp) = M = (4]OJ4) = / V0. (60)
Y X

This generalises in the obvious way to the case of a set of adimgobservable®;,.
Noncommuting observables, not being simultaneously dialigable, lead to the im-
possibility of simultaneously defining the correspondingrmodynamical functionals
f on the left-hand side of (60). We will examine the thermodyital analogue of
gquantum commutators in a forthcoming publication.

So much for the observables; now we turn to the states. Shawenbdynamical
probabilities are elements @f' (Y') while quantum—mechanical amplitudes belong to
L?(X), we would like to define some map 6f(X) into L!(Y), or viceversa. Given
Y € L?(X), one’s first instinct is to set := [|? because thep € L'(X); this is
of course the Born rule. The attentive reader will have ratithat we actually need
p € L(Y): itis generally meaningless to equatéo |+/|>—or to any other function
of ¢, for that matter. We will proceed ahead under the simpldyassumption that
X=Y.

The usual Born mapis defined as

bi L2(X) — LX), b(¥) == [¥]* (61)

This map is obviously not 1-to—1, so it fails to be an injectifs such it possesses no
inverse. We will however use the formal notation' to denote the map

bt LY(X) — LA(X), b7 Y(p) := /per®, (62)
wherey is taken as the solution to the continuity equation
p+V-(pVp)=0 (63)

that is well known from the Madelung transformation. Morenuf b=1(p) satisfies
the Schroedinger equation, themmust of course equal the action integfat [ dt L,
and thus satisfy thquantumHamilton—Jacobi equation [16]. Although the mip'
also fails to be an injection, we use the notatiort becauseéb—(p) = p. Aside
from this difficulty about the lack of injectivityy andb—" provide us with the required
maps from quantum—mechanical states into thermodynamistbution functions,
and viceversa.

The Chapman-Kolmogorov equati¢nl(37), written belowrfor 2,

i (y?"yl):/dygfl (yB‘y2)fl (yz y1)7 (64)
T31T1 T3 1 T2 T2 1T
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is the thermodynamical analogue of the quantum—mechaggetion[(#). This leads
us to the following point. Our correspondence mﬁpé -Zj ‘ -Zi ) , which is a conditional

probability, into K (z2, t2|x1, t1), which is anamplitudefor a conditional probability.
In other words, under our correspondence, the Born rule doeapply to the map
between conditional probabilities, although it does applthe map between uncondi-
tional probabilities. There is nothing wrong with this. etl,f; and K satisfy the re-
spective Chapman—Kolmogorov equatidns (64) and (4). Réugthe latter as matrix
equations (which is what they are), they read formgllyx f; = f1 andK x K = K.
That is, squaring; and K as matrices (which is how they should be squared, sfince
and K are operators), they are idempotent. It therefore makesesento impose the
Born rule on the map betweédii and f.

4.4 Entropy vs.action

To complete our dictionary between quantum mechanics aadeirsible thermody-
namics we postulate the following correspondence betweemd¢tion integral and
the entropys:

(mechanics) %LI > kiS (thermodynamics) (65)
B

up to a numerical, dimensionless factor. Now the Wick rota{d4) replacesl with
the Euclidean actioffiz, so we could just as well write

(mechanics) %LIE & kiS (thermodynamics) (66)
B

again up to a numerical, dimensionless factor. We obseratebibth/ andS indepen-

dently satisfy an extremum principle. We also note that dspective fluctuation the-
oriegvin the Gaussian approximation are obtained upon takingxpereential. Thus
exponentiating (85) we arrive at the wavefunction

1
v=view(41) (67)
and at the Boltzmann distribution functidn {10):
1 1
pp=2 "exp|—5]. (68)
kp

We should point out that the correspondemncé (65}, (66) rsastaen found to hold in
independent contexts, long ago by de Broglie [9] and morentyge.g.in [1,[6].

Applying the Born rule we set the Boltzmann probability dgngs equal to the
quantum-mechanical probability densiity|?:

pp = [¢]* = p. (69)

8These fluctutations are of course measured with respeat iwoiflesponding mean valueslo&ndS as
given by their extremals.
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(See ref.[[4] for distributions other than tequaredmodulus). Hence
p=2Ztexp (iS) . (70)
kp

Substitution of[[7D) intd(87) yields an elegant expres$arthe wavefunction

v =2""Y?exp (%S) exp (%I) , (71)

combining thermodynamics and quantum mechanics into desfognula.

Implicitly assumed in[(A1) is the identification of mechalicariablesr and ther-
modynamical variableg, as already done i (#9). One can now definedbeplex—
valued actioriZ (=9

1 i
in order to write
U(w) = 27 exp (I(x)) (73)

as the semiclassical wavefunctiénl(71), where

Z = /d:z: |exp (Z(x)) |?. (74)

We realise that the correspondericd (65)| (66) leads nbttmahe existence of a com-
plexified action such aE(I72), which expresafisndamental symmetry between entropy
and mechanical actian

Finally we would like to point out that complexified actiomfttionals have also
been considered recently in ref. [32].

