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Summary
The celebrated Schrödinger equation is the key to understanding the dynamics of quantum
mechanical particles and comes in a variety of forms. Its numerical solution poses numerous
challenges, some of which are addressed in this work.

Arguably the most important problem in quantum mechanics is the so-called harmonic oscilla-
tor due to its good approximation properties for trapping potentials. In Chapter 2, an algebraic
correspondence-technique is introduced and applied to construct efficient splitting algorithms,
based solely on fast Fourier transforms, which solve quadratic potentials in any number of di-
mensions exactly - including the important case of rotating particles and non-autonomous
trappings after averaging by Magnus expansions. The results are shown to transfer smoothly
to the Gross-Pitaevskii equation in Chapter 3. Additionally, the notion of modified nonlinear
potentials is introduced and it is shown how to efficiently compute them using Fourier trans-
forms. It is shown how to apply complex coefficient splittings to this nonlinear equation and
numerical results corroborate the findings.

In the semiclassical limit, the evolution operator becomes highly oscillatory and standard
splitting methods suffer from exponentially increasing complexity when raising the order of
the method. Algorithms with only quadratic order-dependence of the computational cost are
found using the Zassenhaus algorithm. In contrast to classical splittings, special commutators
are allowed to appear in the exponents. By construction, they are rapidly decreasing in size
with the semiclassical parameter and can be exponentiated using only a few Lanczos iterations.
For completeness, an alternative technique based on Hagedorn wavepackets is revisited and
interpreted in the light of Magnus expansions and minor improvements are suggested. In the
presence of explicit time-dependencies in the semiclassical Hamiltonian, the Zassenhaus algo-
rithm requires a special initiation step. Distinguishing the case of smooth and fast frequencies,
it is shown how to adapt the mechanism to obtain an efficiently computable decomposition of
an effective Hamiltonian that has been obtained after Magnus expansion, without having to
resolve the oscillations by taking a prohibitively small time-step.

Chapter 5 considers the Schrödinger eigenvalue problem which can be formulated as an initial
value problem after a Wick-rotating the Schrödinger equation to imaginary time. The elliptic
nature of the evolution operator restricts standard splittings to low order, 𝑝 < 3, because of
the unavoidable appearance of negative fractional time-steps that correspond to the ill-posed
integration backwards in time. The inclusion of modified potentials lifts the order barrier up
to 𝑝 < 5. Both restrictions can be circumvented using complex fractional time-steps with
positive real part and sixth-order methods optimized for near-integrable Hamiltonians are
presented.

Conclusions and pointers to further research are detailed in Chapter 6, with a special focus on
optimal quantum control.
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Resumen
La célebre ecuación de Schrödinger es la clave para entender la dinámica de partículas cuán-
ticas y viene en una variedad de formas. Su solución numérica conlleva numerosos desafíos,
algunos de los cuales son tratados en esta tesis.

Posiblemente, el problema más importante en mecánica cuántica es el oscilador armónico
debido a su uso en aproximar potenciales atractivos. En capítulo 2, se introduce una técnica
de correspondencia algebraica entre mecánica clásica y cuántica y es aplicada para construir
eficientes algoritmos de escisión (llamados splittings), solamente basados en transformadas
rápidas de Fourier, que resuelven potenciales cuadráticos exactamente para dimensiones ar-
bitrarias - incluyendo el caso importante de partículas rotantes y potenciales armónicos no
autónomos tras la promediación con un desarrollo de Magnus. Los resultados se muestran
fácilmente transferibles a la ecuación de Gross-Pitaevskii en capítulo 3. Adicionalmente, la
noción de potenciales modificados no lineales es introducida y se su cálculo eficiente median-
te transformadas de Fourier es demostrado.

En el límite semiclásico, el operador de evolución se vuelve altamente oscilatorio y méto-
dos estándar de escisión sufren de un crecimiento exponencial en complejidad al incrementar
el orden del método. Se han encontrado algoritmos con dependencia del coste respecto al
orden solamente cuadrática mediante el algoritmo de Zassenhaus. A diferencia de métodos
de escisión clásicos, se permite la apariencia de conmutadores especiales en los exponentes.
Su construcción implica un rápido decrecimiento en magnitud con el parametro semiclásico
de los conmutadores con la finalidad de poder exponenciarse con unas pocas iteraciones de
Lanczos. Por completitud, una técnica alternativa basada en paquetes de onda Hagedorn es
revisada e interpretada en términos del desarrollo de Magnus y se proponen algunas mejoras.
Con la presencia de dependencias temporales explícitas en el hamiltoniano semiclásico, el
algoritmo de Zassenhaus requiere una modificación del paso inicial. Distinguiendo los casos
de frecuencias suaves y rápidas, se muestra cómo adaptar el mecanismo para obtener descom-
posiciones eficientemente calculables de un hamiltoniano efectivo que se ha obtenido tras un
desarrollo de Magnus sin tener que resolver las oscilaciones con un paso temporal prohibiti-
vamente pequeño.

En capítulo 5, se considera el problema de autovalores de Schrödinger que se puede formu-
lar como problema de valor inicial tras (Wick-)rotar la ecuación de Schrödinger al tiempo
imaginario. El carácter elíptico del operador de evolución restringe los métodos de escisión
a órdenes bajos, 𝑝 < 3, debido a la apariencia de pasos fraccionales temporales negativos
que corresponden a un problema mal condicionado: La integración atrás en el tiempo. La
inclusión de potenciales modificados permite aumentar el orden hasta 𝑝 < 5. Ambas restric-
ciones se pueden sobrepasar mediante el uso de pasos fraccionales complejos cuya parte real
es positiva y se presentan métodos de orden seis para hamiltonianos casi integrables.

Conclusiones e indicadores para futuros estudios se detallan en capítulo 6, especialmente
enfocando el área de control óptimo cuántico.
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Resum
La cèlebre equació d’Schrödinguer és la clau per comprendre la dinàmica de partícules quàn-
tiques i es presenta en una gran varietat de forms. La seua resolució numèrica planteja nom-
brosos reptes, alguns dels quals són referits en aquest treball.

Possiblement, el problema més important en la mecànica quàntica és l’anomenat oscil·lador
harmònic degut a la seua capacitat d’aproximar potencials d’atracció.
En el capítol 2, s’introdueix una tècnica de correspondència algebràica i s’aplica per a cons-
truer algoritmes eficients d’escissió (anomenats splittings), basats únicament en transforma-
cions de Fourier ràpides, que resolen potencials quadràtics en qualsevol nombre exacte de
dimensions – inclòs l’important cas de les partícules rotatòries així com la situació, conside-
rablement més comuna, de potencials no autònoms després de promitjar a través de desenvolu-
paments de Magnus. Els resultats es mostren transferibles acuradament a l’equació de Gross-
Pitaveskii en el capítol 3. A més, la noció de potencials no linials modificats s’introdueix i
es mostra com computar-los eficientment utilitzant les transformades de Fourier. També es
mostra com aplicar splittings de coeficients complexos a aquesta equació no linial i resultats
numèrics corroboren les troballes.

En el límit semiclàssic, l’operador evolució es converteix en altament oscil·latori i els mètodes
estàndards de splitting pateixen un increment exponencial de complexitat quan s’augmenta
l’ordre del mètode. Es troben algoritmes amb cost computacional de dependència solament
quadràtica respecte l’ordre utilitzant l’algoritme de Zassenhaus. Al contrari que els splittings
clàssics, es permet l’aparició de commutadors especials en els exponents. La seua construcció
implica un ràpid decreixement en magnitud amb el paràmetre semiclàssic dels commutadors
i pot ser exponenciat utilitzant unes poques iteracions de Lanczos. Per completar, s’ha revisat
i interpretat una tècnica alternativa basada en paquets d’ona de Hagedorn a la llum dels desen-
volupaments de Magnus i s’han suggerit millores. En presència de dependències explícites
del temps en el Hamiltonià semiclàssic, l’algoritme Zassenhaus requereix un pas d’iniciació
especial. Diferenciant els casos de freqüències suaus i ràpides, es mostra com adaptar el meca-
nisme per a obtindre una descomposició eficientment computable d’un Hamiltonià efectiu que
s’ha obtés després del desenvolupament de Magnus, sense haver de resoldre les oscil·lacions
prenent un prohibitivament menut pas de temps.

El capítol 5 considera la possibilitat de formular el problema d’autovalors de Schrödinger
com un problema de valor inicial després d’aplicar una rotació de Wick al temps imaginari
a l’equació de Schrödinger. La naturalesa elíptica de l’operador evolució restringeix els split-
tings estàndars a ordres baixos, 𝑝 < 3, donada la inevitable aparició de pasos fraccionals de
temps negatius que corresponen a un mal condicionament del problema: la integració cap a
darrere en el temps. La inclusió de potencials modificats eleva la barrera de l’ordre a 𝑝 < 5.
Ambdues restriccions poden ser sobrepassades mitjançant l’ús de pasos fraccionals de temps
complexos amb part real positiva i es presenten mètodes optimitzats de 6é ordre per a Hamil-
tonians quasi-integrables.

Les conclusions i les línies a seguir en futures investigacions són detallades en el capítol 6,
amb especial atenció al control quàntic òptim.
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Chapter1
INTRODUCTION

The Schrödinger equation plays a central role in a wide range of applications and is the fun-
damental model of quantum mechanics [62]. It draws constant attention to theorists and prac-
titioners, ever striving for higher accuracies and faster computation times1.

This chapter will lay the fundamentals for a variety of Schrödinger equations, in particular,
the Gross-Pitaevskii equation, the semiclassical limit and the imaginary time formulation. We
briefly discuss many aspects that are crucial for the numerical solution. Furthermore, widely
used numerical integrators, including both spatial and temporal discretizations, are introduced
with special emphasis on splitting methods and Magnus expansions which will form the core
of the numerical techniques that are developed in this work.

1.1 The Schrödinger equation and its varieties

1.1.1 The linear Schrödinger equation

We begin by stating the well-known time-dependent Schrödinger equation (TDSE) in one
dimension

𝑖ℏ𝜕𝑡𝜓(𝑥, 𝑡) = 𝐻𝜓(𝑥, 𝑡), 𝜓(𝑥, 0) = 𝜓0(𝑥), 𝑥 ∈ ℝ (1.1)

where the Hamiltonian 𝐻 is a Hermitian operator, usually of the form

𝐻 = 𝑇 + 𝑉,

where 𝑇 corresponds to the kinetic energy 𝑇 = − ℏ2
2𝑚Δ with the Laplacian Δ and 𝑉 ∶ ℝ → ℝ

is the (scalar) potential energy. Sometimes, we will write the kinetic energy as 𝑇 = 𝑝2/2𝑚
with the momentum operator 𝑝 = −𝑖ℏ∇. The wave function 𝜓 is, unless specified otherwise,

1A search in the ScienceDirect database with keywords “Schrödinger equation” and “numerical” shows more
than 1000 published articles only in 2013.
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Chapter 1. Introduction

always assumed to be square-integrable over the reals, i.e., 𝜓 ∈ 𝐿2(ℝ), and no additional
boundary conditions are imposed. Higher dimensions will be explicitly introduced when it
is not immediate how to replace 𝑥 ∈ ℝ by 𝑥 ∈ ℝ𝑑 . For simplicity in the presentation, it is
standard to express the Schrödinger equation in atomic units ℏ = 𝑚 = 1, which will be used
throughout the text

𝑖𝜕𝑡𝜓(𝑥, 𝑡) = (−1
2Δ + 𝑉(𝑥)) 𝜓(𝑥, 𝑡).

After the Schrödinger equation was first posed in 1926 [116], it did not take long until Born
[33, 32] could identify the squared absolute value of the wave function as a probability density:
the probability of finding the described particle in a certain domain Ω at time 𝑡 is given by
∫Ω |𝜓(𝑥, 𝑡)|2𝑑𝑥. An important feature of the Schrödinger equation is the conservation of the
norm,

𝑑
𝑑𝑡 ∫ℝ |𝜓(𝑥, 𝑡)|2 𝑑𝑥 = 0,

which, in the light of viewing 𝜓 as a probability density, has the physical meaning that the num-
ber of particles is preserved. With the probabilistic interpretation, we can define expectation
values of a (not necessarily linear) Hermitian operator 𝑂, in this context called observable,

⟨𝑂⟩𝜓 ≡ ∫ℝ 𝜓∗(𝑥)𝑂(𝜓(𝑥))𝑑𝑥.

This simplified standard notation in quantum mechanics can be expanded as

⟨𝑂⟩𝜓 = ⟨𝜓|𝑂(𝜓)⟩,

where ⟨⋅ | ⋅⟩ denotes the usual scalar product in 𝐿2. As in classical mechanics, the observable
associated with the energy is the Hamiltonian 𝐻 itself, and a simple calculation yields the
energy conservation law

𝑑
𝑑𝑡 ⟨𝐻⟩𝜓(𝑡) = 0,

for Hamiltonians that do not explicitly depend on time, 𝜕𝑡𝐻 = 0.

More generally speaking, classical quantum theory deals with self-adjoint operators, which
we will briefly review. Given a densely defined operator 𝐻 on some Hilbert space with domain
𝐷𝐻 , its adjoint 𝐻† is defined by2

⟨𝐻†𝑢|𝑣⟩ = ⟨𝑢|𝐻𝑣⟩, ∀𝑣 ∈ 𝐷𝐻 .

Such an operator is called Hermitian if ⟨𝐻𝑢|𝑣⟩ = ⟨𝑢|𝐻𝑣⟩, ∀𝑢, 𝑣 ∈ 𝐷𝐻 . A self-adjoint
operator 𝐻 is Hermitian and additionally, its domain coincides with the one of its adjoint,
𝐷𝐻 = 𝐷𝐻† . Obviously, self-adjointness implies Hermiticity, but the converse is not always
true, and usually the discrepancy is due to boundary conditions that are imposed. In this work,
we will not further address such subtleties and instead refer to [48] for details. Furthermore,
we will use the name Hermiticity over self-adjointness, as is standard in the physics liter-
ature. This is justified since the Schrödinger operators at hand are self-adjoint under very
general conditions, e.g., it suffices to bound the potential from below. By Stone’s theorem,
self-adjointness guarantees uniqueness and existence of the solution of (1.1) as

𝜓(𝑥, 𝑡) = 𝑒−𝑖𝑡𝐻𝜓0(𝑥), (1.2)
2The adjoint of a matrix 𝐴 is its Hermitian conjugate 𝐴†.
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1.1 The Schrödinger equation and its varieties

and we will use the notation with the exponential to denote the flow Φ𝐻/𝑖 associated with a
vector field 𝐻/𝑖.

Another core result for self-adjoint operators is the so-called spectral theorem: Given a self-
adjoint compact operator 𝐻 on some Hilbert space 𝐷, its (point-)spectrum consists of real
eigenvalues 𝜆𝑖 and the corresponding eigenfunctions 𝜙𝑖 form an orthogonal basis of 𝐷. This
allows us to write

𝐻𝜓 =
∞
∑
𝑘=1

𝜆𝑘⟨𝜓, 𝜙𝑘⟩𝜙𝑘 , (1.3)

and therefore, the evolution (1.2) of some initial condition 𝜓0(𝑥) can be written as

𝜓(𝑥, 𝑡) = 𝑒−𝑖𝑡𝐻𝜓0 =
∞
∑
𝑘=1

𝑒−𝑖𝑡𝜆𝑘 ⟨𝜓0, 𝜙𝑘⟩𝜙𝑘 . (1.4)

For unbounded operators 𝐿, a subset of the (generalized) eigenfunctions might not be nor-
malizable and are said to correspond to unbounded states, with corresponding eigenvalues in
the continuous spectrum of 𝐿. However, another spectral theorem ensures that a self-adjoint
operator can be expanded over generalized eigenfunctions to make sense of (1.3) in the usual
case.

In essence, we summarize that if the spectrum is known, the solution of the Schrödinger equa-
tion is straightforward by means of (1.4).

For our purposes, two further properties of Hermitian operators 𝐻 have to be singled out,
namely that their eigenvalues are real valued,

𝜆𝑘 = ⟨𝜙𝑘 |𝐻𝜙𝑘⟩ = ⟨𝜙𝑘𝐻|𝜙𝑘⟩ = 𝜆∗
𝑘

and the eigenfunctions corresponding to distinct eigenvalues are orthogonal since,

0 = ⟨𝜙𝑘 |𝐻𝜙𝑙⟩ − ⟨𝜙𝑘 |𝐻𝜙𝑙⟩ = (𝜆𝑘 − 𝜆𝑙)⟨𝜙𝑘 |𝜙𝑙⟩.

1.1.2 The semi-classical limit

The major challenge in quantum chemistry is given by the rapid increase of dimensionality
as the number of particles grows: for each particle, one has to add three dimensions to the
configuration space and this becomes computationally unfeasible even for small molecules.
For illustrative purposes, we write the Hamiltonian for 𝑁 nuclei with coordinates 𝑥𝑖, electric
charge 𝑍𝑖 and mass 𝑀𝑖 and 𝑛 electrons at 𝑦𝑖 that interact via Coulomb forces (ℏ = 𝑒 = 1),

𝐻 =
𝑁

∑
𝑘=1

− 1
2𝑀𝑘

Δ𝑥𝑘⏟⏟⏟⏟⏟⏟⏟
𝑇nuclear

+
𝑛

∑
𝑘=1

− 1
2𝑚𝑒

Δ𝑦𝑘 + ∑
𝑗<𝑘

1
|𝑦𝑗 − 𝑦𝑘 | + ∑

𝑗<𝑘

𝑍𝑗𝑍𝑘
|𝑥𝑗 − 𝑥𝑘 | −

𝑁
∑
𝑗=1

𝑛
∑
𝑘=1

𝑍𝑘
|𝑥𝑗 − 𝑦𝑘 |⏟⏟⏟⏟⏟⏟⏟

electron-nucleus

. (1.5)

Note that the full problem has 3(𝑁 + 𝑛) independent coordinates.
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Chapter 1. Introduction

We stress that the timescales of the system are expressed in atomic units and are truly minute,
time integration until 𝑇 = 1 corresponds to metric time 𝑇real = ℏ

𝑎2
0𝑚 = ℏ3(4𝜋𝜀0)2

𝑚𝑒𝑒4 = 2.419 ×
10−17s (≈ 24 as) for electron mass 𝑚𝑒 = 1. The Bohr radius is the natural scaling parameter
for the space coordinate and is defined to be 𝑎0 = 4𝜋𝜖0ℏ2

𝑒2𝑚𝑒
= 5.28 × 10−11𝑚. From this brief

dimensional analysis, we conclude that the time-scales are related to the inverse of the mass.

A standard way to reduce the dimension exploits this intuition and was invented by Born and
Oppenheimer [34]. Their approximation is based on a separation of scales: Since the mass of
the nuclei is several orders of magnitude larger than the electron mass, the nuclei are assumed
to move at a much slower rate - indeed they are assumed to be independent of the electrons
and expected to follow classical equations of motion.

Hence, we freeze the coordinates nuclei, thereby neglecting its kinetic energy and, motivated
by (1.4), solve the eigenvalue problem of the electronic part of the Hamiltonian 𝐻𝑒 = 𝐻 −
𝑇nuclear,

𝐻𝑒𝜓𝑘(𝑥, 𝑦) = 𝐸𝑘(𝑥)𝜓𝑘(𝑥, 𝑦), 𝑘 ∈ ℕ,
where 𝐸𝑘 is the 𝑘−th eigenvalue of 𝐻𝑒. Assuming that the eigenfunctions 𝜓𝑘 form a (orthonor-
mal) basis of 𝐿2, we can expand the solution of the full problem in these new terms as

𝜓(𝑡, 𝑥, 𝑦) = ∑
𝑘

𝜙𝑘(𝑥, 𝑡)𝜓𝑘(𝑥, 𝑦). (1.6)

Plugging (1.6) into the SE with the full Hamiltonian (1.5) yields an equation for the nuclei,

𝑖𝜕𝑡 ∑
𝑘

𝜙𝑘(𝑥, 𝑡)𝜓𝑘(𝑥, 𝑦) = ∑
𝑘

⎛⎜⎜
⎝

𝑁
∑
𝑗=1

− 1
2𝑀𝑗

Δ𝑥𝑗 + 𝐸𝑘(𝑥)⎞⎟⎟
⎠

𝜙𝑘(𝑥, 𝑡)𝜓𝑘(𝑥, 𝑦).

After multiplying from the left with 𝜓∗
𝑘(𝑥, 𝑦) and integrating over the electronic coordinates

𝑦, we obtain a Schrödinger equation for the nuclei

𝑖𝜕𝑡𝜙𝑘(𝑥, 𝑡) = ⎛⎜⎜
⎝

−𝜀2

2
𝑁

∑
𝑗=1

Δ𝑥𝑗 𝜙𝑘(𝑥, 𝑡) + 𝐸𝑘(𝑥)𝜙𝑘(𝑥, 𝑡)⎞⎟⎟
⎠

+ ∑
𝑙

𝐶𝑘,𝑙𝜙𝑙(𝑥, 𝑡), (1.7)

where we have set the nuclear masses identical 𝑀𝑗 = 𝑀 and introduced a new parameter
𝜀2 = 𝑚𝑒/𝑀, that denotes the relative mass of an electron versus a nucleus. The coupling
operator is given by

𝐶𝑘,𝑙 = −𝜀2

2 ∫ℝ𝑛 𝜓∗
𝑘(𝑥, 𝑦)

𝑁
∑
𝑗=1

((2𝜕𝑥𝑗 𝜓𝑙(𝑥, 𝑦))𝜕𝑥𝑗 + 𝜕2𝑥𝑗 𝜓𝑙(𝑥, 𝑦))) 𝑑𝑦.

Until here, all manipulations have been formally exact within the original model (1.5) and in
the final step we reduce the equations: The so-called adiabatic or Born-Oppenheimer approxi-
mation consists of neglecting the coupling terms and assuming that the energy surfaces for the
electrons 𝐸𝑘(𝑥) are well-separated which thus results in a system of uncoupled Schrödinger
equations

𝑖𝜀𝜕𝑡𝜙𝑘(𝑥, 𝑡) = (−𝜀2

2 Δ + 𝐸𝑘(𝑥)) 𝜙𝑘(𝑥, 𝑡), 𝑘 ∈ ℕ. (1.8)
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1.1 The Schrödinger equation and its varieties

Note that we have scaled the time-coordinate 𝑡 → 𝜀𝑡 to guarantee a meaningful limit of the
equation as 𝜀 → 0. It is convenient to identify (1.8) with (1.1) via 𝜀 = ℏ and 𝐸𝑘 = 𝑉 . For
future reference, we write (1.8) for one particle in the standard form, known as semi-classical
Schrödinger equation (SCSE),

𝑖𝜀𝜕𝑡𝜓(𝑥, 𝑡) = (−𝜀2

2 Δ + 𝑉(𝑥)) 𝜓(𝑥, 𝑡), 𝜓(𝑥, 0) = 𝜓0(𝑥) ∈ 𝐿2(ℝ) (1.9)

The name ”semi-classical” is derived from an analogy to classical mechanics, based on the ob-
servation that Lie-brackets reduce to Poisson brackets in the limit ℏ → 0 and thus one expects
to recover classical mechanical behavior in this limit. Indeed, using Wentzel’s, Kramer’s and
Brillouin’s (WKB) approximation, that is formulating the wave function as the exponential of
a phase function 𝑆𝜀,

𝜓(𝑥, 𝑡) = 𝐴𝑒 𝑖𝜀 𝑆𝜀(𝑥,𝑡),
and plugging it into (1.9), we obtain an equation for 𝑆𝜀,

− 𝜕𝑡𝑆𝜀 = 1
2(𝜕𝑥𝑆𝜀)2 + 𝑉 − 𝑖𝜀

2 Δ𝑆𝜀. (1.10)

For ℏ = 𝜀 → 0, the classical Hamilton-Jacobi equations are recovered by identifying the
momentum 𝑝 = 𝜕𝑥𝑆 and as such, the system is interpreted to follow classical trajectories with
a small perturbation of size 𝒪 (𝜀) due to quantum effects.

More information about the solution can be deduced by letting 𝐴 = 𝑎𝜀(𝑥, 𝑡) and expanding in
powers of the small parameter 𝜀,

𝑎𝜀(𝑥, 𝑡) = 𝑎0(𝑥, 𝑡) + 𝜀𝑎1(𝑥, 𝑡) + 𝜀2𝑎2(𝑥, 𝑡) + ⋯ ,

with the idea to include the 𝜀-dependence in the ”amplitude” 𝑎𝜀 (and hence dropping it
in the phase 𝑆). As usual, the SE is computed for this ansatz and terms of equal power in
𝜀 are collected. A truncation after the first term 𝑎0 = 𝒪 (1) then leads to an expression
𝑎0 exp(𝑖/𝜀𝑆(𝑥, 𝑡)), where the phase 𝑆 is now assumed to be slowly varying and certainly inde-
pendent of 𝜀, as one can expect for a classical approximation by (1.10). Therefore, oscillations
should appear on a spatial scale 𝜆 proportional to 𝜀, 𝜆 ∝ 𝜀, and a sensible numerical algo-
rithm is expected to resolve the spatial coordinate at least as Δ𝑥 ∝ 𝜀.

After these considerations, it is clear that the semi-classical Schrödinger equation poses se-
vere challenges to numerical integration since small values of 𝜀 cause the system to oscillate
rapidly, which then in turn implies severe step-size restrictions for the numerical integrator.
We will address this problem in Chapter 4. For discussions of general and numeric issues, we
refer to literature reviews [37, 91, 83].

1.1.3 Many particles and the Gross-Pitaevskii equation

The rich theory of Bose-Einstein condensation, a macroscopic quantum phenomenon, where a
large number of indistinguishable particles behave as one (see [107] for details), does not cease
to draw attention especially after its first experimental realization [2, 35, 49] and the following
nobel prize in 2001. This subsection is devoted to the theoretical description thereof and the
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Chapter 1. Introduction

derivation of the nonlinear Schödinger equation whose numerical solution will be addressed
in Chapter 3. We commence with the many-particle Schrödinger equation

𝑖 𝑑
𝑑𝑡 𝜓(𝑥1, … , 𝑥𝑁) = ⎛⎜⎜

⎝
1

2𝑚
𝑁

∑
𝑗=1

Δ𝑗 +
𝑁

∑
𝑗=1

𝑉(𝑥𝑗) + ∑
𝑗<𝑘

𝑊(𝑥𝑗 , 𝑥𝑘)⎞⎟⎟
⎠

𝜓(𝑥1, … , 𝑥𝑁), (1.11)

where 𝑥𝑗 represents the position of the 𝑗-th particle. All particles are subject to the same
external potential 𝑉 and their kinetic energies are given by the Laplacian Δ𝑗 , acting on the 𝑗-
th coordinate. We assume identical bosonic particles that are subject to hard-body interaction,
modeled by Dirac’s 𝛿(𝑥)-function,

𝑊(𝑥𝑗 , 𝑥𝑘) = 𝑔𝛿(𝑥𝑗 − 𝑥𝑘),

for some parameter 𝑔 ∈ ℝ. Since we are ultimately interested in the lowest energy state, we
assume all particles to be identically distributed and thus arrive at the Hartree approximation
for the wave function

𝜓(𝑥1, … , 𝑥𝑁) ≈ Φ(𝑥1, … , 𝑥𝑁) ≡
𝑁

∏
𝑗=1

𝜙(𝑥𝑗),

which is symmetric w.r.t. the interchange of particles and the single-particle wave function
is normalized to one, ∫ 𝜙(𝑥) 𝑑𝑥 = 1. After a simple calculation, the energy functional is
obtained to

⟨Φ|𝐻Φ⟩ = −𝑁 1
2𝑚 ∫ 𝜙∗(𝑥)Δ𝜙(𝑥)𝑑𝑥 + 𝑁 ∫ 𝜙∗(𝑥)𝑉(𝑥)𝜙(𝑥)𝑑𝑥 + 𝑔𝑁(𝑁 − 1)

2 ∫ |𝜙(𝑥)|4 𝑑𝑥,

where the interaction energy was derived by

∫
𝑁

∑
𝑗<𝑘

𝑁
∏
𝑙=1

|𝜙(𝑥𝑙)|2𝛿(𝑥𝑗 − 𝑥𝑘)𝑑𝑥𝑁 = ∫ ∫
𝑁

∑
𝑗<𝑘

|𝜙(𝑥𝑗)|2|𝜙(𝑥𝑘)|2𝛿(𝑥𝑗 − 𝑥𝑘)𝑑𝑥𝑗 𝑑𝑥𝑘

=
𝑁

∑
𝑗<𝑘

∫ |𝜙(𝑥)|4 𝑑𝑥 = 𝑁(𝑁 − 1)
2 ∫ |𝜙(𝑥)|4 𝑑𝑥.

The energy is minimized by treating 𝜙 and 𝜙∗ as independent variables and zeroing the func-
tional derivative of 𝜙∗,

𝛿
𝛿𝜙∗ ⟨Φ|𝐻Φ⟩ = 𝑁 ∫ [ − 1

2𝑚Δ𝜙(𝑥) + 𝑉(𝑥)𝜙(𝑥) + 𝑔(𝑁 − 1)|𝜙(𝑥)|2𝜙(𝑥)]𝛿𝜙∗(𝑥)𝑑𝑥.

To ensure the correct normalization of the variation, we include a Lagrange multiplier 𝜇, the
chemical potential, 1 = ⟨Φ|Φ⟩ = (∫ |𝜙(𝑥)|2 𝑑𝑥)𝑁 whose functional derivative

𝛿
𝛿𝜙∗ ⟨Φ|Φ⟩ = 𝑁 (∫ |𝜙(𝑥)|2 𝑑𝑥)𝑁−1 ∫ 𝜙(𝑥)𝛿𝜙∗(𝑥)𝑑𝑥 = 𝑁 ∫ 𝜙(𝑥)𝛿𝜙∗(𝑥)𝑑𝑥

has to be added to yield the extremal equation

𝛿
𝛿𝜙∗ (⟨Φ|𝐻Φ⟩ − 𝜇⟨Φ|Φ⟩) = 0.
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1.1 The Schrödinger equation and its varieties

A stationary solution of this variational principle is the time-independent Gross-Pitaevskii
equation (GPE),

− 1
2𝑚Δ𝜙(𝑥) + 𝑉(𝑥)𝜙(𝑥) + 𝑔𝑁|𝜙(𝑥)|2𝜙(𝑥) = 𝜇𝜙(𝑥),

after the approximation 𝑁 − 1 ≃ 𝑁 . In a similar fashion, the stationary point of the action

𝐴[Φ] = ∫ [1
2 (⟨Φ|𝑖𝜕𝑡Φ⟩ + 𝑐.𝑐.) − ⟨Φ|𝐻Φ⟩] 𝑑𝑡,

where 𝑐.𝑐. stands for the complex conjugate, gives the time-dependent GPE

𝑖 𝑑
𝑑𝑡 𝜙(𝑡, 𝑥) = (− 1

2𝑚Δ + 𝑉(𝑥) + 𝑔𝑁|𝜙(𝑡, 𝑥)|2) 𝜙(𝑡, 𝑥). (1.12)

The solution 𝜙 is still interpreted as a probability density which is preserved by the nonlinear
equation (1.12).

Beyond mean-field theory In some contexts, however, the Hartree approximation looses
its validity and it is necessary to go beyond mean-field theory. In particular, we mention frag-
mentation of Bose-Einstein condensates [100], where the single-particle density matrix has
more than one macroscopic eigenvalue [88] which in turn implies a macroscopic occupation
of more than one state. Instead of assuming a single state as for the Hartree-approach, the
quantum mechanical field operator has to be truncated at higher modes. The usual notation is
slightly more involved for an 𝑁-particle system: The idea is to use the eigenfunctions 𝜓𝑗 of
the single particle Hamiltonian 𝑁 = 1 to write the many-particle states as products of these
functions by defining

Φ𝑛0,𝑛1,𝑛2,…(𝑥1, … , 𝑥𝑁) =̂ 1
𝑁!

∞
∏
𝑘=0

√𝑛𝑘! ∑
𝑗1…𝑗𝑁

𝜓𝑗1(𝑥1) … 𝜓𝑗𝑁 (𝑥𝑁)

where the numbers ∑∞
𝑖=0 𝑛𝑖 = 𝑁 , 𝑛𝑖 ∈ ℕ0 indicate the amount of particles in the 𝑖th single

particle eigenstate and the indices 𝑗𝑘 ∈ ℕ0 run over all indices 𝑘 for which 𝑛𝑘 ≠ 0. The states
Φ𝑛0,𝑛1,… form a complete orthonormal basis, inherited from the 𝜓𝑘 , and the full Hamiltonian
(1.11) reads, written in terms of field operators [55],

𝐻 = ∫ Ψ̂†(𝑥) (−Δ
2 + 𝑉(𝑥)) Ψ̂(𝑥) 𝑑𝑥+∬ Ψ̂†(𝑥)Ψ̂†(𝑥′)𝑊(𝑥−𝑥′)Ψ̂(𝑥′)Ψ̂(𝑥) 𝑑𝑥 𝑑𝑥′. (1.13)

The field operator can be expanded as Ψ̂(𝑥) = ∑∞
𝑘=0 𝜓𝑘(𝑥) ̂𝑎𝑘 , where the ladder operators

̂𝑎†
𝑗 , ̂𝑎𝑗 are the creation and annihilation operators (for bosons), respectively. They are defined

by their commutation relations [ ̂𝑎𝑘 , ̂𝑎†
𝑘′] = 𝛿𝑘,𝑘′ using Kronecker’s delta. Putting this in per-

spective, a truncation at the lowest mode, i.e., assuming 𝑛0 = 𝑁 and thus 𝑛𝑗 = 0 for 𝑗 > 0,
or, equivalently 𝜓𝑘 = 0 for 𝑘 > 0, we recover the Gross-Pitaeskii equation for 𝜓0 when
𝑊(𝑥) = 𝑔𝛿(𝑥).

More complex phenomena such as fragmentation specifically require the inclusion of higher
modes of the expansion (1.13). We have studied the occurrence of fragmentation of bosons
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Chapter 1. Introduction

in a time-independent setting for a single trap subject to the relative strength of the couplings
of the included modes [8], assuming a general quadratic plus quartic Hamiltonian3

𝐻 = 𝜖0 ̂𝑎†
0 ̂𝑎0 + 𝜖1 ̂𝑎†

1 ̂𝑎1 + 𝑊0000
2 ̂𝑎†

0 ̂𝑎†
0 ̂𝑎0 ̂𝑎0 + 𝑊1111

2 ̂𝑎†
1 ̂𝑎†

1 ̂𝑎1 ̂𝑎1

+ (𝑊0011
2 ̂𝑎†

0 ̂𝑎†
0 ̂𝑎1 ̂𝑎1 + 𝑊1100

2 ̂𝑎†
1 ̂𝑎†

1 ̂𝑎0 ̂𝑎0) + 𝐴4
2 ̂𝑎†

1 ̂𝑎1 ̂𝑎†
0 ̂𝑎0,

with the 𝜖𝑗 corresponding to the single particle energies 𝜖𝑗 = ∫ 𝜓∗
𝑗 (𝑇 + 𝑉)𝜓𝑗 , and with

interaction coefficients 𝐴4 = 𝑊0101 + 𝑊1010 + 𝑊1001 + 𝑊0110 and

𝑊𝑖𝑗𝑘𝑙 = ∫ 𝑑3𝑥 ∫ 𝑑3𝑥′𝜓∗
𝑖 (𝑥)𝜓∗

𝑗 (𝑥′)𝑊(𝑥 − 𝑥′)𝜓𝑘(𝑥′)𝜓𝑙(𝑥).

Further results based on these findings estimate thresholds for the (contact-)interaction strength
𝑔 to argue that fragmentation exists for harmonically trapped bosons for dimensions 𝑑 ≤ 2
[56] and is inhibited for 𝑑 = 3 [9]. Our approach approximates the modes by introducing
a variational parameter in the width of the well-known single-particle solutions for the har-
monic oscillator which is then minimized to account for interaction between the first relevant
many-particle modes.

In this thesis, we will not detail this line of work, however, we pause to explain significant
contact points with the main content herein: So far, the (single-particle) ground states have
been determined through a semi-quantitative variational analysis which has large room for
improvement, and techniques from Chapter 5 can be applied to determine the single-particle
states more accurately, aiming for a full solution of the two-mode eigenvalue problem, cf.
the following introduction. On the other hand, the dynamics of fragmentation is still barely
understood and current simulations rely on the multi-configurational time-dependent Hartree
(MCTDH) framework [96], where the full configuration space is projected to the span of a
subset of the Hartree products 𝜓𝑗1(𝑥1) … 𝜓𝑗𝑁 (𝑥𝑁) for which the number of degrees of free-
dom is truncated by setting 𝑗𝑘 < 𝐷 for some constant 𝐷. In other words, the field operator is
approximated by Ψ̂ ≈ ∑𝐷−1

𝑘=0 𝜓𝑘 ̂𝑎𝑘 . In future work, we intend to apply splitting techniques of
Chapter 2 to solve the MCTDH equations, in particular for harmonically trapped particles .

1.1.4 Eigenstates and imaginary time

The last type of Schrödinger equations that we will discuss in this thesis originates from the
interest in the spectra of Hamiltonian operators, which is relevant for the understanding of
the atomic and molecular structure of matter: In addition to the applications outlined above
(Born-Oppenheimer approximation, fragmentation of Bose-Einstein condensates), it deter-
mines, e.g., the stability of molecules, band-gaps in semi-conductors etc.

A separation of variable ansatz 𝜓(𝑡, 𝑥) = 𝑒−𝑖𝑡𝐸𝑘 𝜙(𝑥) in (1.1) results in the so-called stationary
Schrödinger equation (ℏ = 𝑚 = 1),

𝐻𝜙𝑘(𝑥) = 𝐸𝑘𝜙𝑘(𝑥), 𝑘 = 0, 1, 2, … (1.14)
3The quartic part is due to pairwise particle interactions, in contrast to the quadratic terms that correspond to

non-interacting (uncoupled) many particle systems.

8



1.2 Spatial discretizations

where, again,
𝐻 = 𝑇 + 𝑉(𝑥) = −1

2Δ + 𝑉(𝑥). (1.15)

We recall that the eigenvalues 𝐸𝑘 are real and positive (after a shift of the origin) and we
assume that their corresponding (real) eigenfunctions 𝜙𝑖(𝑥) form a (orthonormal) basis of the
underlying Hilbert space.

There are many ways to solve the eigenvalue problem, some of which will be discussed to
some extent in Section 5. In this introduction, however, we are interested in the so-called
imaginary time propagation (ITP): Parting from the TDSE,

𝑖𝜕𝑡𝜓(𝑡, 𝑥) = 𝐻𝜓(𝑡, 𝑥), (1.1)

we introduce a Wick rotation of the time coordinate, 𝑡 = −𝑖𝜏, which transforms (1.1) into a
diffusion type equation

− 𝜕
𝜕𝜏𝜓(𝑥, 𝜏) = 𝐻𝜓(𝑥, 𝜏), 𝜓(𝑥, 0) = 𝜓0(𝑥), (1.16)

with formal solution 𝜓(𝑥, 𝜏) = 𝑒−𝜏𝐻𝜓(𝑥, 0). Analogous to (1.4), we expand the initial con-
dition in the basis functions 𝜙𝑘(𝑥) and write

𝜓0(𝑥) = ∑
𝑖

𝑐𝑖 𝜙𝑖(𝑥), 𝑐𝑖 = ⟨𝜙𝑖(𝑥) |𝜓(𝑥, 0)⟩ ,

and the time evolution of (1.16) is given by

𝜓(𝑥, 𝜏) = 𝑒−𝜏𝐻𝜓(𝑥, 0) = ∑
𝑖

𝑒−𝜏𝐸𝑖 𝑐𝑖 𝜙𝑖(𝑥). (1.17)

Assuming non-degenerate4 eigenvalues 𝐸0 < 𝐸1, the asymptotic behavior is clearly

𝜓(𝑥, 𝜏) ⟶𝜏→∞ 𝑒−𝜏𝐸0 𝑐0𝜙0,

since the exponentials with larger exponents decay more rapidly. The convergence rate de-
pends of course on the separation of the eigenvalues. From a formal point of view, the initial
condition is required to contain a component of the smallest eigenvalue, 𝑐0 ≠ 0, however, due
to round-off errors - or, equivalently, limits in numerical accuracy - this is not of practical
relevance since 𝑐0 = 0 will not be exactly maintained along the propagation of the initial
condition.

1.2 Spatial discretizations

In the context of PDEs, a major challenge is to deal with the infinite dimensional function
space in which the solution evolves with time - a problem that usually goes with the name
semi-discretization. Undoubtedly, the most familiar truncation to finite (and thus numerically
treatable) dimensions is done by substituting the underlying domain of the function space, say

4Practical aspects of degeneracies will be briefly addressed in Section 5.
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for simplicity 𝑋 ⊂ ℝ, by a finite set of points 𝑥1, … , 𝑥𝑛 ∈ ℝ and thus replacing functions by
their values at these grid points. There are several ways of representing spatial derivatives in
this basis and a few of them will be discussed subsequently.

Other means of discretizing the space, e.g., finite elements or wavelets are also widely used
and an alternative approach using Hagedorn-wave packets will be briefly presented thereafter.

1.2.1 Finite differences

Finite differences (FD) operate on a chosen discretization of the underlying domain by some
grid 𝑥1, … , 𝑥𝑛 ∈ ℝ. The main idea then consists in approximating the spatial derivatives
by linear combinations of the objective function, which has now become a vector, at different
grid points. There are many ways to approximate derivatives and the finite difference approach
constitutes of a formal Taylor expansion of the ansatz at each point to obtain coefficients up
to a certain order and is therefore a local approximation.

Suppose that the grid points are equidistantly distributed, i.e., 𝑥𝑗+1 = 𝑥𝑗 + Δ𝑥, then

𝑓 (𝑥 + Δ𝑥) = 𝑓 (𝑥) + 𝑓 ′(𝑥)Δ𝑥 + 𝑓 ″(𝑥)Δ𝑥2

2 + 𝒪(Δ𝑥3) ,

and a first order finite difference approximation of the first derivative is thus readily given by

𝑓 ′(𝑥𝑗) = 𝑓 (𝑥𝑗+1) − 𝑓 (𝑥𝑗)
Δ𝑥 + 𝒪(Δ𝑥) .

Using more grid points, i.e., examining the Taylor expansions of 𝑓 (𝑥 + 𝑘Δ𝑥), we can derive
higher order approximations, for example (𝑘 = 2)

𝑓 ′(𝑥𝑗) = 𝑓 (𝑥𝑗+1) − 𝑓 (𝑥𝑗−1)
2Δ𝑥 + 𝒪(Δ𝑥2) .

The previous formulas are known as forward differences and central differences, respectively.
Without going into details, we can observe that higher orders can be easily achieved for the
finite difference formulas and it is easy to generalize finite differences to higher derivatives.
In this work, due to the virtually periodic structure of the quantum mechanical problems, we
will mainly use spectral approximations that converge geometrically in Δ𝑥, can be cheaply
computed and outperform finite difference methods. In Chapter 4, a comparison between FD
and spectral methods is undertaken.

1.2.2 Spectral methods

The previous approach is based on a local approximation of derivatives by mimicking the
Taylor expansion of the sought function. Spectral methods follow an opposite direction, they
rely on the global interpolation of the objective function and perform the differentiation on
the interpolating functions. The following introduction is based on [124]. Suppose 𝑓 ∶ ℝ → ℂ
is a complex-valued function, its Fourier transform is then defined as

ℱ[𝑓 ](𝑘) = ̂𝑓 (𝑘) = ∫∞
−∞ 𝑓 (𝑥)𝑒𝑖𝑘𝑥𝑑 𝑥, 𝑘 ∈ ℝ.
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1.2 Spatial discretizations

We interpret the Fourier transform ℱ as an expansion of the function 𝑓 in the basis of plane
waves 𝑒𝑖𝑘𝑥, where the value of the transform ̂𝑓 (𝑘) ∈ ℂ gives the amplitude of the wave num-
ber 𝑘. The particular beauty of plane waves is that they are eigenfunctions of the derivative
operator, or in other words,

ℱ[𝜕𝑥𝑓 (𝑥)](𝑘) = 𝑖𝑘ℱ[𝑓 (𝑥)](𝑘) = 𝑖𝑘 ̂𝑓 (𝑘). (1.18)

Hence, after applying a Fourier transform, derivatives become simple multiplications, yet the
transforms still have to be computed.

In order to reduce dimensionality, we discretize in space, thereby passing to so-called spec-
tral collocation: Instead of looking at an expansion in (a finite number of) plane waves at
certain different frequencies, the trigonometric interpolation polynomials are considered, an
approach that is equivalent on equidistant grids. From here on, we will assume periodic bound-
ary conditions and restrict the spatial domain to the interval [0, 2𝜋] on which an odd5 number
𝑁 + 1 of equidistant grid points 𝑥𝑙 = 2𝜋(𝑙 + 1)/(𝑁 + 1), 𝑙 = 0, … , 𝑁 is chosen.

Trigonometric interpolation [68] consists of expanding the function 𝑓 as

𝑓𝑁(𝑥) =
𝑁

∑
𝑙=0

𝑓 (𝑥𝑙)ℎ𝑙(𝑥), (1.19)

with Lagrange’s trigonometric polynomials

ℎ𝑙(𝑥) = 1
𝑁 + 1

sin (𝑁+1
2 (𝑥 − 𝑥𝑙))

sin (1
2 (𝑥 − 𝑥𝑙))

= 1
𝑁 + 1

𝑁/2
∑

𝑘=−𝑁/2
𝑒𝑖𝑘(𝑥−𝑥𝑙),

or, equivalently, as a (discrete) convolution

𝑓𝑁(𝑥) =
𝑁

∑
𝑙=0

ℎ𝑁(𝑥 − 𝑥𝑙)𝑓 (𝑥𝑙).

The interpolant 𝑓𝑁 coincides with 𝑓 at 𝑁 +1 nodes 𝑥𝑙 and reproduces exactly all trigonometric
polynomials of degree ≤ 𝑁/2.

Differentiation is now easily performed by computing

𝑓 ′
𝑁(𝑥) =

𝑁
∑
𝑙=0

𝑓 (𝑥𝑙)ℎ′
𝑙(𝑥) =

𝑁
∑
𝑙=0

𝑓 (𝑥𝑙)
1

𝑁 + 1
𝑁/2
∑

𝑘=−𝑁/2
𝑖𝑘𝑒𝑖𝑘(𝑥−𝑥𝑙)

= 1
𝑁 + 1

𝑁/2
∑

𝑘=−𝑁/2
𝑖𝑘

𝑁
∑
𝑙=0

𝑓 (𝑥𝑙)𝑒𝑖𝑘(𝑥−𝑥𝑙)

= 1
2𝜋

𝑁/2
∑

𝑘=−𝑁/2
⎛⎜
⎝

2𝜋
𝑁 + 1

𝑁
∑
𝑙=0

𝑓 (𝑥𝑙)𝑒−𝑖𝑘𝑥𝑙⎞⎟
⎠

𝑖𝑘𝑒𝑖𝑘𝑥. (1.20)

5For even 𝑁 + 1, analogous expressions exist.
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Chapter 1. Introduction

The parenthesis in the last row is called Discrete Fourier Transform (DFT) of the function 𝑓 ,

̂𝑓𝑘 = Δ𝑥
𝑁

∑
𝑙=0

𝑓 (𝑥𝑙)𝑒−𝑖𝑘𝑥𝑙 , 𝑘 = −𝑁
2 , … , 𝑁

2 ,

with the grid size Δ𝑥 = 2𝜋/(𝑁 + 1) and its inverse (IDFT) is given by

𝑓𝑁(𝑥𝑙) = 1
2𝜋

𝑁/2
∑

𝑘=−𝑁/2
̂𝑓𝑘𝑒𝑖𝑘𝑥𝑙 . (1.21)

We recognize in (1.20) an application of a DFT followed by multiplication of 𝑖𝑘 and a con-
secutive inverse DFT, perfectly analogous to the continuous case. Fortunately, the expansion
coefficients ̂𝑓𝑘 can be cheaply computed at a cost 𝑁 log(𝑁) using the Fast Fourier Transform
(FFT) algorithm, which in turn implies that the action of the Laplacian on a discretized func-
tion 𝑓 (𝑥𝑙) can also be computed with one FFT and one inverse, as in (1.21),

𝜕𝑟𝑥𝑓𝑁(𝑥) = ℱ [(𝑖𝑘)𝑟 ℱ−1 [𝑓𝑁] (𝑘)] (𝑥),
which is the discrete analogue of (1.18) for the interpolant 𝑓𝑁 of (1.19).

It is worth pointing out that, in the limit of infinite order for periodic grids, finite difference
schemes coincide with Fourier spectral methods. Furthermore, its matrix representation is
given by 𝐃𝐅𝐓𝑘,𝑙 = Δ𝑥𝑒−𝑖𝑘𝑥𝑙 which is a circulant matrix, and the discrete Fourier transform
can be written in vectorized form as a matrix-vector multiplication,

̂𝑓 = 𝐃𝐅𝐓𝑓 ,

To conclude, we list a few properties of the Fourier transformation that will be used in the
course of this work:

a. Linearity: For two functions 𝑎, 𝑏 ∈ 𝐿2(ℝ), ℱ[𝑎 + 𝑏](𝑘) = ℱ[𝑎](𝑘) + ℱ[𝑏](𝑏)
b. Differentiation: For 𝑓𝑥 ∈ 𝐿2(ℝ), then ℱ[𝑓𝑥](𝑘) = 𝑖𝑘 ̂𝑓 (𝑘)

c. Real-valued functions: If 𝑓 (𝑥) is real, then ̂𝑓 (𝑘) is Hermitian, i.e., ̂𝑓 (−𝑘) = ̂𝑓 (𝑘)∗
, and

thus half the coefficients are redundant ( ̂𝑓−𝑘 = ̂𝑓 ∗
𝑘 ). This will lead to a speedup of a factor

two in computations.

d. Parseval’s identity: 1
2𝜋 ∫2𝜋

0 |𝑓𝑁(𝑥)|2𝑑 𝑥 = ∑𝑘 | ̂𝑓𝑘 |2, which means that the norm is pre-
served by Fourier transforms. It holds both for the continuous and the discrete case.

e. Spectral convergence: Let 𝑓 ∈ 𝐿2([0, 2𝜋]) be 𝑝-times differentiable, then the error
committed by trigonometric interpolation is

‖𝑓 − 𝑓𝑁 ‖𝐿2([0,2𝜋]) ≤ 𝑎𝑁−𝑝‖𝑓 (𝑝)‖𝐿2([0,2𝜋]),
where 𝑓𝑁 is given in (1.19) and 𝑎 is a constant independent of 𝑁 and 𝑝. For analytic 𝑓 ,
we even have exponential convergence

‖𝑓 − 𝑓𝑁 ‖𝐿2([0,2𝜋]) ≤ 𝑏𝑒−𝑐𝑁 ‖𝑓 ‖𝐿2([0,2𝜋]),
with constants 𝑏, 𝑐 independent of 𝑁 .
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1.2 Spatial discretizations

1.2.3 Hagedorn-wavepackets

We have just seen how the differentiation has been simplified by expanding the solution in
plane wave states for the spectral method. Obviously, this is not the only useful choice of a
basis, as seen, for example for the Born-Oppenheimer approximation in Section 1.1.2. From
practical considerations, the important aspect is to ask whether an expansion and the dynamics
can be efficiently computed in a certain basis. Motivated by the semi-classical Schrödinger
equation, it seems promising to use wave-packets that behave similar to classical particles as
basis functions. Such wave functions are often associated with the name coherent states which
means that one can associate them with a classical position and momentum which behave
according to classical mechanics and which can be traced back to Schrödinger himself [115].
Heller [67] proposed a variable Gaussian as variational ansatz for the wave function

𝜓̃(𝑥, 𝑡) = exp ( 𝑖
𝜀 (1

2 (𝑥 − 𝑞(𝑡))𝑇 𝐶(𝑡) (𝑥 − 𝑞(𝑡)) + 𝑝(𝑡) ⋅ (𝑥 − 𝑞(𝑡)) + 𝜉(𝑡))) .

The variational parameters 𝑞(𝑡), 𝑝(𝑡) correspond to the average position and momentum, re-
spectively, and 𝜉(𝑡) denotes the global phase. The complex matrix 𝐶(𝑡) defines the width of
the wave function. After a change of basis which was proposed in [63] and which relies on a
factorization 𝐶 = 𝑃𝑄−1, where 𝑃, 𝑄 satisfy certain relations6, an orthonormal basis of 𝐿2(ℝ)
can be constructed from

𝜙𝜀
0[𝑝, 𝑞, 𝑄, 𝑃](𝑥) = 𝜋−1/4(𝜀𝑄)−1/2 exp ( 𝑖

2𝜀𝑃𝑄−1(𝑥 − 𝑞)2 + 𝑖
2𝜀𝑝(𝑥 − 𝑞)).

The construction uses ladder operators, which lead to a recurrence relation

𝑄√𝑘 + 1𝜙𝜀
𝑘+1(𝑥) =

√2
𝜀 (𝑥 − 𝑞)𝜙𝜀

𝑘 (𝑥) − 𝑄∗√𝑘𝜙𝜀
𝑘−1(𝑥).

For our purposes, it is sufficient to know that such an orthonormal basis exists and that it
can be efficiently evaluated by this recursive formula. Abbreviating the notation by defining
Π(𝑡) = (𝑞(𝑡), 𝑝(𝑡), 𝑄(𝑡), 𝑃(𝑡)), a given initial condition 𝜓(𝑥, 0) can be expanded as

𝜓(𝑥, 0) = 𝑒 𝑖𝜀 𝑆(𝑡)
∞
∑
𝑘=0

𝑐𝑘(𝑡)𝜙𝑘[Π(𝑡)], (1.22)

where 𝑆(𝑡) is a global7 phase parameter that has been inherited from 𝜉(𝑡).

The dynamics for the parameters Π, 𝑆, i.e., how the basis evolves, are surprisingly simple and
can be written as [60]

̇𝑞(𝑡) = 𝑝(𝑡), 𝑄̇(𝑡) = 𝑃(𝑡),
̇𝑝(𝑡) = −∇𝑉(𝑞(𝑡)), 𝑃̇(𝑡) = −𝑉 (2)(𝑞(𝑡))𝑄(𝑡), (1.23)

̇𝑆(𝑡) = 1
2𝑝(𝑡)2 − 𝑉(𝑞(𝑡)),

6Cf. Ref. [91] for details.
7A global phase is physically irrelevant, however, since the semi-classical equation is somehow embedded in a

larger system, it can become meaningful and we cannot neglect it.
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Chapter 1. Introduction

where 𝑉 (2) is the Hessian of 𝑉 . The challenge is hidden in the evolution of the weights 𝑐𝑘(𝑡):
They obey a linear system of ordinary differential equations (ODEs) which can be derived by
plugging (1.22) into the semi-classical SE (1.9). However, the resulting equations, see [63]
are difficult to solve and a simpler numerical approach will be discussed in Section 4.2 of
Chapter 4.

1.3 Temporal discretizations

In this work, however, the main focus lies on the evolution of the solution in time. For a more
complete exposition, we will briefly mention some standard methods that have been widely
used in the context of PDEs in general, and in particular for the problems addressed in this
work. Supplementary references are given where more details can be found and the methods
are placed in context of the geometric integrators to be presented later. After discretization of
the spatial domain, we are left with a system of coupled (for now autonomous) ODEs of the
form

̇𝑦(𝑡) = 𝑓 (𝑦(𝑡)), 𝑦(0) = 𝑦0 ∈ ℝ𝑁 ,
and its solution is given by the flow map 𝜑𝑡 as

𝑦(𝑡) = 𝜑[𝑓 ]
𝑡 (𝑦0),

In the later exposition, we will use an exponential notation for the exact flows which is standard
for linear vector fields and can be generalized by means of Lie-derivatives: The flow of a
(nonlinear) vector field 𝑓 (𝑦) can be written as

𝑒𝑡ℒ𝑓 (𝐈(𝑦0)) ≡ 𝜑𝑡(𝑦0), ℒ𝑓 =
𝑑

∑
𝑘=1

𝑓𝑘
𝜕

𝜕𝑦𝑘
,

where the sum is to be understood over the components of the vector valued function 𝑓 . The
Lie-derivative acts on the initial conditions by ℒ𝑓 𝑔(𝑦) = 𝑔′(𝑦)𝑓 (𝑦), thus

𝑒𝑡ℒ𝑓 𝑔(𝑦0) = 𝑔(𝜑[𝑓 ]
𝑡 (𝑦0)),

and consequently, we obtain the Vertauschungssatz for the flows of two vector fields 𝑓1, 𝑓2,

𝑒𝑡ℒ𝑓1 𝑒𝑡ℒ𝑓2 𝑔(𝑦0) = 𝑔(𝜑[𝑓2]
𝑡 ∘ 𝜑[𝑓1]

𝑡 (𝑦0)). (1.24)

A numerical integrator Φ[𝑓 ]
ℎ ∶ ℝ𝑁 → ℝ𝑁 is a map that takes an initial condition 𝑦0 and a step-

size ℎ ∈ ℂ to an approximation to the exact solution 𝑦(ℎ). The quality of the approximation
is expressed by its distance from the exact solution in some norm and an integrator is said to
be of (local) order 𝑝 if the map satisfies

‖Φ[𝑓 ]
ℎ (𝑦(0)) − 𝑦(ℎ)‖ = 𝑐ℎ𝑝+1 + 𝒪(ℎ𝑝+2)

for some constant 𝑐 independent of ℎ.
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1.3 Temporal discretizations

1.3.1 Chebyshev method

The following two subsections are devoted to polynomial interpolations of the exponential.
Tal-Ezer and Kosloff[121] have pioneered in the application of Chebyshev interpolation for
the time-integration of the Schödinger equation. Chebyshev polynomials are defined for 𝑘 ∈ ℕ
as

𝑇𝑘(𝑥) = cos(𝑘 arccos(𝑥)) 𝑥 ∈ [−1, 1]. (1.25)

They satisfy the usual three-term recursion relation

𝑇𝑘+1(𝑥) = 2𝑥𝑇𝑘(𝑥) − 𝑇𝑘−1(𝑥), 𝑘 ≥ 1, (1.26)

beginning with 𝑇0(𝑥) = 1 and 𝑇1(𝑥) = 𝑥 and we can see that 𝑇𝑘 is a polynomial of degree 𝑘
with roots 𝑥𝑗 = cos((2𝑗 − 1)𝜋/(2𝑘)), 1 ≤ 𝑗 ≤ 𝑘. The polynomials 𝑇𝑘 are orthogonal on their
domain w.r.t. the weight 𝑤 = 1/√1 − 𝑥2. As a family of orthogonal polynomials, they form a
basis on 𝐿2𝑤([−1, 1]) and we can expand 𝑓 ∈ 𝐿2𝑤([−1, 1]) as

𝑓 (𝑥) =
∞
∑
𝑘=0

𝑐𝑘𝑇𝑘(𝑥), 𝑐𝑘 = 1
𝜒𝑘

∫1
−1 𝑓 (𝑦)𝑇𝑘(𝑦) 𝑑𝑦

√1 − 𝑦2
,

with a normalization factor 𝜒𝑘 = ∫1
−1 𝑇𝑘(𝑦)2/√1 − 𝑦2𝑑𝑦, which gives 𝜒0 = 𝜋 and 𝜒𝑘 =

𝜋/2 for 𝑘 > 0. To evaluate the exponential 𝑓 (𝐴) ≡ exp(𝐴) of a matrix 𝐴, the matrix has to
be scaled by a linear transformation 𝑡 such that its numerical range lies within the interval
[−1, 1], analogously to the scalar case, where the interpolation of a function 𝑓 ∶ [𝑎, 𝑏] → ℝ is
equivalent to interpolating 𝑓 (𝑡(𝑥)), where 𝑡 ∶ [−1, 1] → [𝑎, 𝑏], 𝑡(𝑥) = 𝑎+𝑏

2 + 𝑏−𝑎
2 𝑥. Then, one

simply computes the (scalar) integrals of the scaled function 𝑓 (𝑡(𝑥)) to obtain the expansion
coefficients 𝑐𝑘 and finally evaluates the truncated Chebyshev expansion at 𝑡 = 𝑎+𝑏−2𝑥

𝑎−𝑏 which
is efficiently done by the Clenshaw-algorithm and requires only 𝑛 matrix-vector products for
a 𝑛-term expansion, i.e., when setting 𝑐𝑘 = 0 for 𝑘 > 𝑛.

Notice that the coefficients 𝑐𝑘 have to be computed only once and the action of (a polynomial
in) the Hamiltonian 𝐻 on a vector 𝑣 can be computed as 𝐻𝑣 = 𝑇𝑣 + 𝑉𝑣 which, depending
on the spatial discretization, is usually cheap: In combination with spectral methods for the
Laplacian in 𝑇 , a matrix-vector multiplication 𝐻𝑣 corresponds to the cost of one FFT.

In [91], an error bound for a Hermitian matrix 𝐻 with eigenvalues within [−𝜌, 𝜌], where
𝜌 = 𝜌(𝐻) is the spectral radius, is given by

‖𝑃𝑚−1(ℎ𝐻)𝑣 − 𝑒−𝑖ℎ𝐻𝑣‖ ≤ 4 (𝑒1−(ℎ𝜌/(2𝑚))2 ( ℎ𝜌
2𝑚))

𝑚
, (1.27)

for the Chebyshev interpolation polynomial of degree 𝑚 − 1

𝑃𝑚−1(ℎ𝐻) = 𝑑0(ℎ𝜌) + 2
𝑚−1
∑
𝑘=1

𝑑𝑘(ℎ𝜌)𝑇𝑘 (𝐻/𝜌) ,

where the expansion coefficients are proportional to Bessel-functions of the first kind 𝐽𝑘 ,

𝑑𝑘(ℎ) = (−𝑖)𝑘𝐽𝑘(ℎ).
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Chapter 1. Introduction

The truncation index 𝑚 has to be chosen such that 𝑚 > ℎ𝜌 to reach accuracy. Taking into
account that the eigenvalues of 𝐻 = 𝑇 + 𝑉 can be bounded by

𝜌 ∈ [min𝑥∈𝑋 𝑉(𝑥), max
𝑥∈𝑋

𝑉(𝑥) + 𝜋2

2Δ𝑥2 ] , (1.28)

and assuming a finite (discrete) domain 𝑋, the dominant term originates from the largest
eigenvalue of the Laplacian and eventually leads to the step-size restriction

( ℎ𝜌
2𝑚) < 1 ⟹ ℎ < 𝑐𝑚Δ𝑥2,

as Δ𝑥 → 0 for some constant 𝑐 > 0.

1.3.2 Lanczos method

The computation of the exponential of a matrix 𝐴 is trivial when the matrix is diagonal, and
thus the first technique that is taught to students is the diagonalization. In practical applications,
a full diagonalization is very costly and thus avoided when possible. Fortunately, in the context
of solving linear ODEs, we are only interested in the action of the exponential on a given
vector (initial condition) and the underlying idea gives way to a highly efficient scheme which
only uses matrix-vector multiplications, a consideration that has already been exploited in
the exposition of the Chebyshev interpolation above. A more detailed general treatment of
the Lanczos method with original references can be found in [59], and our presentation is
borrowed from [91]. The crucial idea for the computation of 𝑒𝐴𝑣 is to reduce the dimension
of the matrix by introducing Krylov subspaces,

𝒦𝑟(𝐴, 𝑣) = span{𝑣, 𝐴𝑣, 𝐴2𝑣, … , 𝐴𝑟−1𝑣}
the linear span of powers of 𝐴 multiplied by a vector. The aim is now to recursively construct
an orthonormal basis of this space and use it to obtain a ”partial diagonalization” of 𝐴, namely
the components that belong to the subspace 𝒦𝑟(𝐴, 𝑣). In the following, we restrict ourselves
to Hermitian matrices and present the method that is known as Lanczos-iteration. We construct
basis vectors of 𝒦𝑟(𝐴, 𝑣) via Gram-Schmidt-orthogonalization, starting from a given initial
vector 𝑣1 = 𝑣/‖𝑣‖, yielding

𝜏𝑘+1,𝑘 𝑣𝑘+1 = 𝐴𝑣𝑘 −
𝑘

∑
𝑗=1

𝜏𝑗,𝑘𝑣𝑗 , (1.29)

with the expansion coefficients 𝜏𝑗,𝑘 = 𝑣†
𝑗 𝐴𝑣𝑘 , 𝑗 ≤ 𝑘, and 𝜏𝑘+1,𝑘 > 0 is chosen to normal-

ize 𝑣𝑘+1. First, the Krylov dimension is increased by computing 𝐴𝑣𝑘 , then orthogonality is
achieved by subtracting the orthogonal projections and finally, 𝜏𝑘+1,𝑘 is defined to normalize
the new Lanczos vector 𝑣𝑘+1. If the right hand side vanishes, the Krylov space has become an
𝐴-invariant subspace and the iteration terminates.

The algorithm provides us after 𝑟 steps with a 𝑁 × 𝑟 matrix of orthonormal Lanczos vectors
𝑉𝑟 = (𝑣1, … , 𝑣𝑟) and a 𝑟 × 𝑟 coefficient matrix 𝑇𝑟 = (𝜏𝑘,𝑗), where we have set 𝜏𝑘,𝑗 = 0 for
𝑗 − 𝑘 > 1 to rewrite (1.29) in matrix form

𝐴𝑉𝑟 = 𝑉𝑟𝑇𝑟 + 𝜏𝑟+1,𝑟𝑣𝑟+1𝑒𝑇𝑟 , (1.30)
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1.3 Temporal discretizations

with the 𝑟th unit vector 𝑒𝑇𝑟 = (0, … , 0, 1). Multiplying (1.30) from the left with the Hermitian
conjugate 𝑉†𝑟 , and using the orthonormality of the 𝑣𝑘 , we get

𝑉†𝑟 𝐴𝑉𝑟 = 𝑇𝑟 . (1.31)

From (1.31), we deduce that 𝑇𝑟 is Hermitian and combined with 𝜏𝑘+|𝑗|+1,𝑘 = 0, it follows
that 𝑇𝑟 is tridiagonal of dimension 𝑟 × 𝑟. The exponential of the (Hermitian) Hamiltonian
𝐻 can now be approximated by interpreting it as the solution of the initial value problem
𝑖 ̇𝑦(𝑡) = 𝐻𝑦(𝑡), 𝑦(0) = 𝑣1 at 𝑡 = ℎ and this will be approximated on the 𝑟th Krylov subspace:
Using the ansatz for the solution 𝑦𝑟(𝑡) = ∑𝑟

𝑘=1 𝑐𝑘(𝑡)𝑣𝑘 , we obtain

𝑖 ̇𝑦𝑟(𝑡) ≡ 𝑖
𝑟

∑
𝑘=1

̇𝑐𝑘(𝑡)𝑣𝑘 = 𝐻
𝑟

∑
𝑘=1

𝑐𝑘(𝑡)𝑣𝑘 , 𝑦𝑟(0) ∈ ℂ𝑁 .

After multiplication from the left with 𝑣†
𝑗 , we get

𝑖 ̇𝑐𝑘(𝑡) =
𝑟

∑
𝑗=1

𝜏𝑗,𝑘𝑐𝑘(𝑡), 𝑐1(0) = 1, 𝑐𝑙(0) = 0 ∀𝑙 > 1, (1.32)

or, in matrix form ̇𝑐(𝑡) = 𝑇𝑟𝑐(𝑡), with 𝑐(𝑡) = (𝑐1(𝑡), … , 𝑐𝑟(𝑡)), which is easily exponentiated.
An approximation to the solution in the 𝑟th Krylov subspace is thus given by the exponential
of a small tridiagonal matrix, 𝑟 ≪ 𝑁 , as

exp(−𝑖ℎ𝐻) ≈ 𝑉𝑟 exp(−𝑖ℎ𝑇𝑟)𝑒1,

and unitarity of the exponential is preserved since 𝑇𝑟 inherits Hermiticity from 𝐻. In a refine-
ment of the results by Hochbruck & Lubich [71], cf. Ref. [91], the error committed by the
restriction to (Lanczos-)polynomials of degree < 𝑟 can be bounded by8

‖𝑒−𝑖ℎ𝐻𝑣 − 𝑉𝑟 exp(−𝑖ℎ𝑇𝑟)𝑒1‖ ≤ 8𝑒−(ℎ𝜌)2/(4𝑟) (𝑒ℎ𝜌
2𝑟 )

𝑟
, for 𝑟 ≥ ℎ𝜌, (1.33)

where 𝜌 = 𝜌(𝐻) is the spectral radius of 𝐻, a result similar to Chebyshev interpolation, cf.
(1.27). As for the Chebyshev method, a step-size restriction ℎ < 𝑐Δ𝑥2𝑟 for some constant
𝑐 can be deduced from (1.28). Assuming exact arithmetics, the procedure (1.29) is cast in
algorithmic form in Table 1.1. Round-off errors lead to numerical instability but the cure –
re-orthogonalization (cf. [59]) – lies beyond the scope of this introduction.

1.3.3 Splitting methods

Let us consider the separable system of ODEs

𝑢′ = 𝐴(𝑢) + 𝐵(𝑢), 𝑢(𝑡0) = 𝑢0 ∈ ℂ𝑁 , (1.34)

where we assume that both systems

𝑢′ = 𝐴(𝑢), 𝑢′ = 𝐵(𝑢) (1.35)
8For simplicity, we have relaxed the specifications of the theorem by requiring that all eigenvalues of 𝐻 lie in

[−𝜌, 𝜌] which is satisfied by definition.
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The Lanczos algorithm
𝑣1 ∶= 𝑣/‖𝑣‖2, 𝜏1,0 ∶= 0;
for 𝑗 = 1, … , 𝑟 − 1 do

𝑢 ∶= 𝐴𝑣𝑗 ,
𝜏𝑗,𝑗 ∶= 𝑣†

𝑗 𝑢,
𝑢 ∶= 𝑢 − 𝜏𝑗,𝑗𝑣𝑗 − 𝜏𝑗,𝑗−1𝑣𝑗−1,
𝜏𝑗+1,𝑗 ∶= ‖𝑢‖2 (= 𝜏𝑗,𝑗+1),
𝑣𝑗+1 ∶= 𝑢/𝜏𝑗+1,𝑗

end for
𝑢 ∶= 𝐴𝑣𝑟 , 𝜏𝑟,𝑟 ∶= 𝑣†𝑟𝑢,

Table 1.1: Given a vector 𝑣 and a Hermitian matrix 𝐴 ∈ ℂ𝑁×𝑁 and an integer 1 ≤ 𝑟 ≤ 𝑁 , the algorithm
computes a basis of the 𝑟-dimensional Krylov subspace 𝒦𝑟(𝐴, 𝑣), in particular the Hermitian coefficient
matrix 𝑇𝑟 = (𝜏𝑗,𝑘) and the associated orthonormal Lanczos vectors 𝑣𝑗 .

can either be solved in closed form or accurately integrated.

If 𝜑[𝐴]
𝑡 , 𝜑[𝐵]

𝑡 represent the exact flows associated to (1.35), the solution can be advanced by
one time step ℎ by composing the individual flow maps

Φ[1]
ℎ = 𝜑[𝐴]

ℎ ∘ 𝜑[𝐵]
ℎ , (1.36)

which gives a first order approximation to the exact flow 𝜑[𝐴+𝐵]
ℎ , i.e.,

‖𝑢(𝑡0 + ℎ) − Φ[1]
ℎ (𝑢0)‖ = 𝒪(ℎ2) .

This composition is known as the Lie-Trotter method. Sequential application of the two first-
order methods Φ[1]

ℎ and its adjoint Φ[1]†
ℎ = 𝜑[𝐵]

ℎ ∘ 𝜑[𝐴]
ℎ with half time step yields the well-

known Strang-splitting9, second order time-symmetric methods of the form

Φ[2]
ℎ,𝐴 = 𝜑[𝐴]

ℎ/2 ∘ 𝜑[𝐵]
ℎ ∘ 𝜑[𝐴]

ℎ/2 (1.37)

Φ[2]
ℎ,𝐵 = 𝜑[𝐵]

ℎ/2 ∘ 𝜑[𝐴]
ℎ ∘ 𝜑[𝐵]

ℎ/2 (1.38)

(referred as 𝐴𝐵𝐴 and 𝐵𝐴𝐵 compositions). The contraction via the (1-parameter-) group prop-
erty of the flows that eliminated one computation is called First Same As Last (FSAL) property
and can also be used with 𝑝th-order 𝑚−stage compositions

Φ[𝑝]
ℎ = 𝜑[𝐴]

𝑎𝑚ℎ ∘ 𝜑[𝐵]
𝑏𝑚ℎ ∘ … ∘ 𝜑[𝐴]

𝑎1ℎ ∘ 𝜑[𝐵]
𝑏1ℎ (1.39)

if 𝑎𝑚 = 0 or 𝑏1 = 0 and for the repeated application of the scheme without requiring output,
e.g.,

(Φ[2]
ℎ,𝐴)𝑛 = 𝜑[𝐴]

ℎ/2 ∘ (𝜑[𝐵]
ℎ ∘ 𝜑[𝐴]

ℎ )𝑛−1 ∘ 𝜑[𝐵]
ℎ ∘ 𝜑[𝐴]

ℎ/2.
9In the literature, this method sometimes goes with the name leapfrog.
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1.3 Temporal discretizations

If both flows preserve certain geometric properties, such as symplecticity, unitarity, energy,
just to mention a few, so will their composition (1.39). For this reason, splitting methods
belong to the class of geometric integrators.

From here on, we switch to the exponential notation for the exact flows which is standard for
linear vector fields and the generalization by Lie-derivatives has been given in the introduction.
In this notation, the equation 𝑖 ̇𝑢 = 𝐴(𝑢) + 𝐵(𝑢), whose formal solution for the evolution
operator is denoted by 𝜙[𝐴+𝐵]

𝑡 = 𝑒−𝑖𝑡(𝐴+𝐵), is approximated for one time step, ℎ, by the order
𝑝 composition (1.39) or, equivalently,

Φ[𝑝]
ℎ ≡ 𝑒−𝑖ℎ𝑏1𝐵 𝑒−𝑖ℎ𝑎1𝐴 ⋯ 𝑒−𝑖ℎ𝑏𝑚𝐵 𝑒−𝑖ℎ𝑎𝑚𝐴, (1.40)

where the order in the composition has been reversed, compared to (1.39), due to the Ver-
tauschungssatz (1.24). We keep in mind that, in a nonlinear problem, if 𝐵 depends on 𝑢, it has
to be updated at each stage because 𝑢 changes during the evolution of 𝑒−𝑖ℎ𝑎𝑗𝐴.

There exist many different splitting methods which are designed for different purposes, de-
pending on the structure of the problem, the desired order, the required stability, etc. [22, 29,
65, 94, 95, 131, 119].

For the Schrödinger equation, the natural split (𝐴 = 𝑇 , 𝐵 = 𝑉 ) is due to the simplicity of
Fourier spectral methods: After spatial discretization, the exponential of the kinetic energy
operator 𝑇 is reduced to the exponentials of a diagonal matrix if we encase it in Fourier trans-
forms,

𝑒−𝑖ℎ𝑇 𝜙(𝑥) = ℱ−1ℱ𝑒−𝑖ℎ𝑇 𝜙(𝑥) = ℱ−1𝑒−𝑖ℎ −(−𝑖𝑘)2
2𝑚 ̂𝜙(𝑘) = ℱ−1𝑒−𝑖ℎ 𝑘2

2𝑚 ℱ𝜙(𝑥).

For the ease of notation, we have dropped the subscripts that indicated trigonometric interpo-
lation, 𝜙 = 𝜙𝑁 , etc. Notice that the exponentials in 𝑒−𝑖𝑎𝑗ℎ𝑇 need to be computed only once
and can be reused at each step.

We now analyze how to compute the evolution of different parts of the Hamiltonian by spectral
methods.

Under the assumption that the potential and its first four derivatives, are bounded, Jahnke &
Lubich [81] proved that the error of the Strang splitting does not lead to a step size restriction
as for Chebyshev or Lanczos methods. Instead, the accuracy depends virtually only on the
spatial regularity of the wave function,

‖𝑒−𝑖ℎ𝑉/2𝑒−𝑖ℎ𝑇 𝑒−𝑖ℎ𝑉/2𝜙 − 𝑒−𝑖ℎ(𝑇+𝑉)𝜙‖ ≤ 𝑐ℎ3⟨𝜙|(𝑇 + 𝐈)2𝜙⟩1/2,

where 𝐈 is the identity operator and the constant is independent of the discretization parameter
Δ𝑥 and the notation has been adapted from [91]. Furthermore, both operators 𝑇, 𝑉 are Her-
mitian and splitting methods thus conserve the norm of the wave function 𝜙. Due to the exact
time-integration through the exponential, they also inherit the gauge-invariance of the exact
solution, i.e., a shift of origin in the energy 𝐻 → 𝐻 + 𝑐 by some constant will only manifest
in a constant global phase of the wave function and thus not alter quadratic observables.
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Time dependence

Splitting methods allow for an elegant generalization to non-autonomous separable equations.
The fundamental principal is straightforward: re-write the time-dependent equations as an
augmented autonomous system, i.e.,

̇𝑦(𝑡) = 𝐴(𝑦, 𝑡), 𝑦(0) = 𝑦0 ⟺ 𝑑
𝑑𝑡 ( 𝑦

𝑡1
) = (𝐴(𝑦, 𝑡1)

1 ) , (𝑦(0), 𝑡1(0)) = (𝑦0, 0). (1.41)

The system is split as

𝑑
𝑑𝑡 ( 𝑦

𝑡1
) = (𝐴(𝑦, 𝑡1)

0 ) , 𝑑
𝑑𝑡 ( 𝑦

𝑡1
) = (0

1) .

The Strang split (1.38) results in an exponential midpoint rule Φ[2]
ℎ,𝐵 = 𝑒−ℎ𝐴(𝑦,ℎ/2), which

corresponds to freezing the time coordinate at the middle of time integration. An order-three
method requires the composition of two exponentials

Φ[𝐴]
ℎ = 𝑒𝑎1ℎ𝐴(𝑦,𝑏1ℎ)𝑒𝑎2ℎ𝐴(𝑦,𝑏2ℎ),

where the coefficients have to be complex and are given by 𝑎1 = 1/2 − 𝑖/(2√3), 𝑎2 = ̄𝑎1 and
𝑏1 = 1/4− 𝑖/(4√3), 𝑏2 = 𝑏1 +1/2, or alternatively, by the complex conjugate of these values.
At this stage, we have silently introduced two subjects which deserve further attention: Firstly,
we have derived a method of admittedly little practical relevance, and secondly we assume that
the flow can be evaluated at complex times 𝑏𝑖ℎ. The first issue leads us to the discussion of
order conditions for splitting methods and the latter arises naturally once the order conditions
are presented.

Order conditions

The principal tool in the analysis of order conditions is provided by the Baker-Campbell-
Hausdorff (BCH) formula

𝑒ℎ𝐴𝑒ℎ𝐵 = 𝑒BCH(ℎ𝐴,ℎ𝐵) = exp (ℎ(𝐴 + 𝐵) + ℎ2

2 [𝐴, 𝐵] + ℎ3

12([𝐴, [𝐴, 𝐵]] − [𝐵, [𝐴, 𝐵]])

− ℎ4

24[𝐵, [𝐴, [𝐴, 𝐵]]] + 𝒪(ℎ5) ).
(1.42)

In Section 1.3.4, a recursion formula (1.63) to compute the expansion to arbitrary order is
stated in the context of the Magnus expansion.

From a formal perspective, given some Lie-group 𝐺 and its associated Lie algebra 𝔤, which
is the tangent space 𝑇𝐺1 of 𝐺 at the identity, the exponential is a map exp ∶ 𝔤 → 𝐺, that
satisfies the linear homogeneous differential equation 𝑦′(𝑡) = 𝑎𝑦(𝑡), 𝑦(0) ∈ 𝐺 for 𝑎 ∈ 𝔤
at 𝑡 = 1, i.e., 𝑦(1) = exp(𝑎)𝑦(0). In other words, the BCH formula answers the question
which equation is exactly solved when two exponentials are composed by a (formal) series in
the time variable 𝑡. Convergence for linear operators is achieved for small 𝑡 but we refer to
standard algebra textbooks, e.g. [126] for precise results. These comments give meaning to
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1.3 Temporal discretizations

the brackets in (1.42), which are identified as the Lie brackets [𝐴, 𝐵] = 𝐴𝐵 − 𝐵𝐴, that give
structure to the Lie-algebra 𝔤. As an example, the bracket - or commutator - of the Lie algebra
of vector fields is given as [𝑋, 𝑌](𝑓 ) = 𝑋(𝑌(𝑓 )) − 𝑌(𝑋(𝑓 )), or, in local coordinates,

⎡⎢
⎣
∑

𝑖
𝑓𝑖(𝑥)𝜕𝑥𝑖 , ∑

𝑗
𝑔𝑗(𝑥)𝜕𝑥𝑗

⎤⎥
⎦

= ∑
𝑖

⎛⎜
⎝

∑
𝑗

(𝑓𝑗𝜕𝑥𝑗 𝑔𝑖 − 𝑔𝑗𝜕𝑥𝑗 𝑓𝑖)⎞⎟
⎠

𝜕𝑥𝑖 ,

which is again a (linear) vector field.

Dynkin [52] derived an explicit formula for the exponent,

log(𝑒𝐴𝑒𝐵) =
∞
∑
𝑘=1

(−1)𝑘−1

𝑘 ∑
𝑞𝑖,𝑝𝑖∈ℕ+

𝑝𝑖+𝑞𝑖=𝑘

(−1)
∑𝑘

𝑖=1(𝑝𝑖 + 𝑞𝑖)
[𝐴𝑝1𝐵𝑞1 ⋯ 𝐴𝑝𝑘 𝐵𝑞𝑘 ]

𝑝1! 𝑞1! ⋯ 𝑝𝑘! 𝑞𝑘! , (1.43)

where the shorthand notation [𝐴𝑝1𝐵𝑞1 ⋯ 𝐴𝑝𝑘 𝐵𝑞𝑘 ] stands for the right nested commutator
which is derived by adding a bracket after each letter beginning from the left, e.g., [𝐴2𝐵𝐴] =
[𝐴, [𝐴, [𝐵, 𝐴]]]. Additional complications arise because of the linear dependence of certain
brackets which is due to the Jacobi identity,

[𝐴, [𝐵, 𝐶]] + [𝐶, [𝐴, 𝐵]] + [𝐵, [𝐶, 𝐴]] = 0

and the antisymmetry condition [𝐴, 𝐵] = −[𝐵, 𝐴] which hold by definition for any Lie-bracket.
Calculations in Lie algebras can thus be substantially simplified by working in a suitable basis.
A first example is a Dynkin type basis where we remove linearly dependent commutators of
same length (keeping, for example, [𝐴, 𝐵] and discarding [𝐵, 𝐴]). Although it is claimed that
a systematic construction of such a basis is possible [42], to the best of our knowledge there
exists no practicable algorithm to expand a given element in that basis.

On Hall bases The so-called Hall basis on the other hand is well equipped with procedures
to compute such expansions and the commutation of basis elements, the way to generate new
elements, is the basic building block in the definition of the basis. For completeness, we repeat
the definition from [111] of a Hall basis ℋ of a free Lie-algebra 𝔤 generated by an alphabet
𝒜 of letters via commutation [⋅ , ⋅].

(I) ℋ has a total order ≤,

(II) 𝒜 ⊂ ℋ ,

(IIIa) (Recursive generation of the basis and the ordering) For any commutator ℎ =
[ℎ′, ℎ″] in ℋ \ 𝒜, it holds that ℎ″ ∈ ℋ and

ℎ < ℎ″.

(IIIb) (Recursive gen. contd.) For any commutator ℎ = [ℎ′, ℎ″] in 𝔤 \ 𝒜, it holds that
ℎ ∈ ℋ if and only if

ℎ′, ℎ″ ∈ ℋ and ℎ′ < ℎ″,
and

either ℎ′ ∈ 𝒜, or ℎ′ = [𝑥, 𝑦] and 𝑦 ≥ ℎ″.
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Chapter 1. Introduction

These instructions are easy to cast in a constructive form: (I) Impose an (arbitrary) total order
on the letters of the alphabet, here, for simplicity, we have chosen the lexicographical one
𝒜 = {𝐴, 𝐵}, 𝐴 < 𝐵. Extend it to elements of a Hall-base by (uniquely) mapping10 each
element to a word which is done by removing all the brackets, e.g., [[𝐴, [𝐴, 𝐵]], 𝐴] → 𝐴𝐴𝐵𝐴.
Now, the lexicographical ordering on the words, inherited by the ordering of the alphabet,
gives an order on words of the same length, where the length len ∶ 𝔤 → ℕ is defined to be the
number of letters a given element contains. For two commutators 𝑤, 𝑤′ ∈ ℋ , we say 𝑤 < 𝑤′

if len(𝑤) < len(𝑤′). (II) Start the iteration from the set ̃ℋ = 𝒜. (III) Grow the set ̃ℋ by
forming commutators of the elements already in ̃ℋ and include them in ̃ℋ when they obey
(IIIa) or (IIIb), conditions can be easily verified using the order given by (I).

Such a basis was used by Casas & Murua [39] to derive an efficient algorithm to explicitly
compute the terms of the BCH formula.

Given a basis and the means of computing the BCH formula, order conditions can be derived
for a given splitting/composition method of type (1.39), and several papers [101, 21] have
studied the combinatorial structure of the BCH terms to derive formulas for order conditions.
Keeping in mind (1.42), we introduce a grading on the algebra for which we re-use the length
map len from before. The only order condition which we single out is the consistency, which
assures that, as ℎ → 0, the numerical integrator becomes the exact solution, and which corre-
sponds to satisfying the equations up to 𝒪(ℎ2), or

log(Φ[𝑝]
ℎ ) = ℎ

𝑚
∑
𝑗=1

𝑎𝑗𝐴 + ℎ
𝑚

∑
𝑗=1

𝑏𝑗𝐵 + 𝒪(ℎ2)

!= ℎ(𝐴 + 𝐵).

Therefore, the consistency condition is simply ∑ 𝑎𝑗 = ∑ 𝑏𝑗 = 1.

With the tools presented so far, we can derive higher order composition methods which we
will illustrate at the example of the famous triple-jump by Yoshida [131]. Given a symmetric
method Φ[2]

ℎ of order two, say (1.38), along the lines of (1.42), we can express it formally as
a series

Φ[2]
ℎ = exp (ℎ𝑋 + ℎ3𝑋3 + 𝒪(ℎ5)) ,

for the equation ̇𝑦(𝑡) = 𝑋𝑦(𝑡) ≡ (𝐴+𝐵)𝑦(𝑡), and 𝑋3 subsumes the commutators of length three.
Even powers of ℎ do not appear in the expansion because of the symmetry, Φ[2]

−ℎ = (Φ[2]
ℎ )−1 ,

a property, which is beautifully explained in [65]. This implies a significant reduction of order
conditions and because of good long-term integration properties, usually symmetric splittings
are sought for. Symmetrically composing

Φ[4]
ℎ ≡ Φ[2]

𝛾ℎ ∘ Φ[2]
(1−2𝛾)ℎ ∘ Φ[2]

𝛾ℎ, (1.44)

we obtain11

Φ[4]
ℎ = exp (ℎ𝑋 + ℎ3(2𝛾3 + (1 − 2𝛾)3)𝑋3 + 𝒪(ℎ5)) ,

10The uniqueness is guaranteed by the definition of the Hall-base, cf. [111].
11Note that consistency is already satisfied by the choice of the coefficients.
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and hence a polynomial condition 0 = (2𝛾3 +(1−2𝛾)3) to reach order four. Among the three
solutions 𝛾𝑘 = 1/(2−21/3𝑒2𝜋𝑖𝑘/3), only one is real-valued, 𝛾0 ≈ 1.351. For complex valued
solutions, the numerical values are 𝛾1 ≈ 0.324 + 𝑖0.135 and 𝛾2 = ̄𝛾1. From the size of the
(real) coefficients, it becomes clear why this scheme has been referred to as triple-jump: The
initial vector is first propagated by a large time-step 𝛾1 > 1, only to be again pulled back by
(1 − 2𝛾1), continued by a push to 𝑡 = ℎ. The large effective step sizes 𝛾ℎ and (1 − 2𝛾) lead to
large error constants and reduce the stability of the method, nevertheless, the order has been
increased from two to four. This procedure has been repeated at arbitrary order in a landmark
paper by Yoshida [131] for which it bares his name.

In the preceding subsection, we have already encountered complex time steps, which have
already been found and discarded by Yoshida. Assuming everything is well defined for com-
plex time-steps, for a real problem one usually has to face the quadruple cost due to complex
arithmetic which has an immense impact on the efficiency of such compositions. However,
looking at the real part of 𝛾1,2, we notice that the time advances only in small steps in the
positive direction, taking a detour through the complex plane.

For parabolic problems, for example the imaginary-time Schrödinger equation, the negative
time-steps of 𝛾0 lead to unstable and therefore useless algorithms. The reason for this behavior
is that the flow only forms a semi-group and backward integration corresponds to an ill-posed
problem. Unfortunately, negative real coefficients - at least one 𝑎𝑖 and one 𝑏𝑗 - are found for all
splitting methods of order higher than two, a result due to [118, 120, 58] and a simple proof can
be found in [17]. This restriction is referred to as order-barrier for splitting methods. This casts
complex coefficients in a different light, especially since the results of Hansen & Ostermann
[66] and Castella et al. [40], who proved that, under certain conditions, the complex flows
stay well-defined. Explorations of splitting methods for parabolic equations were performed
in [40, 20], where it is assumed that the coefficient multiplying the parabolic operator has
positive real part.

For a specific vector field, the commutator algebra has additional structure and most problems
that are treated in the following chapters share a particularly useful property which we describe
in the following. Recall, that 𝐴 = 𝑇 , 𝐵 = 𝑉 for the Schrödinger equation and it is possible to
compute the commutators explicitly to

2[𝑇, 𝑉] = [−𝜕2𝑥 , 𝑉(𝑥)] = −𝜕2𝑥𝑉(𝑥) + 𝑉(𝑥)𝜕2𝑥 = −𝑉″(𝑥) − 2𝑉 ′(𝑥)𝜕𝑥,
[𝑉, [𝑇, 𝑉]] = (𝑉 ′(𝑥))2 . (1.45)

Observe that the second commutator [𝑉, [𝑇, 𝑉]] is local, i.e., it only depends on the spatial
coordinate 𝑥. Hence further commutation with local operators, e.g., 𝑉 , will make it disappear,
[𝑉, [𝑉, [𝑇, 𝑉]]] ≡ 0. This property is generally exploited in the following since it leads to
enormous simplifications in the algebra and further details are provided in Chapter 4. The
commutator identity [𝑉, [𝑉, [𝑇, 𝑉]]] ≡ 0 has also been associated with the names of Runge-
Kutta-Nyström (RKN) who designed methods for second order ordinary differential equations
̈𝑦 = 𝑓 (𝑦). Augmenting the system by a change of variables 𝑞 = 𝑦, 𝑝 = ̇𝑦 yields

𝑑
𝑑𝑡 (𝑞

𝑝) = ( 𝑝
𝑓 (𝑞))
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which is equivalent to a classical Hamiltonian system when 𝐻 = 𝑇 + 𝑉(𝑞), where the kinetic
energy is 𝑇 = 1

2𝑝2 and the potential 𝑉 satisfies 𝑓 (𝑞) = −∇𝑉(𝑞). This Hamiltonian is quadratic
in the momentum 𝑝 and the commutators satisfy the relation {𝑉, {𝑉, {𝑇, 𝑉}}} = 0 for the usual
Poisson-bracket {⋅ , ⋅}.

We conclude the introduction on splitting methods by a general treatment of non-autonomous
separable systems, which will be combined with an asymmetry in the Lie algebra that in
turn motivates the concept of a modified error. First, the system (1.41) is generalized to the
separable equation

̇𝑢 = 𝐴(𝑡)𝑢 + 𝜖𝐵(𝑡)𝑢, (1.46)

which is chosen linear to simplify the notation. Note that we have introduced a small parameter
𝜖 ≪ 1, which makes the two parts, 𝐴 and 𝐵̃ ≡ 𝜖𝐵 qualitatively different and is responsible for
the asymmetry in the algebra. By asymmetry, we mean an additional structure that implies that
the terms12 [𝐵̃, [𝐴, 𝐵̃]] ∝ 𝜖2 and [𝐴, [𝐴, 𝐵̃]] ∝ 𝜖 should be treated differently by a numerical
method because of their relative sizes. In the context of splitting methods, where one usually
assumes that the parts are exactly integrable, a perturbed system like (1.46) is called to as
near-integrable.

This property has been exploited to design highly efficient splitting methods in Ref. [94],
where the terminology below has been introduced.

Excursus: a modified error concept Let Φℎ be a one-step method to approximate the flow
𝜑ℎ of (1.46) at time ℎ. It is then clear that the error expansion for a consistent method Φℎ can
be asymptotically expressed as

Φℎ − 𝜑ℎ = ∑
𝑗≥1

∑
𝑘≥𝑠𝑗

𝑒𝑗,𝑘 𝜖𝑗ℎ𝑘+1 as (ℎ, 𝜖) → (0, 0),

where the 𝑠𝑗 start from the first non-vanishing error coefficient 𝑒𝑠𝑗 ,𝑘 . We say that Φℎ is of
generalized order (𝑠1, 𝑠2, … , 𝑠𝑚) (where 𝑠1 ≥ 𝑠2 ≥ ⋯ ≥ 𝑠𝑚) if the local error satisfies that

Φℎ − 𝜑ℎ = 𝒪(𝜖ℎ𝑠1+1 + 𝜖2ℎ𝑠2+1 + ⋯ + 𝜖𝑚ℎ𝑠𝑚+1). (1.47)

Thus, for a method of generalized order (8, 2), denoted by Φ(8,2)
ℎ , the error reads

Φ(8,2)
ℎ − 𝜑ℎ = 𝑒1,8𝜖ℎ9 + 𝑒2,2𝜖2ℎ3 + 𝒪 (𝜖2ℎ4 + 𝜖3ℎ3) .

For splitting methods, this means that a good choice of coefficients 𝑎𝑗 , 𝑏𝑘 will zero the polyno-
mials multiplying the dominant commutators 𝜖[𝐴, 𝐵], 𝜖[𝐴, [𝐴, 𝐵]], etc. and possibly ignore
terms that are already small due to high powers in the small parameter. Thereby, the number
of order conditions is reduced and good accuracy can be reached at a smaller number of stages.
Throughout the later chapters, we will encounter a multitude of coefficient sets that lead to
splitting methods of higher generalized order.

Parting from a non-autonomous system with near-integrable structure (1.46) it is paramount to
treat the time-coordinate appropriately in order to preserve the generalized order for splitting

12For commutators of different length, similar considerations have to be taken into account.
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1.3 Temporal discretizations

methods and to yield smaller error coefficients. In continuation, we answer the question of
how to properly apply splittings for this kind of equations.

The system (1.46) can be solved by considering the time as two new independent coordinates

𝑑
𝑑𝑡

⎛⎜⎜⎜
⎝

𝑢
𝑡1
𝑡2

⎞⎟⎟⎟
⎠

= ⎛⎜⎜⎜
⎝

𝐴(𝑡2)𝑢
1
0

⎞⎟⎟⎟
⎠⏟⏟⏟⏟⏟

=∶𝑓 [𝐴](𝑢,𝑡1,𝑡2)𝑇

, 𝑑
𝑑𝑡

⎛⎜⎜⎜
⎝

𝑢
𝑡1
𝑡2

⎞⎟⎟⎟
⎠

= ⎛⎜⎜⎜
⎝

𝜖𝐵(𝑡1)𝑢
0
1

⎞⎟⎟⎟
⎠⏟⏟⏟⏟⏟

=∶𝑓 [𝐵](𝑢,𝑡1,𝑡2)𝑇

(1.48)

For this choice of the splitting, the time is frozen in each instance of system and the symmetric
second order splitting (1.38) yields

𝜑[𝐴+𝐵]
𝑡𝑛,𝑡𝑛+ℎ = 𝑒 ℎ

2 𝜖𝐵(𝑡𝑛+ℎ)𝑒ℎ𝐴(𝑡𝑛+ ℎ
2 )𝑒 ℎ

2 𝜖𝐵(𝑡𝑛) + 𝒪(ℎ3), (1.49)

where 𝜑[𝐴+𝐵]
𝑡𝑛,𝑡𝑛+ℎ denotes the exact flow from 𝑡𝑛 to 𝑡𝑛 + ℎ. It has been pointed out in [28], that

for the split (1.48), the proportionality of the errors to powers of the small parameter 𝜖 is lost
and we prove this observation by a straightforward calculation:

The previously linear time-dependent ODE (1.46) has become an autonomous non-linear sys-
tem (1.48) with associated Lie-operators

ℒ𝑓 [𝐴] = 𝐴(𝑡2)𝑢 𝜕
𝜕𝑢 + 𝜕

𝜕𝑡1
, ℒ𝑓 [𝐵] = 𝐵(𝑡1)𝑢 𝜕

𝜕𝑢 + 𝜕
𝜕𝑡2

.

Their commutator is readily computed by

[ℒ𝑓 [𝐴] , ℒ𝑓 [𝐵]] =
3

∑
𝑖=1

⎛⎜⎜
⎝

3
∑
𝑗=1

⎛⎜
⎝

𝜕𝑓 [𝐵]
𝑖

𝜕𝑦𝑗
𝑓 [𝐴]
𝑗 − 𝜕𝑓 [𝐴]

𝑖
𝜕𝑦𝑗

𝑓 [𝐵]
𝑗

⎞⎟
⎠

⎞⎟⎟
⎠

𝜕
𝜕𝑦𝑖

(1.50)

= (𝜖[𝐵(𝑡1), 𝐴(𝑡2)]𝑢 + 𝜖𝜕𝐵(𝑡1)𝑢
𝜕𝑡1

− 𝜕𝐴(𝑡2)𝑢
𝜕𝑡2

) 𝜕
𝜕𝑢 , (1.51)

where (𝑦1, 𝑦2, 𝑦3) = (𝑢, 𝑡1, 𝑡2). In contrast to the original equation, the proportionality of the
error term at first order to the small parameter 𝜖 is lost. This generalizes to commutators at
higher order and it is evident that the algebraic structure of the original problem, generated
by 𝐴(𝑡) and 𝐵(𝑡) is completely lost.