5 Discussion

We can summarise this article in the following statements:
i) we have succeeded in formulating a correspondence betwsrstasd quantum me-
chanics, on the one hand, and the classical thermodynamics\wersible processes,
on the other;
i) this correspondence holds at least in the Gaussian appatigim(the latter being
defined in quantum mechanics as the semiclassical limitirath@rmodynamics as the
regime of linearity between forces and fluxes);
iii) this possibility of encoding of quantum—mechanical infatian in thermodynam-
ical terms provides an independent proof of the statemexttahantum mechanics is
an an emergent phenomenon.

Specifically, our correspondence between semiclassiaahtgm mechanics and
Gaussian irreversible thermodynamics includes the fatigypoints of sectiohl4:

SWhile the entropys is a true function of, the action integral is actually efunctionalof z(¢). However,
in (Z2) we needl within the exponential definingy. To this end,l is to be evaluated alone classical
trajectory starting at a certain given point and ending airéable endpoini. This amounts to regarding
as a true function af and no longer as a functional.
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i) we have shown that the path—integral representation fantgua-mechanical prop-
agators is already present in the thermodynamical degmmipf classical dissipative
phenomena (sectién 4.1);

if) we have mapped thermodynamical distribution functions quantum—mechanical
propagators (sectidn 4.2);

iii) we have constructed an explicit correspondence betweeanumamechanical states
and thermodynamical states, and also an analogous conaespce between quantum—
mechanical observables and thermodynamical observatdesdii4.B);

iv) we have grounded our correspondence in the existence oflarfiuental symmetry
between mechanical action and entropy (secfioh 4.4).

In order to make this paper selfcontained we have also iedpith sectiof I3, a crash
course in classical irreversible thermodynamics, thelatbnsidered in the linear ap-
proximation. Presumably, the theory of irreversible thedymamics beyond the linear
regime should allow one to extend the present corresporedsyond the semiclassical
approximation of quantum mechanics.

Having mappedjquantummechanics intcclassicalirreversible thermodynamics
raises another old questioviz., the issue of how sharply, how univocally defined is
the divide betweequantumnesandclassicality This issue has also been addressed,
from the viewpoint of emergent theories, in ref._|[15]; we efebur own contribu-
tion to the subject until a forthcoming publication. Howewe would like to briefly
touch upon the emergence propertyspicetime-not from a gravitational perspec-
tive, but from a purely quantum—mechanical viewpoint. lasgtime is an emergent
phenomenon, as widely conjectured, then everything thiaesase of spacetime con-
cepts must necessarily be emergent, too. Quantum mechamosxception, unless
one succeeds in constructing a quantum—mechanical famadhat is entirely free
of spacetime notions. Progress towards this latter goabbar achieved along lines
based on noncommutative geometry (seé [17] and referelneesi). A more modest
approach is to try and directly map quantum mechanics irgorbdynamics, as done
here and elsewhere. It turns out that spacetime arises asengent conceplsoin
our quantum—mechanical approach, if only because our gmorelence has required
replacing space variableswith thermodynamical variableg. Thus, indirectly, we
have also furnished (admittedly cirmcumstantial) evideotthe emergence property
of spacetime.

It was Einstein’s dream to see quantum mechanics formuéstesh ensemble the-
ory in which uncertainties wouldot have a fundamental ontological status. Instead,
Einstein would have uncertainties and fluctuations arise esnsequence dfie sta-
tistical natureof the description of an underlyindeterministicsystem (see [27, 35]
and refs. therein). Thermodynamical fluctuation theorgtappears to be the archety-
pal example that Einstein would presumably have liked farmum mechanics to be
modelled upon.

Actually it has been known since the early days of quantumhaeics that the
(free) Schroedinger equation can be interpreted as thdatdmeat equation in imag-
inary time, so the thermodynamical connection has alwajstezk An unavoidable
consequence of imaginary time is that real (decaying) esptals replace imaginary
(oscillatory) exponentials. This is the hallmark of disgipn. Thus quantum mechan-
ics can be thought of as a dissipative phenomenon that becoomservative only in
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stationary states [7 8, R1]—that littleén the Schroedinger equation makes a big dif-
ferencel[[26].

After completion of this work we became aware of réef.|[42],andatopics partially
overlapping with those treated here are discussed.

Acknowledgements].M.I. would like to thank the organisers of the Heinz voniSter
Congress on Emergent Quantum Mechanics (Vienna, Austoa, 2011) for stimulat-
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Willst Du erkennen? Lerne zu handeln!—Heinz von Foerster
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