On the upside, near-integrability is recovered if we take the time as new variable as follows13

𝑑
𝑑𝑡

⎛⎜⎜⎜
⎝

𝑢
𝑡1
𝑡2

⎞⎟⎟⎟
⎠

= ⎛⎜⎜⎜
⎝

𝐴(𝑡2)𝑢
1
1

⎞⎟⎟⎟
⎠

, 𝑑
𝑑𝑡

⎛⎜⎜⎜
⎝

𝑢
𝑡1
𝑡2

⎞⎟⎟⎟
⎠

= ⎛⎜⎜⎜
⎝

𝜖𝐵(𝑡2)𝑢
0
0

⎞⎟⎟⎟
⎠

, (1.52)

and Strang’s splitting then reads

𝜑[𝐴+𝐵]
𝑡𝑛,𝑡𝑛+ℎ = 𝑒 ℎ

2 𝜖𝐵(𝑡𝑛+ℎ) ∘ 𝜑[𝐴]
𝑡𝑛,𝑡𝑛+ℎ ∘ 𝑒 ℎ

2 𝜖𝐵(𝑡𝑛) + 𝒪(𝜖ℎ3). (1.53)

In Table 1.2, the application of this split has been detailed for a general composition. The
13Notice that the two equations for 𝑡1, 𝑡2 could be collapsed into a single one.
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Splitting algorithm for non-autonomous systems
𝑡[0] ∶= 𝑡𝑛
for 𝑖 = 1, … , 𝑚 do

solve ∶ ̇𝑢 = 𝐵(𝑢, 𝑡[𝑖−1]), 𝑡 ∈ [𝑡[𝑖−1], 𝑡[𝑖−1] + 𝑏𝑖ℎ]
solve ∶ ̇𝑢 = 𝐴(𝑢, 𝑡), 𝑡 ∈ [𝑡[𝑖−1], 𝑡[𝑖−1] + 𝑎𝑖ℎ]

𝑡[𝑖] ∶= 𝑡[𝑖−1] + 𝑎𝑖ℎ
end for
𝑡𝑛+1 ∶= 𝑡[𝑚]

Table 1.2: Algorithm for the numerical integration from 𝑡𝑛 to 𝑡𝑛 +ℎ of the system (1.52) by the 𝑚-stage
composition (1.39).

commutator of the associated Lie-operators is now

[ℒ𝑓 [𝐴] , ℒ𝑓 [𝐵]] = 𝜖 ([𝐵(𝑡2), 𝐴(𝑡1)]𝑢 + 𝜕𝐵(𝑡2)𝑢
𝜕𝑡2

) 𝜕
𝜕𝑢 , (1.54)

which coincides with (1.51) except for the last term. In consequence the error is a factor 𝜖
more accurate and considerably larger time-steps can be used. Furthermore, additional struc-
ture can be recovered: Suppose that 𝐴, 𝐵 satisfy the RKN property [𝐵, [𝐵, [𝐴, 𝐵]]] = 0 and
[𝐵(𝑡), 𝐵(𝑡′)] = 0 for all times 𝑡, 𝑡′, then it is clear from (1.54) that the split (1.52) is able to
preserve this property, i.e.,

[ℒ𝑓 [𝐵] , [ℒ𝑓 [𝐵] , [ℒ𝑓 [𝐴] , ℒ𝑓 [𝐵]]]] = 0.

The first split with commutator (1.51) on the contrary also looses this beneficial structure.

This result was proved in [28] for separable Hamiltonian systems. However, as can be con-
cluded from the computations, it is also valid for non-autonomous separable operators in
PDEs.

Recently, these considerations have been applied to higher order splitting methods for parabolic
non-autonomous equations [117], where the time coordinate is advanced in real space and
complex coefficients with positive real part are used in the frozen part to overcome the second-
order barrier.

Similar considerations apply to other perturbed problems: Suppose the vector field can be
separated in three parts, 𝑓 = 𝑓1 + 𝑓2 + 𝜖𝑓3. Then, the near-integrable structure that has led to
error coefficients proportional to 𝜖 is only conserved if the split is applied as (𝑓1 + 𝑓2) + 𝜖𝑓3,
whereas the alternatives 𝑓1 + (𝑓2 + 𝜖𝑓3) or 𝑓2 + (𝑓1 + 𝜖𝑓3) loose this desirable property.
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1.3.4 Magnus expansion

Motivated by the findings for non-autonomous systems, where we have elaborated that the
proper use of splittings only freezes the time-coordinate in one part of the flow, the solution
of the remaining time-dependent part is addressed in this section. The detailed and compre-
hensive survey on the Magnus expansion [93] by Blanes et al. [23] forms the basis of this
review. We begin with a linear differential equation formulated in a Lie group,

̇𝑦 = 𝑎(𝑡)𝑦 𝑎 ∶ ℝ+ → 𝔤, 𝑦(0) = 𝑦0 ∈ 𝒢 (1.55)

and remark that a naïve approach to solve this equation 𝑦(𝑡) = exp(∫𝑡
0 𝑎(𝜉)d𝜉)𝑦0 will, in

general, not produce the solution if the operators 𝑎(𝑡) at different times do not commute, i.e.,
[𝑎(𝑡1), 𝑎(𝑡2)] ≠ 0. However, by introducing correction terms in the Lie algebra, e.g.,

𝑦(𝑡) = exp (∫𝑡
0 𝑎(𝜉)d𝜉 + Δ(𝑡)) 𝑦0, Δ(𝑡) ∈ 𝔤,

the solution can be written in exponential form. With the aim of expressing the flow as
exp(Θ(𝑡)), from simple differentiation,

𝑑
𝑑𝑡 exp(Θ(𝑡)) = dexpΘ(𝑡)(Θ̇(𝑡)) exp(Θ(𝑡)),

where dexp ∶ 𝔤 × 𝔤 → 𝔤 is the differential of the exponential map, it can be seen that the
exponent has to satisfy the dexpinv equation,

Θ̇(𝑡) = dexp−1
Θ(𝑡)(𝑎(𝑡)), Θ(0) = 0. (1.56)

With the help of the adjoint representation ad ∶ 𝔤 × 𝔤 → 𝔤, defined by ad𝑥(𝑦) = [𝑥, 𝑦], and
consequently ad𝑘

𝑥(𝑦) = [𝑥, ad𝑘−1
𝑥 (𝑦)] for 𝑘 ∈ ℕ, it is standard textbook knowledge [126] that

the differential of the exponential admits a series expansion

dexpΘ =
∞
∑
𝑘=0

1
(𝑘 + 1)! ad𝑘

Θ ≡ exp(adΘ) − 1
adΘ

, (1.57)

and its inverse can be expressed with the help of the Bernoulli numbers 𝐵𝑘 as

dexp−1
Θ =

∞
∑
𝑘=0

𝐵𝑘
𝑘! ad𝑘

Θ, (1.58)

which is assured to converge for ‖Θ‖ < 𝜋. The dexpinv equation (1.56) is solved via Picard’s
fixed point iteration and, after ordering of the terms, we arrive at the Magnus expansion:
Using a grading, a decomposition in the direct sums 𝔤 = ⨁𝑗∈ℕ 𝔤𝔧 that propagates under
commutation, [𝔤𝑖, 𝔤𝑗] ⊂ 𝔤𝑖+𝑗 , the Magnus expansion is the (formal) series

Θ(𝑡) =
∞
∑
𝑙=1

Θ𝑙(𝑡), (1.59)

in the grade, Θ𝑙 ∈ 𝔤𝑙, whose components are identified with the terms of same grade in the
Picard iteration of (1.56), defined by

Θ[0](𝑡) ≡ 0,
Θ[𝑛+1](𝑡) = ∫𝑡

0 Θ̇[𝑛](𝜉)dξ = ∫𝑡
0 dexp−1

Θ[𝑛](𝜉) 𝑎(𝜉)dξ

=
∞
∑
𝑘=0

𝐵𝑘
𝑘! ∫𝑡

0 ad𝑘
Θ[𝑛](𝜉) 𝑎(𝜉)dξ. (1.60)
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The first three terms are

Θ1(𝑡) = ∫𝑡
0 𝑎(𝜉1)dξ1,

Θ2(𝑡) = 1
2 ∫𝑡

0 ∫𝜉1

0 [𝑎(𝜉1), 𝑎(𝜉2)] 𝑑𝜉2 𝑑𝜉1,

Θ3(𝑡) = 1
6 ∫𝑡

0 ∫𝜉1

0 ∫𝜉2

0 ([𝑎(𝜉1), [𝑎(𝜉2), 𝑎(𝜉3)]] + [[𝑎(𝜉1), 𝑎(𝜉2)], 𝑎(𝜉3)])𝑑𝜉3 𝑑𝜉2 𝑑𝜉1.

The same result is achieved by substituting Θ in (1.56) by the ansatz (1.59) and collecting
terms of same grade,

Θ̇1 = 𝑎,

Θ̇𝑛 =
𝑛−1
∑
𝑘=1

𝐵𝑘
𝑘! 𝑆(𝑘)𝑛 , 𝑛 ≥ 2,

(1.61)

where the adjoint operation has been expanded in the definition of

𝑆(𝑘)𝑛 = ∑
𝑖1+⋯+𝑖𝑘=𝑛−1

[Θ𝑖1 , [… [Θ𝑖𝑘 , 𝑎] …]].

The resulting equations (1.61) are trivially integrated and the commutators of same grade 𝑛,
aggregated in 𝑆(𝑘)𝑛 , can be generated recursively through

𝑆(𝑘)𝑛 =
𝑛−𝑘
∑
𝑚=1

[Θ𝑚, 𝑆(𝑘−1)𝑛−𝑚 ], 2 ≤ 𝑘 ≤ 𝑛 − 1,

𝑆(1)𝑛 = [Θ𝑛−1, 𝑎], 𝑆(𝑛−1)𝑛 = ad(𝑛−1)
Θ1

(𝑎).
Altogether, we state the Magnus expansion in its final form

Θ1(𝑡) = ∫𝑡
0 𝑎(𝜉)𝑑𝜉,

Θ𝑛(𝑡) =
𝑛−1
∑
𝑘=1

𝐵𝑘
𝑘! ∫𝑡

0 𝑆(𝑘)𝑛 (𝜉)𝑑𝜉, 𝑛 ≥ 2.
(1.62)

The logarithm Θ is known to exist [97] on complete normed (Banach) algebras provided
∫𝑡

0 ‖𝑎(𝜉)‖2 𝑑𝜉 < 𝜋 and the same condition also guarantees the convergence of the Magnus
expansion to the solution for bounded linear operators 𝑎(𝑡) on some Hilbert space [38, 98].

We highlight the relationship between the Magnus expansion and the BCH formula (1.42)
when choosing

𝑎(𝑡) =
⎧{
⎨{⎩
𝐴 if 0 ≤ 𝑡 < 1
𝐵 if 1 ≤ 𝑡 ≤ 2 , (1.63)

then 𝑒BCH(𝐴,𝐵) = 𝑒Θ𝑎(2) and the convergence results for the Magnus expansion are carried
over to the BCH formula. A word of caution is in place since not all of the obtained terms are
linearly independent and it is recommendable to rewrite them in a basis, e.g., the Hall basis,
in order to simplify the expression.

Suppose that 𝑎 = 𝒪(1), then, for small times 𝑡 = ℎ, it is safe to assume that Θ1(ℎ) ∝ ℎ. In the
construction of the expansion, we identify two mechanisms: integration and commutation, the
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former increases its power in the small parameter ℎ by one, whereas the latter at least retains
the size of the two elements. In fact, an additional power in ℎ is gained for the innermost
commutator, where

[𝑎(𝑡1), 𝑎(𝑡2)] = [𝑎0 + 𝑡1𝑎1 + 𝒪(𝑡21) , 𝑎0 + 𝑡2𝑎1 + 𝒪(𝑡22)]
= (𝑡2 − 𝑡1)[𝑎0, 𝑎1] + 𝒪(𝑡1𝑡2 + 𝑡21 + 𝑡22) . (1.64)

Furthermore, just as the original equation (1.55), the Magnus expansion and its truncations
[80]

Ω𝑛 =
𝑛

∑
𝑘=1

Θ𝑘 ,

are time-symmetric, i.e., both the exact flow 𝜑 and the numerical flow Φ = exp(Ω𝑛) satisfy

𝜑(𝑡, 𝑡0) ∘ 𝜑(𝑡0, 𝑡) = 𝐈, Φ𝑡,𝑡0 ∘ Φ𝑡0,𝑡 = 𝐈,

with the former being equivalent to Θ(𝑡0, 𝑡) = −Θ(𝑡, 𝑡0).

After Taylor expanding 𝑎(𝑡) around the midpoint of the interval [𝑡𝑛, 𝑡𝑛 + ℎ], the terms Θ𝑘 and
thus also the full expansion Θ contain only odd powers in the time-step ℎ, an observation first
made in [80]. Inductively, a size estimate for the terms can be established by first considering

Θ1 = 𝒪(ℎ) , Θ2 = 𝒪(ℎ2+1) , Θ2𝑘+1 = 𝒪(ℎ(2𝑘+1)+1) ,

where the +1 is due to (1.64) and finally Θ2𝑗+1 = 𝒪(ℎ2𝑗+3) , 𝑗 > 0 with an additional gain
because of the absence of even powers in ℎ. Through simply truncation the Magnus series after
the 𝑝𝑡ℎ term, or in other words, by neglecting all terms Θ𝑛, 𝑛 > 𝑝, we obtain a numerical
integrator of order 𝑝 + 1 (or 𝑝 + 2 if 𝑝 is even).

Given the truncated Magnus expansion, several difficulties have to be overcome when actual
computation of the terms is desired. If the multidimensional integrals cannot be computed
exactly, it has been noted [78] that linear combinations of univariate integrals suffice and
hence the number of necessary function evaluations 𝑎(𝑡𝑖) grows only linearly with the order.
The standard approach to be portrayed in the following is based on Taylor expanding the vector
field 𝑎 and then integrating the resulting polynomials up to a given order 𝑝.

Motivated by the symmetry of the exact Magnus expansion the vector field and its derivatives
are evaluated at the midpoint, 𝑡1/2 = 𝑡 + ℎ/2,

𝑎(𝑡) =
∞
∑
𝑗=0

𝑎𝑗(𝑡 − 𝑡1/2)𝑗 , 𝑎𝑗 = 1
𝑗!

𝑑𝑗𝑎(𝑡)
𝑑𝑡𝑗 ∣

𝑡=𝑡1/2

. (1.65)

The first integrals in (1.62) are readily evaluated up to 𝒪(ℎ4) to

Θ1 = ℎ𝑎0 + ℎ3 1
12𝑎2 + 𝒪(ℎ5)

Θ2 = ℎ3 −1
12 [𝑎0, 𝑎1] + 𝒪(ℎ5)

(1.66)

Notice that, as expected, only odd powers of ℎ appear. However, since the computation of high
order derivatives can be costly, we take one step back and interpret the 𝑎𝑗 as generators of the
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graded free Lie-algebra 𝐹𝐿𝐴(ℎ𝑎0, ℎ2𝑎1, ℎ3𝑎2, …) which is an approximation to the original
algebra 𝔤. In these terms, the (truncated) Magnus expansion is a linear combination of the
generators ℎ𝑗+1𝑎𝑗 and commutators thereof. On the other hand, the symmetric momentum
integrals

𝐴(𝑗) = 1
ℎ𝑗 ∫ℎ/2

−ℎ/2 𝑡𝑗𝑎(𝑡 + 𝑡1/2)𝑑𝑡, 𝑗 = 0, 1, …

provide a way to generate series in the generators 𝑎𝑖. Using again the Taylor expansion (1.65),
it becomes clear that by changing the momentum 𝑗, and after truncation, linearly independent
polynomials can be obtained. In other words, the momentum integrals are generators and one
can write

Θ1 = 𝐴(0) + 𝒪(ℎ3) , Θ2 = [𝐴(1), 𝐴(0)] + 𝒪(ℎ5) .

Keeping in mind that the composition is based on an expansion in powers of ℎ, a single quadra-
ture formula of the desired overall order is sufficient to evaluate the momentum integrals and
the choice of quadrature nodes depends on the application. In the later chapters, especially
in Sections 2.2 and 4.3, concrete applications of Magnus integrators will be given and in our
works [109, 7], Magnus integrators have been studied to obtain efficient solutions for engi-
neering problems. With the framework of how to compute integrals being laid down before
us, we now briefly comment on how to avoid commutators in the expansion. It has been no-
ticed [26] that by choosing a proper basis, or - in other words - by properly grouping terms,
the number of commutators can be greatly reduced in comparison to the plain application of
(1.62). The analysis, however, has been performed in a case by case study for relevant orders
up to eight and a general treatment was developed in [18].

In connection with splitting methods, it is even possible to eliminate commutation altogether
by considering the BCH formula and the principle goes as follows: a truncated Magnus ex-
pansion is nothing else but an element of the free Lie algebra generated by the letters 𝑎𝑗 and
the aim is to reproduce it by the composition of 𝑠 exponentials of linear combinations of these
letters, i.e.,

𝑠
∏
𝑙=1

exp ⎛⎜
⎝

𝑝
∑
𝑘=0

𝑐𝑙,𝑘𝑎𝑘⎞⎟
⎠

!=
𝑝

∑
𝑗=1

Θ𝑗 + 𝒪(ℎ𝑝+1) ,

with some coefficients 𝑐𝑙,𝑘 ∈ ℝ. This is expected to work since most commutators are gener-
ated after the combination of the exponentials through the BCH formula, and a fourth-order
commutator-free Magnus integrator [30, 122] is given by

Ω[4]
𝑡,𝑡+ℎ = 𝑒ℎ( 1

2 𝑎0+ 1
6 𝑎1)𝑒ℎ( 1

2 𝑎0− 1
6 𝑎1).
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1.3 Temporal discretizations

In the basis of momentum integrals, we equate up to 𝒪(ℎ5)

Θ1 + Θ2 =𝐴(0) − [𝐴(0), 𝐴(1)]
!= log (𝑒𝑐1,0𝐴(0)+𝑐1,1𝐴(1)𝑒𝑐2,0𝐴(0)+𝑐2,1𝐴(1))
=(𝑐1,0 + 𝑐2,0)𝐴(0) + (𝑐1,1 + 𝑐2,1)𝐴(1)

+ 1
2 (𝑐1,0𝑐2,1 − 𝑐1,1𝑐2,0) [𝐴(0), 𝐴(1)]

+ 1
12 (𝑐1,0𝑐2,1 − 𝑐1,1𝑐2,0) ((𝑐1,0 − 𝑐2,0) [𝐴(0), [𝐴(0), 𝐴(1)]]

+ (𝑐1,1 − 𝑐2,1)[𝐴(1), [𝐴(0), 𝐴(1)]]⏟⏟⏟⏟⏟⏟⏟⏟⏟
=𝒪(ℎ5)

) + 𝒪(ℎ5) .

The polynomial equations in the coefficients 𝑐𝑙,𝑘 to be satisfied are then

𝒪(ℎ) ∶ 𝐴(0), 1 = 𝑐1,0 + 𝑐2,0
𝒪(ℎ2) ∶ 𝐴(1), 0 = 𝑐1,1 + 𝑐2,1
𝒪(ℎ3) ∶ [𝐴(0), 𝐴(1)] , −2 = 𝑐1,0𝑐2,1 − 𝑐1,1𝑐2,0
𝒪(ℎ4) ∶ [𝐴(0), [𝐴(0), 𝐴(1)]] , 0 = (𝑐1,0 − 𝑐2,0).

and the solution yields the time-symmetric decomposition

Ω̃[4]
𝑡,𝑡+ℎ = 𝑒 1

2 𝐴(0)+2𝐴(1)𝑒 1
2 𝐴(0)−2𝐴(1) . (1.67)

From a geometric point of view, the key to understanding the Magnus expansion comes from
the dexpinv equation: The original problem was posed on some Lie-group 𝒢 and has been
pulled back to an ODE (1.56) on a linear space: The Lie algebra 𝔤. Therefore, the approxima-
tion that arises after truncation of the Magnus expansion will still be in the algebra and respect
the geometric structure. Taking the exponential thus guarantees that the numerical solution
stays in the correct space: In the context of Schrödinger equations, unitarity will be preserved.

For nonlinear equations, the same formalism can be employed by means of Lie-derivatives
and there exist several links between the Magnus series and other ways of writing the solution
of time-dependent ODEs, e.g., the Dyson series based on time-ordered products or the Chen-
Fliess series for nonlinear vector fields. For details and extensive collection of examples, we
refer to the review in [23] and only remark that the sufficient convergence criterion in the
nonlinear case becomes to ∫𝑡

0 ‖ℒ𝑎(𝜉, 𝑥0)‖𝑑𝜉 < 1.08686, where, as usual, ℒ𝑎 denotes the
Lie-derivative associated with the vector field 𝑎. For completeness, we mention that Iserles
& Nørsett developed a graph-theoretic approach to construct the terms Θ𝑘 [78] which drew
much attention to the study of Magnus expansions as numerical integrators and has motivated
many of the exhibited results.
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Chapter2
LINEAR SCHRÖDINGER EQUATIONS

After spatial discretization, the Schrödinger equation reduces to a system of ordinary differ-
ential equations,

𝑖 𝑑
𝑑𝑡 𝜓(𝑡) = 𝐻̂𝜓(𝑡), 𝜓(0) = 𝜓0 ∈ ℂ𝑁 .

Since we are mainly interested in temporal accuracy, we use the same symbol for the function
and the corresponding discretized vector, 𝜓(𝑥𝑗 , 𝑡) ≈ (𝜓(𝑡))𝑗 for the chosen grid points 𝑥𝑗 and
will also drop the hat that indicated the discretized version of the Hamiltonian.

The resulting ODE can be numerically solved by standard all purpose methods, however, be-
cause of the particular structure of this problem, different numerical methods can differ con-
siderably in accuracy as well as computational cost and stability. In addition, the structural
properties of the system lead to the existence of several preserved quantities like the norm and
energy (for the autonomous case). The accurate preservation of these quantities1 as well as
the error propagation and performance of splitting methods explain why they are frequently
recommended for the time integration [15, 106, 123] and make them subject of investigation
in this work.

With the aim of an efficient use of split-step methods, a family of potentials is studied. In
particular, we derive algorithms to exactly solve the 𝑑−dimensional harmonic oscillator [4]
using only Fourier transforms through a correspondence principle with its isomorphic classi-
cal mechanical algebra.

The developed technique is powerful enough to be applied to time-dependent potentials that
are (multivariate) polynomials of degree at most two, thus including linear perturbations and
the important angular momentum due to rotating traps. Numerical examples corroborate the
efficiency of embedding the obtained decomposition algorithms with standard splitting meth-
ods.

1The energy is only nearly conserved, for details see Ref. [50].
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Chapter 2. Linear Schrödinger equations

2.1 The Harmonic Oscillator

T       [4].

Motivated by the importance of parabolic potentials in the study of the Schrödinger equation
and its nonlinear counterpart, we consider the numerical integration of the harmonic oscillator,
i.e., a potential of the form 𝑉HO(𝑥) = 1

2𝜔2𝑥2, which can be solved exactly.

In many applications, the wave function is expected to evolve in the vicinity of a minimum at,
w.l.o.g., 𝑥 = 0 of the potential 𝑉 and locally, we interpret 𝑉 as a perturbed harmonic oscillator

𝑉 = 𝑉HO + 𝜖(𝑎𝑥3 + 𝑏𝑥4 + ⋯)⏟⏟⏟⏟⏟⏟⏟
=∶𝑉𝜖

,

The model Hamiltonian in this section is thus taken to be

𝐻 = 1
2𝑚𝑝2 + 1

2𝑚𝜔2𝑥2 + 𝜖𝑉𝜖. (2.1)

Another example, to be detailed in Chapter 3, is the Gross-Pitaevskii equation for a trapped
BEC,

𝑖 𝜕
𝜕𝑡 𝜓 = 𝐻HO𝜓 + (𝜖𝑉𝜖(𝑥) + 𝜎|𝜓|2) 𝜓,

where the Hamiltonian of the harmonic oscillator is defined as

𝐻HO = 1
2𝑚𝑝2 + 1

2𝑚𝜔2𝑥2. (2.2)

In the standard approach, i.e., the split in 𝑇 = 𝑝2/(2𝑚) and some (nonlinear) potential 𝑉 ,
while the RKN property is satisfied [𝑉, [𝑉, [𝑇, 𝑉]]] = 0, important information about the
problem is lost and as established in the introduction, it is of great importance to preserve the
near-integrable structure through appropriate splittings when possible.

Remarkably, the split in 𝐴 = 𝐻HO and 𝐵 = 𝜖𝑉𝜖 + 𝜎|𝜓|2 recovers the RKN structure of the
original algebra 𝑇, 𝑉 since [𝐵, [𝐵, [𝐵, 𝐴]]] = 0. Additionally, if 𝜎 and 𝜖 are small, so will be
the commutators [𝐴, 𝐵] and highly accurate results are obtained [15, 51, 106, 123].

We will refer to the alternative splits in two parts 𝐴, 𝐵, which are claimed [106] to be the most
efficient in comparison with a variety of standard integrators, as

(i) Fourier (F)-split.
𝐴 = 1

2𝑚 𝑝2, 𝐵 = 1
2𝑚𝜔2 𝑥2 + 𝑉𝜖(𝑥). (2.3)

Here, 𝐴 and 𝐵 are diagonal in the momentum and coordinate spaces, respectively, and we can
change between them using Fourier transforms.

(ii) Harmonic oscillator (HO)-split.

𝐴 = 1
2𝑚𝑝2 + 1

2𝑚𝜔2𝑥2, 𝐵 = 𝜖𝑉𝜖(𝑥). (2.4)
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2.1 The Harmonic Oscillator

The usual approach to propagate part 𝐴 uses Hermite functions and will be explained below.
Since 𝐵 is diagonal in the coordinate space, it will act in both cases as a simple multiplication
on a wave function that is discretized on a grid.

The harmonic oscillator is a standard problem in both classical and quantum mechanics and its
spectrum is well-understood. For simplicity, we have rescaled the units such that 𝑚 = 𝜔 = 1
and the normalized eigenfunctions of 𝐻HO become

𝜙𝑛(𝑥) = 1
𝜋1/4√2𝑛𝑛!

ℋ𝑛(𝑥)𝑒−𝑥2/2, 𝑛 = 0, 1, … , (2.5)

where ℋ𝑛(𝑥) are the Hermite polynomials, which obey the recurrence relation

ℋ𝑘+1(𝑥) = 2𝑥ℋ𝑘(𝑥) − 2𝑘ℋ𝑘−1, 𝑘 = 1, 2, … ,

starting from ℋ0(𝑥) = 1, ℋ1(𝑥) = 2𝑥. The corresponding eigenvalues are

𝐸𝑛 = 𝑛 + 1
2 , 𝑛 = 0, 1, … , (𝐻HO𝜙𝑛 = 𝐸𝑛𝜙𝑛),

and the eigenvectors form a complete orthonormal system on 𝐿2(ℝ). An initial condition, 𝜓0,
can then be propagated easily by

𝜓(𝑡, 𝑥) =
∞
∑
𝑛=0

𝑐𝑛𝑒−𝑖𝐸𝑛𝑡𝜙𝑛(𝑥), (2.6)

where the weights 𝑐𝑛 are the orthogonal projections on the eigenfunctions, 𝑐𝑛 = ⟨𝜙𝑛|𝜓0⟩ ≡
∫ℝ 𝜙𝑛(𝑥)∗𝜓0(𝑥)𝑑𝑥. For a numerical method, the sum in (2.6) has to be truncated and the
expansion coefficients 𝑐𝑛 need to be computed in each step, in other words it requires a change
of basis between the HO eigenfunctions and coordinate space for the remaining potential 𝜖𝑉𝜖
and the integrals for 𝑐𝑛 are evaluated on a chosen mesh 𝑥𝑗 , e.g., using the Gauss-Hermite
quadrature [91] or some rule on equidistant grid points [106],

𝜓(𝑥𝑗 , 𝑡) ≈ 𝜓𝑀(𝑥𝑗 , 𝑡) =
𝑀
∑
𝑛=0

𝑐𝑛𝑒−𝑖𝐸𝑛𝑡𝜙𝑛(𝑥𝑗), (2.7)

with 𝑐𝑛 = ∑ 𝑤𝑗𝜙𝑛(𝑥𝑗)∗𝜓0(𝑥𝑗). A (Galerkin) truncation error bound for truncation after 𝑀
terms for a perturbation 𝑉(𝑥) = (1 + 𝑥2)𝐵(𝑥) with bounded 𝐵 is given by [91]

‖𝜓𝑀(𝑡) − 𝜓(𝑡)‖ ≤ 𝐶𝑀−𝑠/2(1 + 𝑡) max
0≤𝜏≤𝑡

∥ ̂𝑎𝑠+2𝜓(𝜏)∥ , (2.8)

for some 𝑠 ≤ 𝑀/2 such that ̂𝑎𝑠+2𝜓(𝜏) exists, where ̂𝑎 ≡ 1
√2

(𝑥 + 𝑖𝑝) is a so-called ladder

operator2 that acts on HO eigenfunctions by ̂𝑎𝜙𝑘 = √𝑘𝜙𝑘−1 for 𝑘 ∈ ℕ and ̂𝑎𝜙0 = 0 and a
constant 𝐶 independent of 𝑀 and 𝑡. Notice that the bound depends on both smoothness and
decay of the solution which makes practical estimates difficult.

The change between Hermite basis functions and the coordinate space is not efficient when
the number of basis terms in the expansions has to be altered along the integration or taken

2See also the discussion following Section 1.1.3.

35



Chapter 2. Linear Schrödinger equations

very large, being the case for time dependent trap frequencies 𝜔(𝑡) or strong nonlinearities 𝜎
to be studied in Section 2.2 and Chapter 3, respectively.

The Fourier type methods can be implemented with FFT algorithms since the trapping poten-
tial 𝑉 causes the wave function to vanish asymptotically which in turn allows us to consider the
problem as periodic on a sufficiently large spatial interval. Their advantages are high accuracy
with a moderate number of mesh points and low computational cost.

In general, the split (i) can be considered faster and simpler since 𝐴 ≡ 𝑇 can be computed in
the momentum space, and one can easily and efficiently change from momentum to coordinate
space via FFTs. The choice (ii), on the other hand, allows us to take advantage of the structure
of a near-integrable system if, roughly speaking, ‖𝐵‖ < ‖𝐴‖, but it requires to solve the equation
for the (time-dependent) harmonic potential exactly (or with high accuracy). The evolution
of the constant oscillator is easily computed using Hermite polynomials (see [106, 123, 91]),
but the evolution for the explicitly time-dependent problem is more involved.

Motivated by these results, we show how both methods are combined to retain both the ac-
curacy of the Hermite method and the speed of the Fourier transforms, i.e., to rewrite the
Hermite method as a single simple pseudospectral Fourier scheme. We have found, that this
approximation performs, for the studied problem classes, always equal to or better than the
original Fourier method and therefore has to compete with Hermite expansions only.

We show that the exact solution of the autonomous problem, in our setting the dominant part
𝐻HO of (2.1),

𝑖 𝜕
𝜕𝑡 𝜓 = ( 1

2𝑚𝑝2 + 1
2𝑚𝜔2𝑥2) 𝜓 (2.9)

is easily computed for a time step using Fourier transforms. Before giving the details on the
time integration, some remarks on the formal solution are necessary.

It is clear that 𝐻HO is an element of the Lie algebra spanned by the operators {𝐸 = 𝑥2/2, 𝐹 =
𝑝2/2, 𝐺 = 1

2 (𝑝𝑥 + 𝑥𝑝)}, where 𝑚 = 𝜔 = 1 for simplicity, and their commutators are

[𝐸, 𝐹] = 𝑖𝐺, [𝐸, 𝐺] = 2𝑖𝐸, [𝐹, 𝐺] = −2𝑖𝐹. (2.10)

This Lie algebra is three-dimensional and the solution, 𝜓(𝑥, 𝑡) = 𝑈(𝑡, 0)𝜓(𝑥, 0), of (2.9) can
be expressed as a product of exponentials [127]. Our objective is to obtain a factorization of
the solution which only involves terms proportional to 𝐸 or 𝐹 since they are easy to compute
by FFTs as shown in Section 1.2.

2.1.1 Solving the harmonic oscillator by Fourier methods

We propose a new method which combines the advantages of both splittings. It retains the
advantages of the HO-split (ii) while being as fast to compute as the F-split in (i). For this
purpose, we briefly review some basic concepts of Lie algebras.

Given 𝑋, 𝑌 two elements of a given Lie algebra, it is well known that

𝑒𝑋𝑌𝑒−𝑋 = 𝑒ad𝑋 𝑌 = 𝑌 + [𝑋, 𝑌] + 1
2[𝑋, [𝑋, 𝑌]] + … (2.11)
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2.1 The Harmonic Oscillator

For analytic functions in their arguments, 𝑋(𝑥), 𝑃(𝑝) and 𝐹(𝑥, 𝑝), we are interested in the
following adjoint actions3

𝑒−𝑖𝑡𝑋𝐹(𝑥, 𝑝)𝑒𝑖𝑡𝑋 = 𝐹(𝑥, 𝑝 + 𝑡𝑋′)
𝑒−𝑖𝑡𝑃𝐹(𝑥, 𝑝)𝑒𝑖𝑡𝑃 = 𝐹(𝑥 − 𝑡𝑃′, 𝑝) (2.12)

where 𝑋′ = 𝑑𝑋/𝑑𝑥, 𝑃′ = 𝑑𝑃/𝑑𝑝. In classical mechanics, this corresponds to a kick and a
drift. As we have seen, the exponentials exp(𝛼𝑥2/2) and exp(𝛽𝑝2/2) can be easily computed
by Fourier spectral methods. It is then natural to ask the question if it is possible to write the
solution of (2.9) as a product of exponentials which are solvable by spectral methods. The
answer is positive and it is formulated in the following lemma. We present a new proof for a
result already obtained in Ref. [47] that allows an elegant generalization to the time-dependent
case.

Lemma 2.1.1. Let 𝐴1 = 1
2𝑝2, 𝐵1 = 1

2𝑥2 and

𝑓 (𝑡) = (1 − cos(𝑡)) / sin(𝑡), 𝑔(𝑡) = sin(𝑡). (2.13)

Then, the following property is satisfied for |𝑡| < 𝜋:

𝑒−𝑖𝑡(𝐴1+𝐵1) = 𝑒−𝑖𝑓 (𝑡)𝐴1 𝑒−𝑖𝑔(𝑡)𝐵1 𝑒−𝑖𝑓 (𝑡)𝐴1 (2.14)
= 𝑒−𝑖𝑓 (𝑡)𝐵1 𝑒−𝑖𝑔(𝑡)𝐴1 𝑒−𝑖𝑓 (𝑡)𝐵1 (2.15)

Proof. A new constructive way to derive the functions 𝑓 , 𝑔 makes use of the parallelism with
the one-dimensional classical harmonic oscillator with Hamiltonian function 𝐻 = 1

2𝑝2 + 1
2𝑞2

and Hamilton’s equations

𝑑
𝑑𝑡 (𝑞

𝑝) = ( 0 1
−1 0) (𝑞

𝑝) = (𝐴 + 𝐵) (𝑞
𝑝) , (2.16)

where

𝐴 ≡ (0 1
0 0) , 𝐵 ≡ ( 0 0

−1 0) . (2.17)

The Lie algebra generated by the matrices 𝐴, 𝐵 is the same as the Lie algebra associated to the
operators 𝐴1, 𝐵1 for the Schrödinger equation with the harmonic potential (2.2).

The exact evolution operator of (2.16) is

𝑂(𝑡) = ( cos(𝑡) sin(𝑡)
− sin(𝑡) cos(𝑡)) , (2.18)

which is an orthogonal and symplectic 2 × 2 matrix. For the split parts, the flows are easily
computed to

𝑒𝑓 (𝑡)𝐴 = (1 𝑓 (𝑡)
0 1 ) , 𝑒𝑔(𝑡)𝐵 = ( 1 0

−𝑔(𝑡) 1) ,

3The expressions can be easily derived using the series expansion of 𝐹 and the fact that all nested commutators
vanish.
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and then, equating the symmetric composition

𝑒𝑓 𝐴𝑒𝑔𝐵𝑒𝑓 𝐴 = (1 − 𝑓 ⋅ 𝑔 2𝑓 − 𝑓 2 ⋅ 𝑔
−𝑔 1 − 𝑓 ⋅ 𝑔 )

to (2.18), we obtain (2.13) which is valid for |ℎ| ≤ 𝜋. The decomposition (2.15) is derived
analogously. Using the Baker-Campbell-Hausdorff-formula, it is clear, that both results re-
main valid, up to the first singularity at 𝑡 = ±𝜋, when replacing the matrices 𝐴, 𝐵 by the
corresponding linear operators 𝐴1, 𝐵1, since all computations are done in identical Lie alge-
bras.

Given the functions 𝑓 , 𝑔, we can prove the lemma directly by recalling that two operators are
identical on a sufficiently small time interval if they satisfy the same first order differential
equation with the same initial conditions[130]. We thus verify that the right-hand side of
(2.14) also solves the propagator equation

𝑖𝑈̇ = (𝐴1 + 𝐵1)𝑈, 𝑈(0) = 𝐼, (2.19)

and is therefore identical to the propagator on the left-hand side. Now set

𝑈̃(𝑡) = 𝑒−𝑖𝑓 (𝑡)𝐴1𝑒−𝑖𝑔(𝑡)𝐵1𝑒−𝑖𝑓 (𝑡)𝐴1

and plugging it into (2.19) yields

(𝐴1 + 𝐵1)𝑈̃ !=( ̇𝑓 𝐴1 + 𝑒−𝑖𝑓 𝐴1 ̇𝑔𝐵1 𝑒𝑖𝑓 𝐴1 + 𝑒−𝑖𝑓 𝐴1 𝑒−𝑖𝑔𝐵1 ̇𝑓 𝐴1 𝑒𝑖𝑔𝐵1 𝑒𝑖𝑓 𝐴1)𝑈̃.

Using (2.12), we obtain two independent non-linear differential equations for 𝑓 (𝑡) and 𝑔(𝑡)
with initial condition 𝑓 (0) = 𝑔(0) = 0 in order to satisfy 𝑈̃(0) = 𝐼 . It is then easy to check
that 𝑓 , 𝑔 given in (2.13) solve these equations. As a result, we have that 𝑈̃(𝑡) = 𝑈(𝑡) locally
in a neighborhood of the origin and (2.14) is proved identically.

For practical purposes, the singularities occur at sufficiently large times and hence do not
impose limits for the time-steps of numerical methods.

Remark 2.1.2. By simply replacing (2.18) with

𝑂(𝑡) = ( cos(𝜔𝑡) 1𝑚𝜔 sin(𝜔𝑡)
−𝑚𝜔 sin(𝜔𝑡) cos(𝜔𝑡) ) ,

the lemma immediately generalizes to the equation

𝑖 𝜕
𝜕𝑡 𝜓(𝑥, 𝑡) = ( 1

2𝑚𝑝2 + 𝑚𝜔2

2 𝑥2) 𝜓(𝑥, 𝑡),

for 𝑚, 𝜔 > 0 when we substitute (2.13) with

𝑓 = 𝑚𝜔1 − cos (𝜔𝑡)
sin(𝜔𝑡) , 𝑔 = 1

𝑚𝜔 sin(𝜔𝑡). (2.20)

This result is valid for |𝑡| < 𝑡∗ ≡ 𝜋/𝜔.
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2.1.2 Higher dimensions

Although the results in the previous section have been developed for one-dimensional prob-
lems, it is straightforward to extend them to arbitrary dimension. Keeping in mind the proof-
technique based on the isomorphy of the Lie algebras, we state the 𝑑−dimensional classical
Hamiltonian

𝐻 = 1
2𝑝𝑇 Λ𝑝 + 1

2𝑞𝑇 Ω𝑞, 𝑝, 𝑞 ∈ ℝ𝑑 ,

with symmetric positive definite (spd) matrices Λ, Ω ∈ ℝ𝑑×𝑑 . The corresponding classical
(linear) system is given by

𝑑
𝑑𝑡 (𝑞

𝑝) = ( 0 Λ
−Ω 0 ) (𝑞

𝑝) .

The matrix exponential is computed to4

exp (𝑡 ( 0 Λ
−Ω 0 )) =

∞
∑
𝑘=0

𝑡2𝑘

(2𝑘)! ( 0 Λ
−Ω 0 )

2𝑘
+

∞
∑
𝑘=0

𝑡2𝑘+1

(2𝑘 + 1)! ( 0 Λ
−Ω 0 )

2𝑘+1

=
∞
∑
𝑘=0

𝑡2𝑘

(2𝑘)! (−1)𝑘 ((ΛΩ)𝑘 0
0 (ΩΛ)𝑘)

+
∞
∑
𝑘=0

𝑡2𝑘+1

(2𝑘 + 1)! (−1)𝑘 (Λ 0
0 −Ω) ( 0 (ΩΛ)𝑘

(ΛΩ)𝑘 0 )

= ⎛⎜
⎝

cos(𝑡√ΛΩ) Λ(√ΩΛ)−1 sin(𝑡√ΩΛ)
−Ω(√ΛΩ)−1 sin(𝑡√ΛΩ) cos(𝑡√ΩΛ)

⎞⎟
⎠

. (2.21)

It is known that products of real spd matrices ΛΩ, ΩΛ can be diagonalized and have posi-
tive eigenvalues [74, Corr. 7.6.2], which means that the positive square root in (2.21) exists
and is unique. We further note that the product ΛΩ is symmetric iff [Λ, Ω] = 0. For the
decomposition, we multiply the exponentials

( 𝐈 0
−𝐵 𝐈) (𝐈 𝐴

0 𝐈) ( 𝐈 0
−𝐵 𝐈) = ( 𝐈 − 𝐴𝐵 𝐴

−2𝐵 + 𝐵𝐴𝐵 𝐈 − 𝐵𝐴) , (2.22)

where 𝐈 ∈ ℝ𝑑×𝑑 denotes the identity matrix. Equating (2.22) and (2.21) yields

𝐴 = Λ(√ΩΛ)−1 sin(𝑡√ΩΛ) =
∞
∑
𝑘=0

𝑡2𝑘+1

(2𝑘 + 1)! (−1)𝑘Λ(ΩΛ)𝑘

and

cos(𝑡√ΩΛ) != 𝐈 − 𝐵𝐴 = 𝐈 − 𝐵Λ(√ΩΛ)−1 sin(𝑡√ΩΛ),

from which we deduce

𝐵 = (𝐈 − cos(𝑡√ΩΛ)) sin(𝑡√ΩΛ)−1(√ΩΛ)Λ−1 = √ΩΛ 𝐈 − cos(𝑡√ΩΛ)
sin(𝑡√ΩΛ)

Λ−1

= √ΩΛ tan ( 𝑡
2√ΩΛ) Λ−1.

4The calculation is performed explicitly to keep track of the order of multiplication.
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Taking into account that Λ cos(𝑡√ΩΛ)Λ−1 = cos(𝑡√ΛΩ), which can be seen by writing out
the series expansion of the cosine,

Λ cos(𝑡√ΩΛ)Λ−1 =
∞
∑
𝑘=0

(−1)𝑘𝑡2𝑘

(2𝑘)! Λ(ΩΛ)𝑘Λ−1

=
∞
∑
𝑘=0

(−1)𝑘𝑡2𝑘

(2𝑘)! (ΛΩΛΛ−1)𝑘 = cos(𝑡√ΛΩ),

it is trivial to verify 𝐈 − 𝐴𝐵 = cos(𝑡√ΛΩ). The remaining condition is

−Ω(√ΛΩ)−1 sin(𝑡√ΛΩ) != − 2𝐵 + 𝐵𝐴𝐵
= − 𝐵(𝐈 + (𝐈 − 𝐴𝐵)) = −𝐵(𝐈 + cos(𝑡ΛΩ))
= − √ΩΛ tan ( 𝑡

2√ΩΛ) Λ−1(𝐈 + Λ cos(𝑡√ΩΛ)Λ−1)

= − √ΩΛ 𝐈 − cos(𝑡√ΩΛ)
sin(𝑡√ΩΛ)

(𝐈 + cos(𝑡√ΩΛ)) Λ−1

= − √ΩΛ sin(𝑡√ΩΛ)Λ−1

= − (√ΩΛ)Λ−1 sin(𝑡√ΛΩ),

and equality holds since

(√ΩΛ)Λ−1 = Ω(√ΛΩ)−1 = Λ−1ΛΩ(√ΛΩ)−1 = Λ−1√ΛΩ
⇔ Λ(√ΩΛ)Λ−1 = √ΛΩ,

which is true because both ΩΛ and ΛΩ have nonnegative eigenvalues [69, Cor. 1.3.4]. The
transition to the quantum mechanical Hamiltonian is made as in 1D and the calculations are
summarized in the following

Theorem 2.1.3. For symmetric positive definite matrices Λ, Ω ∈ ℝ𝑑×𝑑 and functions

𝑓 (ℎ, Λ, Ω) = √ΩΛ tan (ℎ
2√ΩΛ) Λ−1, 𝑔(ℎ, Λ, Ω) = Ω−1√ΩΛ sin (ℎ√ΩΛ) ,

the following identity is satisfied for |ℎ𝜆max(√ΩΛ)| < 𝜋:

𝑒−𝑖ℎ 1
2 (𝑝𝑇 Λ𝑝+𝑞𝑇 Ω𝑞) = 𝑒−𝑖 1

2 𝑞𝑇 𝑓 (ℎ,Λ,Ω)𝑞𝑒−𝑖 1
2 𝑝𝑇 𝑔(ℎ,Λ,Ω)𝑝𝑒−𝑖 1

2 𝑞𝑇 𝑓 (ℎ,Λ,Ω)𝑞, (2.23)

where 𝑞𝑇 = (𝑥1, 𝑥2, … , 𝑥𝑑) and 𝑝𝑇 = −𝑖(𝜕𝑥1 , 𝜕𝑥2 , … , 𝜕𝑥𝑑 ) and the stepsize |ℎ| is restricted
by the largest eigenvalue 𝜆max of √ΩΛ.

Remark 2.1.4. From a formal point of view, the symmetry of Λ and Ω as well as the posi-
tivity are not necessary and could be replaced by invertibility. These conditions only play a
role when we express the formal series in terms of trigonometric functions with the help of
the (positive) matrix square root. For quantum mechanics, however, we require Hermitian op-
erators, e.g., for 𝑝𝑇 Λ𝑝, Λ† = Λ is implied. Furthermore, since the corresponding operators
commute, there is a degree of freedom in the representation of the matrices in the Hamiltonian.
By choosing the matrices real and requiring Hermiticity, Λ, Ω are uniquely determined.
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2.1 The Harmonic Oscillator

2.1.3 The Hermite-Fourier methods

With the presented exact decompositions at hand, we now solve the discretized perturbed
harmonic oscillator, 𝐻 = 𝐻HO +𝜖𝑉𝜖, by splitting methods using the symmetric compositions
(1.37) and (1.38). Let us first consider the case 𝜔 = 1 and take the HO split 𝐴 = 𝐻HO =
𝐴1 + 𝐵1, 𝐵 = 𝜖𝑉𝜖,

Φ[2]
ℎ,𝐴 = 𝑒−𝑖ℎ(𝐴1+𝐵1)/2 𝑒−𝑖ℎ𝐵 𝑒−𝑖ℎ(𝐴1+𝐵1)/2, (2.24)

Φ[2]
ℎ,𝐵 = 𝑒−𝑖ℎ𝐵/2 𝑒−𝑖ℎ(𝐴1+𝐵1) 𝑒−𝑖ℎ𝐵/2. (2.25)

Replacing the exponentials 𝑒−𝑖ℎ(𝐴1+𝐵1) by (2.14) or (2.15), we obtain four different methods
whose computational costs differ considerably. At first sight, using the FSAL property, both
(2.24) and (2.25) are equivalent from the computational point of view and require one expo-
nential of 𝐵 and another one of 𝐴1 + 𝐵1 per step. However, a significant difference arises
when we plug in the decompositions (2.14) or (2.15). Only the combination (2.25) with (2.15)
yields a method that involves only one FFT and one inverse FFT call per step

Φ[2]
ℎ = 𝑒−𝑖ℎ𝐵/2 𝑒−𝑖ℎ(𝐴1+𝐵1) 𝑒−𝑖ℎ𝐵/2

= 𝑒−𝑖ℎ𝐵/2 𝑒−𝑖𝑓 (ℎ)𝐵1 𝑒−𝑖𝑔(ℎ)𝐴1 𝑒−𝑖𝑓 (ℎ)𝐵1 𝑒−𝑖ℎ𝐵/2

= 𝑒−𝑖(ℎ𝐵/2+𝑓 (ℎ)𝐵1) 𝑒−𝑖𝑔(ℎ)𝐴1 𝑒−𝑖(ℎ𝐵/2+𝑓 (ℎ)𝐵1), (2.26)

and solves exactly the harmonic oscillator for |ℎ| < ℎ∗. For any other combination, more
kinetic terms have to be computed per step since the FSAL property cannot be exploited to
full extent and hence result in more costly5 methods for the same accuracy.

The general splitting method (1.40) can be rewritten in the same way by replacing each flow
𝑒−𝑖𝑎𝑖𝐴 by the composition (2.15)

Φℎ ≡ 𝑒−𝑖(ℎ𝑏𝑚𝐵+𝛼𝑚𝐵1) 𝑒−𝑖𝑔(𝑎𝑚ℎ)𝐴1 𝑒−𝑖(ℎ𝑏𝑚𝐵+𝛼𝑚−1𝐵1)

⋯ 𝑒−𝑖(ℎ𝑏1𝐵+𝛼1𝐵1) 𝑒−𝑖𝑔(𝑎1ℎ)𝐴1 𝑒−𝑖𝛼0𝐵1 , (2.27)

where 𝛼𝑘 = 𝑓 (𝑎𝑘+1ℎ) + 𝑓 (𝑎𝑘ℎ), 𝑘 = 0, 1, … , 𝑚 + 1 with 𝑎0 = 𝑎𝑚+1 = 0. This method is
valid for |𝑎𝑖ℎ| < ℎ∗, 𝑖 = 1, … , 𝑚 and requires only 𝑚 calls of the FFT and its inverse, just like
the standard Fourier pseudospectral methods, but reaches the same accuracy as if the Hermite
functions were used.

For stability reasons, it seems convenient to look for splitting methods whose value of max𝑖{|𝑎𝑖 |}
is as small as possible.

5More precisely, the computational costs are due to a change of coordinates realized by the Fourier transform
which is for this type of problem equivalent to the number of kinetic terms.

41



Chapter 2. Linear Schrödinger equations

2.1.4 Numerical results

We analyze the performance of the methods considered in this section for the one-dimensional
problem (2.1) with 𝑚 = 𝜔2 = 1, and to illustrate the validity of the decomposition presented
in Lemma 2.1.1, we first study the pure harmonic trap, i.e., 𝑉𝜖 = 0.

The ground state 𝜙0 at 𝑡 = 0 is taken as the initial condition, with exact solution

𝜓(𝑥, 𝑡) = 𝑒−𝑖𝑡/2𝜙0(𝑥) = 1
𝜋1/4 𝑒−𝑖𝑡/2𝑒−𝑥2/2.

Restricting the spatial interval on [−10, 10] ensures that the wave function and its first deriva-
tives vanish up to round off at the boundaries, and for high accuracy it is sampled at 𝑁 =
1024 equidistant grid points 𝑥𝑗 . We integrate with only one time step from 𝑡 = 0 to 𝑇 for
𝑇 ∈ [−𝜋, 𝜋], i.e., forward and backward in time. The error in the wave function is defined
by err(𝑇) = |Ψ(𝑇) − 𝜓(𝑇)|, where Ψ(𝑇) denotes the approximate numerical solution ob-
tained using the specified method and 𝜓(𝑇) is the exact solution on the discretized mesh. It
is standard to measure the error in the wave function by the discrete 𝐿2 norm,

‖err(𝑇)‖2 ≡
√
√√
⎷

Δ𝑥
𝑁

∑
𝑗=1

|err𝑗(𝑇)|2. (2.28)

The result of this comparison is illustrated in Fig. 2.1 (left). The split (2.15) reproduces, for
|𝑇 | < 𝜋, the exact solution up to round off, as expected. The right panel in Fig. 2.1 displays a
zoom near a singularity where the error grows rapidly due to double precision arithmetic. Next,

−2 1 0 1 2
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Figure 2.1: Error in logarithmic scale for the integration of the ground state of the Harmonic potential
using the split (2.15) for 𝑇 ∈ [−𝜋, 𝜋] (integration forward and backward in time). The right panel
shows a zoom about 𝑇 = 𝜋.

we examine how the approximation properties of the Hermite decomposition (2.7) strongly
depend on the function in question and on the chosen number of basis functions, 𝑀. We
compute the 𝑀 required to reach round-off precision for the evolution of a displaced ground
state as initial condition, 𝜓𝛿(𝑥, 0) = 𝑒−(𝑥−𝛿)2/2/𝜋1/4 from 𝑡 = 0 to 𝑇 = 10 in one time
step. From initial conditions discretized on an equidistant mesh, this can be accomplished as
follows [106]:

Ψ(𝑇) = 𝑒−𝑖𝑇(𝐴1+𝐵1)𝑢0 ≈ 𝐾†𝑒−𝑖𝑇𝐷1𝐾 𝑢0 (2.29)
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where 𝐷1 = diag{1
2 , 3

2 , … , 𝑀 − 1
2 }, 𝑀 is the number of basis elements considered, and 𝐾𝑗,𝑘 =

√Δ𝑥 𝜙∗
𝑗−1(𝑥𝑘), 𝑗 = 1, … , 𝑀, 𝑘 = 1, … , 𝑁 = 512 with 𝜙𝑛(𝑥) given in (2.5), 𝑥 ∈ [−10, 10].

For 𝛿 = 1
10 , round off accuracy is achieved with 𝑀 = 8 while for 𝛿 = 2 it is necessary to

take 𝑀 = 29. Using an estimate of type (2.8), cf. [91, Th. 1.2], similar minimum values of
𝑀 are attained if the integrals were calculated exactly without using a mesh, which justifies
the use of equidistant grid points (and thus the trapezoidal rule) instead of the possibly more
natural Gauss-Hermite quadrature points in the computation of 𝐾 . As expected, the Hermite
decomposition is very sensitive to the initial conditions. The Hermite basis works efficiently
as far as the initial conditions as well as the exact solution can be accurately approximated
using a few number of basis elements and one has to keep in mind that, especially for nonlinear
problems, the number of basis functions necessary to reach a given accuracy can vary along
the time integration.

HO-split versus F-split

We analyze now the advantages of the HO-split versus the F-split as given in (2.4) and (2.3).

In this experiment, the symmetric second order 𝐵𝐴𝐵 composition (1.38) is used to integrate
each of the splits. For the HO-split, we compute the harmonic part either with the decomposi-
tion (2.15) or in the Hermite basis (2.29) with different numbers of basis terms. The following
configurations are used for numerical experiments:

a. The Morse potential [99]

𝑉(𝑥) = 𝐷𝑒 (1 − 𝑒−𝑎(𝑥−𝑥𝑒))2 ,
with 𝐷𝑒 = 10, 𝑎 = 0.3 and 𝑥𝑒 = 0 in atomic units [61], which approximates the energy
curve of a molecular bound using the dissociation energy, 𝐷𝑒, and a parameter for the
width of the potential, 𝑎. The energy spectrum, that corresponds to different vibrational
excitations of the molecule, is finite and the eigenvalues are given by

𝐸𝑛 = 𝜔0 (𝑛 + 1
2) ⎛⎜

⎝
1 −

𝜔0 (𝑛 + 1
2)

4𝐷𝑒
⎞⎟
⎠

, 𝑛 = 0, 1, … , 𝑛𝑚𝑎𝑥,

where 𝑛𝑚𝑎𝑥 is the largest integer smaller than 2𝐷𝑒/𝜔0 − 1 and 𝜔0 = 𝑎√2𝐷𝑒 is the
(classical) vibrational frequency. The corresponding fundamental states are given by

𝜙𝑛(𝑥) ∝ 𝑒−𝑧/2𝑧−1/2+𝜆−𝑛𝐿−1+2𝜆−2𝑛𝑛 (𝑧), 𝑛 = 0, 1, … , 𝑛𝑚𝑎𝑥,
with the generalized Laguerre polynomials 𝐿𝛼𝑛 (𝑧) and after the coordinate change 𝑧 =
2𝜆𝑒−𝑎(𝑥−𝑥𝑒), where we have introduced the constant 𝜆 = √2𝐷𝑒/𝑎. As initial condition,
we have chosen a superposition of the two lowest energy eigenstates,

𝜓0 = 1
√2

𝜙0 + 1
√2

𝜙1,

for which we can trivially compute the reference solution at the final time 𝑇 = 10𝜋 to

𝜓(𝑇) = 1
√2

(𝑒−𝑖𝑇𝐸0𝜙0 + 𝑒−𝑖𝑇𝐸1𝜙1) .
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b. The Pöschl-Teller potential [110] has been introduced as an example of an anharmonic
oscillator which is solvable in closed form. We will treat the particular case

𝑉(𝑥) = 𝜆(𝜆 + 1)
2 (1 − sech(𝑥)2) , (2.30)

with 𝜆 = 4. The energy spectrum is finite and can be computed to (for 𝜆 ∈ ℕ0)

𝐸𝑛 = −(𝜆 − 𝑛)2

2 , 𝑛 = 0, … , 𝜆 − 1,

The fundamental states are

𝜙𝑛(𝑥) ∝ 𝐿𝜆𝑛 (tanh(𝑥)), 𝑛 = 0, … , 𝜆 − 1,
with the associated Legendre functions 𝐿𝛼𝑛 . Again, the superposition of the lowest eigen-
vectors will be the initial condition, 𝜓0 = 1

√2
(𝜙0 + 𝜙1), and the reference solution is

computed at the final time 𝑇 = 10 using the eigenvalues.

c. The harmonic oscillator perturbed by a Pöschl-Teller potential

𝑉(𝑥) = 1
2𝜔2𝑥2 + 𝜆(𝜆 + 1)

2 (1 − sech(𝑥)2) ,

with 𝜔 = 2 and 𝜆 = 1. No closed form solution to this problem is known, but parts
of the spectrum can be calculated by the imaginary time propagation, cf. Chapter 5. As
initial condition, we have used the superposition of the lowest eigenvectors, that have
been obtained numerically to sufficiently high precision, 𝜓0 = 1

√2
(𝜙0 + 𝜙1), and the

reference solution at final time 𝑇 = 10 is computed directly using the corresponding
eigenvalues.

The experiments are based on the leapfrog (LF) method (1.38), and we denote by LF𝐹 , LF𝐻
and LF𝐻𝑀 its implementations with the F-split, the HO-split using the new Hermite-Fourier
method (with the composition (2.15)) and the HO-split using 𝑀 Hermite basis functions in
(2.29), respectively. For all integrations, we use equidistant grid points and the chosen spatial
and temporal intervals are specified in the labels of Fig. 2.2a,b,c. We measure the error ver-
sus the number of basis changes, i.e., FFTs or Hermite transforms, which can be considered
proportional to the computational cost and plot the results in Fig. 2.2. The main observations
are that, as expected, the standard Hermite method has to be calibrated to get a sufficiently
large number of basis vectors to reach high accuracy. The Fourier-Hermite split does not
show this behavior. In the worst case, it behaves like the standard Fourier-split, however, if
the harmonic part is dominant, it will perfectly recover the Hermite method. We point out that,
even though the harmonic oscillator does not dominate in the first two examples, the HO split
(𝑇 + 1

2𝜔2𝑥2) + (𝑉(𝑥) − 1
2𝜔2𝑥2) does not deteriorate in comparison to the Fourier split since

𝑇 and 𝑉 are of comparable size for the chosen initial conditions and it comes at the same
computational cost.

To validate the results in higher dimensions graphically, we have studied the evolution of a
two-dimensional perturbed harmonic oscillator with a constant isotropic mass-matrix Λ =
diag{1, 1},

𝐻 = 1
2𝑝𝑇 Λ𝑝 + 1

2𝑞𝑇 Ω𝑞 + 1
100𝑥4, 𝑝𝑇 = (𝑝𝑥, 𝑝𝑦), 𝑞𝑇 = (𝑥, 𝑦), (2.31)
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Figure 2.2: The left column shows the error vs. the number of basis changes (BC), i.e., Fourier or
Hermite transforms, in logarithmic scale for the integration of three test potentials using the HO split
(subscript 𝐻) and the standard split (subscript 𝐹) using the leapfrog method (1.38). In the right column,
the initial condition (green), the exact solution (black) and the potentials (dashed blue), scaled by 1/10
to fit the axes, are shown. Unless specified otherwise, the legends of the first row are also valid for
remaining parts.
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Figure 2.3: The rightmost column shows the efficiency curves for the 2D perturbed harmonic oscillator
(2.31) integrated using 𝑁𝑥 = 𝑁𝑦 = 128 equidistant grid points on [−10, 10]2. In the first row, the
squared absolute value of the initial condition, in 3D (left) and from above (center), is displayed, whereas
the evolution at time 𝑇 = 10 is depicted in the second row, both in 3D (left) and from above (center).

and frequency matrix Ω = ( 4 1
1 4 ). The spatial coordinates are discretized with 128 × 128

equidistant grid points on the square [−10, 10]×[−10, 10] and we integrate until the final time
𝑇 = 10. We compare the leapfrog method using the F-split (LF𝐹) and the HO-split (LF𝐻 ),
based on (2.23). Note that the Fourier transforms have to be replaced by their two-dimensional
counterpart. The results are reproduced in Fig. 2.3. As expected, near integrability and thus
small error coefficients are recovered by the HO-split.

2.2 The Harmonic Oscillator: non-autonomous

The previous results lend their methodology to the important generalization for time-dependent
potentials. In this section, we show how to build splitting methods for time-dependent poten-
tials, with a special focus on the important cases of harmonic trapping (see Ref. [90] and
citations thereof) or linear potentials that usually arise from Laser-interactions.
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2.2 The Harmonic Oscillator: non-autonomous

2.2.1 Varying trap frequency

For general time-dependencies, the quantum harmonic oscillator problem can be stated as

𝑖𝜕𝑡𝜓(𝑥, 𝑡) = ( 1
2𝑚(𝑡)𝑝2 + 1

2𝑚(𝑡)𝜔(𝑡)2𝑥2) 𝜓(𝑥, 𝑡), 𝜓(𝑥, 0) ∈ 𝐿2(ℝ). (2.32)

The associated Lie algebra again has three basis elements, 𝐸 = 𝑥2/2, 𝐹 = 𝑝2/2, and 𝐺 =
1
2 (𝑥𝑝 + 𝑝𝑥) and the solution, 𝜓(𝑥, 𝑡) = 𝑈(𝑡, 0)𝜓(𝑥, 0), of (2.32) can be expressed as a single
exponential using the Magnus series expansion, cf. Section 1.3.4 [93, 23], or as a product of
exponentials [127]. It is possible to formulate the evolution operator 𝑈(𝑡, 0) in many differ-
ent ways, the most appropriate depending on the particular purpose, e.g., using the Magnus
expansion

𝑈(𝑡, 0) = exp (𝑓1(𝑡)𝐸 + 𝑓2(𝑡)𝐹 + 𝑓3(𝑡)𝐺) (2.33)

for certain functions 𝑓𝑖(𝑡). The reason is that since 𝐹, 𝐺, 𝐸 form a basis of the Lie algebra of
the problem, there exist functions 𝑓𝑖(𝑡) that correspond to the summation of the Magnus series.
The functions can be obtained by solving a set of differential equations, cf. Ref. [130].

On the other hand, approximations of (2.33) for one time step, ℎ, are easily obtained, e.g., a
fourth-order commutator-free method is given by [31]

𝑈(𝑡 + ℎ, 𝑡) = exp (−𝑖 ℎ
2 ( 1

2𝑚𝐿
𝑝2 + 1

2𝑚𝐿𝜔2
𝐿𝑥2))

× exp (−𝑖 ℎ
2 ( 1

2𝑚𝑅
𝑝2 + 1

2𝑚𝑅𝜔2
𝑅𝑥2)) + 𝒪(ℎ5), (2.34)

where
𝑚𝐿 = 𝛼𝑚1 + 𝛽𝑚2, 𝑚𝑅 = 𝛽𝑚1 + 𝛼𝑚2,

𝑚𝐿𝜔2
𝐿 = 𝛼𝑚1𝜔2

1 + 𝛽𝑚2𝜔2
2, 𝑚𝑅𝜔2

𝑅 = 𝛽𝑚1𝜔2
1 + 𝛼𝑚2𝜔2

2
,

with 𝜔𝑗 = 𝜔(𝑡𝑛 +𝑐𝑗ℎ), 𝑚𝑗 = 𝑚(𝑡𝑛+𝑐𝑗ℎ), 𝑐1 = 1
2 − √3

6 , 𝑐2 = 1
2 + √3

6 , and 𝛼 = 1
2 − 1

√3
, 𝛽 = 1−𝛼.

It can be considered as the composition of the evolution for half a time step of two oscillators
with averaged frequencies, using the fourth-order Gauss-Legendre quadrature rule to evaluate
𝜔(𝑡). Different quadrature rules can also be be used and correspond to different averages
along the time step, see Refs. [31, 23]. In the limit when 𝜔 is constant, the exact solution is
recovered. Higher order approximations are available, if more accurate results are desired, by
approximating the functions 𝑓𝑗 in (2.33) via truncated Magnus expansions.

The following theorems extend this idea to decompositions of operators that appear after the
approximation of the time dependent parts via (2.33) or by the composition (2.34).

Theorem 2.2.1. Let 𝛼, 𝛽, 𝛾 be constants, 𝜂 = √𝛼𝛾 − 𝛽2 and

𝑔(𝑡) = 𝛾/𝜂 ⋅ sin(𝜂𝑡), (2.35)

𝑓 (𝑡) = 1
𝑔(𝑡) (1 − cos(𝜂𝑡) + 𝛽

𝜂 sin(𝜂𝑡)) ,

𝑒(𝑡) = 1
𝑔(𝑡) (1 − cos(𝜂𝑡) − 𝛽

𝜂 sin(𝜂𝑡)) .
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Chapter 2. Linear Schrödinger equations

Then, the following decomposition holds for 0 ≤ 𝑡 < 𝜋/𝜂:

𝑒−𝑖 𝑡
2 (𝛼𝑥2+𝛽(𝑥𝑝+𝑝𝑥)+𝛾𝑝2) = 𝑒−𝑖𝑓 (𝑡) 1

2 𝑥2 𝑒−𝑖𝑔(𝑡) 1
2 𝑝2 𝑒−𝑖𝑒(𝑡) 1

2 𝑥2 . (2.36)

Proof. The proof follows the lines of the proof of Lemma 2.1.1. The evolution operator asso-
ciated to the classical Hamiltonian 𝐻 = 1

2 (𝛼𝑥2 + 2𝛽𝑥𝑝 + 𝛾𝑝2) is given by

( cos(𝜂𝑡) + 𝛽
𝜂 sin(𝜂𝑡) 𝛾

𝜂 sin(𝜂𝑡)
−𝛼𝜂 sin(𝜂𝑡) cos(𝜂𝑡) − 𝛽

𝜂 sin(𝜂𝑡) ) ,

and equality to the right hand side of (2.36) is verified by straightforward computation of the
matrix exponentials. The solution is valid until the first singularity at 𝑡 = 𝜋/𝜂. Using (2.12),
it can be checked that both sides of (2.36) satisfy the same differential equation and initial
conditions. Now, the initial conditions become 𝑓 (0) = −𝑒(0), 𝑔(0) = 0 because the loss of
symmetry in the decomposition has to be taken into account.

Theorem 2.2.2. Let 𝑚𝑘 , 𝜔𝑘 ∈ ℝ, 𝑐𝑘 = cos(𝜔𝑘ℎ/2), 𝑠𝑘 = sin(𝜔𝑘ℎ/2) for 𝑘 = 𝐿, 𝑅 and

𝑔(ℎ) = 𝑠𝐿𝑐𝑅/(𝑚𝐿𝜔𝐿) + 𝑐𝐿𝑠𝑅/(𝑚𝑅𝜔𝑅), (2.37)

𝑓 (ℎ) = 1
𝑔(ℎ) (1 − 𝑐𝐿𝑐𝑅 + 𝑚𝐿𝜔𝐿

𝑚𝑅𝜔𝑅
𝑠𝐿𝑠𝑅) ,

𝑒(ℎ) = 1
𝑔(ℎ) (1 − 𝑐𝐿𝑐𝑅 + 𝑚𝑅𝜔𝑅

𝑚𝐿𝜔𝐿
𝑠𝐿𝑠𝑅) .

Then, the following decomposition

𝑒−𝑖 ℎ
2 ( 1

2𝑚𝐿
𝑝2+ 1

2 𝑚𝐿𝜔2
𝐿𝑥2)𝑒−𝑖 ℎ

2 ( 1
2𝑚𝑅

𝑝2+ 1
2 𝑚𝑅𝜔2

𝑅𝑥2) = 𝑒−𝑖𝑓 (ℎ) 1
2 𝑥2 𝑒−𝑖𝑔(ℎ) 1

2 𝑝2 𝑒−𝑖𝑒(ℎ) 1
2 𝑥2

is satisfied for 0 ≤ ℎ < ℎ∗, where ℎ∗ is the smallest positive root of 𝑔(ℎ).

The proof is similar to the previous one. �

2.2.2 The driven oscillator

Only a minor ingredient is needed to extend the previous results to the more general case of
a quantum mechanical particle subject to some laser interaction. The Laser acts on the dipole
momentum of the particle which is proportional to the position operator and the Hamiltonian
in its general form can be written as

𝐻0(𝑡) =
6

∑
𝑗=1

𝑓𝑗(𝑡)𝐸𝑗 (2.38)

with 𝐸1 = 1, 𝐸2 = 𝑥, 𝐸3 = 𝑝, 𝐸4 = 1
2𝑥2, 𝐸5 = 1

2𝑝2, 𝐸6 = 1
2 (𝑥𝑝 + 𝑝𝑥). The operators

𝐸𝑖 are basis elements of an algebra 𝔤HOthat is closed under commutation and the nonzero
commutators are

[𝐸4, 𝐸5] = 𝑖𝐸6, [𝐸4, 𝐸6] = 2𝑖𝐸4, [𝐸5, 𝐸6] = −2𝑖𝐸5,
[𝐸4, 𝐸3] = 𝑖𝐸3, [𝐸5, 𝐸2] = −𝑖𝐸2, [𝐸2, 𝐸3] = 𝑖𝐸1. (2.39)
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2.2 The Harmonic Oscillator: non-autonomous

After applying a time-averaging mechanism that works within the algebra, e.g., the Magnus
expansion, it remains to compute the exponential of some element

𝐠 = 1
2 (𝛼𝑥2 + 𝛽(𝑝𝑥 + 𝑥𝑝) + 𝛾𝑝2) + 𝛿𝑥 + 𝜆𝑝 + 𝜉 ∈ 𝔤HO. (2.40)

The main result is stated in the following

Theorem 2.2.3. For an element 𝐠 ∈ 𝔤HO written as (2.40), the following decomposition holds
for 0 ≤ ℎ < 𝜋/𝜂:

exp (−𝑖ℎ ⋅ 𝐠) = 𝑒−𝑖(𝜙+ℎ𝜉)𝑒−𝑖(𝑓 𝑞2/2+𝑑1𝑞)𝑒−𝑖(𝑔𝑝2/2+𝑑2𝑝)𝑒−𝑖(𝑒𝑞2/2+𝑑3𝑞) (2.41)

where

𝜂 = √𝛼𝛾 − 𝛽2, 𝐷1 = 𝛿𝛾 − 𝜆𝛽
𝜂2 , 𝐷2 = 𝜆𝛼 − 𝛿𝛽

𝜂2 ,

𝑓 (ℎ) = 𝜂
𝛾 tan (𝜂ℎ

2 ) + 𝛽
𝛾, 𝑑1(ℎ) = 𝐷1 ⋅ 𝑓 (ℎ),

𝑔(ℎ) = 𝛾
𝜂 sin (𝜂ℎ) , 𝑑2(ℎ) = 𝐷2 ⋅ 𝑔(ℎ),

𝑒(ℎ) = 𝜂
𝛾 tan (𝜂ℎ

2 ) − 𝛽
𝛾, 𝑑3(ℎ) = 𝐷1 ⋅ 𝑒(ℎ),

𝜙(ℎ) = ℎ
2𝛽 (𝐷1𝐷2𝜂2 − 𝜆𝛿) + 𝐷2

2
2 𝑔(ℎ) + 𝐷2

1
2 (𝑓 (ℎ) − 𝛽

𝛾) .

Proof. The proof differs from the previous in a small but important detail: The classical me-
chanical algebra does not know about global phases: A constant shift of the potential will not
enter the equations of motion. For quantum mechanical problems, on the other hand, such
a shift implies a global (constant) phase of the wave function. This phase will not have any
physical effects, but for correctness and completeness of the decomposition, we have to pay
attention to this peculiarity.

We will proceed as follows: First, we establish a system of differential equations to which the
decomposition (2.40) is equivalent, and then construct the solution which can then be verified
by the first part. Since the l.h.s. of (2.40) is the solution of the Schrödinger equation (for the
evolution operator)

𝑖 𝑑
𝑑𝑡 𝑈(𝑡) = 𝐠 𝑈, 𝑈(0) = 1, (2.42)

the right hand side of (2.40) is required to solve the same differential equation for small times
to confirm the identity. Defining 𝑈1 = 𝑒𝑓 𝑥2+𝑑1𝑥𝑒𝑔𝑝2+𝑑2𝑝𝑒𝑒𝑥2+𝑑3𝑥𝑒𝜙 and plugging it into (2.42)
yields

𝑑
𝑑𝑡 𝑈1 =( ̇𝑓 𝑥2 + ̇𝑑1𝑥)𝑈1

+ 𝑒𝑓 𝑥2+𝑑1𝑥( ̇𝑔𝑝2 + ̇𝑑2𝑝)𝑒−(𝑓 𝑥2+𝑑1𝑥)𝑈1

+ 𝑒𝑓 𝑥2+𝑑1𝑥𝑒𝑔𝑝2+𝑑2𝑝( ̇𝑒𝑥2 + ̇𝑑3𝑥)𝑒−(𝑔𝑝2+𝑑2𝑝)𝑒−(𝑓 𝑥2+𝑑3𝑥)𝑈1
+ ̇𝜙𝑈1.
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Chapter 2. Linear Schrödinger equations

Now, using (2.12) to evaluate the kicks and drifts, one obtains the equations

𝑥2 ∶ 𝛼/2 = ̇𝑒(𝑡) ( ̇𝑓 (𝑡) + (1 − 4𝑓 (𝑡)𝑔(𝑡))2) + 4𝑓 (𝑡)2 ̇𝑔(𝑡),
𝑥 ∶ 𝜆/2 = ̇𝑑1(𝑡) + (4𝑓 (𝑡)𝑔(𝑡) − 1) (− ̇𝑑3(𝑡) + 2 ̇𝑒(𝑡) (𝑑2(𝑡) + 2𝑑1(𝑡)𝑔(𝑡)))

+ 2𝑓 (𝑡) ( ̇𝑑2(𝑡) + 2𝑑1(𝑡) ̇𝑔(𝑡)) ,
𝑝2 ∶ 𝛾/2 =4𝑔(𝑡)2 ̇𝑒(𝑡) + ̇𝑔(𝑡),
𝑝 ∶ 𝛿/2 = ̇𝑑2(𝑡) + 2𝑑1(𝑡) ̇𝑔(𝑡) − 2 ̇𝑒(𝑡)𝑔(𝑡) ( ̇𝑑3(𝑡) − 2 (𝑑2(𝑡) + 2𝑑1(𝑡)𝑔(𝑡))) ,

𝑝𝑥 + 𝑥𝑝 ∶ 𝛽 =4𝑓 (𝑡) ̇𝑔(𝑡) − 4𝑔(𝑡) ̇𝑒(𝑡) (1 − 4𝑓 (𝑡)𝑔(𝑡)) ,
1 ∶ 𝜙′(𝑡) = ̇𝑒(𝑡) (𝑑2(𝑡) + 2𝑑1(𝑡)𝑔(𝑡)) ( ̇𝑑3(𝑡) − (𝑑2(𝑡) + 2𝑑1(𝑡)𝑔(𝑡)))

− 𝑑1(𝑡) ( ̇𝑑2(𝑡) + 𝑑1(𝑡) ̇𝑔(𝑡)) .
(2.43)

With the initial condition 𝑈1(0) = 1, it is easily checked that the functions of Theorem 2.2.3
satisfy the above equations.

For the construction of the functions, we examine the corresponding classical Hamiltonian
(cf. (2.40))

𝐻 = 1
2 (𝛼𝑥2 + 𝛽(𝑝𝑥 + 𝑥𝑝) + 𝛾𝑝2) + 𝛿𝑥 + 𝜆𝑝 + 𝜉 (2.44)

and we want to decompose it in blocks

𝐻1 = 𝑓 1
2𝑥2 + 𝑑1𝑥, 𝐻2 = 𝑔1

2𝑝2 + 𝑑2𝑝, 𝐻3 = 𝑒1
2𝑥2 + 𝑑3𝑥.

The corresponding flows are trivial to compute and their composition becomes

𝜑𝐻1
ℎ ∘ 𝜑𝐻2

ℎ ∘ 𝜑𝐻2
ℎ

= ( 1 − ℎ2𝑔𝑓 ℎ𝑔
−ℎ (𝑓 + 𝑒 − ℎ2𝑒𝑔𝑓 ) 1 − ℎ2𝑒𝑔) (𝑞0

𝑝0
) − ℎ ( −𝑑2 + ℎ𝑔𝑑1

𝑑1 + 𝑑3 + 𝑒𝑑2 − ℎ2𝑒𝑔𝑑1
)

(2.45)

The full Hamiltonian leads to equations of motion

𝑑
𝑑𝑡 (𝑞(𝑡)

𝑝(𝑡)) = ( 𝛽 𝛾
−𝛼 −𝛽)

⏟⏟⏟⏟⏟
=∶𝐴

(𝑞0
𝑝0

) + (−𝜆
𝛿 ) ,

which are solved by variation of constants

(𝑞(𝑡)
𝑝(𝑡)) = exp (𝑡𝐴) (𝑞0

𝑝0
) + 𝐴−1 (exp (𝑡𝐴) − 1) (−𝜆

𝛿 ) . (2.46)

The exponential of this 2 × 2 matrix is easily computed to

exp(𝑡𝐴) = (cos(𝑡𝜂) + 𝛽 sin(𝑡𝜂)
𝜂 𝛾 sin(𝑡𝜂)

𝜂
−𝛼 sin(𝑡𝜂)

𝜂 cos(𝑡𝜂) − 𝛽 sin(𝑡𝜂)
𝜂

)

with 𝜂 = √𝛼𝛾 − 𝛽2 and the inverse is

𝐴−1 = 1
𝜂2 (−𝛽 −𝛾

𝛼 𝛽 ) .
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2.2 The Harmonic Oscillator: non-autonomous

Equating (2.45) and (2.46), we obtain a simple system of equations for the functions 𝑒, 𝑓 , 𝑔, 𝑑𝑗
whose solutions are stated in the theorem. Now, it is trivial to solve the equation for 𝜙 in
(2.43).

2.2.3 Numerical results

The test bench will be a harmonic oscillator with time-dependent frequency perturbed by a
weak static quartic anharmonicity

𝑖 𝜕
𝜕𝑡 𝜓 = (1

2𝑝2 + 1
2𝜔2(𝑡)𝑥2) 𝜓 + 𝜀𝑄

1
4𝑥4𝜓. (2.47)

We first consider the case
𝜔2(𝑡) = 𝐴(1 + 𝜖 cos(𝑤𝑡)) (2.48)

with 𝑤 = 1/2, 𝐴 = 4, 𝜖 = 0.1, 𝜀𝑄 = 0.01 and the initial condition is taken to be

𝜓0 = 1
(𝜋/𝜔(0))1/4 𝑒−𝑥2/(2/𝜔(0)).

As reference, we take a highly accurate numerical approximation, 𝜓(𝑇), as exact solution and
restrict the spatial domain to [−20, 20] for all experiments in this subsection. We compare
the Hermite-Fourier method with the plain Fourier split, since Hermite polynomials are not
appropriate in a time-dependent setting.

To be able to appreciate the precision of the Magnus integrator, the methods have to be used
with higher order splittings. In particular, we choose the fourth-order, six-stage split RKN64
and the method V84 of generalized order (8,4). Both methods can be found in Table3.2.

For fast oscillating systems and if high accuracy is needed, the two-exponential fourth-order
approximation of the harmonic oscillator (2.34) can be improved by taking, for example, a
higher order Magnus expansion (2.33). As we have seen, the solution of

𝑖𝑈′ = (1
2𝑝2 + 1

2𝜔2(𝑡)𝑥2) 𝑈

can be written as
𝑈(𝑡, 0) = 𝑒−𝑖 𝑡

2 (𝛼𝑥2+𝛽(𝑥𝑝+𝑝𝑥)+𝛾𝑝2), (2.49)
and we have considered, for example, a sixth-order Magnus integrator [23] to approximate
the evolution operator for one fractional time step, 𝑎𝑗ℎ, i.e., 𝑈(𝑡, 𝑡 + 𝑎𝑗ℎ). This is equivalent
to taking 𝑡 = 𝑎𝑗ℎ in (2.49) and the parameters 𝛼, 𝛽, 𝛾 are given by:

𝛼 = 1
18 (5𝜔1 + 8𝜔2 + 5𝜔3) + (𝑎𝑗ℎ)2

486 (17
4 (𝜔2

1 + 𝜔2
3) + 8𝜔2

2 + 𝜔1𝜔2 + 𝜔2𝜔3 − 37
2 𝜔1𝜔3),

𝛽 = 𝑎𝑗ℎ√5
3(𝜔3 − 𝜔1)( 1

12 + (𝑎𝑗ℎ)2

3240 (5𝜔1 + 8𝜔2 + 5𝜔3)),

𝛾 = 1 + (𝑎𝑗ℎ)2

54 (𝜔1 − 2𝜔2 + 𝜔3),

with 𝜔𝑘 = 𝜔(𝑡𝑛 + 𝑐𝑘𝑎𝑗ℎ), 𝑘 = 1, 2, 3 and 𝑐1 = 1/2 − √15/10, 𝑐2 = 1/2, 𝑐3 = 1/2 +
√15/10, corresponding to a sixth-order Gaussian quadrature rule. The obtained operator is
then decomposed according to Theorem 2.2.1.
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Chapter 2. Linear Schrödinger equations

The results are given in Fig. 2.4a and corroborate the superiority of the HO split.

Another interesting example is given by an intense short pulse modeled via

𝜔(𝑡) = 𝑤0 (1 + 𝐴𝑡
cosh2(𝐵(𝑡 − 2))

) . (2.50)

Varying the parameters 𝐴 and 𝐵, the pulse can be sharpened while keeping its time-average
and hence its strength relative to the anharmonicity constant. Figure 2.4b shows the results
obtained for a relatively slow variation of the harmonic potential, for the parameters: 𝑤0 =
4, 𝐴 = 0.25, 𝐵 = 2. Again, the advantageousness of the presented decomposition can be ap-
preciated. It is already noticeable, that the error introduced by the time-dependence becomes
dominant, and this effect increases for more rapidly varying potentials, e.g., for 𝐵 ≫ 1. In
that case, higher order approximations of the Magnus expansion are necessary to maintain
the benefits of the Hermite decomposition.

RKN64𝐹 RKN64𝐻 (CF) RKN64𝐻 (M6)
(8,4)𝐹 (8,4)𝐻 (CF) (8,4)𝐻 (M6)

2 2.5 3

−10

−8

−6

−4

−2

0

log10 (No. of BC)

lo
g 1

0
‖Ψ

(𝑇
)−

𝜓
(𝑇

)‖ 2 0 5 103

4

5

𝑡

𝜔
(𝑡)

2

Harmonic part

(a) Time-dependence (2.48) with parameters 𝑤 =
1/2, 𝐴 = 4, 𝜖 = 0.1, and with a small anharmonicity
𝜀𝑄 = 0.01.

2 2.5 3

−10

−8

−6

−4

−2

0

log10 (No. of BC)

lo
g 1

0
‖Ψ

(𝑇
)−

𝜓
(𝑇

)‖ 2 0 5 10
4

5

6

𝑡
𝜔

(𝑡)
2

Harmonic part

(b) Time-dependence (2.50) with parameters 𝑤0 =
4, 𝐴 = 0.25, 𝐵 = 2, 𝜀𝑄 = 0.01.

Figure 2.4: Comparison of Fourier and Fourier-Hermite splittings for two fourth-order methods for
the model potential (2.47), integrated until final time 𝑇 = 10 with 𝑁 = 512 equidistant points on
[−20, 20]. The (red) dashed line indicates the two-exponential approximation (2.34), the (green) solid
line corresponds to the sixth-order Magnus approximation presented in the text (2.49). The insets show
the evolution of the harmonic trap frequency 𝜔(𝑡)2 and the parameters used for the Hamiltonian are
given in the sub-captions.
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2.3 Rotating traps

2.3 Rotating traps

A particularly challenging problem is given when a rotation term is included in the potential,
i.e., a term that mixes momentum and position coordinates which complicates the splitting
procedures that rely on the separability thereof. Recent approaches have been exploiting the
closed form availability of the solution of harmonically trapped particles subject to a rotation
term via Laguerre polynomials [16, 73]. However, the main drawbacks are a mix of different
spatial discretizations, when three-dimensional problems are considered and the computa-
tional cost due to the Laguerre transform.

The objective is to use the tools developed in the previous sections to achieve a decomposition
that can be computed using only Fourier transforms.

We consider the two-dimensional Hamiltonian

𝐻 = 𝑝2𝑥 + 𝑝2𝑦 + Ω𝐿𝑧 + 𝑉(𝑥, 𝑦), Ω ∈ ℝ, (2.51)

where the angular momentum operator is given by 𝐿𝑧 = (𝑥𝑝𝑦 − 𝑦𝑝𝑥). For Ω = 0, the standard
split separates momentum and spatial coordinates, which both lead to diagonal matrices in
their respective basis and exponentiation is trivial. Our goal is to compute the exponential
𝑒−𝑖ℎ𝐻 to high order in ℎ by a split of type

𝑒𝑓 (𝑥,𝑦)𝑒𝑔1(𝑥,𝑝𝑦)𝑒𝑒(𝑝𝑥,𝑝𝑦)𝑒𝑔2(𝑦,𝑝𝑥)𝑒𝑓 (𝑥,𝑦), (2.52)

where each exponent is diagonal in an efficiently computable basis. We point out that mixed
terms, as for example 𝑦𝑝𝑥, can be cheaply diagonalized by using a one-dimensional FFT and
the only terms to avoid involve both momentum and position in the same coordinate, e.g.,
𝑥𝑝𝑥, 𝑦𝑝𝑦, 𝑥 + 𝑝𝑥, etc.

2.3.1 Angular momentum algebra

Before addressing the full problem, we present exact decompositions for certain subproblems,
beginning with only the rotation term Ω𝐿𝑧.

Its components 𝑥𝑝𝑦 and 𝑦𝑝𝑥 generate a finite dimensional algebra 𝔤1, since

[𝑥𝑝𝑦, 𝑦𝑝𝑥] = 𝑥𝑝𝑥𝑝𝑦𝑦 − 𝑦𝑝𝑦𝑝𝑥𝑥 = 𝑥𝑝𝑥(−𝑖 + 𝑦𝑝𝑦) − 𝑦𝑝𝑦(−𝑖 + 𝑥𝑝𝑥)
= −𝑖(𝑥𝑝𝑥 − 𝑦𝑝𝑦),

[𝑥𝑝𝑦, [𝑥𝑝𝑦, 𝑦𝑝𝑥]] = −𝑖([𝑥𝑝𝑦, 𝑥𝑝𝑥] − [𝑥𝑝𝑦, 𝑦𝑝𝑦])
= −𝑖 ((𝑥2𝑝𝑥 − 𝑥𝑝𝑥𝑥)𝑝𝑦 − 𝑥(𝑝𝑦𝑦𝑝𝑦 − 𝑦𝑝2𝑦))
= −𝑖 ((𝑖𝑥)𝑝𝑦 − 𝑥(−𝑖𝑝𝑦)) = 2𝑥𝑝𝑦,

[𝑦𝑝𝑥, [𝑥𝑝𝑦, 𝑦𝑝𝑥]] = −2𝑦𝑝𝑥,

and by setting 𝐸 = 𝑥𝑝𝑦, 𝐹 = −𝑦𝑝𝑥 and 𝐺 = (𝑥𝑝𝑥 − 𝑦𝑝𝑦), we obtain a three-dimensional
algebra with commutators

[𝐸, 𝐹] = 𝑖𝐺, [𝐸, 𝐺] = 2𝑖𝐸, [𝐹, 𝐺] = −2𝑖𝐹. (2.53)
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Chapter 2. Linear Schrödinger equations

This algebra is isomorphic to the algebra of the simple harmonic oscillator (2.10) which allows
us to apply the decomposition given in Lemma 2.1.1 and state the following

Lemma 2.3.1. Let 𝐴 = 𝑥𝑝𝑦, 𝐵 = −𝑦𝑝𝑥 and

𝑓 (𝑡) = (1 − cos(𝑡Ω)) /sin(Ω), 𝑔(𝑡) = sin(𝑡Ω).

Then, the following property is satisfied for |𝑡Ω| < 𝜋:

𝑒−𝑖𝑡Ω𝐿𝑧 = 𝑒−𝑖𝑓 (𝑡)𝐴 𝑒−𝑖𝑔(𝑡)𝐵 𝑒−𝑖𝑓 (𝑡)𝐴 (2.54)
= 𝑒−𝑖𝑓 (𝑡)𝐵 𝑒−𝑖𝑔(𝑡)𝐴 𝑒−𝑖𝑓 (𝑡)𝐵. (2.55)

Proof. Since 𝐿𝑧 = 𝐴 + 𝐵 and 𝐴, 𝐵 correspond via the algebra isomorphism (2.53)→(2.10)
to the kinetic and potential energy operators of the standard harmonic oscillator, the proof
of Lemma 2.1.1 can be reused. The rotational strength Ω is accounted for by (2.20) with the
identifications 1𝑚 = Ω and 𝑚𝜔2 = Ω which are trivially solved by 𝜔 = Ω.

This allows us to compute the rotation exactly with two 2D-FFTs, the computational com-
plexity being 𝒪(𝑁2 log 𝑁). However, one has to keep in mind that this term is usually em-
bedded in a more complex Hamiltonian where the remaining terms are diagonal in either
spatial or momentum coordinates and therefore, two additional 1D-FFTs become necessary
at the beginning and at the end of the decomposition. The total is two 2D- and 2𝑁 1D-FFTs,
or equivalently6 three 2D-FFTs.

2.3.2 The rotation kernel

Including the kinetic energy, the generators are

𝑝2𝑥 , 𝑝2𝑦 , 𝑝𝑥𝑦, 𝑝𝑦𝑥,

and apart from the previously obtained identities, the additional non-vanishing commutators
are

[𝑝2𝑥 , 𝑝𝑦𝑥] = −2𝑖𝑝𝑥𝑝𝑦, [𝑝2𝑦 , 𝑝𝑥𝑦] = −2𝑖𝑝𝑥𝑝𝑦,
[𝑝2𝑥 , 𝑥𝑝𝑥] = −2𝑖𝑝2𝑥 , [𝑝2𝑦 , 𝑦𝑝𝑦] = −2𝑖𝑝2𝑦 ,

[𝑝𝑥𝑝𝑦, 𝑝𝑦𝑥] = −𝑖𝑝2𝑦 , [𝑝𝑥𝑝𝑦, 𝑝𝑥𝑦] = −𝑖𝑝2𝑥 .

We deduce that [𝑝2𝑥 + 𝑝2𝑦 , 𝐿𝑧] = 0 and thus for |𝑡| < 𝜋/Ω,

𝑒−𝑖𝑡𝐻 = 𝑒−𝑖 𝑡
2 (𝑝2𝑥+𝑝2𝑦)𝑒−𝑖𝑡Ω𝐿𝑧 = 𝑒−𝑖𝑡(𝑝2𝑥+𝑝2𝑦)𝑒−𝑖𝑓 (𝑡)(−𝑦𝑝𝑥) 𝑒−𝑖𝑔(𝑡)𝑥𝑝𝑦 𝑒−𝑖𝑓 (𝑡)(−𝑦𝑝𝑥),

with the result of Lemma 2.3.1. Taking into account the considerations after the previous
lemma, one step imposes an additional 2D-FFT to change from momentum to coordinate
space (𝑝𝑥, 𝑝𝑦) → (𝑥, 𝑦).

6For a rectangular grid of 𝑁 × 𝑁 equispaced points, the cost of a 2D-FFT is 2𝑁2 log(𝑁), whereas a transfor-
mation in one coordinate requires 𝑁 1D-FFTs and thus only half as many operations.
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2.3 Rotating traps

This result can be improved by eliminating repetitions of diagonalized operators. In other
words, whenever the basis has been changed by means of Fourier transforms, we allow all
operators that are diagonal to appear in the corresponding exponent. The decomposition stated
in the following lemma requires only two 2D-FFT plus the embracing 1D transformations,
hence the inclusion of the kinetic terms comes without extra cost.

Lemma 2.3.2. Given the Hamiltonian 𝐻 = 1
2𝑚 (𝑝2𝑥 + 𝑝2𝑦) + Ω𝐿𝑧 and for functions

𝑓1(𝑡) = tan(𝑡Ω/2), 𝑔1(𝑡) = 𝑡/(𝑚 + 𝑚 cos(𝑡Ω)),
𝑓2(𝑡) = sin(𝑡Ω), 𝑔2(𝑡) = 𝑡 cos(𝑡Ω)/𝑚, (2.56)

the following identities are satisfied for |𝑡Ω| < 𝜋:

𝑒−𝑖𝑡𝐻 = 𝑒−𝑖(𝑔1(𝑡) 1
2 𝑝2𝑥−𝑓1(𝑡)𝑦𝑝𝑥)𝑒−𝑖(𝑔2(𝑡) 1

2 𝑝2𝑦+𝑓2(𝑡)𝑥𝑝𝑦)𝑒−𝑖(𝑔1(𝑡) 1
2 𝑝2𝑥−𝑓1(𝑡)𝑦𝑝𝑥)

= 𝑒−𝑖(𝑔1(𝑡) 1
2 𝑝2𝑦+𝑓1(𝑡)𝑥𝑝𝑦)𝑒−𝑖(𝑔2(𝑡) 1

2 𝑝2𝑥−𝑓2(𝑡)𝑦𝑝𝑥)𝑒−𝑖(𝑔1(𝑡) 1
2 𝑝2𝑦+𝑓1(𝑡)𝑥𝑝𝑦).

Proof. Using the machinery of the previous lemmata, we identify the quantum mechanical
problem with its classical counterpart and first solve the system which corresponds to 𝐻 =
1
2 (𝑝2𝑥 + 𝑝2𝑦) + Ω(𝑥𝑝𝑦 − 𝑦𝑝𝑥), namely,

𝑑
𝑑𝑡

⎛⎜⎜⎜⎜⎜⎜
⎝

𝑥
𝑦
𝑝𝑥
𝑝𝑦

⎞⎟⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜⎜
⎝

0 −Ω 1/𝑚 0
Ω 0 0 1/𝑚
0 0 0 −Ω
0 0 Ω 0

⎞⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜
⎝

𝑥
𝑦
𝑝𝑥
𝑝𝑦

⎞⎟⎟⎟⎟⎟⎟
⎠

= (𝐴 + 𝐵)
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑥
𝑦
𝑝𝑥
𝑝𝑦

⎞⎟⎟⎟⎟⎟⎟
⎠

, (2.57)

where

𝐴 =
⎛⎜⎜⎜⎜⎜⎜
⎝

0 −Ω 1/𝑚 0
0 0 0 0
0 0 0 0
0 0 Ω 0

⎞⎟⎟⎟⎟⎟⎟
⎠

, 𝐵 =
⎛⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0
Ω 0 0 1/𝑚
0 0 0 −Ω
0 0 0 0

⎞⎟⎟⎟⎟⎟⎟
⎠

.

The matrices 𝐴, 𝐵 generate the same algebra as 1
2𝑝2𝑥 − Ω𝑦𝑝𝑥 and 1

2𝑝2𝑦 + Ω𝑥𝑝𝑦, respectively.
Furthermore, they are both nilpotent, 𝐴2 = 𝐵2 = 0. We will identify 𝐴𝑇 , 𝐵𝑇 with the parts
originating from the kinetic energy (∝ 1/𝑚) and 𝐴𝐿𝑧 , 𝐵𝐿𝑧 with the remainder such that

𝐴 = 1
𝑚𝐴𝑇 + Ω𝐴𝐿𝑧 , 𝐵 = 1

𝑚𝐵𝑇 + Ω𝐵𝐿𝑧 .

Introducing the functions 𝑓𝑗 , 𝑔𝑘 , we proceed to calculate the exponentials of ̃𝐴 = 𝑔1𝐴𝑇 +𝑓1𝐴𝐿𝑧
and 𝐵̃ = 𝑔2𝐵𝑇 + 𝑓2𝐵𝐿𝑧 to

𝑒𝐴̃ =
⎛⎜⎜⎜⎜⎜⎜
⎝

1 −𝑓1 𝑔1 0
0 1 0 0
0 0 1 0
0 0 𝑓1 1

⎞⎟⎟⎟⎟⎟⎟
⎠

and 𝑒𝐵̃ =
⎛⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0
𝑓2 1 0 𝑔2
0 0 1 −𝑓2
0 0 0 1

⎞⎟⎟⎟⎟⎟⎟
⎠

.

The flow of (2.57) is readily computed to

𝑂(𝑡) =
⎛⎜⎜⎜⎜⎜⎜
⎝

cos(ℎΩ) − sin(ℎΩ) ℎ cos(ℎΩ)/𝑚 −ℎ sin(ℎΩ)/𝑚
sin(ℎΩ) cos(ℎΩ) ℎ sin(ℎΩ)/𝑚 ℎ cos(ℎΩ)/𝑚

0 0 cos(ℎΩ) − sin(ℎΩ)
0 0 sin(ℎΩ) cos(ℎΩ)

⎞⎟⎟⎟⎟⎟⎟
⎠

,
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and equating 𝑂(𝑡) = 𝑒𝐴̃𝑒𝐵̃𝑒𝐴̃ results in a simple system whose solution are precisely the
functions 𝑓𝑗 , 𝑔𝑘 stated in the lemma. As before, we conclude that the results can be carried
over to the quantum mechanical problem.

Remark 2.3.3. For non-isotropic masses, i.e., 𝐻 = 1
2𝑚𝑥

𝑝2𝑥 + 1
2𝑚𝑦

𝑝2𝑦 + Ω𝐿𝑧, the functions
𝑔1, 𝑔2 have to be replaced by

𝑔1(𝑡) = 𝑚𝑥(𝑡Ω − sin(𝑡Ω)) + 𝑚𝑦(𝑡Ω + sin(𝑡Ω))
2𝑚𝑥𝑚𝑦Ω(cos(𝑡Ω) + 1) ,

𝑔2(𝑡) = (𝑚𝑥 − 𝑚𝑦) sin(𝑡Ω) + 𝑡Ω(𝑚𝑥 + 𝑚𝑦) cos(𝑡Ω)
2𝑚𝑥𝑚𝑦Ω .

2.3.3 Isotropic trap

Along the lines of Lemma 2.3.2, the system can be generalized to the following

Lemma 2.3.4. Given the Hamiltonian 𝐻 = 1
2𝑚 (𝑝2𝑥 + 𝑝2𝑦) + Ω𝐿𝑧 + 1

2𝑚𝜔 (𝑥2 + 𝑦2) and for
functions 𝜒(𝑡) = cos(𝑡Ω) + cos(𝑡𝜔) and

𝑓1(𝑡) = 𝑚𝜔 sin(𝑡𝜔)/𝜒(𝑡), 𝑓2(𝑡) = 𝑚𝜔 cos(𝑡Ω) sin(𝑡𝜔),
𝑔1(𝑡) = sin(𝑡𝜔)/(𝑚𝜔𝜒(𝑡)), 𝑔2(𝑡) = cos(𝑡Ω) sin(𝑡𝜔)/(𝑚𝜔),
𝑒1(𝑡) = sin(𝑡Ω)/𝜒(𝑡), 𝑒2(𝑡) = cos(𝑡𝜔) sin(𝑡Ω),

(2.58)

the following identities are satisfied for |𝑡| less than the smallest root of 𝜒(𝑡)

𝑒−𝑖𝑡𝐻 = 𝑒−𝑖(𝑓1 1
2 𝑥2+𝑔1 1

2 𝑝2𝑦+𝑒1𝑥𝑝𝑦)𝑒−𝑖(𝑓2 1
2 𝑦2+𝑔2 1

2 𝑝2𝑥−𝑒2𝑦𝑝𝑥)𝑒−𝑖(𝑓1 1
2 𝑥2+𝑔1 1

2 𝑝2𝑦+𝑒1𝑥𝑝𝑦)

= 𝑒−𝑖(𝑓1 1
2 𝑦2+𝑔1 1

2 𝑝2𝑥−𝑒1𝑦𝑝𝑥)𝑒−𝑖(𝑓2 1
2 𝑥2+𝑔2 1

2 𝑝2𝑦+𝑒2𝑥𝑝𝑦)𝑒−𝑖(𝑓1 1
2 𝑦2+𝑔1 1

2 𝑝2𝑥−𝑒1𝑦𝑝𝑥).

The 𝑡-dependence of the functions 𝑓𝑗 , 𝑔𝑘 , 𝑒𝑙 has been omitted for brevity.

Proof. The proof is virtually identical to the one above. The resulting equations in the corre-
sponding classical mechanical system are easy to solve.

2.3.4 Anisotropic trap

The same principles can be applied for a rotating gas subject to anisotropic harmonic trapping,
which corresponds to the Hamiltonian

𝐻 = 1
2𝑚 (𝑝2𝑥 + 𝑝2𝑦) + 1

2𝑚𝜔2𝑥𝑥2 + 1
2𝑚𝜔2𝑦𝑦2 + Ω𝐿𝑧.

The Hamiltonian can be written in a simpler form as [103]

𝐻 = 1
2 (𝑝2𝑥 + 𝑝2𝑦 + (1 + 𝜂)𝑥2 + (1 − 𝜂)𝑦2) + Ω̃𝐿𝑧,

where the length has been rescaled in units of the harmonic oscillator 𝑙 = 1/√𝑚𝜔0 with
the mean frequency 𝜔2

0 = (𝜔2𝑥 + 𝜔2𝑦)/2. The rotation frequency then becomes Ω̃ = Ω/𝜔0,
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2.3 Rotating traps

and the anisotropy parameter is given by 𝜂 = (𝜔2𝑥 − 𝜔2𝑦)/𝜔2
0. Naturally, the corresponding

classical mechanical system can still be easily exponentiated after diagonalizing the matrix
∇𝐻, however, the obtained expressions are lengthy and will not be repeated here. A similar
treatment using ladder operators can be found in [92]. Instead, we follow Ref. [103], where
an elegant linear canonical transformation7 to diagonalize the Hamiltonian has been used,

𝑢 = 𝛾𝑥 (cos(𝜙)𝑥 − sin(𝜙)𝑝𝑦) , 𝑝𝑢 = 1
𝛾𝑥

(sin(𝜙)𝑦 + cos(𝜙)𝑝𝑥) ,

𝑣 = 𝛾𝑦 (cos(𝜙)𝑦 − sin(𝜙)𝑝𝑥) , 𝑝𝑣 = 1
𝛾𝑦

(sin(𝜙)𝑥 + cos(𝜙)𝑝𝑦) ,

where tan(2𝜙) = 2Ω̃𝜂 and

𝛾𝑥 =
⎡⎢⎢
⎣

1 + 𝜂
2 + √Ω̃2 + (𝜂

2 )2

1 − 𝜂
2 + √Ω̃2 + (𝜂

2 )2

⎤⎥⎥
⎦

1/4

, 𝛾𝑦 =
⎡⎢⎢
⎣

1 − 𝜂
2 − √Ω̃2 + (𝜂

2 )2

1 + 𝜂
2 − √Ω̃2 + (𝜂

2 )2

⎤⎥⎥
⎦

1/4

.

Denoting the eigenvalues by

𝜆𝑢 = √1 + Ω̃2 + 2√Ω̃2 + (𝜂
2 )

2
, 𝜆𝑣 = √1 + Ω̃2 − 2√Ω̃2 + (𝜂

2 )
2
,

the Hamiltonian becomes

𝐻 = 1
2𝜆𝑢 (𝑝2𝑢 + 𝑢2) + 1

2𝜆𝑣 (𝑝2𝑣 + 𝑣2) . (2.59)

The condition for bounded states, i.e., a spectrum that is bounded from below, is given by 𝜂 ≤
1 − Ω̃2. Using this diagonalization, it has been observed [103] that the new coordinate pairs
𝑢, 𝑝𝑢 and 𝑣, 𝑝𝑣 satisfy the canonical commutator relations, i.e., they generate the same algebra
as for example 𝑝𝑥 and 𝑥. Furthermore, the new Hamiltonian is the sum of two uncoupled
harmonic oscillators in the new coordinates. The diagonal form of the Hamiltonian has been
exploited to apply the decomposition results for the standard harmonic oscillator, however,
our correspondence technique yields the same results but is, of course, less elegant than a
simple change of coordinates. Finally, for a numerical scheme, one composes

𝑒−𝑖(𝐶𝑝𝑢 (ℎ)𝑝2𝑢+𝐶𝑣(ℎ)𝑣2)𝑒−𝑖(𝐶𝑝𝑢 (ℎ)𝑢2+𝐶𝑣(ℎ)𝑝2𝑣)𝑒−𝑖(𝐶𝑝𝑢 (ℎ)𝑝2𝑢+𝐶𝑣(ℎ)𝑣2),

with functions 𝐶𝑗(ℎ), for which we refer to the original reference [47]. Note that three 2D-
FFTs are necessary for one step of the algorithm.

2.3.5 Time dependence for rotating traps

The most general situation is given if we allow for time-dependencies in the frequencies. Hav-
ing a splitting in mind where the trapping plays the role of the dominant part 𝐻0, as in Sec-
tion 2.2.1, a non-autonomous problem has to be solved and we, again, turn towards the Magnus

7This transformation corresponds to a change from an inertial to a rotating coordinate system.
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Chapter 2. Linear Schrödinger equations

expansion. Clearly, the algebra becomes more involved, now bearing commutators of all the
elements of the Hamiltonian 𝐻0. Of course, it is perfectly valid to restrict ourselves to commu-
tator free Magnus methods, in this case, however, all the necessary tools have been exhibited
in the preceding subsections. Here, we will elaborate a decomposition of an arbitrary order
Magnus expansion for arbitrary time-dependencies

𝐻0(𝑡) =
15
∑
𝑗=1

𝛼𝑗(𝑡)𝐸𝑗 , (2.60)

in the algebra 𝔤 with basis

𝐸1 = 𝑥, 𝐸2 = 𝑝𝑥, 𝐸3 = 1
2𝑥2, 𝐸4 = 1

2𝑝2𝑥 , 𝐸5 = 1
2 (𝑥𝑝𝑥 + 𝑝𝑥𝑥) ,

𝐸6 = 𝑦, 𝐸7 = 𝑝𝑦, 𝐸8 = 1
2𝑦2, 𝐸9 = 1

2𝑝2𝑦 , 𝐸10 = 1
2 (𝑦𝑝𝑦 + 𝑝𝑦𝑦) ,

𝐸11 = 𝑥𝑦, 𝐸12 = 𝑝𝑥𝑝𝑦, 𝐸13 = 𝑥𝑝𝑦, 𝐸14 = 𝑦𝑝𝑥, 𝐸15 = 1. (2.61)

Computationally difficult terms that ought to be avoided, are the ones mixing momenta and
position of the same coordinate: 𝑥𝑝𝑥 and 𝑦𝑝𝑦.

A careful examination of the structure coefficients of the algebra8 shows that a symmetric
ansatz as before,

𝑒−𝑖(𝑓1 1
2 𝑦2+𝑔1 1

2 𝑝2𝑥−𝑒1𝑦𝑝𝑥)𝑒−𝑖(𝑓2 1
2 𝑥2+𝑔2 1

2 𝑝2𝑦+𝑒2𝑥𝑝𝑦)𝑒−𝑖(𝑓1 1
2 𝑦2+𝑔1 1

2 𝑝2𝑥−𝑒1𝑦𝑝𝑥),
is not able to generate the terms 𝑥𝑝𝑥, 𝑦𝑝𝑦, 𝑝𝑥𝑝𝑦, 𝑥𝑦 as well as the linear terms 𝑥, 𝑦, 𝑝𝑥, 𝑝𝑦. The
latter group could be recovered by change of coordinates, or by directly including them in the
exponents, the former, on the other hand, requires us to create a new path since, of course,
direct inclusion of mixed terms is not viable because of a lack of diagonalization techniques.

As for the time-dependent harmonic oscillator in Theorem 2.2.1, the symmetry condition has
to be dropped and we employ the ansatz

𝑒−𝑖(𝑥2+𝑥+𝑦+𝑥𝑦)𝑒−𝑖(𝑦2+𝑝2𝑥+𝑝𝑥−𝑦𝑝𝑥)𝑒−𝑖(𝑥2+𝑝2𝑦+𝑝𝑦+𝑥𝑝𝑦)𝑒−𝑖(𝑦2+𝑝2𝑥+𝑝𝑥−𝑦𝑝𝑥)𝑒−𝑖(𝑥2+𝑥+𝑦+𝑥𝑦),
where the coefficients multiplying the operators have been omitted to improve readability.
Unfortunately, the until here successful correspondence methods reaches its limits since the
resulting equations become too complicated to find a closed form solution. From a numerical
point of view, this is only a minor restriction since the Hamiltonian 𝐻0 is only an approxi-
mation obtained after, say, a Magnus expansion and is thus of limited accuracy. Instead of
aiming for a closed form solution, it is sufficient to approximate the (averaged) Hamiltonian
up to its order.

Before going into tedious and lengthy algebra, let us examine the important case of a varying
trapping potential, i.e., only the quadratic terms 𝑥, 𝑦 are subject to time-dependency. Magnus
expanding the Hamiltonian, 𝐻(𝑡) = 𝑇+𝜔𝑥(𝑡)2𝑥2+𝜔𝑦(𝑡)2𝑦2+Ω𝐿𝑧 implies the computation of
commutators of 𝐻(𝑡) at different instances of time, which turn out to form a proper subalgebra
𝔤1 ⊂ 𝔤, containing the elements

𝔤1 = 𝔤 \ span{𝑥, 𝑦, 𝑝𝑥, 𝑝𝑦, 1}.
8Cf. Appendix Table A.1
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2.3 Rotating traps

Thus, after rescaling as in the previous subsection, the averaged Hamiltonian can be written
as

𝐻avg. = 1
2(𝑝2𝑥 + 𝑝2𝑦) + 1

2 (𝜔𝑥𝑥2 + 𝜔𝑦𝑦2) + Ω𝑥𝑥𝑝𝑦 − Ω𝑦𝑦𝑝𝑥

+ 1
2𝛼(𝑥𝑝𝑥𝑝𝑥𝑥) + 1

2𝛽(𝑦𝑝𝑦 + 𝑝𝑦𝑦) + 𝛾𝑥𝑦 + 𝛿𝑝𝑥𝑝𝑦. (2.62)

Notice the asymmetry that has been introduced in the angular momentum term due to the
time-averaging. The corresponding classical mechanical system is linear, with equations

𝑑
𝑑𝑡

⎛⎜⎜⎜⎜⎜⎜
⎝

𝑥
𝑦
𝑝𝑥
𝑝𝑦

⎞⎟⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜⎜
⎝

𝛼 −Ω𝑦 1 𝛿
Ω𝑥 𝛽 𝛿 1

−𝜔𝑥 −𝛾 −𝛼 −Ω𝑥
−𝛾 −𝜔𝑦 Ω𝑦 −𝛽

⎞⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜
⎝

𝑥
𝑦
𝑝𝑥
𝑝𝑦

⎞⎟⎟⎟⎟⎟⎟
⎠

.

We stress that the algebra that is generated by the underlying classical mechanical system is
equivalent to the quantum mechanical one, and so is the matrix representation. Along the lines
of our previous exposition, and for each time step, we exponentiate the 4 × 4 matrix and set it
equal to the composition

Ψℎ = 𝑒𝑛1𝑥2𝑒𝑓1𝑦2+𝑔1𝑝2𝑥−𝑒1𝑦𝑝𝑥𝑒𝑓2𝑥2+𝑔2𝑝2𝑦+𝑒2𝑥𝑝𝑦𝑒𝑓3𝑦2+𝑔3𝑝2𝑥−𝑒3𝑦𝑝𝑥 , (2.63)

which can be easily computed in the matrix formalism. The outcome is a matrix whose entries
are multivariate polynomials of degree four9. There are ten degrees of freedom in the original
Hamiltonian, one for each basis element. For the composition, we omit the difficult mixed
terms 𝑥𝑝𝑥, 𝑦𝑝𝑦 as well as 𝑥𝑦 and 𝑝𝑥𝑝𝑦 and complete the system by introducing additional
variables, as seen in (2.63). In total, one step of the algorithm requires the application of
two 1D-FFTs and two 2D-FFTs, at the cost of three 2D-FFTs, and prior to evolving the wave
function, the coefficients are determined through exponentiating a 4 × 4 matrix and solving
a small nonlinear system. The effort for the solution of the formally over-determined system,
which can be done by a least-square algorithm, is marginal since - for small time steps - the
solution is not far from 0 ∈ ℝ10. If further speed-up is necessary, the number of variables
and equations can be reduced by simple algebra or using a Gröbner basis.

Special cases In passing, we mention some further special cases, for which the algebra
simplifies.

• Isotropic trap,

𝐻 = 1
2𝑚(𝑡) (𝑝2𝑥 + 𝑝2𝑦) + 1

2𝑚(𝑡)𝜔(𝑡)2(𝑥2 + 𝑦2) + Ω(𝑡)𝐿𝑧

Due to cancellations, the commutators of 𝐻 at different instances lie in the span of
{𝑝2𝑥 + 𝑝2𝑦 , 𝑥2 + 𝑦2, 𝐿𝑧, (𝑥𝑝𝑥 + 𝑝𝑥𝑥) + (𝑦𝑝𝑦 + 𝑝𝑦𝑦)} and any Magnus integrator can be
written as effective Hamiltonian

𝐻̃𝑡,𝑡+ℎ = 𝑎𝑡,𝑡+ℎ(𝑝2𝑥 + 𝑝2𝑦) + 𝑏𝑡,𝑡+ℎ(𝑥2 + 𝑦2) + 𝑐𝑡,𝑡+ℎ𝐿𝑧
+ 𝑑𝑡,𝑡+ℎ ((𝑥𝑝𝑥 + 𝑝𝑥𝑥) + (𝑦𝑝𝑦 + 𝑝𝑦𝑦)) .

9For the full matrix, see Appendix Section A.3
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• Linear interaction,

𝐻 = 1
2 (𝑝2𝑥 + 𝑝2𝑦) + 𝜔2

0
2 (𝑥2 + 𝑦2) + 𝜉𝑥(𝑡)𝑥 + 𝜉𝑦(𝑡)𝑦 + Ω𝐿𝑧

The following terms in algebra do not appear: 𝑥𝑦, 𝑝𝑥𝑝𝑦, 𝑥𝑝𝑥, 𝑦𝑝𝑦, therefore, a symmetric
composition is sufficient.

For more complicated Hamiltonians, in particular, when linear terms are involved, the de-
scribed procedure fails to a certain degree: As for the one dimensional problem, the phase
relation cannot be recovered. Nevertheless, it is an easy exercise to compute the correspond-
ing classical equations, just as in 1D, cf. (2.45) and (2.46). In principle, one could approximate
the phase numerically, by evaluating the scalar functions on a fixed grid which partitions the
time-step interval [𝑡𝑛, 𝑡𝑛 + ℎ] and then solve the differential equations which are analogous to
(2.43) numerically, or alternatively make use of the BCH formula.

This effort can be spared since only the global phase information is lost which is not observ-
able. The polynomial system to be solved then needs additional degrees of freedom to cater
for the linear contributions and to close the discussion, we conjecture that there exist (under
mild assumptions10) imaginary coefficients, such that

Ψℎ = 𝑒𝑛1𝑥2+𝑚1𝑥𝑒𝑓1𝑦2+𝑔1𝑝2𝑥−𝑒1𝑦𝑝𝑥+𝑘1𝑝𝑥𝑒𝑓2𝑥2+𝑔2𝑝2𝑦+𝑒2𝑥𝑝𝑦+𝑘2𝑝𝑦𝑒𝑓3𝑦2+𝑔3𝑝2𝑥−𝑒3𝑦𝑝𝑥+𝑘3𝑝𝑥𝑒𝑛2𝑥2+𝑚2𝑥,

is the solution of the SE with Hamiltonian (2.60) for small values of the 𝛼𝑗 .

2.3.6 Numerical results

To numerically verify the proposed algorithm, we choose the Hamiltonian

𝐻𝐿(𝑡) = 1
2 (𝑝2𝑥 + 𝑝2𝑦) + 1

2 (𝜔𝑥(𝑡)2𝑥2 + 𝜔𝑦(𝑡)2𝑦2) + Ω𝐿𝑧, (2.64)

where 𝜔𝑥(𝑡)2 = 4(1 + sin(𝑡/2)), 𝜔𝑦(𝑡)2 = (4 − sin(𝑡/2)) and Ω = 1/10. The spatial domain
is discretized with 128 × 128 grid points on [−10, 10]2 and we integrate the normalized ini-
tial condition 𝜓0 ∝ (𝑥 + 𝑖𝑦)𝑒−(𝑥2+𝑦2)/2 until the final time 𝑇 = 3. For the time-averaging
we choose a fourth-order Magnus integrator that is in turn based on the fourth-order Gauss-
Legendre quadrature,

Θ[4]
𝑡,𝑡+ℎ = −𝑖 ℎ

2 (𝐻(𝑡1) + 𝐻(𝑡2)) + ℎ2

4√3
[−𝑖𝐻(𝑡1), −𝑖𝐻(𝑡2)],

10In order to recover the mixed terms 𝑥𝑝𝑥, 𝑦𝑝𝑦, a pair of possible generators must be present in the Hamiltonian,
e.g., 𝑥, 𝑝2𝑥 can generate 𝑥𝑝𝑥 through commutation.
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where 𝑡𝑗 = 𝑡 + ℎ𝑐𝑗 with the standard Gauss-nodes 𝑐1,2 = (1 ∓ 1/√3)/2. Evaluating the
commutator leads to

𝑖Θ[4]
𝑡,𝑡+ℎ = 1

2 (𝑝2𝑥 + 𝑝2𝑦) + 1
2

𝜔𝑥(𝑡1)2 + 𝜔𝑥(𝑡2)
2 𝑥2 + 1

2
𝜔𝑦(𝑡1)2 + 𝜔𝑦(𝑡2)

2 𝑦2 + ℎΩ𝐿𝑧

+ 1
4√3

(𝑥𝑝𝑥 + 𝑝𝑥𝑥
2 (𝜔𝑥(𝑡2)2 − 𝜔𝑥(𝑡1)2) + 𝑦𝑝𝑦 + 𝑝𝑦𝑦

2 (𝜔𝑦(𝑡2)2 − 𝜔𝑦(𝑡1)2))

+ Ω
4√3

𝑥𝑦 ((𝜔𝑦(𝑡2)2 − 𝜔𝑦(𝑡1)2) − (𝜔𝑥(𝑡2)2 − 𝜔𝑥(𝑡1)2)) .

In a first experiment, we compare the split (2.63) against a standard symmetric approach which
uses the same number of FFTs per step,

Ψ[2]
𝑡,𝑡+ℎ = 𝑒−𝑖 ℎ

2 (𝜔𝑥(𝑡)2𝑥2+𝜔𝑦(𝑡)2𝑦2)/2𝑒−𝑖 ℎ
2 (𝑝2𝑥/2−Ω𝑦𝑝𝑥)𝑒−𝑖ℎ(𝑝2𝑦/2+Ω𝑥𝑝𝑦)

𝑒−𝑖 ℎ
2 (𝑝2𝑥/2−Ω𝑦𝑝𝑥)𝑒−𝑖 ℎ

2 (𝜔𝑥(𝑡+ℎ)2𝑥2+𝜔𝑦(𝑡+ℎ)2𝑦2)/2. (2.65)

Notice that the time has been advanced in the center step which assures overall symmetry of
the method. The results are shown in Fig. 2.5 and clearly show the correct order and high
accuracy of the new method.
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Figure 2.5: The rightmost column shows the efficiency curves for the 2D rotating harmonic oscillator
(2.64) integrated using 𝑁𝑥 = 𝑁𝑦 = 128 equidistant grid points on [−10, 10]2. In the first row, the
initial condition with real (left) and imaginary part (center) are displayed, whereas the evolution at time
𝑇 = 3 is depicted in the second row, both for real (left) and imaginary part (center). The imaginary part
is shown from above and the colormaps are kept constant in each row, i.e., the same color corresponds
to the same value.
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Chapter 2. Linear Schrödinger equations

In a second experiment, the Hamiltonian 𝐻𝐿 is perturbed by a quartic potential,

𝐻(𝑡) = 𝐻𝐿(𝑡) + 1
10𝑥4 (2.66)

and the experimental setup is taken as above. Instead of embedding our method within a
higher-order splitting, we chose a simple Strang-type approach where the perturbation 𝐻 −
𝐻𝐿 is appended on both sides of the method. Of course, despite the fourth-order Magnus
expansion, we only expect a second-order integrator, however, with much smaller error terms
when compared to (2.65) due to the smallness of the perturbation. The results in Fig. 2.6
confirm the predicted behavior.
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Figure 2.6: For detailed captions, cf. Fig. 2.5. Results for the perturbed Hamiltonian (2.66). The top
row shows the real (left) and imaginary part (center) of the initial condition, whereas the corresponding
pictures for the exact solution at 𝑇 = 3 are displayed in the bottom row. The right panel demonstrates
the smaller error constant for the proposed decomposition (2.63) (red squares) in comparison with the
standard scheme (2.65) (blue).

62



Chapter3
NON-LINEAR EQUATIONS:
GROSS-PITAEVSKI

The numerical integration of the Gross-Pitaevskii equation (GPE)

𝑖 𝜕
𝜕𝑡 𝜓(𝑥, 𝑡) = (− 1

2𝑚Δ + 𝑉(𝑥, 𝑡) + 𝜎(𝑡)|𝜓(𝑥, 𝑡)|2) 𝜓(𝑥, 𝑡), 𝜓(𝑥, 0) ∈ 𝐿2(ℝ𝑑)

𝑥 ∈ ℝ𝑑 , describing the ground state of interacting bosons at zero temperature, the Bose-
Einstein condensates, has attracted great interest [13, 106, 123] after the first experimental
realizations [2, 35, 49].

We present a new efficient way to solve a special class of GPE, namely that of weakly in-
teracting bosons in a single time-dependent trap. To be more specific, the potential trap 𝑉
is taken to be a perturbation of the (time-dependent) 𝑑-dimensional harmonic oscillator, i.e.
𝑉(𝑥, 𝑡) = 𝑥𝑇 𝑀(𝑡)𝑥 + 𝜀𝑉𝐼(𝑥, 𝑡) where 𝑀(𝑡) ∈ ℝ𝑑×𝑑 is a positive definite matrix and 𝜀𝑉𝐼(𝑥, 𝑡)
is a small perturbation. The real scalar function 𝜎 originates from the mean-field interaction
between the particles and corresponds to repulsive or attractive forces for positive or negative
values of 𝜎(𝑡), respectively [107]. It has been demonstrated recently, that 𝜎(𝑡) can vary as
much as seven orders of magnitude using Feshbach resonances [108]. Notice that the non-
interacting case, 𝜎 ≡ 0, corresponds to the linear Schrödinger equation.

Several methods have been analyzed to compute both the time evolution and the ground state
of the GPE in the course of the last decade [13, 15, 51, 106, 123], among them finite differ-
ences, Galerkin spectral methods and pseudospectral methods for Fourier or Hermite basis
expansions. It has been concluded [106] that these pseudospectral methods perform best for
a wide parameter range for the GPE.
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Chapter 3. Non-linear equations: Gross-Pitaevski

3.1 Near-integrable systems

When the Hamiltonian can be considered as a perturbed system, i.e., 𝐻 = 𝐻0+𝜀𝑉𝜀(𝑥) with an
exactly solvable part 𝐻0 = 𝑇 + 𝑉0(𝑥) and a small (possibly nonlinear) perturbation 𝜀𝑉𝜀(𝑥),
it is advantageous to split the Hamiltonian into the dominant part 𝐻0 and its perturbation
𝜀𝑉𝜀. In the introduction, Section 1.3.3, we have defined the concept of generalized order
(𝑠1, 𝑠2, … , 𝑠𝑚) in (1.47), which means that the local error of a method Ψℎ satisfies

Ψℎ − 𝑒−𝑖ℎ𝐻 = 𝒪(𝜀ℎ𝑠1+1 + 𝜀2ℎ𝑠2+1 + ⋯ + 𝜀𝑚ℎ𝑠𝑚+1),

where 𝑠1 ≥ 𝑠2 ≥ ⋯ ≥ 𝑠𝑚. Two very successful splitting methods among this category of
Ref. [94] that are used for reference throughout this work are reprinted in Table 3.2.

Even if 𝜀 = 𝒪(1), such methods can be profitable. For instance, suppose one takes a suffi-
ciently fine mesh, then ‖𝑇‖ ≫ ‖𝑉‖ and the previous considerations apply (with 𝐻0 = 𝑇 ). Also,
if 𝑉(𝑥) = |𝑥|𝑛, then the virial theorem1 for bounded states 𝜓,

2⟨𝜓 |𝑇 𝜓⟩ = ⟨𝜓 |∇𝑉(𝑥)𝑥 𝜓⟩,

leads to ⟨𝑇⟩𝜓 = 𝑛
2 ⟨𝑉⟩𝜓 and the potential takes the role of the large part for higher degree

polynomial potentials.

3.1.1 Spectral methods for the nonlinear Hamiltonian

In this first part, we consider the numerical integration of the Gross-Pitaevskii equation with
a potential trap given by a time-dependent harmonic potential or a small perturbation thereof.
The purpose is to illustrate how the results obtained in Chapter 2 translate to the nonlinear
equation and to demonstrate the superiority of the Fourier-Hermite splitting over standard
Hermite methods in the presence of large nonlinearities.

Recalling the results for harmonic oscillators from Chapter 2, the Hermite expansion suggests
the split

𝐴 = 1
2(𝑝2 + 𝑥2), 𝐵(𝑡) = 𝜀𝑉𝐼(𝑥, 𝑡) + 𝜎(𝑡)|𝜓|2, (3.1)

where the solution for the equation 𝑖 ̇𝑢 = 𝐴𝑢 can be approximated using a finite number of Her-
mite basis functions or by Fourier methods with the exact decomposition from Lemma 2.1.1.
We take the time as a new coordinate, as in (1.52), and evolve it with 𝐴, which is now au-
tonomous and exactly solvable, and freeze the time in 𝐵, which is then solved using the result
from Lemma 3.1.1.

In the more general situation with a time-dependent frequency, 𝜔(𝑡),

𝐴(𝑡) = 1
2(𝑝2 + 𝜔2(𝑡)𝑥2), 𝐵(𝑡) = 𝜀𝑉𝐼(𝑥, 𝑡) + 𝜎(𝑡)|𝜓|2, (3.2)

starting from the HO splitting, the harmonic part is first approximated by Magnus expansions
(2.33) or (2.34) and the time is frozen in the remainder, 𝐵(𝑡). Theorems 2.2.1 and 2.2.2 then

1This theorem only holds in this form for the linear SE, where 𝜎 = 0.
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3.1 Near-integrable systems

provide decompositions to write the product of exponentials in a similar way as in (2.27) but
now 𝛼𝑘 = 𝑓 (𝑎𝑘+1ℎ) + 𝑒(𝑎𝑘ℎ) and it is valid for |𝑎𝑗ℎ| < 𝑡∗, 𝑗 = 1, … , 𝑚 where 𝑡∗ is the first
zero of 𝑔(𝑡). At each stage, one has to compute the scalar numbers 𝑓 (𝑎𝑗ℎ), 𝑔(𝑎𝑗ℎ), 𝑒(𝑎𝑗ℎ) from
𝜔(𝑡).

For the remaining part, the following well-known result is very useful and we include the
proof for the convenience of the reader.

Lemma 3.1.1. For real-valued functions 𝐹 ∶ ℝ × ℝ𝑑 × 𝕕 → ℝ, the equation

𝑖 𝜕
𝜕𝑡 𝜓(𝑥, 𝑡) = 𝐹(𝑡, 𝑥, |𝜓(𝑥, 𝑡)|)𝜓(𝑥, 𝑡), (3.3)

leaves the modulus invariant, |𝜓(𝑥, 𝑡)| = |𝜓(𝑥, 0)|, and then

𝜓(𝑥, 𝑡) = 𝑒−𝑖 ∫𝑡
0 𝐹(𝑠,𝑥,|𝜓(𝑥,0)|)𝑑𝑠𝜓(𝑥, 0), (3.4)

which simplifies for autonomous 𝐹 to

𝜓(𝑥, 𝑡) = 𝑒−𝑖𝑡𝐹(𝑥,|𝜓(𝑥,0)|)𝜓(𝑥, 0).

Proof. Taking the complex conjugate of (3.3) we get −𝑖𝜓∗𝑡 = 𝐹(𝑡, 𝑥, |𝜓|)𝜓∗ and with the
product rule

𝑑
𝑑𝑡 |𝜓|2 = (−𝑖𝐹(𝑡, 𝑥, |𝜓|)𝜓)𝜓∗ + 𝜓(𝑖𝐹(𝑡, 𝑥, |𝜓|)𝜓∗) = 0,

the result |𝜓(𝑥, 𝑡)| = |𝜓(𝑥, 0)| follows. Hence, the evolution of (3.3) is governed

𝑖 𝜕
𝜕𝑡 𝜓(𝑥, 𝑡) = 𝐹(𝑡, 𝑥, |𝜓(𝑥, 0)|)𝜓(𝑥, 𝑡),

whose solution is given by (3.4).

Commutators For two Lie operators, ̂𝐴 = 𝐴𝜕𝜓 + 𝐴∗𝜕𝜓∗ and 𝐵̂ = 𝐵𝜕𝜓 + 𝐵∗𝜕𝜓∗ , a simple
calculation confirms that [65]

[ ̂𝐴, 𝐵̂] = 𝐶𝜕𝜓 + 𝐶∗𝜕𝜓∗ ,
with

𝐶 = 𝜕𝐵
𝜕𝜓𝐴 − 𝜕𝐴

𝜕𝜓𝐵 + 𝜕𝐵
𝜕𝜓∗ 𝐴∗ − 𝜕𝐴

𝜕𝜓∗ 𝐵∗.

In the context of the GPE, the operators take the form

̂𝐴 = ̂𝑇 = 𝑖Δ𝜓 𝜕𝜓 − 𝑖Δ𝜓∗ 𝜕𝜓∗ , 𝐵̂ = ̂𝑉 = −𝑖(𝑉 + 𝜎|𝜓|2)𝜓𝜕𝜓 + 𝑖(𝑉 + |𝜓|2)𝜓∗ 𝜕𝜓∗ ,

and their commutator [ ̂𝑇 , ̂𝑉] = 𝐶𝜕𝜓 + 𝐶∗𝜕𝜓∗ is readily computed, see also (1.50), with

𝐶 = −𝑖(𝑉 + 2|𝜓|2)(𝑖Δ𝜓) − (𝑖Δ) (−𝑖(𝑉 + 𝜎|𝜓|2)𝜓) + (−𝑖𝜓2)(−𝑖Δ𝜓∗) − 0
= [−𝑖𝑉, 𝑖Δ]𝜓 + 2𝜎|𝜓|2Δ𝜓 − 𝜎Δ(|𝜓|2𝜓) − 𝜎𝜓2Δ𝜓∗

= [−𝑖𝑉, 𝑖Δ]𝜓 + 2𝜎|𝜓|2Δ𝜓 − 𝜎∇(𝜓∗𝑥𝜓2 + 2𝜎|𝜓|2𝜓𝑥) − 𝜎𝜓2Δ𝜓∗

= [𝑉, Δ]𝜓 − 𝜎 ((Δ𝜓∗)𝜓2 + 2(∇𝜓∗)𝜓𝜓𝑥 + 2 ((∇𝜓∗)𝜓(∇𝜓) + 𝜓∗(∇𝜓)(∇𝜓)))
− 𝜎𝜓2Δ𝜓∗

= [𝑉, Δ]𝜓 − 𝜎 (2𝜓2Δ𝜓∗ + 4𝜓(∇𝜓) ⋅ (∇𝜓∗) + 2𝜓∗(∇𝜓) ⋅ (∇𝜓)) .
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Chapter 3. Non-linear equations: Gross-Pitaevski

Table 3.1: Computation of Lie-commutators with M, with inputs of the form 𝑂̂ =
(𝑂𝑅(𝑃, 𝑃∗) + 𝑖𝑂𝐼(𝑃, 𝑃∗))𝜕𝑃 + (𝑂𝑅(𝑃∗, 𝑃) − 𝑖𝑂𝐼(𝑃∗, 𝑃))𝜕𝑃∗ .

1 LieCom[A_, B_] := Module[{CA, CB, maxder = 10, Dv},
2 (* Assuming real parameters, the conjugate is taken by replacing 𝑃 ↔ 𝐶𝑃 and 𝑖 ↔ −𝑖 *)
3 CA = A /. Complex[a_,b_]:>Complex[a,−b] /. P −> PP /. CP −> P /. PP −> CP;
4 CB = B /. Complex[a_,b_]:>Complex[a,−b] /. P −> PP /. CP −> P /. PP −> CP;
5 Dv[exp_, var_, v_] :=
6 D[exp, var[x]]*v + Sum[D[exp, Derivative[k][var][x]]*D[v, {x, k}], {k, 1, maxder}];
7 (* Output *)
8 Dv[B, P, A] − Dv[A, P, B] + Dv[B, CP, CA] − Dv[A, CP, CB]
9 ]

A computation using the algorithm in Table 3.1 confirms that [ ̂𝑉 , [ ̂𝑉 , [ ̂𝑉 , ̂𝑇]]] = 0, and the
RKN property also holds for the nonlinear Schrödinger equation.

In the present near-integrable setting, our new method substantially improves the Hermite
performance, and it can indeed be regarded as the optimal choice for the number of Hermite
basis functions (for an equidistant grid) at each time step.

For the ease of notation, we restrict ourselves to the one-dimensional problem

𝑖 𝜕
𝜕𝑡 𝜓 = 𝐻0(𝑡)𝜓 + (𝜀𝑉𝐼(𝑥, 𝑡) + 𝜎(𝑡)|𝜓|2) 𝜓 (3.5)

where
𝐻0(𝑡) = 1

2𝜇𝑝2 + 1
2𝜇𝜔2(𝑡)𝑥2 (3.6)

and 𝑝 = −𝑖 𝜕
𝜕𝑥 . As in Chapter 2, the boundary conditions imposed by the trap require the wave

function to go to zero at infinity, and up to any desired accuracy, we can assume 𝜓(𝑥, 𝑡) and
all its derivatives to vanish outside a finite region, say [𝑎, 𝑏], which we divide using a mesh
(usually with 𝑁 = 2𝑘 points to allow a simple use of the FFT algorithms). Then, the partial
differential equation (3.5) transforms into a system of ordinary differential equations2 of the
same form.

3.1.2 Numerical results

Next, we study the values 𝜎 = 10−2, 1, 102 for the nonlinearity parameter and assume the
trapping frequency to be constant 𝜔 = 1. The case 𝜎 = 10−2 illustrates the performance of
the new methods if applied to problems (linear or nonlinear) which are small perturbations
of the Harmonic potential whereas the values 𝜎 = 1, 102 are large enough to demonstrate the
nonlinearity effects on the approximation properties of the methods. Physically, 𝜎 is propor-
tional to the number of particles in a Bose-Einstein condensate and to the interaction strength,
cf. (1.12) [107].

For all cases, we choose the initial condition 𝜓(𝑥, 0) = 𝜋−1/4𝑒−𝑥2/2, which is normalized to
‖𝜓(𝑥, 0)‖2 = 1 in the discrete 𝐿2 norm (2.28). We show in Fig. 3.1 the value of |𝜓(𝑥, 𝑡)|2 at

2As we are only interested in the temporal error, we do not distinguish formally between the spatially discretized
and the full solution.
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3.1 Near-integrable systems

the initial and final time, which has been computed numerically to high accuracy. The spatial
interval is adjusted to ensure the wave function vanishes (up to round off) at the boundaries,
here [−30, 30] (we only show the interval 𝑥 ∈ [−5, 5]) and discretized at 𝑁 = 1024 equidistant
points. One can appreciate that for strong nonlinearities the wave function can considerably
penetrate the potential barrier. Then, we expect that an accurate approximation of these wave
functions requires a large number of Hermite functions when using (2.7) what renders this
procedure inappropriate.
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Figure 3.1: Exact evolution at 𝑡 = 𝑇 (solid red line) from the initial conditions given by 𝜓(𝑥, 0) =
𝜋−1/4𝑒−𝑥2/2 (dashed blue line).

In order to assess the relative performances of different splitting approaches, we use the stan-
dard Leapfrog method (1.38)

Ψ(𝑛ℎ) = (𝑒 ℎ
2 𝐵𝑒ℎ𝐴𝑒 ℎ

2 𝐵)
𝑛

, (3.7)

with 𝐴 = 𝐻0, 𝐵 = 𝜎|𝜓|2 and 𝐴 = 𝑇 , 𝐵 = 1
2𝑥2 + 𝜎|𝜓|2 for the Hermite and plain Fourier

splits, respectively. The results reproduced in Fig. 3.2 show that the Hermite-Fourier method
proposed in this work (using the composition (2.15)) is clearly superior for weak perturbations
and it keeps similar performance to the F-split for strong nonlinearities. Overall, we conclude
that the Fourier-Hermite split is superior since it attains the best performance for all situations
where the wave function is localized in a single minimum of the potential by combining the
best of both worlds.

Finally, we analyze the performance of different higher order splitting methods which are use-
ful when high accuracies are desired. The following methods (whose coefficients are collected
in Table 3.2 for the convenience of the reader) are considered:

• RKN64 (the 6-stage fourth-order method from [29]). This is a Runge-Kutta-Nyström
method and it is designed for algebras where [𝐵, [𝐵, [𝐵, 𝐴]]] = 0, being the case for
both the F-split and the HO-split.

• V82 (the 4-stage (8,2) 𝐵𝐴𝐵 method from [94]). This method is addressed to perturbed
systems. One expects a high performance if the contribution from 𝐵 is small.

• V84 (the 5-stage (8,4) 𝐵𝐴𝐵 method from [94]).
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Figure 3.2: Error versus the number of basis changes (BC), i.e., Fourier (dashed blue line) or Hermite
transforms, in logarithmic scale for different splittings for the Leap-Frog method (3.7).

Table 3.2: Coefficients for several splitting methods.

The 6-stage 4𝑡ℎ-order method: RKN64 [29]

𝑏1 = 0.0829844064174052 𝑎1 = 0.245298957184271
𝑏2 = 0.396309801498368 𝑎2 = 0.604872665711080
𝑏3 = −0.0390563049223486 𝑎3 = 1/2 − (𝑎1 + 𝑎2)
𝑏4 = 1 − 2(𝑏1 + 𝑏2 + 𝑏3) 𝑎4 = 𝑎3, 𝑎5 = 𝑎2, 𝑎6 = 𝑎1
𝑏5 = 𝑏3, 𝑏6 = 𝑏2, 𝑏7 = 𝑏1

The 4-stage (8,2) method: V82 [94]

𝑏1 = 1/20 𝑎1 = 1/2 − √3/28
𝑏2 = 49/18 𝑎2 = 1/2 − 𝑎1
𝑏3 = 1 − 2(𝑏1 + 𝑏2) 𝑎3 = 𝑎2, 𝑎4 = 𝑎1
𝑏4 = 𝑏2, 𝑏5 = 𝑏1

The 5-stage (8,4) method: V84 [94]

𝑏1 = 0.811862738544516 𝑎1 = −0.00758691311877447
𝑏2 = −0.677480399532169 𝑎2 = 0.317218277973169
𝑏3 = 1/2 − (𝑏1 + 𝑏2) 𝑎3 = 1 − 2(𝑎1 + 𝑎2)
𝑏4 = 𝑏3, 𝑏5 = 𝑏2, 𝑏6 = 𝑏1 𝑎4 = 𝑎2, 𝑎5 = 𝑎1

We analyze in Figures 3.3-3.5 the three problems specified in Fig. 3.2. In the left panels, the
Leap-Frog methods, LF, are compared with the second order V82 methods. In the right pan-
els, we compare the RKN64 methods against the V84 methods jointly with the best among
the previous second order methods. Additional experiments with different initial conditions,
e.g., for a displaced Gaussian, show that the improvement for the HO-split can be much more
pronounced for intermediate values of the nonlinearity parameter, 𝜎 = 𝒪(1). Note that the
number of Hermite basis functions has not been taken into account for the cost in the effi-
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ciency plots, and it would further deteriorate their performance. We thus advocate, backed
with Fig. 3.2 that they should be discarded in favor of the combined Fourier-Hermite split.
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Figure 3.3: Comparison of second order (left panel) and fourth-order (right panel) methods for the
different splittings and decompositions discussed in the text and 𝜎 = 0.01. In the both panels and for
a wide range of precision, the dashed curves overlap with the solid ones that correspond to the same
composition method 𝑋H, i.e., 𝑋H overlaps with 𝑋H30.

For a weak nonlinearity, when the system can be considered as a perturbed harmonic oscillator,
we clearly observe that the HO-split is superior to the F-split. In this case, with a relatively
small number of Hermite functions, it is possible to approach accurately the solution, but this
procedure has a limited accuracy which can deteriorate along the time integration and depends
on the initial conditions. Overall, the methods addressed to perturbed problems show the best
performance: The V82𝐻 method performs best among the compared when a relatively low
accuracy is desired and the V84𝐻 method takes its place for higher accuracies.

Figure 3.4 shows the results for 𝜎 = 1. It is qualitatively similar to the previous case yet the
HO-split does not outperform the plain F-split (2.3) as significantly as before. For higher order
methods and high accuracies, the improvement is only marginal. Nevertheless, it is important
to observe that, again, the best result is obtained for the HO-split. Notice that a higher number
of Hermite basis functions is necessary to achieve the same accuracy as the Hermite-Fourier
decomposition.

Figure 3.5 shows the results for 𝜎 = 100. The HO-split cannot be expected to be particularly
useful because the system is far from being a harmonic oscillator. From Fig. 3.2, we expect a
great number of Hermite basis functions to be required for a sufficiently accurate expansion.
The results in Fig. 3.5 demonstrate this rather intuitive expectation, i.e., almost negligible
precision despite the large number of basis terms 𝑀 = 200. Remarkably, the proposed HO
decomposition does not show these limitations and reaches the precision of the F-split (2.3)
because we are solving the harmonic potential exactly up to spectral accuracy. For this prob-
lem, we observe that the V82 method has the best performance when a relatively low accuracy
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Figure 3.4: Same as Fig. 3.3 for 𝜎 = 1. In the left panel, LFH and V82H coincide with LFH50 and
V82H, respectively.
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Figure 3.5: Same as Fig. 3.3 for 𝜎 = 100. F-splittings (blue dashed) overlap with the corresponding
(solid red) Fourier-Hermite curves.

is desired, the V84 method shows the best performance for medium accuracies and the RKN64
is the method of choice for higher accuracies.
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3.2 Unconventional splitting methods

3.2.1 Modifying nonlinear potentials

The starting point is the well-known concept of modifying potentials [86], which comes from
the observation that the commutator [𝑉(𝑥), [𝑉(𝑥), 𝜕2𝑥]] = 2(𝜕𝑥𝑉)2 is a function of the spatial
coordinate only, and it can be cheaply exponentiated together with the potential, see also the
discussion following (1.45) of Section1.3.3.

For the nonlinear SE, the expression becomes slightly more involved, namely,

[𝐵̂, [ ̂𝐴, 𝐵̂]](𝐈)(𝜓) = +𝑖𝜖2𝑉2𝑥 𝜓 − 2𝑖𝜎𝜖|𝜓|2𝑉𝑥𝑥𝜓
+ 𝑖𝜎2(|𝜓|2 (−6|𝜓𝑥 |2 − 2𝜓∗𝜓𝑥𝑥) + 𝜓2 (−2𝜓∗𝜓∗𝑥𝑥 − 𝜓∗𝑥

2) − 𝜓∗2𝜓2𝑥)𝜓,

with Lie operators ̂𝐴, 𝐵̂ associated with the vector fields 𝐵 = −𝑖(𝜖𝑉 + 𝜎|𝜓|2)𝜓 and 𝐴 =
−𝑖(1

2Δ + 𝑊(𝑥))𝜓, respectively. The right-hand side can be rewritten as

[𝐵̂, [ ̂𝐴, 𝐵̂]](𝐈)(𝜓) = +𝑖𝜖2𝑉2𝑥 𝜓 − 2𝑖𝜎𝜖|𝜓|2𝑉𝑥𝑥𝜓 − 𝑖𝜎2(2(Δ(|𝜓|2))|𝜓|2 + (∇(|𝜓|2))2)𝜓.
(3.8)

After this simplification, it is clear that Lemma 3.1.1 can be applied to exponentiate (3.8) since
the absolute value of the wave function remains constant.

At the expense of having to compute derivatives, we introduce the modified nonlinear potential

̃𝑉𝑎,𝑏(ℎ) = 𝑎ℎ (𝜖𝑉 + 𝜎|𝜓|2) − 𝑏ℎ3 (𝜖2(∇𝑉)2 − 2𝜖𝜎|𝜓|2(Δ𝑉))
+ 𝑏ℎ3𝜎2(2(Δ(|𝜓|2))|𝜓|2 + (∇(|𝜓|2))2).

In contrast to the linear case for which we will revisit the modifying potentials in Chapter 5,
here, each computation of ̃𝑉 requires an FFT and two inverse transformations to compute
the derivatives, and is thus roughly as costly as adding one and a half extra stage to the
splitting. Optimal implementation can save the first FFT since we are already in Fourier
space after having evaluated the 𝑇 exponent and thus, we will only account for two extra
FFTs when the modified potential is preceded by some calculation in Fourier space, e.g.,
⋯ 𝑒−𝑖𝑎𝑗ℎ𝑇 𝑒−𝑖𝑉̃𝑏𝑗,𝑐𝑗 (ℎ)𝑒−𝑖𝑎𝑗+1ℎ𝑇 ⋯. For this reason, it is recommendable to only use the mod-
ified potential in the center step, e.g., as in the well-known fourth-order method [86, 44],

Ψ[4] = 𝑒−𝑖 ℎ
6 𝑉 𝑒−𝑖 ℎ

2 𝑇 𝑒
−𝑖𝑉̃ 2

3 , 1
72

(ℎ)
𝑒−𝑖 ℎ

2 𝑇 𝑒−𝑖 ℎ
6 𝑉 , (3.9)

which requires six FFTs. Adding an extra stage while imposing symmetry and consistency,
we arrive at

𝑒−𝑖ℎ𝑏1𝑉 𝑒−𝑖ℎ𝑎1𝑇 𝑒−𝑖𝑉̃1/2−𝑏1,𝑐(ℎ)𝑒−𝑖ℎ(1−2𝑎1)𝑇 𝑒−𝑖𝑉̃1/2−𝑏1,𝑐(ℎ)𝑒−𝑖ℎ𝑎1𝑇 𝑒−𝑖ℎ𝑏1𝑉

at the cost of ten FFTs and with two free parameters which is enough to reach order (6,4),

𝑎1 = 1
2 (1 − 1

√5
) , 𝑏1 = 1

12 , 𝑐 = 1
576 (13 − 5√5) .
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At the same computational cost, the following composition offers an additional degree of
freedom for optimizations

𝑒−𝑖ℎ𝑏1𝑉 𝑒−𝑖ℎ𝑎1𝑇 𝑒−𝑖ℎ𝑏2𝑉 𝑒−𝑖ℎ𝑎2𝑇 𝑒−𝑖𝑉̃𝑏3,𝑐𝑒−𝑖ℎ𝑎2𝑇 𝑒−𝑖ℎ𝑏2𝑉 𝑒−𝑖ℎ𝑎1𝑇 𝑒−𝑖ℎ𝑏1𝑉

and we have computed an (8,4) method with only positive coefficients

𝑎1 = 7 − √21
14 , 𝑏1 = 1/20, 𝑏2 = 1/20, 𝑐 = 3861 − 791√21

64800 , (3.10)

and for consistency 𝑎2 = 1/2 − 𝑎1, 𝑏3 = 1 − 2(𝑏1 + 𝑏2).

For completeness, we mention that adding an extra stage to a splitting method while keeping
it symmetric will also cost two additional FFTs and introduces one free parameter. Overall, it
is thus comparable to the modified potential approach.

3.2.2 Complex coefficients

In the introduction, we already came across Yoshida’s device to construct arbitrary order
methods from a low order approximation. Apart from the real-valued solution for the order
conditions, there are two complex-valued ones with positive real part at each composition
step, e.g., from order two to order four. For real-valued problems as common in classical me-
chanics, a numerical integrator based on complex fractional time-steps needs an additional
projection step which implies a loss of the geometric properties3 and furthermore implies
quadruple computational cost which is due to multiplication of complex numbers instead of
reals.

In the quantum mechanical setting, the situation is slightly more beneficial since the wave
functions are already complex-valued and complex time-steps not even double the overall cost
since only the real-valued exponentials are replaced by complex ones, thus the products are
between complexes and complexes instead of reals and complexes. In addition, the obtained
methods will not be unitarity and some normalization has to be applied to the wave function.

With the aim of integrating the Hamiltonian

𝐻 = (𝑇 + 𝑊)𝜓 + (𝜀𝑉 + 𝜎|𝜓|2)𝜓

under the assumption that we have an efficient solver for 𝑇 + 𝑊 , e.g., by FFTs (for 𝑊 = 0)
or when the eigenfunctions of 𝑇 + 𝑊 are known, cf. Chapter 2, we have constructed splitting
methods of two types that are optimized for near-integrable systems, where 𝑎𝑗 ∈ ℝ, 𝑏𝑗 ∈ ℂ
and 𝑎𝑗 , 𝑏𝑗 ∈ ℂ. The latter family turned out to be unstable in numerical experiments, which
is due to exponents of the form −𝑖𝑎𝑗ℎ𝑇 and of course either all 𝑎𝑗 ∈ ℝ or at least one 𝑎𝑘 has
negative imaginary part4. In fact, the same holds to some degree for complex 𝑏𝑗 for unbounded
potentials 𝑉 . The stability of the methods will then crucially depend on the truncation of the
spatial domain in order to artificially bound the potential.

Before going into details, we address how to solve the nonlinear part in complex time.
3Although it has been shown, that certain geometric properties are preserved up to higher order
4This follows immediately from the consistency condition ∑𝑗 𝑎𝑗 = 0.
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A variant of the complex Ginzburg-Landau equation Let us consider the PDE which
corresponds to the potential nonlinear part of the GPE,

𝑖𝜓𝑡 = (𝑉 + 𝜎|𝜓|2)𝜓, 𝜓(𝑥, 0) = 𝜓0(𝑥).

Now, the vector-field is not holomorphic but we can borrow a trick from [19], which has been
successfully applied to the complex Ginzburg-Landau equation. However, their derivation is
incomplete and therefore generalized in the following to be applicable for any kind of GPE,
in real and imaginary time:

𝜓𝑡 = 𝛼Δ𝜓 + 𝛽𝜓 + 𝛾|𝜓|2𝜓, 𝑡 ∈ ℂ,

where 𝛼, 𝛽, 𝛾 are complex-valued linear operators to also account for the complex Ginzburg-
Landau equation. The starting point is to write the system as sum of real and imaginary parts,
i.e., 𝜓 = 𝑣 + 𝑖𝑤

𝜕𝑡𝑣 + 𝑖𝜕𝑡𝑤 = (𝛼Δ + 𝛽)(𝑣 + 𝑖𝑤) + (𝛾𝑅 + 𝑖𝛾𝐼)(𝑣2 + 𝑤2)(𝑣 + 𝑖𝑤). (3.11)

Now, we identify the real and imaginary parts on both sides and introduce new (complex)
coordinates ̃𝑣 = − 𝑖

2 (𝑣 + 𝑖𝑤) , 𝑤̃ = 1
2 (𝑣 − 𝑖𝑤) , which, after simple algebra, yields the now

holomorphic system

𝜕𝑡 ̃𝑣 = (𝛼Δ + 𝛽) ̃𝑣 + 𝛾𝑀̃ ̃𝑣,
𝜕𝑡𝑤̃ = (𝛼∗Δ + 𝛽∗)𝑤̃ + 𝛾∗𝑀̃𝑤̃, (3.12)

with 𝑀̃ = 4𝑖 ̃𝑣𝑤̃. The kinetic part can be solved with spectral methods and for the remainder,
i.e., for 𝛼 = 0, the equation becomes local and can be solved easily as an ODE: As is standard
for the Ginzburg-Landau equation, we solve the equation by first considering the ”norm”, 𝑀̃,
which is governed by

𝜕𝑡𝑀̃ = 4𝑖 ( ̃𝑣𝑡𝑤̃ + ̃𝑣𝑤̃𝑡) = (𝛽 + 𝛽∗)𝑀̃ + (𝛾 + 𝛾∗)𝑀̃2, 𝑀̃(0) = 𝑀0 ∶= 4𝑖 ̃𝑣(0)𝑤̃(0),

and which can be solved by separation of variables, using the shorthand 𝛽𝑅 = ℜ(𝛽), 𝛾𝑅 =
ℜ(𝛾), to

𝑀̃(𝑡) = 𝛽𝑅𝑒2𝛽𝑅𝑡𝑀0
𝛽𝑅 − 𝛾𝑅(𝑒2𝛽𝑅𝑡 − 1)𝑀0

.

Now, the original equations (3.12) can be easily solved by evaluating

̃𝑣(𝑡) = exp (𝛽𝑡 + 𝛾 ∫𝑡
0 𝑀̃(𝑧) 𝑑𝑧) ̃𝑣0,

𝑤̃(𝑡) = exp (𝛽∗𝑡 + 𝛾∗ ∫𝑡
0 𝑀̃(𝑧) 𝑑𝑧) 𝑤̃0,

(3.13)

where
∫𝑡

0 𝑀̃(𝑧)𝑑𝑧 = − 1
2𝛾𝑅

log (𝛾𝑅
𝛽𝑅

𝑀0 (1 − 𝑒2𝛽𝑅𝑡) + 1) .

For the nonlinear Schrödinger equation, both 𝛽 and 𝛾 are purely imaginary and in the limit
𝛽𝑅, 𝛾𝑅 → 0, the evolution (3.13) simplifies to

̃𝑣(𝑡) = 𝑒𝑡(𝛽+𝛾𝑀̃0) ̃𝑣0, 𝑤̃(𝑡) = 𝑒𝑡(𝛽∗+𝛾∗𝑀̃0)𝑤̃0, 𝑀̃0 = 4𝑖 ̃𝑣0𝑤̃0.
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The 𝛼-part is trivially solved by

̃𝑣(𝑡) = 𝑒𝑡𝛼∆ ̃𝑣0, 𝑤̃(𝑡) = 𝑒𝑡𝛼∗∆𝑤̃0, (3.14)

and we have all ingredients to apply a composition with complex coefficients. As is evident
from (3.14), twice as many Fourier transforms are necessary due to the increase of dimension-
ality.

3.2.3 Numerical experiments

A preliminary search to find new splitting methods with real 𝑎𝑖 and complex 𝑏𝑗 gave promising
results in terms of accuracy, however, the double cost, when counting only FFTs, in compar-
ison to real-coefficient classical splittings overcompensates and the efficiency of a range of
complex coefficient methods that we have tested5 is not competitive. As mentioned above,
stability becomes an issue since complex fractional times lead to a loss of unitarity which
is particularly pronounced for unbounded potentials on large domains. Therefore, we restrict
ourselves to a proof of concept type exposition to show that the correct orders of accuracy
are attained when integrating the Gross-Pitaevskii equation with the new procedures based
on nonlinear modifying potentials and complex coefficients.

For reference, the successful standard splitting methods Leapfrog, V84, RKN64, see Table 3.2,
have been used and compared against the following group of methods:

• GPE-4M (the fourth-order splitting with nonlinear modifying potential (3.9)).

• GPE-84M (the (8,4) method (3.10)).

• Castella-4 (the fourth-order 𝐵𝐴𝐵 method from [40]). The coefficients are 𝑎𝑗 = 1/4 and
𝑏1 = 1−𝑖/3

10 , 𝑏2 = 4+2𝑖
15 , 𝑏3 = 4−3𝑖

15 , 𝑏4 = 𝑏2, 𝑏5 = 𝑏1.

Bounded potentials First, we treat the simpler bounded case, as exemplified by the familiar
Pöschl-Teller potential (2.30),

𝑉 = 𝜆(𝜆 + 1)
2 (1 − sech (𝑥))2 , (3.15)

with 𝜆 = 4. In this setting, complex values of 𝑏𝑗 are not likely to cause stability problems
since the exponent −𝑖𝑏𝑗ℎ𝑉 remains relatively small. The nonlinearity is chosen as 𝜎 = 0.01
and 𝜎 = 10 and the respective spatial domain has been truncated to the interval [−15, 15),
discretized at 𝑁 = 1024 equidistant grid points, 𝑥𝑗 = 𝑗 30

𝑁 − 15, 𝑗 = 0, … , 𝑁 − 1. As initial
condition, we choose the corresponding ground states 𝜓0 which have been computed to ten
digit accuracy with the imaginary time method, cf. Chapter 5. The exact solution is obtained
by propagating the ground state until the final time 𝑇 = 10 through 𝜓(𝑇) = 𝑒−𝑖𝜇𝑇 𝜓0 using
the eigenvalue 𝜇 = ⟨𝑇 + 𝑉 + 𝜎|𝜓0|⟩𝜓0 .

The results for both values of 𝜎 are illustrated in Fig. 3.6. We appreciate the fourth-order be-
havior of the new methods which confirms our theory. However, the classical methods V84

5The results are not reproduced in the text.
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and RKN64 are extremely competitive and it remains to be seen whether a parameter optimiza-
tion for complex coefficient methods will be able to close the gap and create more efficient
methods. On the other hand, the new modifying potential is competitive and the optimized
(8,4) method is improving on the standard when the nonlinearity plays the role of the small
part, see Fig. 3.6a.
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Figure 3.6: Efficiency plot of various splitting methods for the Pöschl-Teller potential (3.15) for 𝑁 =
1024 grid points on the domain 𝑥 ∈ [−15, 15]. On the abscissa, the number of 𝑁-point FFTs is shown
for each method.

Unbounded potentials In this experiment, we take the harmonic oscillator potential 𝑉 =
1
2𝑥2 and leave the remaining parameters as before, i.e., we integrate the respective ground
states for 𝜎 = 0.01 and 𝜎 = 10 until 𝑇 = 10 using 𝑁 = 1024 equidistant grid points on
[−15, 15).

For each method and configuration, the two splits, (𝑇+𝑉)+𝜎|𝜓|2 (HO) and 𝑇+(𝑉+𝜎|𝜓|2) (F)
have been compared. The HO-split solves the harmonic part exactly with the Fourier methods
discussed in Chapter 2

The results in Fig. 3.7 show the instabilities for large values of the time-step in the complex do-
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main. Furthermore, as predicted, for the HO-split when only the nonlinearity is propagated in
complex time, the stability domain is greatly enlarged. The calculations confirm the expected
order of the methods and whether an improvement over the real standard splittings is possible
is subject of further research.
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Figure 3.7: Efficiency plot of various splitting methods for the harmonic potential 𝑉 = 1
2 𝑥2 and two dif-

ferent strengths of the interaction parameter 𝜎. Same symbols correspond to same splitting coefficients,
and the type of splitting is indicated by the line style: Dashed lines originate from the 𝐹-split, where
the kinetic part is propagated separately from the potential, whereas the solid lines have been computed
with the 𝐻𝑂-split for which the nonlinearity is separately evolved. The right column shows a zoom of
the initial conditions, the exact solution and the external potential 𝑉(𝑥).
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Chapter4
THE SEMI-CLASSICAL LIMIT

The computation of the semi-classical Schrödinger equation (SCSE) presents a variety of
challenges [83] and in this section, we present a new method for the numerical evolution of
the SCSE defined in (1.9). After suitable rescaling of the spatial variable and using atomic
units, cf. Section 1.1.2, we arrive at the problem

𝑖𝜀𝜕𝑡𝜓(𝑥, 𝑡) = −𝜀2 𝜕2

𝜕𝑥2 𝜓(𝑥, 𝑡) + 𝑉(𝑥, 𝑡)𝜓(𝑥, 𝑡), 𝑥 ∈ [−1, 1], (4.1)

given with an initial value and periodic boundary conditions, where the potential 𝑉 is a peri-
odic function in space. In accordance with the considerations in previous chapters, this formu-
lation is also valid to simulate bounded states on unbounded domains since they rapidly decay
on a sufficiently large spatial interval. Although we address the problem in only one spatial di-
mension, the methodology extends in a straightforward fashion to problems with moderately
large dimension 𝑑.

The small size of 𝜀 is a source of substantial difficulties in the numerical discretization of
(4.1) because rapid oscillations require a resolution of 𝒪(𝜀) in both space and time which is
often impractical or exceedingly expensive.

From the WKB analysis in Section 1.1.2 following (1.10), it is clear that the spatial resolution
Δ𝑥 = 𝒪(𝜀) must be maintained. However, there is no such restriction for the time domain and
we therefore pursue alternative approaches, based in the main on the concept of exponential
splittings [53, 83, 91, 95].
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4.1 The autonomous case

T       [10].

Let us consider the autonomous situation by dropping the time-dependence in the potential.
It is convenient to rewrite (4.1) as

𝑖 𝜕𝜓
𝜕𝑡 = −𝜔−1 𝜕2𝜓

𝜕𝑥2 + 𝜔𝑉(𝑥)𝜓, 𝑥 ∈ [−1, 1], (4.2)

where 𝜔 = 𝜀−1 ≫ 1. At this stage, we will assume a given spatial discretization and replace
the second derivative operator and the multiplication by the interaction potential by matri-
ces 𝒦 and 𝒟 , respectively, in order to reformulate (4.1) as a system of ordinary differential
equations of the form

𝑖𝑢′ = (−𝜔−1𝒦 + 𝜔𝒟 )𝑢, 𝑢 ∈ ℂ𝑁 (4.3)

where 𝑢(0) is sampled from the initial conditions on the spatial grid. The exact solution of
(4.3) is of course

𝑢(𝑡) = exp (𝑖𝑡(𝜔−1𝒦 − 𝜔𝒟 )) 𝑢(0) (4.4)

and a natural temptation is to approximate it (using small time steps) by any of many methods
to compute the matrix exponential, 𝑒𝑖ℎ(𝜔−1𝒦−𝜔𝒟 ). However, both summands in the exponent,
𝜔−1𝒦 and 𝜔𝒟 are scaling with 𝜔 as we will see in continuation and therefore require either
very small time steps ℎ or extreme numerical efforts to approximate the exponential (e.g.,
Krylov subspace methods of dimension ≈ 𝑁) to attain reasonable accuracy.

The alternative is to separate scales by means of an exponential splitting and we begin by
pointing out a few aspects that have to be considered for this highly oscillatory problem.

Limitations of classical splittings As in the previous sections, the working horse of the
splitting family, the Strang splitting

𝑒𝑖ℎ(𝜔−1𝒦−𝜔𝒟 ) = 𝑒−𝑖 ℎ
2 𝜔𝒟 𝑒𝑖ℎ𝜔−1𝒦𝑒−𝑖 ℎ

2 𝜔𝒟 + 𝒪(ℎ3) , (4.5)

delivers advantageous properties: separation of scales on the one hand and cheap computabil-
ity of each exponential by spectral methods. The downside is that higher order methods require
a large number of exponentials.

Under the assumptions that all derivatives of the potentials are bounded in the 𝐿∞-norm and
that the derivatives of the exact solution do not grow larger than

∥ 𝜕𝑚1+𝑚2

𝜕𝑥𝑚1𝜕𝑡𝑚2 𝜓(𝑥, 𝑡)∥
𝐶([0,𝑇];𝐿2(−1,1))

≤
𝐶𝑚1+𝑚2
𝜀𝑚1+𝑚2

,

for some positive constants 𝐶𝑚, it has been derived in Ref. [14] that a meshing strategy of
Δ𝑥 = 𝒪(𝜀) and ℎ = 𝒪(𝜀) will yield an error bound for the first order Lie-trotter splitting
(1.36) after 𝑛 time-steps of size ℎ,

‖𝜓𝜀(𝑛ℎ) − 𝑢𝜀,𝑛
int ‖𝐿2((𝑎,𝑏) ≤ 𝐺𝑚

𝑇
ℎ ( Δ𝑥

𝜀(𝑏 − 𝑎))
𝑚

+ 𝐶 𝑇ℎ
𝜀 , 𝑛 = 0, 1, … , 𝑇/ℎ, (4.6)
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4.1 The autonomous case

for constants 𝐶, 𝐺𝑚 > 0 independent of 𝜀 and 𝐶 independent of 𝑚. On time intervals of size
𝑇 = 𝒪(1), an 𝐿2 error of size 𝒪(𝛿) can thus be guaranteed by choosing ℎ/𝜀 = 𝒪(𝛿) and
Δ𝑥/𝜀 = 𝒪((𝛿ℎ)1/𝑚).

The proof of this result makes use of the Taylor expansion of the splitting and estimates the
local error through the commutator [ℎ𝑇, ℎ𝑉], which is then calculated to be of size 𝒪(ℎ2/𝜀)
and which constitutes the right part of the estimate (4.6).

For the Strang split, e.g., after spatial discretization in (4.5), the error terms are

ℎ3[𝜀𝜕2𝑥 , [𝜀𝜕2𝑥 , 𝜀−1𝑉]] and ℎ3[𝜀−1𝑉, [𝜀−1𝑉, 𝜀𝜕2𝑥]],

which result, with the help of Table 4.1, in terms of size 𝒪(ℎ3𝜀−1). Indeed, any higher-order
commutator of length 𝑛 will be of size ℎ𝑛𝜀−1 and we can expect to relax the meshing restriction
for an order 𝑝 splitting method to

ℎ𝑝/𝜀 = 𝒪(𝛿) and Δ𝑥/𝜀 = 𝒪((𝛿ℎ)1/𝑚) . (4.7)

If high order is desired, an inordinately large number of exponentials is required, e.g., the
simple composition method of Yoshida (1.44), calls for 𝑟 = 3𝑝−1 compositions of Leapfrog
schemes, or 2 ⋅ 3𝑝−1 + 1 exponentials after concatenation, to attain order 2𝑝.

Introduction to an asymptotic approach We present new splittings that require far fewer
exponentials to attain a given order, to be precise, the number of exponentials is shown to
grow linearly, rather than exponentially, with order. Moreover, the exponents will become of
increasingly smaller size which will yield an asymptotic splitting. Ultimately, even though
some non-diagonal matrices will appear in the splittings, the computation of the exponentials
can still be cheaply performed because of their small exponents by low-dimensional Lanczos-
methods. The final method will be of the form

𝑒−𝑖ℎ(−𝜔−1𝒦+𝜔𝒟 ) = 𝑒ℛ0𝑒ℛ1 ⋯ 𝑒ℛ𝑠𝑒𝒯𝑠+1𝑒ℛ𝑠 ⋯ 𝑒ℛ1𝑒ℛ0 = 𝒪(𝜀𝑠+1/2) , (4.8)

where

ℛ0 = ℛ0(ℎ, 𝜀, 𝒦, 𝒟 ) = 𝒪(𝜀−1/2) ,
ℛ𝑘 = ℛ𝑘(ℎ, 𝜀, 𝒦, 𝒟 ) = 𝒪(𝜀𝑘−3/2) , 𝑘 = 1, … , 𝑠,

𝒯𝑠+1 = 𝒯𝑠+1(ℎ, 𝜀, 𝒦, 𝒟 ) = 𝒪(𝜀𝑠−1/2) ,

(recall that 𝜔 = 𝜀−1) and variations on this theme. Note a number of critical differences
between (4.8) and standard exponential splittings.

Firstly, the error is quantified in the small parameter 𝜀 under which we have subsumed the
other small quantities ℎ and 1/𝑁 (where 𝑁 is the number of degrees of freedom in the semi-
discretization) by introducing a power law relationship between 𝜀 and the choices of ℎ and
𝑁 .

Secondly, we allow the exponents to contain both potentials and derivatives, originating from
commutators, which can be understood as a generalization of modifying potentials. Usually, a
mix of momentum and spatial coordinates is avoided since the result cannot be diagonalized
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Chapter 4. The semi-classical limit

by simple FFTs. In our approach, the separation of scales will enable us to overcome this
limitation and to achieve an efficient computation of the exponentials by means of Krylov-
subspace methods. And finally, we highlighted the linear growth in order with the number of
exponentials as the most striking benefit.

The outline of this section is as follows: We present the Lie algebraic concepts which form the
core of our method, the symmetric BCH formula and the Zassenhaus splitting. Thereafter, the
new splitting algorithm based on a recursive application of the symmetric BCH formula is de-
veloped and some technical problems concerning the stability after discretization are resolved.
We comment on the computation of the exponentials and conclude with some numerical ex-
periments.

4.1.1 The Lie algebraic setting

An algebra of operators

The vector field in the linear Schrödinger equation (4.3) is a linear combination of the action of
two operators, 𝜕2𝑥 and the multiplication by the interaction potential 𝑉 . Since the calculation
of exponential splittings entails nested commutation, the focus of our interest is on the free
Lie algebra

𝔉 = FLA{𝜕2𝑥 , 𝑉},

i.e., the linear-space closure of all nested commutators generated by 𝜕2𝑥 and 𝑉 . The elements
of 𝔉 are operators, acting on the initial value of (4.3): for the sake of simplicity, we assume
that the initial value, and hence the solution of (4.3) for moderate values of 𝑡 ≥ 0, is a periodic
function in C∞[−1, 1], but our results extend in a straightforward manner to functions of lower
smoothness.

To compute commutators, we need in principle to describe their action on functions, e.g.,

[𝑉, 𝜕2𝑥]𝑢 = 𝑉(𝜕2𝑥𝑢) − 𝜕2𝑥(𝑉𝑢) = −(𝜕2𝑥𝑉)𝑢 − 2(𝜕𝑥𝑉)𝜕𝑥𝑢

implies that [𝑉, 𝜕2𝑥] = −(𝜕2𝑥𝑉) − 2(𝜕𝑥𝑉)𝜕𝑥. We list the lowest-order further commutators
which form a so-called Hall basis1[111] of the free Lie algebra 𝔉 in Table 4.1. “Grade” therein
refers to the number of “letters” 𝑉 and 𝜕2𝑥 in the expression, while 𝜒𝑗 is the coefficient of
this term in the symmetric BCH formula, cf. (1.42) in Section 1.3.3. Additionally, Table 4.1
collects the explicitly computed terms 𝐻𝑗 , 𝑗 = 3, 4, … , 8. We note that all the terms belong to
the set

𝔊 =
⎧{
⎨{⎩

𝑛
∑
𝑘=0

𝑦𝑘(𝑥)𝜕𝑘𝑥 ∶ 𝑛 ∈ ℤ+, 𝑦0, … , 𝑦𝑛 ∈ C∞[−1, 1] periodic with period 2
⎫}
⎬}⎭

.

It is trivial to observe that 𝔊 is itself a Lie algebra. There are numerous cancellations, similar
to 𝐻8 = 0, because of the RKN structure induced by the letters 𝜕2𝑥 and 𝑉(𝑥). Nevertheless,
for our exposition it is more appropriate to operate in the larger Lie algebra 𝔊, where all

1cf. Section 1.3.3.
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4.1 The autonomous case

Table 4.1: The terms of the Hall basis of 𝔉 of grade ≤ 4.

𝑗 Basis element in 𝔉 𝜒𝑗 corresponding expression in 𝔊
Grade 1

𝐻1 𝜕2𝑥 1 𝜕2𝑥
𝐻2 𝑉 1 𝑉

Grade 2
𝐻3 [𝑉, 𝜕2𝑥] 0 −(𝜕2𝑥𝑉) − 2(𝜕𝑥𝑉)𝜕𝑥

Grade 3
𝐻4 [[𝑉, 𝜕2𝑥], 𝜕2𝑥] − 1

24 (𝜕4𝑥𝑉) + 4(𝜕3𝑥𝑉)𝜕𝑥 + 4(𝜕2𝑥𝑉)𝜕2𝑥
𝐻5 [[𝑉, 𝜕2𝑥], 𝑉] − 1

12 −2(𝜕𝑥𝑉)2

Grade 4
𝐻6 [[[𝑉, 𝜕2𝑥], 𝜕2𝑥], 𝜕2𝑥] 0 −(𝜕6𝑥𝑉) − 6(𝜕5𝑥𝑉)𝜕𝑥 − 12(𝜕4𝑥𝑉)𝜕2𝑥 − 8(𝜕3𝑥𝑉)𝜕3𝑥
𝐻7 [[[𝑉, 𝜕2𝑥], 𝜕2𝑥], 𝑉] 0 4[(𝜕𝑥𝑉)(𝜕3𝑥𝑉) + (𝜕2𝑥𝑉)2] + 8(𝜕𝑥𝑉)(𝜕2𝑥𝑉)𝜕𝑥
𝐻8 [[[𝑉, 𝜕2𝑥], 𝑉], 𝑉] 0 0

cancellations will be taken care of by simple computation of the commutators, according to

⎡⎢
⎣

𝑛
∑
𝑖=0

𝑓𝑖(𝑥)𝜕𝑖𝑥,
𝑚

∑
𝑗=0

𝑔𝑗(𝑥)𝜕𝑗
𝑥⎤⎥
⎦

=
𝑛

∑
𝑖=0

𝑚
∑
𝑗=0

𝑖
∑
𝑙=0

(𝑖
𝑙)𝑓𝑖(𝑥) (𝜕𝑖−𝑙𝑥 𝑔𝑗(𝑥)) 𝜕𝑙+𝑗

𝑥

−
𝑚

∑
𝑗=0

𝑛
∑
𝑖=0

𝑗
∑
𝑙=0

(𝑗
𝑙)𝑔𝑗(𝑥) (𝜕𝑗−𝑙

𝑥 𝑓𝑖(𝑥)) 𝜕𝑙+𝑖𝑥 . (4.9)

The symmetric BCH formula

Let 𝑋 and 𝑌 be two terms in a Lie algebra 𝔤. The symmetric Baker–Campbell–Hausdorff
formula (also symmetric BCH or sBCH formula) is

𝑒 1
2 𝑋𝑒𝑌 𝑒 1

2 𝑋 = 𝑒sBCH(𝑋,𝑌), (4.10)

where

sBCH(ℎ𝑋, ℎ𝑌) =ℎ(𝑋 + 𝑌) − ℎ3 ( 1
24[[𝑌, 𝑋], 𝑋] + 1

12[[𝑌, 𝑋], 𝑌])

+ ℎ5( 7
5760[[[[𝑌, 𝑋], 𝑋], 𝑋], 𝑋] + 7

1440[[[[𝑌, 𝑋], 𝑋], 𝑋], 𝑌]

+ 1
180[[[[𝑌, 𝑋], 𝑋], 𝑌], 𝑌] + 1

720[[[[𝑌, 𝑋], 𝑌], 𝑌], 𝑌]

+ 1
480[[[𝑌, 𝑋], 𝑋], [𝑌, 𝑋]] − 1

360[[[𝑌, 𝑋], 𝑌], [𝑌, 𝑋]]) + 𝒪(ℎ7) .
(4.11)

81



Chapter 4. The semi-classical limit

Higher-order terms can be obtained by means of the standard BCH formula (1.42) and an
efficient algorithm has been provided in Ref. [39]. Terms up to order 7 are reproduced in the
appendix, (A.1). Since (4.10) is symmetric, only odd powers of ℎ feature in the expansion and
with the substitution 𝑋 = 𝜕2𝑥 and 𝑌 = 𝑉 , the coefficients can be identified with the numbers
𝜒𝑗 from Table 4.1.

The Zassenhaus splitting

The Zassenhaus splitting [105] gives a somehow inverse approach to the BCH formula. Given
a separable exponent, it provides a way to decompose in exponentials of increasing grade in
the exponents:

𝑒ℎ(𝑋+𝑌) = 𝑒ℎ𝑋𝑒ℎ𝑌 𝑒ℎ2𝑈2(𝑋,𝑌)𝑒ℎ3𝑈3(𝑋,𝑌)𝑒ℎ4𝑈4(𝑋,𝑌) ⋯ , (4.12)

where

𝑈2(𝑋, 𝑌) = 1
2[𝑌, 𝑋],

𝑈3(𝑋, 𝑌) = 1
3[[𝑌, 𝑋], 𝑌] + 1

6[[𝑌, 𝑋], 𝑋],

𝑈4(𝑋, 𝑌) = 1
24[[[𝑌, 𝑋], 𝑋], 𝑋] + 1

8[[[𝑌, 𝑋], 𝑋], 𝑌] + 1
8[[[𝑌, 𝑋], 𝑌], 𝑌].

In other words, the functions 𝑈𝑗 quantify the discrepancy from commuting case 𝑒𝑋𝑒𝑌 = 𝑒𝑋+𝑌 .
As usual, more terms can be generated using the non-symmetric BCH formula.

The splitting (4.12) is not well-known and seldom used in computation because it lacks sym-
metry and the involved commutators are expected to be costly. We remedy the first issue by
symmetrizing and thus considering a splitting of the form

𝑒ℎ(𝑋+𝑌) = ⋯ 𝑒ℎ5𝑄5(𝑋,𝑌)𝑒ℎ3𝑄3(𝑋,𝑌)𝑒 1
2 ℎ𝑋𝑒ℎ𝑌 𝑒 1

2 ℎ𝑋𝑒ℎ3𝑄3(𝑋,𝑌)𝑒ℎ5𝑄5(𝑋,𝑌) ⋯ (4.13)

where we can deduce by inspection of (4.11), that

𝑄3(𝑋, 𝑌) = 1
48[[𝑌, 𝑋], 𝑋] + 1

24[[𝑌, 𝑋], 𝑌].

For higher-order terms, such as 𝑄5, simple addition of terms will not be sufficient since the
inner block (𝑄3) generates new terms that have to be taken care of. Fortunately, it is easy to
cast the procedure in an easy algorithmic form [77]. We commence from the symmetric BCH
formula (4.11),

𝑒− 1
2 ℎ𝑋𝑒ℎ(𝑋+𝑌)𝑒− 1

2 ℎ𝑋 = 𝑒sBCH(−ℎ𝑋,ℎ(𝑋+𝑌)),
which we rewrite in the form

𝑒ℎ(𝑋+𝑌) = 𝑒 1
2 ℎ𝑋𝑒sBCH(−ℎ𝑋,ℎ(𝑋+𝑌))𝑒 1

2 ℎ𝑋 . (4.14)

It follows from (4.11) that

sBCH(−ℎ𝑋, ℎ(𝑋 + 𝑌)) = 𝒲[1] = ℎ𝑌 + 𝒪(ℎ3) ,
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and we note that we have extracted the outer term ℎ𝑋 from the inner exponent. We iterate
(4.14) over the resulting term and continue to symmetrically pull-out the lowest order terms,
one by one, until the central exponent reaches the desired high order,

exp (ℎ(𝑋 + 𝑌)) = 𝑒 1
2 ℎ𝑋𝑒sBCH(−ℎ𝑋,ℎ(𝑋+𝑌))𝑒 1

2 ℎ𝑋

= 𝑒 1
2 ℎ𝑋𝑒 1

2 ℎ𝑌 𝑒sBCH(−ℎ𝑌,sBCH(−ℎ𝑋,ℎ(𝑋+𝑌)))𝑒 1
2 ℎ𝑌 𝑒 1

2 ℎ𝑋 .

Notice that by pulling-out, we essentially subtract a term and add higher-order corrections. It is
important to observe that the order of the exponent given by the sBCH formula (4.14) is never
decreased by this procedure2 and thus we can easily control the order of the approximation
error when truncating the BCH formula. With the notation

𝒲[𝑘+1] = sBCH(−𝑊 [𝑘], 𝒲[𝑘]), 𝒲[0] = ℎ(𝑋 + 𝑌), (4.15)

the result after 𝑠 steps can be written as

exp ℎ(𝑋 + 𝑌) = 𝑒 1
2 𝑊 [0]𝑒 1

2 𝑊 [1] ⋯ 𝑒 1
2 𝑊 [𝑠]𝑒𝒲[𝑠+1]𝑒 1

2 𝑊 [𝑠] ⋯ 𝑒 1
2 𝑊 [1]𝑒 1

2 𝑊 [0] .

We emphasize that, in principle, we can freely choose the elements 𝑊 [𝑘] that we want to
extract. A first idea is to choose the 𝑊 [𝑘] = 𝒪(ℎ2𝑘−1) for 𝑘 > 0 and 𝑊 [0] = 𝒪(ℎ), which
yields a separation of powers, analogous to (4.13), and thus for 𝑠 stages and approximating
𝒲[𝑠+1] = 𝑊 [𝑠+1] + 𝒪(ℎ2𝑠+3), we obtain a symmetric Zassenhaus splitting of order 2𝑠 + 2.

4.1.2 An asymptotic splitting

In standard splittings, e.g., in the context of a numerical solution of Hamiltonian ordinary
differential equations, there is usually a single small parameter, ℎ (the time step), and it is
sensible to group terms in powers of ℎ. However, after the discretization of (4.2), we have
three small parameters to deal with:

a. The oscillatory parameter of the system 𝜀 = 𝜔−1;

b. The time step ℎ;

c. 1/𝑁 , where 𝑁 is the number of degrees of freedom in the spatial discretization.

Although we derive our splitting before the infinite-dimensional operator 𝜕2𝑥 has been dis-
cretized, we must keep in mind the eventual spatial discretization: For actual computation,
we need to replace 𝜕2𝑥 with a differentiation matrix acting on an appropriate 𝑁-dimensional
space, where 𝑁 is the number of nodal values or of Fourier modes. It is elementary that the
norm of a differentiation matrix corresponding to 𝜕𝑛𝑥 scales as 𝒪(𝑁𝑛), 𝑛 ∈ ℕ. We propose to
unify the three small parameters by introducing the following scaling laws which will specify
the parameters ℎ and 𝑁 ,

𝑁 = 𝒪(𝜔𝜌) = 𝒪(𝜀−𝜌) , ℎ = 𝒪(𝜔−𝜎) = 𝒪(𝜀𝜎) , (4.16)
2Unless a non-existing term is subtracted and thus newly introduced instead of removed.
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where 𝜌, 𝜎 > 0 are given. For the derivatives, this implies the assumption that each 𝜕𝑛𝑥 scales
like 𝒪(𝜀−𝑛𝜌).

While we have already established that 𝜌 = 1 is necessary to resolve the highly oscillatory
behavior in space, we will choose 𝜎 = 1

2 for the time-step.

In the following, we will conduct the steps necessary to achieve an asymptotic splitting (4.8)
with an error of 𝒪(𝜀7/2). We will expand the commutators in powers of 𝜀 and successively re-
move them from the core of our expansion, aiming for 𝑊 [𝑗] = 𝒪(𝜀𝑗−3/2) for 𝑗 > 1. Motivated
by (4.4), the exponential we ultimately want to decompose, we introduce the abbreviation

𝜏 = −𝑖ℎ = 𝒪(𝜀1/2) .
Note that 𝜏𝜔−1𝜕2𝑥 = 𝒪(𝜀−1/2) and 𝜏𝜔𝑉 = 𝒪(𝜀−1/2), or more generally

𝜏𝑙𝜔𝑚𝜕𝑛𝑥 = 𝒪(𝜀𝑙/2−𝑚−𝑛) , 𝜀 → 0. (4.17)

We can now commence the algorithm (4.15), setting

𝒲[0] = −𝜏𝜔−1𝜕2𝑥 + 𝜏𝜔𝑉, 𝑊 [0] = 𝜏𝜔𝑉.
With the help of (4.11), we compute the commutators in 𝒲[1] = sBCH(−𝑊 [0], 𝒲[0]) ac-
cording to (4.9). This task confronts us with long and tedious algebra but can, however, be
automatized with a computer algebra program. It is worth pointing out that all simplifica-
tions, such as [𝑉, 𝜕2𝑥], 𝑉], 𝑉] = 0 are automatically performed once we work in the larger
Lie algebra 𝔖 with differential operators and scalar functions. Likewise, there is no need for a
representation of expansion elements in, say, the Hall basis because this is done automatically
in 𝔊.

Substituting and aggregating terms of the same order of magnitude, we obtain

𝒲[1] = −
𝒪(𝜀−1/2)
⏞𝜏𝜔−1𝜕2𝑥 −

𝒪(𝜀1/2)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞1
12𝜏3𝜔(𝜕𝑥𝑉)2 − 1

3𝜏3𝜔−1(𝜕2𝑥𝑉)𝜕2𝑥

−
𝒪(𝜀3/2)

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞1
3𝜏3𝜔−1(𝜕3𝑥𝑉)𝜕𝑥 + 1

45𝜏5𝜔−3(𝜕4𝑥𝑉)𝜕4𝑥

+
𝒪(𝜀3/2)

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝜏5 {𝜔 1
60 (𝜕𝑥𝑉)2(𝜕2𝑥𝑉) − 𝜔−1 ( 4

45 (𝜕2𝑥𝑉)2 − 1
90 (𝜕𝑥𝑉)(𝜕3𝑥𝑉)) 𝜕2𝑥}

−
𝒪(𝜀5/2)

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝜏3𝜔−1 1
12 (𝜕4𝑥𝑉) − 𝜏5𝜔−1{1

6 (𝜕2𝑥𝑉)(𝜕3𝑥𝑉) − 1
90 (𝜕𝑥𝑉)(𝜕4𝑥𝑉)}𝜕𝑥

+
𝒪(𝜀5/2)

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞2
45𝜏5𝜔−3(𝜕5𝑥𝑉)𝜕3𝑥 − 𝜏7𝜔{ 1

945 (𝜕2𝑥𝑉)2(𝜕𝑥𝑉)2 + 1
840 (𝜕3𝑥𝑉)(𝜕𝑥𝑉)3}

−
𝒪(𝜀5/2)

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝜏7𝜔−1{ 26
945 (𝜕2𝑥𝑉)3 + 13

945 (𝜕𝑥𝑉)(𝜕2𝑥𝑉)(𝜕3𝑥𝑉) + 1
630 (𝜕𝑥𝑉)2(𝜕4𝑥𝑉)}𝜕2𝑥

+
𝒪(𝜀5/2)

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝜏7𝜔−3{ 1
315 (𝜕3𝑥𝑉)2 + 22

945 (𝜕2𝑥𝑉)(𝜕4𝑥𝑉) − 1
945 (𝜕𝑥𝑉)(𝜕5𝑥𝑉)}𝜕4𝑥

−
𝒪(𝜀5/2)

⏞⏞⏞⏞⏞⏞⏞⏞⏞𝜏7𝜔−5 2
945 (𝜕6𝑥𝑉)𝜕6𝑥 +𝒪(𝜀7/2) .

(4.18)

84



4.1 The autonomous case

In principle, we could pursue with the next iteration, i.e., identifying the largest term 𝑊 [1] =
−𝜏𝜔−1𝜕2𝑥 and extracting it with the same procedure. Unfortunately, a closer look at (4.18) re-
veals a number of difficulties, namely the appearance of non-Hermitian operators in form of
multiplications 𝑉 (𝑘)𝜕𝑗

𝑥 and odd order derivatives 𝜕𝑥 at higher order. On the other hand, skew-
Hermitian operators form a Lie algebra and since the (symmetric) BCH formula only involves
commutators and linear combinations thereof, skew-Hermiticity is preserved but this applies
only to the expression 𝒲[1] as a whole. For the purpose of stability of our expansion, we need
to ensure that in each step, only skew-Hermitian operators are extracted. Both 𝜕2𝑥 and multi-
plication by 𝑉 are Hermitian operators, which in turn implies that their product with an odd
power of 𝜏 is skew-Hermitian (multiplication with the imaginary unit) and its exponential is
thus unitary. This survives under eventual discretization, because any reasonable approxima-
tion of 𝜕2𝑥 preserves Hermiticity. However, 𝜕𝑥 and odd powers thereof are a skew-symmetric
operators and so are their reasonable approximations. Furthermore, products of Hermitian
operators are only Hermitian if they commute. Therefore, a naïve collection of terms in the
same power could lead to a loss of unitarity and we need an additional step to avoid stability
problems. The idea is to rewrite odd derivatives as a linear combination of even derivatives,
thereby enabling us to identify the Hermitian operators of a given size in 𝜀 and the following
result is due to Iserles [10].

Excursus: getting even

Let 𝑦 be a continuously differentiable function. The starting point for our current construction
is the identity

𝑦(𝑥)𝜕𝑥 = −1
2 ∫𝑥

𝑥0
𝑦(𝜉)d𝜉𝜕2𝑥 − 1

2𝜕𝑥𝑦(𝑥) + 1
2𝜕2𝑥 [∫𝑥

𝑥0
𝑦(𝜉)d𝜉 ⋅] , (4.19)

where 𝑥0 is arbitrary: Its direct proof is trivial. Note that, whilst we have 𝜕𝑥 on the left, the
right-hand side features 𝜕0𝑥 and 𝜕2𝑥 , which are both even powers of the differentiation operator.
Since in principle we might be interested in expanding beyond 𝒪(𝜀3/2) or employing different
values of 𝜌 and 𝜎, we wish to cater not just for 𝜕𝑥 but for all its odd powers. The following
theorem generalizes (4.19) to express 𝑦(𝑥)𝜕2𝑠+1𝑥 , 𝑠 ∈ ℕ, solely by means of even derivatives.
We remark that the procedure introduces different powers in 𝜀 by generating higher-order
derivatives.

Theorem 4.1.1 (Iserles). Let 𝑠 ∈ ℕ, define the real sequence {𝛽𝑘}𝑘≥0 by
∞
∑
𝑘=0

(−1)𝑘𝛽𝑘
(2𝑘 + 1)!𝑇𝑘 = 1

𝑇 (1 − 𝑇1/2

sinh 𝑇1/2 )

and set

𝑄𝑘(𝑥) = (−1)𝑠−𝑘+1𝛽𝑠−𝑘(2𝑠 + 1
2𝑘 )𝜕2𝑠−2𝑘+1𝑥 𝑦(𝑥), 𝑘 = 0, 1, … , 𝑠, (4.20)

𝑄𝑠+1(𝑥) = 1
2𝑠 + 2 ∫𝑥

𝑥0
𝑦(𝜉)d𝜉, (4.21)

𝑃𝑘(𝑥) = −
𝑠+1
∑
𝑙=𝑘

(2𝑙
2𝑘)𝜕2𝑙−2𝑘𝑥 𝑄𝑙(𝑥), 𝑘 = 1, 2, … , 𝑠 + 1. (4.22)
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Then

𝑦(𝑥)𝜕2𝑠+1𝑥 =
𝑠+1
∑
𝑘=0

𝑃𝑘(𝑥)𝜕2𝑘𝑥 +
𝑠+1
∑
𝑘=0

𝜕2𝑘𝑥 [𝑄𝑘(𝑥) ⋅ ]. (4.23)

Proof. We act on the second sum on the right-hand side of (4.23) with the Leibniz rule,
whereby

𝑦𝜕2𝑠+1𝑥 =
𝑠+1
∑
𝑘=1

𝑃𝑘𝜕2𝑘𝑥 +
𝑠+1
∑
𝑙=0

2𝑙
∑
𝑘=0

(2𝑙
𝑘 )(𝜕2𝑙−𝑘𝑥 𝑄𝑙)𝜕𝑘𝑥

=
𝑠+1
∑
𝑘=1

𝑃𝑘𝜕2𝑘𝑥 +
𝑠+1
∑
𝑘=0

⎡⎢
⎣

𝑠+1
∑
𝑙=𝑘

(2𝑙
2𝑘)(𝜕2(𝑙−𝑘)𝑥 𝑄𝑙)⎤⎥⎦

𝜕2𝑘𝑥

+
𝑠

∑
𝑘=0

⎡⎢
⎣

𝑠+1
∑

𝑙=𝑘+1
( 2𝑙
2𝑘 + 1)(𝜕2(𝑙−𝑘)−1𝑥 𝑄𝑙)⎤⎥⎦

𝜕2𝑘+1𝑥 .

Equating powers of 𝜕𝑥 on both sides, we obtain (4.21), (4.22) and the equations

𝑠+1
∑

𝑙=𝑘+1
( 2𝑙
2𝑘 + 1)𝜕2(𝑙−𝑘)−1𝑥 𝑄𝑙 = 0, 𝑘 = 𝑠 − 1, 𝑠 − 2, … , 0. (4.24)

Our contention is that there exist coefficients {𝛽𝑘}𝑘≥0 such that (4.20) is true. Indeed, substi-
tuting (4.20) into (4.24) yields, after simple algebra, the triangular linear system

𝑠
∑

𝑙=𝑘+1
(−1)𝑠−𝑙( 2𝑠 − 2𝑘

2𝑠 + 1 − 2𝑙)𝛽𝑠−𝑙 = 1
2𝑠 − 2𝑘 + 1 , 𝑘 = 0, 1, … , 𝑠 − 1.

We deduce that
𝑘−1
∑
𝑙=0

(−1)𝑙( 2𝑘
2𝑙 + 1)𝛽𝑙 = 1

2𝑘 + 1 , 𝑘 ∈ ℕ.

Finally, we multiply the last equation by 𝑇𝑘−1/(2𝑘)! and sum up for 𝑘 ∈ ℕ. On the left we
have

∞
∑
𝑘=1

1
(2𝑘)!

𝑘−1
∑
𝑙=0

(−1)𝑙( 2𝑘
2𝑙 + 1)𝛽𝑙𝑇𝑘−1 =

∞
∑
𝑙=0

(−1)𝑙𝛽𝑙
(2𝑙 + 1)!

∞
∑

𝑙=𝑘+1

𝑇𝑘−1

(2𝑘 − 2𝑙 − 1)!

=
∞
∑
𝑙=0

(−1)𝑙𝛽𝑙
(2𝑙 + 1)!𝑇 𝑙

∞
∑
𝑘=0

𝑇𝑘

(2𝑘 + 1)!

= sinh 𝑇1/2

𝑇1/2
∞
∑
𝑙=0

(−1)𝑙𝛽𝑙
(2𝑙 + 1)!𝑇 𝑙,

while on the right we obtain

∞
∑
𝑘=1

𝑇𝑘−1

(2𝑘 + 1)! = 1
𝑇 (sinh 𝑇1/2

𝑇1/2 − 1) .

This confirms (4.20) and completes the proof.
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The first few values are 𝛽0 = 1
6 , 𝛽1 = 7

60 , 𝛽2 = 31
126 , 𝛽3 = 127

120 , 𝛽4 = 511
66 , 𝛽5 = 1414477

16380 and
𝛽6 = 8191

6 . Practically, just

𝑦𝜕𝑥 = −1
2 ∫𝑥

0 𝑦(𝜉)d𝜉𝜕2𝑥 − 1
2𝜕𝑥𝑦 + 1

2𝜕2𝑥 [∫𝑥
0 𝑦(𝜉)d𝜉 ⋅] ,

𝑦𝜕3𝑥 = −(𝜕𝑥𝑦)𝜕2𝑥 − 1
4 ∫𝑥

0 𝑦(𝜉)d𝜉𝜕4𝑥 + 1
4𝜕3𝑥𝑦 − 1

2𝜕2𝑥[(𝜕𝑥𝑦) ⋅ ] + 1
4𝜕4𝑥 [∫𝑥

0 𝑦(𝜉)d𝜉 ⋅] ,

𝑦𝜕5𝑥 = 4
3(𝜕3𝑥𝑦)𝜕2𝑥 − 5

3(𝜕𝑥𝑦)𝜕4𝑥 − 1
6 ∫𝑥

0 𝑦(𝜉)d𝜉𝜕6𝑥 − 1
2𝜕5𝑥𝑦 + 7

6𝜕2𝑥[(𝜕3𝑥𝑦) ⋅ ]

− 5
6𝜕4𝑥[(𝜕𝑥𝑦) ⋅ ] + 1

6𝜕6𝑥 [∫𝑥
0 𝑦(𝜉)d𝜉 ⋅] .

are ever likely to be needed in practical computation.

An asymptotic splitting of the first kind

Now, all necessary tools are available and we dedicate this subsection to illustrate how to
compute the splitting (4.8) with the algorithm in Table 4.2 on page 90. Using (4.19) to replace
all the occurrences of 𝜕𝑥 in (4.18), the new core 𝒲[1] becomes

𝒲[1] = −
𝜀−1/2

⏞𝜏𝜔−1𝜕2𝑥

−
𝜀1/2

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞1
12𝜏3𝜔(𝜕𝑥𝑉)2 − 1

6𝜏3𝜔−1{𝜕2𝑥 , (𝜕2𝑥𝑉)}+

+
𝜀3/2

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞1
60𝜏5𝜔(𝜕𝑥𝑉)2(𝜕2𝑥𝑉) + 1

90𝜏5𝜔−3 {𝜕4𝑥 , 𝜕4𝑥𝑉}+

−
𝜀3/2

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞2
45𝜏5𝜔−1 ({𝜕2𝑥 , (𝜕2𝑥𝑉)2}+ − 1

8 {𝜕2𝑥 , (𝜕𝑥𝑉)(𝜕3𝑥𝑉)}+)

+
𝜀5/2

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞1
12𝜏3𝜔−1(𝜕4𝑥𝑉) − 𝜏7𝜔 ( 1

945 (𝜕𝑥𝑉)2(𝜕2𝑥𝑉)2 + 1
840 (𝜕𝑥𝑉)3(𝜕3𝑥𝑉))

− 1
3780

𝜀5/2

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝜏7𝜔−1 {𝜕2𝑥 , 52(𝜕2𝑥𝑉)3 + 26(𝜕𝑥𝑉)(𝜕2𝑥𝑉)(𝜕3𝑥𝑉) + 3(𝜕𝑥𝑉)2(𝜕4𝑥𝑉)}+

+
𝜀5/2

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝜏7𝜔−3 1
1890 {𝜕4𝑥 , 3(𝜕3𝑥𝑉)2 + 22(𝜕2𝑥𝑉)(𝜕4𝑥𝑉) − (𝜕𝑥𝑉)(𝜕5𝑥𝑉)}+

−
𝜀5/2

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝜏7𝜔−5 1
945 {𝜕6𝑥 , (𝜕6𝑥𝑉)}+ +𝒪(𝜀7/2) ,

where we have introduced the anti-commutator,

{𝐴, 𝐵}+ = 𝐴𝐵 + 𝐵𝐴. (4.25)

Recall that we have started the algorithm with

ℛ0 = 1
2𝑊 [0] = 1

2𝜏𝜔𝑉
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and to progress to the second stage, we choose to eliminate the lowest 𝜀-order term,

ℛ1 = 1
2𝑊 [1] = −1

2𝜏𝜔−1𝜕2𝑥 = 𝒪(𝜀−1/2) ,

from 𝒲[1], which is of the same size as the 𝑊 [0] for this choice of parameters 𝜌 = 1. Al-
though the new 𝑊 [1] and 𝒲[1] are more complicated, the computations are now much sim-
pler. The main reason is that the 𝜀-order behaves under commutation like

[𝜏𝑖1𝜔𝑗1 𝑓 (𝑥)𝜕𝑘1𝑥 , 𝜏𝑖2𝜔𝑗2𝑔(𝑥)𝜕𝑘2𝑥 ] = 𝒪(𝜏𝑖1+𝑖2𝜔𝑗1+𝑗2𝜕𝑘1+𝑘2−1
𝑥 ) , (4.26)

and thus, the order increases under very general assumptions. The first commutators then
become

[𝑊 [1], 𝒲[1]] = 𝒪(𝜀1) and [[𝒲[1], 𝑊 [1]], 𝑊 [1]], [[𝒲[1], 𝑊 [1]], 𝒲[1]] = 𝒪(𝜀3/2) .

Each commutation with 𝑊 [1] or 𝒲[1] introduces a factor 𝜀1/2 and we need to compute com-
mutators up to length 5 to reach an accuracy of 𝒪(𝜀7/2). The next step still involves lengthy
algebra and we obtain

𝒲[2] = sBCH(−𝑊 [1], 𝒲[1])

= −
𝜀1/2

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞1
12𝜏3𝜔(𝜕𝑥𝑉)2 − 1

6𝜏3𝜔−1 {𝜕2𝑥 , (𝜕2𝑥𝑉)}+

+
𝜀3/2

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞1
60𝜏5 (𝜔𝑉 ′2𝑉″ − 1

2𝜔−1 {𝜕2𝑥 , 7𝑉″2 + 𝑉 ′𝑉‴}+ − 𝜔−3 {𝜕4𝑥 , 𝑉 (4)}+)

+
𝜀5/2

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞1
12𝜏3𝜔−1𝑉 (4) − 1

840𝜏7𝜔𝑉 ′2 (𝑉 ′𝑉‴ − 3𝑉″2)

+
𝜀5/2

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞1
1680𝜏7𝜔−1 {𝜕2𝑥 , −34𝑉″3 + 18𝑉 ′𝑉″𝑉‴ + 𝑉 ′2𝑉 (4)}+

+
𝜀5/2

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞1
3360𝜏7𝜔−3 {𝜕4𝑥 , 45𝑉‴2 − 76𝑉″𝑉 (4) − 𝑉 ′𝑉 (5)}+

−
𝜀5/2

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞1
1680𝜏7𝜔−5 {𝜕6𝑥 , 𝑉 (6)}+ +𝒪(𝜀7/2) ,

(4.27)

with the usual shorthand 𝑉 ′ ≡ 𝜕𝑥𝑉 , etc. In the next iteration, we pull out the 𝒪(𝜀1/2) term,

2ℛ2 = 𝑊 [2] = − 1
12𝜏3𝜔(𝜕𝑥𝑉)2 − 1

6𝜏3𝜔−1 {𝜕2𝑥 , (𝜕2𝑥𝑉)}+ ,

and need to compute 𝒲[3]. Due to the symmetry of our procedure, only commutators of odd
length appear and since

[[𝒲[2], 𝑊 [2]], 𝑊 [2]], [[𝒲[2], 𝑊 [2]], 𝒲[2]] = 𝒪(𝜀9/2) ,

we can disregard all commutators from here on. The next smaller term is thus 𝒲[3] = 𝒲[2]−
𝑊 [2] = 𝒪(𝜀3/2) and the remainders can be read off (4.27) to arrive at

𝒲[4] = 𝒲[2] − 𝑊 [2] − 𝑊 [3] + 𝒪(𝜀5/2) , 𝒲[4] − 𝒯4 = 𝒪(𝜀7/2) ,
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and the asymptotic splitting is therefore

𝒮 [1]
(1, 1

2 ),3 = 𝑒ℛ0𝑒ℛ1𝑒ℛ2𝑒ℛ3𝑒𝒯4𝑒ℛ3𝑒ℛ2𝑒ℛ1𝑒ℛ0 , (4.28)

where

ℛ0 = 1
2𝜏𝜔𝑉 = 𝒪(𝜀−1/2) , (4.29)

ℛ1 = −1
2𝜏𝜔−1𝜕2𝑥 = 𝒪(𝜀−1/2) ,

ℛ2 = − 1
24𝜏3𝜔(𝜕𝑥𝑉)2 − 1

12𝜏3𝜔−1 {𝜕2𝑥 , (𝜕2𝑥𝑉)}+ = 𝒪(𝜀1/2) ,
ℛ3 = 1

120𝜏5 (𝜔𝑉 ′2𝑉″ − 1
2𝜔−1 {𝜕2𝑥 , 7𝑉″2 + 𝑉 ′𝑉‴}+ − 𝜔−3 {𝜕4𝑥 , 𝑉 (4)}+) ,

𝒯4 = 1
12𝜏3𝜔−1𝑉 (4) − 1

840𝜏7𝜔𝑉 ′2 (𝑉 ′𝑉‴ − 3𝑉″2)
+ 𝜏7( 1

1680𝜔−1 {𝜕2𝑥 , −34𝑉″3 + 18𝑉 ′𝑉″𝑉‴ + 𝑉 ′2𝑉 (4)}+
+ 1

3360𝜔−3 {𝜕4𝑥 , 45𝑉‴2 − 76𝑉″𝑉 (4) − 𝑉 ′𝑉 (5)}+
− 1

1680𝜔−5 {𝜕6𝑥 , 𝑉 (6)}+) = 𝒪(𝜀5/2) .

The notation 𝒮 [1]
(1, 1

2 ),3 is mostly self-explanatory: (1, 1
2 ) refers to the values of 𝜌 and 𝜎, while

𝑠 = 3. The superscript [1] stands for an asymptotic splitting of the first kind (1st) and in con-
tinuation, we consider an alternative splitting (with initial 𝑊 [0] equaling −𝜏𝜔−1𝜕2𝑥), which
we designate as an asymptotic splitting of the second kind (2nd).

Once we replace derivatives by differentiation matrices, the evaluation of a single time step
𝑢𝑛+1 = ̃𝒮 [1]

(1, 1
2 ),3𝑢𝑛 requires in principle 9 exponentials. Here and in the remainder of this

section, the tilde indicates that the operator has been semidiscretized. However, we note that,
once we use nodal values in semi-discretization, the discretized matrix ℛ0 is diagonal and
the computation of its exponential can be accomplished in 𝒪(𝑁) operations.3 The second
exponent ℛ1 can be cheaply diagonalized in the Fourier basis at cost 𝒪(𝑁 log 𝑁). This is an
important point because ℛ0 and ℛ1 are the largest matrices present. All other matrices are
𝒪(𝜀1/2) or less, and, as will become clear in Section 4.1.4, their computation with Krylov
subspace methods is very affordable.

An asymptotic splitting of the second kind

Our choice of 𝑊 [0] in the first approach was somewhat arbitrary and we will now pursue the
alternative, i.e., we start from

2ℛ0 = 𝑊 [0] = −𝜏𝜔−1𝜕2𝑥 , 𝒲[0] = −𝜏𝜔−1𝜕2𝑥 + 𝜏𝜔𝑉.

This results in

𝒲[1] = sBCH(−𝑊 [0], 𝒲[0]) =
∞
∑

𝑗=−1
𝒲[1]

𝑗 , where 𝒲[𝑙]
𝑗 = 𝒪(𝜀𝑗+1/2) , 𝑙 ∈ ℕ0,

3Using a Fourier basis the cost is 𝒪(𝑁 log 𝑁).
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Symmetric Zassenhaus algorithm
𝑠 ∶= 0; 𝒲[0] ∶= 𝜏(−𝜔−1𝜕2𝑥 + 𝜔𝑉(𝑥)); 𝑊 [0] ∶= 𝜏𝜔𝑉(𝑥)
do

𝑠 ∶= 𝑠 + 1
compute 𝒲[𝑠] ∶= sBCH(−𝑊 [𝑠−1], 𝒲[𝑠−1])
rewrite 𝒲[𝑠] in even derivatives, cf. (4.23)
expand result in powers of 𝜀
define 𝑊 [𝑠] ∶= 𝒪(𝜀𝑠−3/2) , s.t. 𝑊 [𝑠] − 𝒲[𝑠] = 𝒪(𝜀𝑠−1/2)

while 𝑠 < desired order 𝑠max
Resulting method:

𝑒𝒲[0] = 𝑒𝑊 [0]/2𝑒𝑊 [1]/2 ⋯ 𝑒𝑊 [𝑠max] ⋯ 𝑒𝑊 [1]/2𝑒𝑊 [0]/2 + 𝒪(𝜀1+𝑠max/2)

Table 4.2: Symmetric Zassenhaus splitting of the first kind in even-order derivatives

and

𝒲[1]
−1 = 𝜏𝜔𝑉,

𝒲[1]
0 = 1

6𝜏3𝜔(𝜕𝑥𝑉)2 + 1
12𝜏3𝜔−1 {𝜕2𝑥 , (𝜕2𝑥𝑉)}+ ,

𝒲[1]
1 = 2

45𝜏5𝜔(𝜕𝑥𝑉)2(𝜕2𝑥𝑉) − 1
60𝜏5𝜔−1 {𝜕2𝑥 , (𝜕2𝑥𝑉)2 − 2(𝜕𝑥𝑉)(𝜕3𝑥𝑉)}+

+ 1
240𝜏5𝜔−3 {𝜕4𝑥 , (𝜕4𝑥𝑉)}+ ,

𝒲[1]
2 = − 1

24𝜏3𝜔−1(𝜕4𝑥𝑉) + 𝜏7𝜔( 1
630 (𝜕3𝑥𝑉)(𝜕𝑥𝑉)3 + 13

945 (𝜕2𝑥𝑉)2(𝜕𝑥𝑉)2)
+ 1

1890𝜏7𝜔−1 {𝜕2𝑥 , 2(𝜕2𝑥𝑉)3 + (𝜕𝑥𝑉)(𝜕2𝑥𝑉)(𝜕3𝑥𝑉) + 9(𝜕𝑥𝑉)2(𝜕4𝑥𝑉)}+
+ 1

5040𝜏7𝜔−3 {𝜕4𝑥 , 15(𝜕3𝑥𝑉)2 − 16(𝜕2𝑥𝑉)(𝜕4𝑥𝑉) + 9(𝜕𝑥𝑉)(𝜕5𝑥𝑉)}+
+ 1

10080𝜏7𝜔−5 {𝜕6𝑥 , (𝜕6𝑥𝑉)}+ .

We next remove ℛ1 = 1
2𝑊 [1] = 1

2𝒲[1]
−1 = 𝒪(𝜀1/2) and obtain, with the short hand 𝑋 =

−𝑊 [1], 𝑌 = 𝒲[1],

𝒲[2] = sBCH(𝑋, 𝑌) = 𝑋 + 𝑌 − 1
24[[𝑌, 𝑋], 𝑋] − 1

12[[𝑌, 𝑋], 𝑌] + 𝒪(𝜀7/2) =
∞
∑
𝑗=0

𝒲[2]
𝑗 ,

where

𝒲[2]
0 = 1

6𝜏3𝜔(𝜕𝑥𝑉)2 + 1
12𝜏3𝜔−1 {𝜕2𝑥 , (𝜕2𝑥𝑉)}+ ,

𝒲[2]
1 = 7

120𝜏5𝜔(𝜕2𝑥𝑉)(𝜕𝑥𝑉)2 − 1
60𝜏5𝜔−1 {𝜕2𝑥 , (𝜕2𝑥𝑉)2 − 2(𝜕𝑥𝑉)(𝜕3𝑥𝑉)}+

+ 1
240𝜏5𝜔−3 {𝜕4𝑥 , (𝜕4𝑥𝑉)}+ ,

𝒲[2]
2 = − 1

24𝜏3𝜔−1(𝜕4𝑥𝑉) + 𝜏7𝜔 ( 1
140 (𝜕3𝑥𝑉)(𝜕𝑥𝑉)3 + 17

840 (𝜕2𝑥𝑉)2(𝜕𝑥𝑉)2)
− 1

3360𝜏7𝜔−1 {𝜕2𝑥 , 12(𝜕2𝑥𝑉)3 + 6(𝜕𝑥𝑉)(𝜕2𝑥𝑉)(𝜕3𝑥𝑉) − 23(𝜕𝑥𝑉)2(𝜕4𝑥𝑉)}+
+ 1

5040𝜏7𝜔−3 {𝜕4𝑥 , 15(𝜕3𝑥𝑉)2 − 16(𝜕2𝑥𝑉)(𝜕4𝑥𝑉) + 9(𝜕𝑥𝑉)(𝜕5𝑥𝑉)}+
+ 1

10080𝜏7𝜔−5 {𝜕6𝑥 , (𝜕6𝑥𝑉)}+ .
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Next,
ℛ2 = 1

2𝑊 [2] = 1
2𝒲[2]

0 = 1
12𝜏3𝜔(𝜕𝑥𝑉)2 + 1

24𝜏3𝜔−1 {𝜕2𝑥 , (𝜕2𝑥𝑉)}+ ,

and we deduce that the relevant terms of 𝒲[3] = ∑∞
𝑗=1 𝒲[3]

𝑗 are

𝒲[3]
1 = 7

120𝜏5𝜔(𝜕2𝑥𝑉)(𝜕𝑥𝑉)2 − 1
60𝜏5𝜔−1 {𝜕2𝑥 , (𝜕2𝑥𝑉)2 − 2(𝜕𝑥𝑉)(𝜕3𝑥𝑉)}+

+ 1
240𝜏5𝜔−3 {𝜕4𝑥 , (𝜕4𝑥𝑉)}+ ,

𝒲[3]
2 = − 1

24𝜏3𝜔−1(𝜕4𝑥𝑉) + 1
840𝜏7𝜔 (17(𝜕2𝑥𝑉)2 + 6(𝜕𝑥𝑉)(𝜕3𝑥𝑉))

− 1
3360𝜏7𝜔−1 {𝜕2𝑥 , 12(𝜕2𝑥𝑉)3 + 6(𝜕𝑥𝑉)(𝜕2𝑥𝑉)(𝜕3𝑥𝑉) − 23(𝜕𝑥𝑉)2(𝜕4𝑥𝑉)}+

+ 1
5040𝜏7𝜔−3 {𝜕4𝑥 , 15(𝜕3𝑥𝑉)2 − 16(𝜕2𝑥𝑉)(𝜕4𝑥𝑉) + 9(𝜕𝑥𝑉)(𝜕5𝑥𝑉)}+

+ 1
10080𝜏7𝜔−5 {𝜕6𝑥 , (𝜕6𝑥𝑉)}+ .

And, finally, we can read off the results

ℛ3 = 1
2𝒲[3]

1 , 𝒯4 = 𝒲[3]
2 ,

since the commutators are negligible, [𝑊 [3], 𝒲[3]] ≡ [𝒲[3]
1 , 𝒲[3]] = 𝒪(𝜀4), and no new

terms of relevant size greater than 𝒪(𝜀7/2) are generated. The outcome is the splitting

𝒮 [2]
(1, 1

2 ),3 = 𝑒ℛ0𝑒ℛ1𝑒ℛ2𝑒ℛ3𝑒𝒯4𝑒ℛ3𝑒ℛ2𝑒ℛ1𝑒ℛ0 , (4.30)

where

ℛ0 = − 1
2𝜏𝜔−1𝜕2𝑥 ,

ℛ1 =1
2𝜏𝜔𝑉,

ℛ2 = 1
12𝜏3𝜔(𝜕𝑥𝑉)2 + 1

24𝜏3𝜔−1{𝜕2𝑥 , (𝜕2𝑥𝑉)}
+
,

ℛ3 = 7
240𝜏5𝜔(𝜕2𝑥𝑉)(𝜕𝑥𝑉)2 − 1

120𝜏5𝜔−1{𝜕2𝑥 , (𝜕2𝑥𝑉)2 − 2(𝜕𝑥𝑉)(𝜕3𝑥𝑉)}
+

+ 1
480𝜏5𝜔−3{𝜕4𝑥 , (𝜕4𝑥𝑉)}

+
,

𝒯4 = − 1
24𝜏3𝜔−1(𝜕4𝑥𝑉) + 1

840𝜏7𝜔 (17(𝜕𝑥𝑉)2(𝜕2𝑥𝑉)2 + 6(𝜕𝑥𝑉)3(𝜕3𝑥𝑉))
− 1

3360𝜏7𝜔−1{𝜕2𝑥 , 12(𝜕2𝑥𝑉)3 + 6(𝜕𝑥𝑉)(𝜕2𝑥𝑉)(𝜕3𝑥𝑉) − 23(𝜕𝑥𝑉)2(𝜕4𝑥𝑉)}
+

− 1
5040𝜏7𝜔−3{𝜕4𝑥 , 15(𝜕3𝑥𝑉)2 − 16(𝜕2𝑥𝑉)(𝜕4𝑥𝑉) + 9(𝜕𝑥𝑉)(𝜕5𝑥𝑉)}

+
+ 1

10080𝜏7𝜔−5{𝜕6𝑥 , (𝜕6𝑥𝑉)}
+
.

Comparing (4.30) with (4.28), we have again 9 exponentials, and again, the outermost expo-
nentials ℛ0, ℛ1 are cheap to compute since, after discretization, they are either diagonal or di-
agonal after a FFT. The remaining terms ̃ℛ2 = 𝒪(𝜀1/2), ̃ℛ3 = 𝒪(𝜀3/2) and 𝒯̃4 = 𝒪(𝜀5/2)
need to be computed with Krylov subspace methods but the small magnitude of both these
matrices means that only a small number of Krylov iterations will be necessary.

Note that the FSAL property can be exploited for splittings of both types, (4.28) and (4.30).
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Generalizations to different pairs (𝜌, 𝜎)

The presented algorithm is by no means restricted to the chosen values of 𝜌, 𝜎 and other
choices can be pursued to obtain different splittings as long as the subsequent exponents are
guaranteed to decrease in size. Here, we will briefly discuss the implications on the length of
the commutators and occurrence of derivatives.

For initial computation of the asymptotic method, the computationally challenging part is
the symmetric BCH formula in high orders and we are interested in truncating as soon as
the desired order is achieved. In general, the algorithm parts from either the kinetic term
𝐴 = −𝜏𝜀𝜕2𝑥 or the potential 𝐵 = 𝜏𝑉/𝜀 and the first commutators of odd length are

[𝐴, [𝐴, 𝐵]] = 𝒪(𝜀1+3𝜎−2𝜌) , [𝐵, [𝐵, 𝐴]] = 𝒪(𝜀−1+3𝜎) .
According to our construction rules, the smaller of the two will be pulled out in the next step,
and since we have to require 𝜌 ≥ 1 to resolve spatial oscillations, the right commutator is
identified to be smaller or of equal size (for 𝜌 = 1).

For the derivation of the algorithm, one is dealing with an exponentially growing number of
terms in the sBCH formula and it is important to know at what grade the commutators can
be safely truncated. Suppose that we have arrived at the 𝑘th step (𝑘 > 0), for arbitrary 𝜎, 𝜌,
and let 𝑊 [𝑘] = 𝒪(𝜀𝑝) for some 𝑝 > 0 and consequently 𝒲[𝑘] = 𝑊 [𝑘] + 𝒪(𝜀𝑝+𝛿), for some
𝛿 > 0, then the leading (odd) commutators are (cf. (4.26))

[𝑊 [𝑘], [𝑊 [𝑘], 𝒲𝑘]] = 𝒪(𝜀3𝑝+𝛿+2𝜌) , [𝒲[𝑘], [𝑊 [𝑘], 𝒲𝑘]] = 𝒪(𝜀3𝑝+𝛿+2𝜌) ,
where the 2𝜌 contribution is due to the ever lowering degree in the derivatives and the extra
gain 𝛿 is caused by to the innermost commutator. For the splitting of the first kind, we had,
e.g., 𝑊 [2] = 𝒪(𝜀1/2) and 𝒲[2] − 𝑊 [2] = 𝒪(𝜀3/2) which we identify with 𝑝 = 1/2 and
𝛿 = 1 and reproduce the previous estimates.

For odd derivatives, the odd-even substitution will increase the size by a factor 𝜀−𝜌, which,
however, will not impact on the overall size since terms of the same magnitude are already
present, a fact that follows from the stability considerations that we examine next.

4.1.3 Stability

The convergence of classical methods for initial-value partial differential equations is gov-
erned by the Lax equivalence theorem: Convergence equals consistency plus stability [75].
Our method is clearly consistent and stability is equivalent to

lim
𝜀→0

lim sup
𝑛→∞

‖( ̃𝒮 [1]
(1, 1

2 ),3)𝑛‖2 < ∞, (4.31)

for a semi-discretized method ̃𝒮 obtained above in the usual Euclidean norm. We are going to
show that the proposed splittings yield unitary schemes and thus trivially satisfy (4.31). Fur-
thermore they can be regarded as geometric integrators in the sense of Refs. [53, 65, 91] since
the exact evolution operator is also unitary. Additionally, the method preserves the gauge in-
variance since a constant shift of the potential will only appear in the first step (or second for
splits of the second kind) and automatically cancels in consecutive steps due to the commuta-
tions.
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Theorem 4.1.2. Supposing that the splitting (4.8) has been derived by the symmetric Zassen-
haus algorithm of 4.2, it is true that 𝑊 [𝑗] ∈ 𝔰𝔲(ℂ) for all 𝑗 ≥ 0 and thus also ℛ0, ℛ1, … , ℛ𝑠,
and 𝒯𝑠+1 ∈ 𝔰𝔲(ℂ) and in consequence, the scheme is unitary.

Proof. The basic argument goes as follows: The operator at the initial step, 𝒲[0] = 𝜏𝐻,
is skew-Hermitian and, in each step, a term 𝑊 [𝑗] is pulled out via the symmetric BCH for-
mula (4.11). Assume, that 𝑊 [𝑗] is skew-Hermitian, then so will be 𝒲[𝑗+1] because skew-
Hermiticity is preserved under commutation and summation, i.e., let 𝐴, 𝐵 be skew-Hermitian,
then

[𝐴, 𝐵]† = (𝐴𝐵 − 𝐵𝐴)† = (𝐵†𝐴† − 𝐴†𝐵†) = [𝐵, 𝐴] = −[𝐴, 𝐵].
What remains to be shown is that at each step, the lowest order 𝜀 terms in 𝒲[𝑗], after the ‘odd
to even’ substitution (4.19), namely 𝑊 [𝑗], are indeed skew-Hermitian.

Problematic terms are of the form 𝑓 (𝑥)𝜕𝑘𝑥 and we need to ensure, that they occur in a sym-
metric way, i.e., they come in pairs 𝜏2𝑙+1 (𝑓 (𝑥)𝜕2𝑘𝑥 + 𝜕2𝑘𝑥 (𝑓 (𝑥) ⋅)) that clearly constitute a
skew-Hermitian operator since 𝑓 , 𝜕2𝑘𝑥 are symmetric.

All commutators 𝑖𝐶 produced by the symmetric Zassenhaus algorithm are of odd length and
can be written - after the ‘odd to even‘ substitution - as, 𝑖𝐶 = 𝑖 ∑ 𝑓𝑘𝜕2𝑘𝑥 + 𝜕2𝑘𝑥 (𝑔𝑘⋅), for some
scalar functions 𝑓𝑘 , 𝑔𝑘 . Since 𝐶, 𝑓𝑘 , 𝑔𝑘 and 𝜕2𝑘𝑥 are symmetric, it follows that

𝑛
∑
𝑘=0

[𝑓𝑘 − 𝑔𝑘 , 𝜕2𝑘𝑥 ] = 0. (4.32)

Computing the highest derivative gives [𝑓𝑛−𝑔𝑛, 𝜕2𝑛𝑥 ] = −2𝑛(𝑓𝑛−𝑔𝑛)′𝜕2𝑛−1+𝑟. The remaining
terms of (4.32), 𝑘 < 𝑛, cannot cancel this derivative and hence 𝑓𝑛 − 𝑔𝑛 = const. and 𝑟 = 0. It
follows by induction that 𝑓𝑘 −𝑔𝑘 = const. and thus, symmetry of each pair is verified. Since our
algorithm does not separate terms of same size, the pairs will not be split and consequently,
𝑊 [𝑗] ∈ 𝔰𝔲(ℂ).

The same proof is valid after spatial discretization if the derivatives 𝜕2𝑥 are approximated by
a symmetric matrix 𝒦 and the functions by (trivially symmetric) diagonal matrices 𝒟 , and
then 𝑊 [𝑗] ∈ 𝔰𝔲(ℂ).

4.1.4 Computing the exponential

The asymptotic splittings (4.28) and (4.30) are expressed in operatorial terms and as indicated
in the stability proof, to render them into proper computational algorithms, we must replace
𝜕2𝑥 with an appropriate differentiation matrix, acting on an 𝑁-dimensional space.

It is common in the numerical solution of the Schrödinger equation to use spectral discretiza-
tion [53, 83] since they can be cheaply computed with the FFT algorithm and are of infinite
order in space.

As discussed earlier, the large exponentials depend only on either the space or the momentum
coordinate, respectively, and are thus either already diagonal or can be diagonalized by a FFT.
The smaller terms can be computed with the Lanczos method, cf. Section 1.3.2, which greatly
benefits from the smallness of the exponents. For convenience of the reader, we repeat the
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error estimates of Ref. [91]: The error committed by the restriction to (Lanczos-)polynomials
of degree < 𝑟 can be bounded by (ℎ = 1)

‖𝑒ℛ𝑣 − 𝑉𝑟 exp(−𝑖𝑇𝑟)𝑒1‖ ≤ 8𝑒−𝜌2/(4𝑟) (𝑒𝜌
2𝑟 )

𝑟
, for 𝑟 ≥ 𝜌, (1.33’)

where 𝜌 = 𝜌(ℋ ) is the spectral radius of the Hermitian operator ℋ = 𝑖ℛ. Suppose that
𝜌(ℛ) ≤ 𝑐𝜀𝑝, then the r.h.s. of (1.33’) becomes

≤ 8𝑒−𝑐2𝜀2𝑝/(4𝑟) (𝑒𝑐𝜀𝑝

2𝑟 )
𝑟

≤ 8 ( 𝑒𝑐
2𝑟 )

𝑟
𝜀𝑟𝑝.

For the presented algorithms, we are facing exponents of powers 1/2, 3/2 and 5/2 in 𝜀 and to
reach an overall error of magnitude 𝜀7/2, we require 7, 3 and 2 Lanczos iterations, respectively.
In each iteration, a matrix-vector product has to be calculated, but even though the matrices
are dense, it is still possible to resort to Fast Fourier Transforms to ease up the computational
complexity by expanding the expression, just as for standard Hamiltonians, 𝐻̃𝜓 = 𝒦𝜓 +
𝒟𝑉 𝜓.

An efficient implementation minimizes the number of basis changes (FFTs). Suppose that the
initial value is given in the space where ℛ0 is diagonal, then, one FFT and its inverse are
needed to compute the action of 𝑒ℛ1 (which occurs twice per step because of symmetry). For
order 𝒪(𝜀3/2), we can truncate after ℛ2 and need three Lanczos-iterations, each requiring
two FFTs and two inverse FFTs. For the next exponentials, by storing the transformed vector
ℱ(𝜓), one FFT can be saved for each new anti-commutators: Suppose the exponent com-
prises of 𝑛 anti-commutators {𝜕2𝑘𝑥 , 𝑓2𝑘(𝑥)}+, 𝑘 = 1, … , 𝑛, then 3𝑛 + 1 FFTs are needed to
evaluate one Lanczos-iteration. For arbitrary order, 𝒪(𝜀𝑠+1/2), we can calculate the cost to
be

𝑛 = 2 ⋅ 2⏟
ℛ0,ℛ1

+2
𝑠

∑
𝑘=2

iterations
⏞⏞⏞⏞⏞
⌈ 𝑠 + 1/2

𝑘 − 3/2
⌉ ⋅

anti-commutators
⏞⏞⏞⏞⏞⏞⏞
(3(𝑘 − 1) + 1)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
ℛ𝑘

+
iterations

⏞
2 ⋅

anti-commutators
⏞⏞⏞⏞⏞⏞⏞
(3(𝑠 − 1) + 1)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝒯𝑠+1

, 𝑠 ≥ 2, (4.33)

where ⌈𝑥⌉ is the smallest integer 𝑚 ≤ 𝑥. The proof is obvious due to the construction of the
algorithm: The stages ℛ𝑘 do not change if higher-order accuracy is required, only the number
of Lanczos iterations has to be adjusted to meet the sought precision and the required number
is immediate from (1.33’). The number of anti-commutators grows in each step by one since
we have to cater for higher derivatives and the first few values together with some standard
numerical methods are collected in Table 4.3.

As mentioned in the summary on classical splittings (4.7), the scaling ℎ = 𝒪(𝜖𝜎) implies an
error of size 𝒪(𝜖𝑝𝜎−1/2) for a method of local order 𝑝. The presented methods with the choice
𝜎 = 1/2 thus show a scaling similar to an order 8 method!

It is illustrative to establish the cost of Yoshida’s composition, based on the Strang splitting,
which requires 𝑛 = 2⋅3𝑝 FFTs for classical order 2(𝑝+1) or 𝜀-order 𝒪(𝜀𝑝+1/2) in contrast to
the scaling 𝑛 ∝ 𝒪(𝑝2) for the Zassenhaus method. And from 𝜀-order 11/2 onwards (classical
order 12), the new algorithm requires less (about half as many) FFTs.
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Method Order 𝒪(𝜀𝑝) No. anti-commutators No. FFTs

LF 1/2 0 2
Chin-4M 3/2 0 4
Split of 1st/2nd kind 3/2 1 14
RKN116 5/2 0 22
1st/2nd 5/2 3 49
1st/2nd 7/2 6 120
Yoshida (order 8, 𝑝 = 3) 7/2 0 54

Table 4.3: Collection of numerical costs per time-step for a selection of numerical methods. The meth-
ods are referenced in Table 4.4.

4.1.5 Numerical results

As proof of concept, we have conducted numerical experiments that confirm our theoretical
considerations. We define a potential on the domain 𝑥 ∈ [−10, 10],

𝑉(𝑥) = cos(𝜋𝑥)𝑒−𝑥2/2, (4.34)

and follow the proposed scaling laws: The number of grid points is 𝑁 = 8𝜀−1 and ℎ = 𝜀−1/2.
The integrations are performed for one time-step and for various methods, cf. Table 4.4. As
initial condition, we take a normalized shifted Gaussian, 𝜓0(𝑥) ∝ 𝑒−(𝑥−1)2/2. The reference
solution 𝜓 at each 𝜀 has been computed using the most accurate method (RKN116) on a finer
mesh (𝑁ref = 16𝑁) and by dividing the time-step in 50 sub-steps. The results are shown in
Fig. 4.1, where the superior order of the new methods can be clearly appreciated. We conjec-
ture that the new methods become useful for small values of 𝜀, when the curves intersect. One
can expect that for a long time integration, the error curves lie closer together since the partic-
ular error terms greatly depend on the wave function which does not change for one time-step.
It is worth to stress that each new iteration of the Zassenhaus-algorithm increases the epsilon
order by one, just as an iteration of Yoshida’s device. However, only two new exponentials are
generated with an overall polynomial growth in the cost (4.33), in contrast to the geometric
growth of Yoshida, where the number of exponentials is triplicated.

Method Error exponent 𝜀𝑝 Reference

First kind (1st) 3.500 Eqn. (4.28)
Second kind (2nd) 3.502 Eqn. (4.30)
LF 0.500 Eqn. (4.5)
V82 0.500 Table 3.2
RKN116 2.525 Method SRKN𝑏

11 of [29]
Chin-4M 1.503 Eqn. (5.10)
T86M5 2.497 Table 5.3

Table 4.4: Observed slopes in Fig. 4.1 between the data points corresponding to the smalles values
of 𝜀. The references direct to detailed descriptions of the respective methods in this text. All methods
reproduce the predicted local order.
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Figure 4.1: The left panel shows the logarithmic error in the discrete 𝐿2-norm of the discretized wave
function Ψ(ℎ) with respect to a reference solution 𝜓(ℎ) after a time step ℎ = √𝜀 versus the logarithm
of the oscillatory parameter 𝜀. On the right, the dashed curve (blue) visualizes the potential (4.34) and
the solid lines represent the initial condition (green) and the phase of the complex valued exact solution
at ℎ = √𝜀 with 𝜀 = 1/128. The phase has been chosen to instead of the usual absolute value since it
cannot be distinguished from the initial condition for one small time-step in this resolution.

Remark on a modified extension The great virtue of standard splitting methods for the
Schödinger equation is that the kinetic and potential parts can be exponentiated virtually ex-
actly, rather independently of the size of the exponents. Furthermore, by virtue of modifying
potentials, functions that only depend on the spatial coordinate, additional order conditions
can be cheaply satisfied. With these two remarks in mind, we revise the previously obtained
algorithms: The first two terms are exactly the simply-computable exponentials from standard
splittings, and for the interior, smaller exponentials, functions that only depend on 𝑥 re-appear.
Since the exponential of a diagonal matrix is not expected to suffer from a mix of scales, we are
tempted to combine the position-dependent terms with the plain potential term 𝑉(𝑥). Thereby,
at no additional cost, one could expect a slightly better truncation error for expansions where
fewer terms are included. The procedure goes as follows, instead of extracting 𝜏𝜔𝑉(𝑥), we
set 𝑊 [1] = 𝜏𝜔𝑉(𝑥) + 𝜏3𝑉3 + 𝜏5𝑉5 + 𝜏7𝑉7 + … and after reaching the final stage 𝑠 of the
expansion, we define the 𝑉𝑘 elements to cancel the purely position dependent errors in 𝒲[𝑠].
However, since the computational effort is solely determined by the number of FFTs, the out-
come can only be a minor improvement over the previous methods and for completeness we
state the final result, at order 𝒪(𝜀7/2) for 𝜎 = 1/2, 𝜌 = 1, in the usual notation:

ℛ0 = 1
2𝜏𝜔𝑉 − 1

24𝜏3(−𝜔(𝜕𝑥𝑉)2 + 𝜔−1(𝜕4𝑥𝑉)) + 1
120𝜏5𝜔(𝜕𝑥𝑉)2(𝜕2𝑥𝑉)

− 1
10080𝜏7𝜔(17(𝜕𝑥𝑉)2(𝜕2𝑥𝑉)2 + 6(𝜕𝑥𝑉)3(𝜕3𝑥𝑉)),

ℛ1 = −1
2𝜏𝜔−1𝜕2𝑥 ,

ℛ2 = − 1
12𝜏3𝜔−1 {𝜕2𝑥 , (𝜕2𝑥𝑉)}+ ,

ℛ3 = − 1
120𝜏5𝜔−1 {𝜕2𝑥 , 𝑉″2 − 2𝑉 ′𝑉‴}+ + 7

360𝜏5𝜔−3 {𝜕4𝑥 , 𝑉 (4)}+
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4.2 Propagators based on Hagedorn wave-packets

𝒯4 = 𝜏7( 1
15120𝜔−1 {𝜕2𝑥 , 18𝑉″3 + 114𝑉 ′𝑉″𝑉‴ + 87𝑉 ′2𝑉 (4)}+

+ 1
378𝜔−3 {𝜕4𝑥 , 4𝑉‴2 − 𝑉″𝑉 (4) − 𝑉 ′𝑉 (5)}+

− 31
2520𝜔−5 {𝜕6𝑥 , 𝑉 (6)}+).

4.2 Propagators based on Hagedorn wave-packets

In this section, we briefly dissect a method of Ref. [54] based on Hagedorn-wavepackets that
has been analyzed recently [60] in order to propose improvements along the lines of the lat-
ter. Recall from the introduction, Section 1.2.3, that in this approach, the wave function is
approximated as a linear combination of the scaled and shifted Gaussian,

𝜙𝜀
0[𝑝, 𝑞, 𝑄, 𝑃](𝑥) = 𝜋−1/4(𝜀𝑄)−1/2 exp ( 𝑖

2𝜀𝑃𝑄−1(𝑥 − 𝑞)2 + 𝑖
2𝜀𝑝(𝑥 − 𝑞)),

and “excited states”, constructed via the recurrence relation

𝑄√𝑘 + 1𝜙𝜀
𝑘+1(𝑥) =

√2
𝜀 (𝑥 − 𝑞)𝜙𝜀

𝑘 (𝑥) − 𝑄∗√𝑘𝜙𝜀
𝑘−1(𝑥).

The 𝜙𝑘 form an orthonormal basis of 𝐿2ℝ, and writing Π(𝑡) = (𝑞(𝑡), 𝑝(𝑡), 𝑄(𝑡), 𝑃(𝑡)), a
given initial condition 𝜓(𝑥, 0) can be expanded as

𝜓(𝑥, 0) = 𝑒 𝑖𝜀 𝑆(𝑡)
∞
∑
𝑘=0

𝑐𝑘(𝑡)𝜙𝑘[Π(𝑡)],

where 𝑆(𝑡) is the global phase. Let the Hamiltonian be of the form 𝐻 = 𝑇 +𝑉(𝑥) with potential
𝑉(𝑥) = 𝑈𝑞(𝑥) + 𝑊𝑞(𝑥) separated into its linear and quadratic part 𝑈𝑞(𝑥) at some point 𝑞 plus
a remainder 𝑊𝑞(𝑥),

𝑈𝑞(𝑥) = 𝑉(𝑞) + 𝑉 ′(𝑞)(𝑥 − 𝑞) + 1
2𝑉″(𝑞)(𝑥 − 𝑞)2.

It has been shown in Ref. [54] that the action of each part on the wave packets can be com-
puted easily and the details are repeated in Th. 4.2.1 and Prop. 4.2.2 below. In fact, the free
Schrödinger equation 𝐻 = 𝑇 as well as the linear-quadratic part 𝑈𝑞(𝑥) only act on the coordi-
nates subsumed under Π and leave the expansion coefficients 𝑐𝑘 unchanged. For this reason,
Faou et al. [54] proposed to use a splitting method to compute the evolution (1.22) with a
splitting

𝑒−𝑖 ℎ
2 𝑇 𝑒−𝑖ℎ𝑈𝑒−𝑖ℎ𝑊 𝑒−𝑖 ℎ

2 𝑇 ,
yielding a method of second order in Π with global convergence rate 𝒪(ℎ2/𝜀). Notice that
despite the apparent asymmetric composition, it is indeed symmetric since 𝑈 and 𝑊 commute.
This method has been improved in Ref. [60] to higher order, first by using a fourth-order
(Yoshida-)splitting

𝑒−𝑖 Θℎ
2 𝑇 𝑒−𝑖Θℎ𝑉 𝑒−𝑖(1−Θ) ℎ

2 𝑇 𝑒−𝑖(1−2Θ)ℎ𝑉 𝑒−𝑖(1−Θ) ℎ
2 𝑇 𝑒−𝑖Θℎ𝑉 𝑒−𝑖 Θℎ

2 𝑇 ,
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for Θ = 1/(2 − 21/3). Then, the 𝑉 parts are decomposed in a step for 𝑈 and a step for 𝑊
and convergence of order ℎ4/𝜀 was observed. Finally, a semiclassical splitting is introduced
which can be written as

𝑒−𝑖 ℎ
2 (𝑇+𝑈)𝑒−𝑖ℎ𝑊 𝑒−𝑖 ℎ

2 (𝑇+𝑈), (4.35)
and assuming high accuracy in the computation for the outer exponentials4, the convergence
is shown to be 𝒪(𝜀1/2ℎ2). The factor √𝜀 comes from the fact that 𝑊 is a cubic polynomial
and that the dynamics of the coordinates Π are independent of 𝜀.

4.2.1 An interpretation of Hagedorn dynamics

A closer look at the system reveals that there are actually two different sets of dynamics, clearly
separated into the coordinates Π and the weights 𝑐𝑘 , which will also explain the favorable
convergence of the method (4.35).

First, we repeat two central results for the construction of numerical methods.

Theorem 4.2.1 (Hagedorn [63], Th. 3.4). Let 𝑝, 𝑞, 𝑃, 𝑄, 𝑆 be any solution of

̇𝑞(𝑡) = 𝑝(𝑡), 𝑄̇(𝑡) = 𝑃(𝑡),
̇𝑝(𝑡) = −∇𝑉(𝑞(𝑡)), 𝑃̇(𝑡) = −𝑉″(𝑞(𝑡))𝑄(𝑡), (4.36)

̇𝑆(𝑡) = 1
2𝑝(𝑡)2 − 𝑉(𝑞(𝑡)),

for 𝑉(𝑥) = 𝑎 + 𝑏𝑥 + 1
2𝑐𝑥2 a polynomial of degree 2, then, for every 𝑘,

𝜓(𝑥, 𝑡) = 𝑒 𝑖𝜀 𝑆(𝑡)𝑐𝑘(𝑡)𝜙𝑘[Π(𝑡)]
satisfies the Schrödinger equation

𝑖𝜀𝜕𝑡𝜓(𝑥, 𝑡) = 𝐻𝜓(𝑥, 𝑡)
for the Hamiltonian 𝐻 = −𝜀2

2 Δ + 𝑈.

Proposition 4.2.2 (Faou et al. [54], Prop. 2.3). For the propagation of a potential 𝑊 , and
fixing Π, the Galerkin approximation in ℳ(Π) = span{𝜓𝑘(Π)}𝑘∈𝒦 for some set 𝒦 ⊂ ℕ0
and 𝜕𝑡𝑢 ∈ ℳ,

∀𝑘 ∈ 𝒦, ⟨𝜙𝑘 , 𝜀𝑖𝜕𝑢 − 𝑊𝑢⟩ = 0
is equivalent [54] to the linear system of ODEs

𝑖𝜀𝑑𝑐𝑘
𝑑𝑡 = ∑

𝑙∈𝒦
𝑓𝑘,𝑙𝑐𝑙, 𝑘 ∈ 𝒦,

where 𝑓𝑘,𝑙 = ⟨𝜙𝑘 |𝑊𝜙𝑙⟩ are the matrix elements of 𝑊 in the basis 𝜙𝑘 of ℳ. Thus, the evolution
of 𝑐𝑘 under 𝑊 can be written as

𝑐(𝑡) = exp(−𝑖𝑡/𝜀𝐹)𝑐(0),
when we aggregate the components as vectors and matrices, 𝑐 = (𝑐𝑗)𝑗∈𝒦 and 𝐹 = (𝑓𝑗,𝑘),
respectively.

4An approximation using a composition of a large number 𝑁(𝜀, ℎ) of Strang splittings with time step ℎ/2𝑁 is
proposed.
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4.2 Propagators based on Hagedorn wave-packets

The simple Lie-Trotter splitting will be sufficient for our analysis: Approximate 𝑒−𝑖ℎ𝐻𝜓(0)
by 𝑛 steps

(𝑒−𝑖 ℎ𝑛 (𝑇+𝑈𝑞)𝑒−𝑖 ℎ𝑛 𝑊𝑞)
𝑛

and look at the limit 𝑛 → ∞. Since the method is convergent, this limit reproduces the exact
solution at ℎ. From the above theorem and proposition, it is clear that the dynamics of the left
exponential is completely independent of the right one. Therefore, in this limit, we regard 𝑊
as function depending on time, and its dynamics must thus be described as

𝑖𝜀 ̇𝑐(𝑡) = 𝐹(Π(𝑡))𝑐(0), (4.37)

where Π(𝑡) is a solution of (4.36). Of course, this system is predestined to be solved by Mag-
nus integrators as seen in previous chapters, since it preserves unitarity. Suppose we use a
second order Magnus integrator, where the only integral has been approximated by the mid-
point rule, then we rediscover method (4.35) by writing

𝑐(ℎ) = 𝑒−𝑖 ℎ𝜀 𝐹(Π( ℎ
2 ))𝑐(0). (4.38)

The dynamics of the coordinate function Π(𝑡) is described by (4.36), which in fact corre-
sponds to a classical autonomous Hamiltonian system5

𝑑
𝑑𝑡 (𝑞(𝑡)

𝑝(𝑡)) = ( 𝑝(𝑡)
−∇𝑈𝑞(𝑡)(𝑞(𝑡))) = ( 𝑝(𝑡)

−∇𝑉(𝑞(𝑡))) , (4.39)

whose solution gives the time-dependent function of the non-autonomous harmonic oscillator

𝑑
𝑑𝑡 (𝑄(𝑡)

𝑃(𝑡)) = ( 𝑃(𝑡)
−∇𝑉″(𝑞(𝑡))𝑄(𝑡)) . (4.40)

The phase 𝑆 is completely independent and can be computed separately. Therefore and be-
cause of its physical irrelevance, we omit its discussion.

The procedure for an efficient numerical integration is now clear: Approximate (4.38) up to
the desired order by a Magnus expansion. Using momentum integrals and numerical quadra-
ture thereof, this implies the need to evaluate Π(𝑡) at the quadrature points 𝑏𝑗 and we have
to compute Π(𝑏𝑗ℎ) to high precision. This can be done by splitting the combined system
(4.39), (4.40) into kinetic and potential parts and using a high-order splitting method with a
fractional (𝜀-dependent) time-step, in particular, we propose the use of method RKN116, see
Table 4.4. Thereby, only 𝑁 ∝ (𝜀Δ𝑡2)1/6 intermediate steps are needed. Alternatively, one
could compute the smaller system (4.39) and solve (4.40) trivially by computing the integral
∫ 𝑉″(𝑞(𝑠))𝑑𝑠 using the obtained values for 𝑞(𝑠) in the previous step.

A careful examination of the proofs in Ref.[60] allows us to identify the sources of the global
error. First, notice that the time-steps for the evaluation of Π are chosen such that its error is of
comparable size as the algorithm for the weights 𝑐𝑘 , which is the bottleneck of the algorithm.
By construction, the matrix 𝐹 can be shown to be of size 𝒪(𝜀3/2), which will lead to an
overall scaling6 of 𝜀3/2/𝜀1 = √𝜀 multiplying the error. Furthermore, commutators of 1𝜀𝐹,

5We suspect that this was the motivation for the notation 𝑞, 𝑝, 𝑄, 𝑃 in Ref. [54].
6The factor 𝜀−1 comes from the left-hand side of (4.37).
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which originate from a Magnus expansion, are of even smaller size, [ 1𝜀𝐹1, 1𝜀𝐹2] = 𝒪(𝜀)
and could be ignored. In essence, the overall error of the procedure will thus be determined
(neglecting 𝜀 terms) by the error of the quadrature formula for

𝑐(𝑡) = 𝑒−𝑖 1𝜀 ∫𝑡
0 𝐹(Π(𝑠))𝑑𝑠𝑐(0).

For example, for the fourth-order Gauss-Legendre quadrature with weights 𝑏1, 𝑏2 after one
time-step ℎ, we have

𝑐(ℎ) = 𝑒−𝑖 1
2𝜀 (𝐹(Π(𝑏1ℎ))+𝐹(Π(𝑏2ℎ)))𝑐(0)

and the local error is 𝒪(√𝜀ℎ5 + 𝜀ℎ3). Using a commutator-free fourth-order method instead
[30], (1.67), one gets 𝒪(√𝜀ℎ5 + 𝜀ℎ5) at the cost of another exponential. If the matrices are
too large to compute the commutator efficiently, then the direct method would require four
products per Lanczos iteration, (𝐹1 + 𝐹2 + [𝐹1, 𝐹2])𝑐 = 𝐹1(1 + 𝐹2)𝑐 + 𝐹2(1 − 𝐹1)𝑐, whereas
a commutator-free method just requires two, one per exponential and iteration.

4.3 Time-dependent potentials

After this short interlude, we return to the symmetric Zassenhaus splitting. It is then natural
to ask whether the machinery can be carried over to semi-classical equations with explicitly
time-dependent potentials, arising, e.g., from particles subject to external (electric) fields.

As having seen throughout this work, the Magnus expansion presents an excellent tool to
obtain a formal solution for the non-autonomous setting, and indeed, it has been successfully
applied to this problem class [57, 85], however, with temporal resolution much finer than
the spatial one. Convergence issues due to the unbounded nature of the kinetic and potential
operators for the standard TDSE are discussed in Ref. [72] and it turns out that the correct order
for classical Magnus integrators is recovered if the solution has sufficient spatial regularity.

In the semi-classical context, one has to identify the relevant terms in the Magnus series in
order to consequently apply the Zassenhaus algorithm with the goal to decompose the suitably
truncated expansion into exponentials of decreasing size. Two qualitatively distinct problems
are addressed: On the one hand, slow time-dependencies and on the other, frequencies that
scale with the fast parameter, ∝ 1/𝜀, as occurring for realistic laser interactions [64]. The dif-
ference will become crucial for the evaluation of the algorithm. For slowly varying potentials,
standard techniques such as the momentum integrals in the Magnus expansion can be used.
Since the quality of the underlying Taylor expansion depends greatly on the size of the time-
derivatives of the potentials, this approach will fail for rapidly changing fields and a different
approach will be developed in the second part.
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4.3 Time-dependent potentials

4.3.1 Slowly varying external field

Suppose that, for some given value 𝜀, the SE is of the form

𝑖𝜕𝑡𝜓(𝑥, 𝑡) = 𝐻(𝑡)𝜓(𝑥, 𝑡) ≡ (−𝜀Δ + 1
𝜀𝑉(𝑥, 𝜔𝑡)) 𝜓(𝑥, 𝑡),

where 𝜔 is assumed to be of size 𝒪(1). The idea is to evaluate the Magnus expansion exp(Ωℎ)
using the Taylor series of the Hamiltonian 𝐻(𝑡) around 𝑡1/2 = 𝑡0+ ℎ

2 , as in (1.65). Given that the
masses are constant, the simplifications due to the RKN structure of the algebra are dramatic.
Letting 𝐻𝑗 = −𝑖 1

𝑗!
𝑑𝑗𝐻(𝑡)

𝑑𝑡𝑗 ∣
𝑡=𝑡1/2

, the Magnus expansion up to order 8 in ℎ can be written as

[23]

Ω[8] =
6

∑
𝑘=1

Ω𝑘 , (4.41)

where

Ω1 = ℎ𝐻0 + ℎ3
12𝐻2 + ℎ5

80𝐻4 + ℎ7
448𝐻6,

Ω2 = − ℎ3
12 [𝐻0, 𝐻1] − ℎ5

80 [𝐻0, 𝐻3] − ℎ7
448 [𝐻0, 𝐻5],

Ω3 = ℎ5 ( 1
360 [𝐻0, [𝐻0, 𝐻2]] − 1

240 [𝐻1, [𝐻0, 𝐻1]])
+ ℎ7( 1

1680 [𝐻0, [𝐻0, 𝐻4]] + 1
6048 [𝐻2, [𝐻0, 𝐻2]] − 1

840 [𝐻3, [𝐻0, 𝐻1]]),
Ω4 = ℎ5 1

720 [𝐻0, [𝐻0, [𝐻0, 𝐻1]]] + ℎ7( 1
6720 [𝐻0, [𝐻0, [𝐻0, 𝐻3]]]

+ 1
4032 [𝐻0, [𝐻2, [𝐻0, 𝐻1]]] + 11

60480 [𝐻1, [𝐻0, [𝐻0, 𝐻2]]]),
Ω5 = ℎ7( −1

15120 [𝐻0, [𝐻0, [𝐻0, [𝐻0, 𝐻2]]]] − 1
30240 [𝐻0, [𝐻0, [𝐻1, [𝐻0, 𝐻1]]]]

+ 1
7560 [𝐻1, [𝐻0, [𝐻0, [𝐻0, 𝐻1]]]]),

Ω6 = ℎ7 −1
30240 [𝐻0, [𝐻0, [𝐻0, [𝐻0, [𝐻0, 𝐻1]]]]].

Defining 𝑖𝐻0 = −𝜀Δ + 1𝜀𝑉0 and 𝑖𝐻𝑗 = 1𝜀𝑉𝑗 , the size of the expressions in terms of the
small parameter 𝜀 can be determined while we keep the scaling Δ𝑥 ∝ 𝜀 and ℎ ∝ 𝜀1/2,
(𝜌 = 1, 𝜎 = 1/2). Spatial differentiation is hidden within the commutators which will be
computed to be able to group terms by their 𝜀-scaling. We briefly remark their effect on the
overall size of the elements to justify the truncation of the Magnus expansion: The innermost
commutator is of size 𝒪(𝜀−𝜌) and each further appearance of the kinetic operator 𝜀𝑇 will
increment the degree of the occurring derivatives by one, and given the choice of scaling
parameters, the power in 𝜀 remains unchanged. Commutation with 𝜀−1𝑉𝑗 has the opposite
effect and reduces the degree of differentiation, but in turn is counteracted by multiplication
with the large parameter 1/𝜀. Hence, the composite term 𝐻0 will not increase the size of
a commutator and to achieve an approximation of degree 𝜀𝑝 is equivalent to truncating the
Magnus series at ℎ(𝑝+𝜌)/𝜎. In other words, the leading error of a (classical) 𝑛th-order Magnus
integrator is of size 𝒪(𝜀(𝑛+1)𝜎−𝜌) and we truncate the integrator (4.41) at order six to achieve
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Chapter 4. The semi-classical limit

the 𝒪(𝜀5/2) accurate method

Ω[6] = 𝜏(−𝜀𝜕2𝑥 + 𝜀−1𝑉0) + 𝜏3(− 1
12𝜀−1𝑉2 + 𝑖 1

6 (𝜕𝑥𝑉1)𝜕𝑥 + 𝑖 1
12 (𝜕2𝑥𝑉1))

+ 𝜏5𝜀−1(− 1
180 (𝜕𝑥𝑉0)(𝜕𝑥𝑉2) + 1

120 (𝜕𝑥𝑉1)2 + 1
80𝑉4)

− 𝑖𝜏5( 1
40 (𝜕𝑥𝑉3) + 1

180 (𝜕𝑥𝑉1)(𝜕2𝑥𝑉0) + 1
60 (𝜕𝑥𝑉0)(𝜕2𝑥𝑉1))𝜕𝑥

− 1
90𝜏5𝜀((𝜕2𝑥𝑉2)𝜕2𝑥 + (𝜕3𝑥𝑉2)𝜕𝑥)

− 𝑖𝜏5 1
720𝜀2(8(𝜕3𝑥𝑉1)𝜕3𝑥 + 12(𝜕4𝑥𝑉1)𝜕2𝑥 + 6(𝜕5𝑥𝑉1)𝜕𝑥) + 𝒪(𝜀5/2),

with 𝜏 = ℎ/𝑖. The careful reader will notice the appearance of the imaginary unit, 𝑖, which
is due to the commutators of even length in the Magnus expansion. Furthermore, derivatives
of odd degree appear and have to be dealt with as for the autonomous case. This is also the
reason why some terms, such as 𝜏5𝜀(𝜕3𝑥𝑉2)𝜕𝑥 = 𝒪(𝜀5/2) have not been discarded yet: After
rewriting in even derivatives, a factor of 1/𝜀 is gained and if it had been dropped prematurely,
the result would not form a skew-Hermitian operator. The underlying reason is that only the
entire commutators form (skew-)Hermitian operators and we can only discard them after the
odd-even-substitution.

From here on, we proceed as before: The odd-degree derivatives are rewritten as linear com-
binations of even ones, the terms of same size are identified and extracted with the symmetric
Zassenhaus formula.

Given the algorithm in Table 4.2, only the starting points 𝒲[0], 𝑊 [0] of the expansion need
to be modified to compute the decomposition. With the aim of a 𝒪(𝜀5/2) integrator, the al-
gorithm is initiated with the sixth-order Magnus expansion

𝒲[0] = Ω[6],

and, as before, there are several alternatives for the initial iterations.

A closer look reveals a difficulty that is unique to the non-autonomous setting: After conver-
sion to even derivatives, we are facing terms

𝒲[0] = 𝑖ℎ/𝜔𝜕2𝑥 − 𝑖𝜔ℎ𝑉0 + 1
12ℎ3 [𝜕2𝑥 , 𝑉1]− + 𝒪 (√𝜀) ,

and all scale as 𝜀−1/2. The now appearing commutator is due to [𝐻0, 𝐻1] and cannot be
diagonalized by Fourier transforms. This is a major drawback since our algorithm relied on
the already achieved decrease of size for terms that had to be computed with Lanczos’ method.
Before, only the diagonal (after FFT) terms 𝜕2𝑥 , 𝑉 were growing with 𝜀−1/2.

Fortunately, we can borrow ideas from Section 2.2.1, where we computed a commutator of
length two using three simpler exponentials. Thus, we attempt to compute

𝑒−𝑘𝑖𝜔ℎ2𝑉1𝑒𝑖/𝜔ℎ𝜕2𝑥 𝑒𝑘𝑖𝜔ℎ2𝑉1 = 𝑒𝑖/𝜔ℎ𝜕2𝑥+ 1
12 ℎ3[𝜕2𝑥 ,𝑉1]+𝒪(𝜀1/2),

and a simple application of the BCH formula leads to 𝑘 = 1
12 . The composition is related to

(post-)processing, where a method Ψℎ is embraced by a processor 𝑃 and its inverse, 𝑃Ψℎ𝑃−1
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4.3 Time-dependent potentials

in order to reduce the error. Finally, we set

𝑊 [0] = log (𝑒− 1
12 𝑖𝜔ℎ2𝑉1𝑒𝑖/𝜔ℎ𝜕2𝑥 𝑒 1

12 𝑖𝜔ℎ2𝑉1)

= 𝑖 ℎ
𝜔𝜕2𝑥 − 1

12ℎ3 [𝜕2𝑥 , 𝑉1]− − 1
144 𝑖ℎ5𝜔(𝜕𝑥𝑉1)2

Remarkably, this composition of exponents has very nice features for RKN algebras. Recalling
(2.11), the following expression is exact,

𝑒−𝑘ℎ𝑉 𝑒ℎ𝑇 𝑒𝑘ℎ𝑉 = 𝑒ℎ𝑇−ℎ2𝑘[𝑉,𝑇]− 1
2 ℎ3𝑘2[[𝑉,𝑇],𝑉]. (4.42)

This property could also be useful for commutator-free Magnus integrators but will not be
explored further in this work.

Instead, we return to the Zassenhaus splitting. Having defined 𝑊 [0] in a way that all derivatives
of large size in the small parameters are included and that only requires one FFT plus its
inverse to exponentiate, the first iteration effectively removes derivatives to yield

𝒲[1] = sBCH(−𝑊 [0], 𝒲[0])

= −𝑖ℎ𝜔𝑉0 − 1
12 𝑖ℎ3 (𝜔 (𝑉2 − 2(𝜕𝑥𝑉0)2) + 1

𝜔{𝜕2𝑥 , (𝜕2𝑥𝑉0)}+) + 𝒪(√𝜀)

We proceed with the next largest term, 𝑊 [1] = −𝑖ℎ𝜔𝑉0 and after computing commutators up
to length five, the next term is identified to be

𝑊 [2] = − 1
12 𝑖ℎ3 (𝜔 (𝑉2 − 2(𝜕𝑥𝑉0)2) + 1

𝜔{𝜕2𝑥 , (𝜕2𝑥𝑉0)}+)

− 1
240ℎ5 [𝜕2𝑥 , 3𝑉3 + 2 ∫ (2𝑉 ′

1𝑉″
0 + 𝑉 ′

0𝑉″
1 )]− − 1

360
1

𝜔2 ℎ5[𝜕4𝑥 , (𝜕2𝑥𝑉1)]− = 𝒪(√𝜀) ,
(4.43)

where the integral has to be understood in the sense of (4.19). We terminate the computation
at the next step by identifying the 𝒪(𝜀3/2) terms in 𝒲[2] = sBCH(−𝑊 [2], 𝒲[1]) to achieve
a method of order 𝒪(𝜀5/2). The rather lengthy result is

𝑊 [3] = −𝑖ℎ5(𝜔 ( 1
80𝑉4 + 1

720 (𝜕𝑥𝑉1)2 − 1
30 (𝜕𝑥𝑉0)(𝜕𝑥𝑉2) + 7

120 (𝜕𝑥𝑉0)2(𝜕2𝑥𝑉0))

− 1
𝜔 {𝜕2𝑥 , 1

60 (𝜕𝑥𝑉0)2 + 1
80 (𝜕2𝑥𝑉2) − 1

30 (𝜕𝑥𝑉0)(𝜕3𝑥𝑉0)}+ + 1
240

1
𝜔3 {𝜕4𝑥 , (𝜕4𝑥𝑉0)}+)

− ℎ7( 1
4320[𝜕2𝑥 , ∫(9𝑉 ′

3(𝜕2𝑥𝑉0) + 14𝑉 ′
1(𝜕2𝑥𝑉0)2 + 5𝑉 ′

1(𝜕2𝑥𝑉2) + 18𝑉 ′
0(𝜕2𝑥𝑉0)(𝜕2𝑥𝑉1)

+ 27𝑉 ′
0(𝜕2𝑥𝑉3) + 30𝑉 ′

0(𝜕𝑥𝑉1)(𝜕3𝑥𝑉0) + 24(𝜕𝑥𝑉0)2(𝜕3𝑥𝑉1))]
−

− 1
8640

1
𝜔2 [𝜕4𝑥 , ∫(10(𝜕2𝑥𝑉1)(𝜕3𝑥𝑉0) + 2(𝜕2𝑥𝑉0)(𝜕3𝑥𝑉1) + 9(𝜕3𝑥𝑉3)

+ 8(𝜕𝑥𝑉1)(𝜕4𝑥𝑉0) + 26(𝜕𝑥𝑉0)(𝜕4𝑥𝑉1))]
−

+ 1
3240

1
𝜔4 [𝜕6𝑥 , (𝜕4𝑥𝑉1)]−), (4.44)

and combining the results, we obtain the method

𝑒 1
2 𝑊 [0]𝑒 1

2 𝑊 [1]𝑒 1
2 𝑊 [2]𝑒𝑊 [3]𝑒 1

2 𝑊 [2]𝑒 1
2 𝑊 [1]𝑒 1

2 𝑊 [0] = 𝑒Ωℎ + 𝒪 (𝜀5/2) .
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Chapter 4. The semi-classical limit

The numerical effort for the computation of one step, ignoring differentiation and integration,
can be determined by counting the necessary FFTs: The outermost exponentials 𝑊 [0] only
require four FFTs in total, the next one 𝑊 [1] is already diagonal in coordinate space, and
it remains to estimate 𝑊 [3] and 𝑊 [4]. Since an overall accuracy of 𝒪(𝜀5/2) is desired and
𝑊 [3] = 𝒪(𝜀1/2), we conclude with (1.33’) that five Lanczos iterations per exponential are
necessary. The exponent contains two commutators7 which sum up to seven FFTs. The small-
est term only requires two Lanczos iterations, but contains three commutators that sum up to
10 FFTs. In total, 4 + 5 × 7 + 2 × 10 = 59 FFTs per step have to be evaluated. However, as for
autonomous potentials, this number is growing quadratically with increasing precision.

We remark that all arguments translate perfectly to the formulation of the Magnus expansion
in terms of momentum integrals.

4.3.2 Highly oscillating time dependence

The standard Magnus techniques heavily rely on the smoothness of the time-dependency of
the potential, or in other words, on tight bounds for its temporal derivatives. The important
case of laser interactions, however, has a qualitatively different character and must be resolved
in the fast timescale, proportional to 1/𝜀.

A fairly general interaction with an external field can be modeled by the Hamiltonian8

𝐻 = −𝜀
2 Δ + 1

𝜀𝑉(𝑥) + 1
𝜀𝑓 ( 𝑡

𝜀) 𝑊(𝑥). (4.45)

The Hamiltonian thus consists of two parts, a constant contribution due to kinetic energy
and a intrinsic potential plus some external interaction 𝑊(𝑥) which is modulated by a scalar
function 𝑓 . Staying with the example of an external laser field, 𝑊(𝑥) could be either just a
linear function in 𝑥 or take more sophisticated forms modeling the underlying dipole moment,
e.g., 𝜇 = 𝑥𝑒𝑎𝑥 [132].

It has been pointed out in the context of (modified) Magnus expansions [76, 114, 84] (see [23]
for more references) and for more general multivariate integrations [79, 84] that the appearing
integrals in the expansion should actually be beneficial for an oscillating function. However,
the whole machinery heavily relies on either the fact that the oscillations stem from the equa-
tion in form of a larger parameter, a completely different setting, or on the truncation of the
series expansion around the small parameter ℎ:

With the aim of keeping a large time-step ℎ ∝ √𝜀, this approach is rendered futile since the
correct expansion has to be done around 𝜀 = 0 for 𝑓 (1/√𝜀) which leads to growing error
terms proportional to inverse (fractional) powers of the small parameter 𝜀.

In the spirit of the Zassenhaus splitting for the semiclassical expansion, we employ a different
approach: We carefully study the terms of the Magnus expansion to discover that the multi-
variate integrals are only scalar and thus cheap to compute to sufficiently high accuracy, in
contrast to the more common problem when the time-dependencies are inside some matrix

7Anti-commutators can be computed together with commutators at no extra computational cost.
8The semiclassical parameter has been included in the Hamiltonian which thus corresponds to the Schrödinger

equation 𝑖𝜕𝜓 = 𝐻𝜓.
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structure and thereby increase the complexity. In this work, we assume to be able to compute
the integrals exactly, and then only have to deal with the commutators, which can be done in
a similar fashion as for the slow setting above.

In the following, we will write ̃𝑓 (𝑡) = 𝑓 (𝜔𝑡) and assume that this scalar function is of size
𝒪(1).

Structure of the Magnus expansion 1: the commutators Working in a Dynkin basis, it
is clear from the recursive construction of the Magnus expansion (1.62) that all commutators
are of the form [𝐻(𝑠1), [… , 𝐻(𝑠𝑛)] ⋯].

Working in the algebra generated by 𝐴 = 𝜀𝑇 +𝑉/𝜀 and 𝐵 = 𝑊/𝜀, such a general commutator
can be expanded to yield simple (nested) commutators in 𝐴 and 𝐵 multiplied by scalar func-
tions in the time-coordinates 𝑠𝑗 . Assuming the usual scaling Δ𝑥 ∝ 𝜀, the simple term 𝐻(𝑠) is
of size 1/𝜀 and the first commutator

[𝐻(𝑠1), 𝐻(𝑠2)] = ( ̃𝑓 (𝑠𝑛) − ̃𝑓 (𝑠𝑛−1)) [𝐴, 𝐵]
= ( ̃𝑓 (𝑠𝑛) − ̃𝑓 (𝑠𝑛−1)) ((𝜕2𝑥𝑊) + 2(𝜕𝑥𝑊)𝜕𝑥) = 𝒪 (𝜀−1) .

To estimate the size after further commutation, we can study the effects of 𝐴 and 𝐵 separately
due to the linearity of the bracket. We conclude as for the slow case that commutation with
either 𝐴, or 𝐵 leaves the size in 𝜀 invariant, since commuting with the kinetic (potential)
operator increases (decreases) the degree of the derivatives by one which is compensated by
the multiplication with the small (large) parameter 𝜀 (1/𝜀). Overall, we can conclude that all
commutators are of size

[𝐻(𝑠1), [… , 𝐻(𝑠𝑛)] ⋯] = 𝒪(𝜀−1) , (4.46)

which must be taken into account for a suitable truncation of the Magnus expansion. Hence,
the decrease in size must come from nested integrals, which we will estimate in continuation.

Structure of the Magnus expansion 1: the integrals Suppose that 𝑓 (𝑡) is sufficiently
smooth, or in other words, it contains no fast frequencies which we will formalize as

𝑓 (𝑡) = ∑
𝑘∈ℤ

̂𝑓𝑘𝑒(2𝜋𝑖)𝑘𝑡 , ∑
𝑘∈ℤ

| ̂𝑓𝑘 |
𝑘 ≤ 𝐶,

for a constant 𝐶 independent of the small parameter 𝜀. Hence, 𝑓 (𝑡) is slow and integrating
over a full time-step, we get

∫ℎ
0 𝑓 (𝑠/𝜀) 𝑑𝑠 = ∫ℎ

0 ∑
𝑘

̂𝑓𝑘𝑒2𝜋𝑖𝑘𝑠/𝜀 𝑑𝑠

= 𝜀 ∑
𝑘

̂𝑓𝑘
2𝜋𝑖𝑘 (𝑒2𝜋𝑖𝑘ℎ − 1) ≤ 𝜀 ∑

𝑘
2 | ̂𝑓𝑘 |

2𝜋|𝑘| = 𝒪(𝜀).

In a multivariate integration, we will estimate one of the occurring integrals by this procedure
and use the standard estimation that another power of ℎ is gained in each integration (using a
constant majorant) to derive

∫ℎ
0 ∫𝑠1

0 ⋯ ∫𝑠𝑛

0 𝑓 (𝜔𝑠𝑗) 𝑑𝑠𝑛 𝑑𝑠0 = 𝒪 (ℎ𝑛𝜀) .
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Notice that for the general case where 𝑓 (𝜔𝑠𝑗) has to be replaced by linear combinations of
oscillating functions 𝑓 (𝜔𝑠𝑘), this estimation still holds since we assumed that 𝑓 (𝑡) = 𝒪(1).

We summarize these estimates to yield a growth law for the Magnus expansion in the small
parameter:

Theorem 4.3.1. Let 𝐻 = 𝜀𝑇 + 𝑉/𝜀 + 𝑓 (𝑡/𝜀)𝑊/𝜀, with 𝑓 independent of 𝜀, and discretizing
in space and time as Δ𝑥 = 𝒪(𝜀) and ℎ = 𝜀𝜎, the Magnus expansion (1.62) truncated after 𝑝
terms is of effective order 𝜀𝑝𝜎.

∞
∑
𝑘=1

Θ𝑘 =
𝑝

∑
𝑘=1

Θ𝑘 + 𝒪 (𝜀𝑝𝜎) , 𝑝 ≥ 2.

At this point, we are able to apply the symmetric Zassenhaus algorithm and in the remainder,
a method of epsilon-order 3/2 will be constructed. From Th. 4.3.1, it is clear that it suffices to
include the first three terms Θ𝑗 , 𝑗 = 1, 2, 3 for an approximation error 𝒪(𝜀3/2). The expression
is easy to compute and we set (recall 𝜔 = 𝜀−1)

𝒲[0] = Θ1 + Θ2 + Θ3

= − 𝑖 (ℎ 1
𝜔𝑇 + ℎ𝜔𝑉 + 𝑓1,1𝑊) + 𝑓2,1[𝑊, 𝑇]

+ 𝑖𝑓3,1[𝜔𝑉 + 1𝜔𝑇, [𝑇, 𝑊]] + 𝑖𝑓3,2𝜔[𝑊, [𝑇, 𝑊]]

= − 𝑖ℎ (− 1
𝜔𝜕2𝑥 + 𝜔𝑉)⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝒪(𝜀−1/2)

− 𝑖𝜔𝑓1,1𝑊⏟
𝒪(𝜀0)

− 2𝑓2,1𝑊 ′𝜕𝑥⏟⏟⏟⏟⏟
𝒪(𝜀1/2)

− 𝑓2,1𝑊″
⏟
𝒪(𝜀3/2)

+ 2𝑖𝑓3,1 (𝜔𝑉 ′𝑊 ′ + 2 1
𝜔𝑊″𝜕2𝑥) + 4𝑖𝑓3,2𝜔(𝜕𝑥𝑊)2

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝒪(𝜀1)

+ 4𝑖 𝑓3,1
𝜔 (𝜕3𝑥𝑊)𝜕𝑥⏟⏟⏟⏟⏟⏟⏟

𝒪(𝜀2)

+𝒪(𝜀3) .

The functions 𝑓𝑗,𝑘 are of size 𝒪(𝜀ℎ𝑗−1) = 𝒪(𝜀(𝑗+1)/2), in particular,

𝑓1,1 = ∫ℎ
0 𝑑𝑠 ̃𝑓 (𝑠),

𝑓2,1 = 1
2 ∫ℎ

0 𝑑𝑠1 ∫𝑠1

0 𝑑𝑠2( ̃𝑓 (𝑠2/𝜔) − ̃𝑓 (𝑠1/𝜔)),

𝑓3,1 = 1
6 ∫ℎ

0 𝑑𝑠1 ∫𝑠1

0 𝑑𝑠2 ∫𝑠2

0 𝑑𝑠3( ̃𝑓 (𝑠3) − 2 ̃𝑓 (𝑠2) + ̃𝑓 (𝑠1)),

𝑓3,2 = 1
6 ∫ℎ

0 𝑑𝑠1 ∫𝑠1

0 𝑑𝑠2 ∫𝑠2

0 𝑑𝑠3(2 ̃𝑓 (𝑠1) ̃𝑓 (𝑠3) − ̃𝑓 (𝑠2)( ̃𝑓 (𝑠1) + ̃𝑓 (𝑠3))),

with the shorthand ̃𝑓 (𝑠) = 𝑓 (𝑠/𝜔). The application of the Zassenhaus algorithm is almost
straightforward: Convert 𝒲[0] to even derivatives and identify the largest terms. As before,
the conversion to even derivatives will increase the size of the first commutator which orig-
inates from Θ2 and we apply the construction (4.42) to avoid its direct computation. The
starting point is set to

𝑊 [0] = log (𝑒𝑘𝑊 𝑒𝑖ℎ𝜕2𝑥/𝜔𝑒−𝑘𝑊 )

= 𝑖 ℎ
𝜔𝜕2𝑥 + 𝑓2,1[𝜕2𝑥 , 𝑊]− − 𝑖

𝑓 2
2,1𝜔
ℎ (𝜕𝑥𝑊)2,
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4.3 Time-dependent potentials

where 𝑘 = −𝑖𝑓2,1 𝜔
ℎ . From here onwards, we simply follow the Zassenhaus split and continue

to pull out the largest parts of the remainder,

𝑊 [1] = −𝑖𝜔 (ℎ𝑉 + 𝑓1,1𝑊) = 𝒪(𝜀−1/2 + 𝜀0) .

Proceeding in the usual fashion leads to

𝑊 [2] = 1
6 𝑖ℎ3𝜔(𝜕𝑥𝑉)2 + 𝑖 ℎ3

𝜔 {𝜕2𝑥 , (𝜕2𝑥𝑉)}+ − 1
6 𝑓2,1ℎ2 [𝜕2𝑥 , ∫(𝜕𝑥𝑊)(𝜕2𝑥𝑉)]− = 𝒪(𝜀1/2) .

The final step gives

𝑊 [3] = 𝑖𝜔 ((2𝑓3,1 + 1
3 𝑓1,1ℎ2) (𝜕𝑥𝑉) + 2𝑓3,2(𝜕𝑥𝑊)) (𝜕𝑥𝑊)

+ 1
12ℎ𝑓1,1𝑓2,1 [𝜕2𝑥 , (𝜕𝑥𝑊)2]− + 𝑖 1

𝜔 (4𝑓3,1 + 1
12 𝑓1,1ℎ2) {𝜕2𝑥 , (𝜕𝑥𝑊)2}+ = 𝒪(𝜀1)

We have now reached the precision of the truncated Magnus expansion which gives the method

𝑒Θ(0,ℎ) = 𝑒∑3
𝑘=1 Θ𝑘+𝒪(𝜀3/2) = 𝑒 1

2 𝑊 [0]𝑒 1
2 𝑊 [1]𝑒 1

2 𝑊 [2]𝑒 1
2 𝑊 [3]𝑒 1

2 𝑊 [2]𝑒 1
2 𝑊 [1]𝑒 1

2 𝑊 [0] + 𝒪(𝜀3/2) .

Note that all the derivatives and integrals w.r.t. the spatial coordinate of the potentials only
have to be computed once and the time-dependency is buried in the functions 𝑓𝑗,𝑘 . This low
order method requires very few FFTs, in fact only 2×2 for 𝑊 [0], 2×3 Lanczos iterations with
4 FFTs for 𝑊 [2] and two iterations with 4 FFTs for 𝑊 [3], which totals to 36 FFTs.
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Chapter5
THE GROUND STATE:
IMAGINARY TIME PROPAGATION

T       [6].

We consider the eigenvalue problem for the stationary Schrödinger equation (SE) presented
in Section 1.1.4 which is repeated for convenience of the reader

𝐻𝜙𝑗(𝑥) = 𝐸𝑗𝜙𝑗(𝑥), 𝑗 = 0, 1, 2, … (5.1)

where
𝐻 = 𝑇 + 𝑉(𝑥) = −1

2Δ + 𝑉(𝑥), (5.2)

𝑉(𝑥) denotes the interaction potential and Δ is the Laplacian operator. Since the Hamiltonian
𝐻 is a Hermitian operator, its eigenvalues 𝐸𝑖 are real valued, and their corresponding real
eigenfunctions 𝜙𝑖(𝑥) form a basis of the underlying Hilbert space. This particular problem
has attracted great interest among theorists and practitioners [46, 82, 112] due to its relevance
for the properties of atomic structures. A widely used approach to solve this problem is based
on using the corresponding time-dependent Schrödinger equation in imaginary time (𝑡 = −𝑖𝜏),
whose formal solution is given by the evolution operator exp(−𝜏𝐻). In this way, in general,
virtually any initial condition, under the action of exp(−𝜏𝐻), converges asymptotically to
the ground state solution when 𝜏 → ∞. Notice that the evolution operator exp(−𝜏𝐻) has
the same eigenfunctions as the problem (5.1)-(5.2). This technique is usually referred to as
the imaginary time propagation method (ITP for short). In this setting, only the action of
exp(−𝜏𝐻) on a wave function has to be computed [3, 89].
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Chapter 5. The ground state: Imaginary time propagation

5.1 Motivation and background

The ITP method can be regarded as an analog of the well-known power method in numerical
linear algebra [125]. In this sense, one may also consider the inverse power method: Instead
of the iterative application of the exponential operator exp(−𝜏𝐻), the scheme 𝑣𝑛+1 = (𝐻 −

̃𝐸𝑗)−1𝑣𝑛, 𝑛 = 0, 1, 2, … is used for some given ̃𝐸𝑗 . This iteration is known to converge after
normalization to the eigenvector with eigenvalue closest to ̃𝐸𝑗 . Although faster convergence
than for the ITP method can be observed for an accurate initial guess ̃𝐸𝑗 ≈ 𝐸𝑗 , in general, the
algorithm needs more iterations until convergence [1].

However, the benefits of this method are non-negligible if one is interested in a particular high
energy eigenstate since, with a suitable initial guess ̃𝐸𝑗 , the state can be computed without
having to calculate the lower energies 𝐸𝑘 , 0 ≤ 𝑘 < 𝑗, previously.

Since the operators 𝑒−𝜏𝑉 and 𝑒−𝜏𝑇 can be exactly computed in the coordinate and momen-
tum space, respectively, the operator splitting technique involving a composition of these
exponential operators with appropriate coefficients can be used to approximate 𝑒−𝜏𝐻 . The
computational cost depends on the number of changes between these coordinates which are
cheaply performed by Fast Fourier transforms (FFT).

However, the operator splitting technique has some limitations. In particular, splitting methods
of order 𝑝 > 2 require negative time-steps [118, 120] and the instabilities caused thereof are
analogous to the ones for the integration of a diffusion equation backwards in time. If it is
feasible to compute the gradient of the potential 𝑉 , generalized splitting methods allow to
build methods with positive coefficients up to fourth order [44, 104, 45], but higher order
methods also use negative time-steps. In this section, we propose methods to overcome the
order barriers for both cases by using complex time-steps. Splitting methods can be tailored
to particular equations to achieve better performances and we present criteria based on near-
integrability that apply to a wide range of problems and thus yield highly efficient high order
schemes. The obtained methods outperform the existing splitting schemes when high accuracy
is desired and could be appropriate for elaborating a variable order algorithm. We also report
some numerical experiments illustrating the efficiency of the new methods.

For details on the procedure, we refer to the introduction and only elaborate on aspects of the
implementation of the process

𝑒−𝜏𝐻𝜓(𝑥, 0) = ∑
𝑖

𝑒−𝜏𝐸𝑖𝜙𝑖(𝑥).

We will assume that the eigenvalues are distinct and positive, 0 < 𝐸0 < 𝐸1 < … , the latter
can be achieved by appropriately choosing the origin of the potential, which corresponds
to adding a physically irrelevant constant global phase to solution. If there is degeneracy, it
converges to a linear combination of eigenfunctions, and repeating this process with different
initial conditions, one can obtain a complete set of independent vectors of the subspace which
can be orthonormalized.

Normalization of the asymptotic value yields the eigenfunction 𝜙0 and the corresponding
eigenvalue is computed via 𝐸0 = ⟨𝜙0|𝐻𝜙0⟩. Excited states can be obtained by propagating
different wave functions simultaneously (or successively) in time and using, for example, the
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5.2 Splitting methods for the Schrödinger equation

Gram-Schmidt orthonormalization or diagonalization of the overlap matrix [1].

For simplicity in the presentation, the spatial dimension is set to one unless it is explicitly
stated, but our results also apply to higher dimensions.

The problem is further simplified by assuming 𝑥 ∈ [𝑎, 𝑏] with the interval [𝑎, 𝑏] sufficiently
large such that the wave function and all its derivatives of interest vanish at the boundaries.
For numerical computations, the infinite dimensional domain of 𝐻 has to be truncated, which
is done by discretizing the spatial coordinate 𝑥: We fix 𝑁 equally spaced grid points 𝑥𝑗 =
𝑥0 + 𝑘Δ𝑥, 𝑘 = 0, 1, 2, … , 𝑁 − 1, with 𝑎 = 𝑥0 and 𝑏 = 𝑥𝑁 . In this way, the interval is divided
into 𝑁 subintervals of size Δ𝑥 = (𝑏 − 𝑎)/𝑁 .

The potential 𝑉 is represented in this grid by a diagonal matrix and the periodicity of the
system (𝜓(𝑛)(𝑎) = 𝜓(𝑛)(𝑏) = 0, 𝑛 = 0, 1, 2, …) allows for the use of spectral methods (in
space) for the calculation of 𝑇 , namely the Fast Fourier Transform after which the matrix
representation of 𝑇 also becomes diagonal. The computational costs for the application of
𝑉 and 𝑇 to a vector are thus proportional to 𝑁 and 𝑁 log 𝑁 operations, respectively. In a 𝑑-
dimensional space with 𝑁 mesh points on each dimension, their costs are proportional to 𝑁𝑑

and 𝑁𝑑 log 𝑁 , respectively.

5.2 Splitting methods for the Schrödinger equation

To approximate the time evolution (1.17), i.e., the computation of 𝑒−𝜏𝐻 acting on a vector, we
propose to use splitting methods, cf. Section 1.3.3, in particular, compositions of the operators
𝑒−𝜏𝑉 and 𝑒−𝜏𝑇 evaluated at different times. For convenience, we express the Strang splitting
(1.38) in these terms

Ψ[2]
ℎ ≡ 𝑒− ℎ

2 𝑉 𝑒−ℎ𝑇 𝑒− ℎ
2 𝑉 , (5.3)

and verifies Ψ[2]
ℎ = 𝑒−ℎ𝐻 + 𝒪(ℎ3) with ℎ ≡ Δ𝜏. A general composition is then given by

Ψ[𝑝]
ℎ ≡

𝑚
∏
𝑖=1

𝑒−𝑎𝑖ℎ𝑇 𝑒−𝑏𝑖ℎ𝑉 , (5.4)

where Ψ[𝑝]
ℎ = 𝑒−ℎ𝐻 + 𝒪(ℎ𝑝+1) if the coefficients 𝑎𝑖, 𝑏𝑖 are chosen such that they satisfy a

number of order conditions (with 𝑚 sufficiently large). However, as mentioned earlier, split-
tings of order greater than two necessarily have negative coefficients. While this is usually not
a problem for the coefficients 𝑏𝑖, having negative 𝑎𝑖 coefficients makes the algorithm badly
conditioned (in the limit 𝑁 → ∞). Recall that this restriction applies to a more general class
of equations: Whenever the operator only creates a semi-group of solutions, the integration
has to be computed forward in time.

Composition methods with coefficients 𝑏𝑖 positive are also convenient for unbounded poten-
tials, e.g., 𝑉(𝑥) = 𝑥2, since negative values of 𝑏𝑖 can generate large round-off errors in the
exponential 𝑒−𝑏𝑖𝑉 at the boundaries if the interval-size of the spatial discretization is not ap-
propriately chosen and the potential takes exceedingly large values.

Splitting methods are particularly appropriate for the numerical integration of this problem
since the choice of the time step, ℎ, is not affected by the mesh size. Taking a finer mesh (i.e., a
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Chapter 5. The ground state: Imaginary time propagation

larger value of 𝑁) does not necessarily lead to a smaller time step, and the extra computational
effort originates only from the FFTs, whose cost is 𝑁 log(𝑁) (or 𝑁𝑑 log(𝑁) in a 𝑑-dimensional
problem with 𝑁 points on each coordinate). In contrast and as elaborated in the introduction,
the Chebyshev polynomial method approximates the exponential as

𝑒−𝜏𝐻 = 𝑒−𝜌(𝐻/‖𝐻‖) ≃
𝑚

∑
𝑘=0

𝑎𝑘(𝜌)𝑃𝑘 (𝜏𝐻/𝜌) , (5.5)

where 𝜌 = 𝜏‖𝐻‖, 𝑎𝑘(𝜌) = 2𝐼𝑘(𝜌), 𝑘 > 0 and 𝑎0(𝜌) = 𝐼0(𝜌), with 𝐼𝑛 being the modi-
fied Bessel functions of the first kind and 𝑃𝑘 is the Chebyshev polynomial of degree 𝑘. The
truncation index 𝑚 has to be such that 𝑚 > 𝜌 to reach accuracy. If we take into account that

‖𝐻‖ ∼ 𝑉𝑚𝑎𝑥 − 𝑉𝑚𝑖𝑛 +
𝑑

∑
𝑗=1

( 𝜋
Δ𝑥𝑗

)
2

∼ 𝑁2,

we observe that the number of FFTs is proportional to 𝑁2, and then its computational cost
scales as 𝑁2 × 𝑁𝑑 log(𝑁). Similar considerations apply to other polynomial approximations
such as Taylor or Lanczos methods. In fact, in the numerical experiments with 𝑑 = 3 reported
in Ref. [89], splitting methods scale as 𝑁3.3 while Lanczos methods scale as 𝑁5.3 for a range
of values of 𝑁 , in agreement with the previous estimates.

Nevertheless, from the results in Ref. [89] one might conclude that these polynomial approxi-
mations scale better than splitting methods for computing a larger part of the spectrum. Then,
splitting schemes are the methods of choice when only relatively few eigenvalues are desired,
especially if they are needed with high accuracy (implying a finer mesh, i.e., a larger number
of grid points). With this aim in mind, we next explore several families of splitting methods
to get approximations to (1.17).

One possible approach to derive the order conditions to be satisfied by the coefficients 𝑎𝑖, 𝑏𝑖
consists in applying the Baker-Campbell-Hausdorff formula to the composition (5.4), which
we assume consistent (∑𝑖 𝑎𝑖 = ∑𝑖 𝑏𝑖 = 1) [65]. Thus we get Ψ[𝑝]

ℎ = exp(−ℎℋ ), with

ℋ = 𝑇 + 𝑉 + ℎ𝑓2,1[𝑇, 𝑉] + ℎ2(𝑓3,1[𝑇, [𝑇, 𝑉]] + 𝑓3,2[𝑉, [𝑇, 𝑉]]) + ⋯ , (5.6)

where 𝑓𝑖,𝑗 are polynomials of degree 𝑖 in the coefficients 𝑎𝑘 , 𝑏𝑘 . Condition 𝑓2,1 = 0 leads
to second order methods, and this can always be achieved by taking a left-right symmetric
composition in (5.4) because all even terms automatically vanish. Methods of higher orders
require in addition 𝑓3,1 = 𝑓3,2 = 0. Taking into account consistency, these equations can be
written as [22]

𝑓3,1 ∶ ∑
1≤𝑖<𝑗≤𝑘≤𝑚

𝑎𝑖𝑏𝑗𝑎𝑘 = 1
6 , (5.7)

𝑓3,2 ∶ ∑
1≤𝑖≤𝑗≤𝑘≤𝑚+1

𝑏𝑖𝑎𝑗𝑏𝑘 = 1
6 . (5.8)

These two conditions imply that at least one of the 𝑎𝑖 as well as one of the 𝑏𝑖 become nega-
tive (see [17] and references therein), so that only methods of order two can be used for this
problem.

There are several possibilities to circumvent this limitation, and in the following, we enumerate
some of them.
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5.2 Splitting methods for the Schrödinger equation

Modified potentials If the kinetic energy operator in (5.2) is quadratic in momenta, then
the nested commutator

[𝑉, [𝑇, 𝑉]] = (∇𝑉 (𝑥))𝑇 (∇𝑉 (𝑥)) (5.9)

is diagonal in coordinate space. For this reason, (5.9) is usually called modifying potential. In
consequence, [𝑉, [𝑉, [𝑇, 𝑉]]] = 0 and we can replace the terms 𝑒−𝑏𝑖ℎ𝑉 in (5.4) by the more
general operator

𝑒−𝑏𝑖ℎ𝑉−𝑐𝑖ℎ3[𝑉,[𝑇,𝑉]]

involving two parameters. As a result, condition (5.8) becomes

𝑓3,2 ∶ ∑
1≤𝑖≤𝑗≤𝑘≤𝑚+1

𝑏𝑖𝑎𝑗𝑏𝑘 +
𝑚

∑
𝑖=1

𝑐𝑖 = 1
6 .

This equation can always be satisfied with a proper choice of the coefficients 𝑐𝑖, so that the
constraints on the coefficients 𝑎𝑖, 𝑏𝑖 reduce to the single condition 𝑓3,1 = 0, allowing for posi-
tive coefficients. In addition, solutions with positive 𝑐𝑖 coefficients also exist. A first example
is the 4th-order composition [86, 44]

Ψ[4]
ℎ ≡ 𝑒− ℎ

6 𝑉 𝑒− ℎ
2 𝑇 𝑒− 2ℎ

3 𝑉− ℎ3
72 [𝑉,[𝑇,𝑉]] 𝑒− ℎ

2 𝑇 𝑒− ℎ
6 𝑉 . (5.10)

It turns out, however, that 6th-order methods using the operator (5.9) necessarily have some
negative coefficients 𝑎𝑖 [43].

Near-integrable systems When the Hamiltonian can be considered as a perturbed system,
i.e., 𝐻 = 𝐻0 + 𝜀𝑉𝜀(𝑥) with an exactly solvable part 𝐻0 = 𝑇 + 𝑉0(𝑥) and a small perturbation
𝜀𝑉𝜀(𝑥), we have already pointed out that it is advantageous to split the Hamiltonian into the
dominant part 𝐻0 and its perturbation 𝜀𝑉𝜀. For example, if one is interested in the lower
excited states, which evolve near the minimum of the potential, it can be useful to separate the
quadratic part and to treat the remainder as a perturbation since the harmonic oscillator has a
simple and fast solution using FFTs, cf. Section2.1 and Refs. [47, 4].

Notice that in this case, the commutator

[𝜀𝑉𝜀, [𝐻0, 𝜀𝑉𝜀]] = 𝜀2 (∇𝑉𝜀 (𝑥))𝑇 (∇𝑉𝜀 (𝑥))

depends only on the coordinates and modified potentials can also be applied as before. Then,
all compositions remain the same except for replacing 𝑇 by 𝐻0 and 𝑉 by 𝜀𝑉𝜀. We recall that for
potentials 𝑉(𝑥) = |𝑥|𝑛, the virial theorem ⟨𝜙 |𝑇 𝜙⟩ = ⟨𝜙 |∇𝑉(𝑥)𝑥 𝜙⟩ leads to ⟨𝑇⟩ = 𝑛⟨𝑉⟩ and
for large 𝑛, the potential can be considered the dominant part. This is especially relevant for
the imaginary-time propagation, since eventual rough initial conditions are smoothed quickly
by the diffusion part
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Complex coefficients A third possibility consists of considering complex coefficients in the
composition (5.4) (with or without modified potentials). In other problems where the presence
of negative real coefficients is unacceptable, the use of high-order splitting methods with com-
plex coefficients having positive real part has shown to possess some advantages. In recent
years a systematic search for new methods with complex coefficients has been carried out and
the resulting schemes have been tested in different settings: Hamiltonian systems in celestial
mechanics [41], the time-dependent Schrödinger equation in quantum mechanics [11, 12] and
also in the more abstract setting of evolution equations with unbounded operators generating
analytic semigroups [40, 66]. It is worth noticing that the propagator exp(𝑧Δ) (𝑧 ∈ ℂ) asso-
ciated with the Laplacian is well-defined (in a reasonable distributional sense) if and only if
ℜ(𝑧) ≥ 0 [40], which is the case for the presented methods.

Many of the existing splitting methods with complex coefficients have been constructed by
applying the composition technique (1.44) to the symmetric second-order leapfrog scheme
(5.3): For example, a fourth-order integrator can be obtained with the symmetric composition

Ψ[4]
ℎ = Ψ[2]

𝛼ℎ Ψ[2]
𝛽ℎ Ψ[2]

𝛼ℎ , (5.11)

where
𝛼 = 1

2 − 21/3𝑒2𝑖𝑘𝜋/3 , 𝛽 = 21/3𝑒2𝑖𝑘𝜋/3

2 − 21/3𝑒2𝑖𝑘𝜋/3 ,
and 𝑘 = 1, 2. In both cases, one has ℜ(𝛼), ℜ(𝛽) > 0. Higher order composition methods with
complex coefficients and positive real part can be found in Refs. [40, 66, 20], where several
numerical examples are also reported.

5.2.1 New splitting methods for the ITP problem

In this section, we carry out a systematic search of methods within the classes (a)-(c) above
enumerated. The best methods for each subclass are stated online [5] with 25 digits of accuracy
whereas the methods used in the numerical examples (Section 5.3) are given in the subsequent
tables with 18 digits for simplicity.

We only consider symmetric methods and, since 𝑇 and 𝑉 have qualitatively different proper-
ties, we analyze both TVT-and VTV-type compositions, defined as

Ψ[𝑝]
ℎ = 𝑒−𝑎1ℎ𝑇 𝑒−𝑏1ℎ𝑉 𝑒−𝑎2ℎ𝑇 ⋯ 𝑒−𝑎2ℎ𝑇 𝑒−𝑏1ℎ𝑉 𝑒−𝑎1ℎ𝑇 , and (5.12)

Ψ[𝑝]
ℎ = 𝑒−𝑏1ℎ𝑉 𝑒−𝑎1ℎ𝑇 𝑒−𝑏2ℎ𝑉 ⋯ 𝑒−𝑏2ℎ𝑉 𝑒−𝑎1ℎ𝑇 𝑒−𝑏1ℎ𝑉 , (5.13)

respectively. In principle, both compositions have the same computational cost for the same
number of exponentials. Nevertheless, due to a projection step to the real part after each full
time-step, only in the VTV composition we can concatenate the last map in the current step
with the first stage in the next one. The TVT compositions thus require two additional FFTs
in comparison with the VTV composition, and this is accounted for in the numerical experi-
ments.

The methods we obtain are classified into two families: (I) methods without modified poten-
tials and (II) methods with modified potentials. For each class, we distinguish between meth-
ods for general problems (with the unique constraint that [𝑉, [𝑉, [𝑇, 𝑉]]] = 0) and methods
for near-integrable problems (when the main dominant part contains the kinetic energy).

114



5.2 Splitting methods for the Schrödinger equation

We have explored both TVT and VTV compositions with different number of stages. In some
cases we consider extra stages to have free parameters for optimization. When the number and
complexity of the order conditions is relatively low, we get all solutions. We then select the
solutions having all of their coefficients with positive real part. Finally, we choose the solution
which minimizes

∑
𝑖

(|𝑎𝑖 | + |𝑏𝑖 |) (5.14)

and/or minimizes the absolute value of the real part of the coefficients appearing at the lead-
ing error terms. These methods are subsequently tested on several numerical examples. After
this process, we collect a number of schemes offering the best performance for most of the
problems considered. In practice, however, one has to bear in mind that the relative perfor-
mance between different methods depends eventually on the particular problem considered,
the desired accuracy, the initial conditions, etc.

5.2.2 Methods without modified potentials

TVT and VTV compositions with 3 up to 9 stages have been analyzed. To simplify the nota-
tion, we denote compositions (5.12) and (5.13) as

T𝑛𝑚 = 𝑎1 𝑏1 𝑎2 ⋯ 𝑎2 𝑏1 𝑎1,
V𝑛𝑚 = 𝑏1 𝑎1 𝑏2 ⋯ 𝑏2 𝑎1 𝑏1,

respectively. Here 𝑛 indicates the order (or generalized order) of the method and 𝑚 corre-
sponds to the number of stages, i.e., the number of 𝑏𝑖 coefficients in the TVT composition or
the number of 𝑎𝑖 coefficients in the VTV composition. The coefficients of the selected TVT
methods are collected in Table 5.1, whereas those corresponding to the TVT methods are
displayed in Table 5.2.

Methods for general problems

Analogously to (5.6), the symmetric compositions (5.12) and (5.13) can be formally expressed
as a single exponential Ψ[𝑝]

ℎ = exp(−ℎℋ ) with polynomials 𝑓𝑖,𝑗 in 𝑎𝑘 , 𝑏𝑙 multiplying commu-
tators 𝐸𝑖,𝑗:

ℋ = 𝑇 + 𝑉 + ℎ2(𝑓3,1𝐸3,1 + 𝑓3,2𝐸3,2)
+ℎ4(𝑓5,1𝐸5,1 + 𝑓5,2𝐸5,2 + 𝑓5,3𝐸5,3 + 𝑓5,4𝐸5,4)
+ℎ6(𝑓7,1𝐸7,1 + 𝑓7,2𝐸7,2 + ⋯ ) + ⋯ ,

where the 𝐸𝑖,𝑗 are chosen to form a basis of the algebra of commutators of length 𝑖. The chosen
basis elements relevant for our exposition are

𝐸3,1 = [𝑇, [𝑇, 𝑉]], 𝐸3,2 = [𝑉, [𝑇, 𝑉]],
𝐸5,1 = [𝑇, [𝑇, [𝑇, [𝑇, 𝑉]]]], 𝐸5,2 = [𝑉, [𝑇, [𝑇, [𝑇, 𝑉]]]],
𝐸5,3 = [𝑇, [𝑉, [𝑇, [𝑉, 𝑇]]]], 𝐸5,4 = [𝑉, [𝑉, [𝑇, [𝑇, 𝑉]]]],
𝐸7,1 = [𝑇, [𝑇, 𝐸5,1]], 𝐸7,2 = [𝑉, [𝑇, 𝐸5,1]].

Here, we summarize some of the methods which have been analyzed:
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Chapter 5. The ground state: Imaginary time propagation

3-stage compositions A 3-stage composition has sufficient parameters to build 4th-order
methods. There is one real solution and two complex solutions (conjugate to each other). For
example, the VTV method corresponds to the composition (5.11) when Ψ[2]

ℎ is given by (5.3).
The TVT version is obtained by interchanging 𝑇 and 𝑉 .

5-stage compositions Fourth-order methods with two free parameters can be obtained using
5-stage symmetric compositions. These two parameters can be used to build methods of effec-
tive order 6 (i.e., 4th-order methods that are conjugate to 6th-order methods by a near-identity
change of variables). This requires to impose some additional constraints on the leading error
terms, 𝑓5,𝑗 , 𝑗 = 1, 2, 3, 4. Specifically, these are 𝑓5,1 − 𝑓5,2 = 0 and 𝑓5,3 + 𝑓5,4 = 0 [27]. We
have found six solutions for the TVT composition and three solutions for the VTV compo-
sition with coefficients having positive real part. The solutions with smallest error terms at
order 5 are denoted by T45 and V45[5].

7-stage compositions In principle, there are sufficient parameters to build 6th-order meth-
ods with 7 stages. For the TVT composition, there are 11 solutions with all coefficients having
positive real parts. The solution leading to a minimum value of the norm of the error at order
7 can be found online [5].

With respect to the VTV composition, the best method we have found is identical with the
most efficient sixth-order method obtained by Chambers [41], where it has been presented as
a symmetric composition similar to (5.11) but with 7 stages instead of 3, and with Ψ[2]

ℎ given
by (5.3).

Methods for near-integrable problems

Proceeding analogously as before, we arrive at the following methods. We recall that in all
compositions one should replace 𝑇 by 𝐻0 and 𝑉 by 𝜀𝑉𝜀.

𝑛-stage compositions of generalized order (2𝑛, 2) This class of compositions has real and
positive coefficients [94, 87]. A 4-stage VTV composition of generalized order (8, 2) is given
by scheme V84MLR

4 in Table 5.4 with 𝑐1 = 0.

5-stage compositions To build a method of generalized order (8,4) the following conditions
must be satisfied by a consistent and symmetric method: 𝑓3,1 = 𝑓3,2 = 𝑓5,1 = 𝑓7,1 = 0.
It requires at least 5 stages, and in this case only one solution with all coefficients having
positive real part is found both for the TVT and VTV compositions. The coefficients of these
methods, denoted by T845 and V845, are collected in Table 5.1 and Table 5.2, respectively.
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5.2 Splitting methods for the Schrödinger equation

(8,6,4) methods To build a (8,6,4) method, the coefficients of a consistent and symmetric
method must satisfy the following order conditions: 𝑓3,1 = 𝑓3,2 = 𝑓5,1 = 𝑓5,2 = 𝑓5,3 = 𝑓7,1 = 0.
They therefore require at least 7 stages. In this case, it is possible to get all solutions. Scheme
T8647 corresponds to the solution minimizing (5.14), whereas V8647 provides the minimum
value of |𝑓5,3 + 𝑓5,4|.

(8,6) methods Increasing the number of stages to 9 we have two free parameters, which are
used to satisfy in addition the following conditions: 𝑓5,4 = 𝑓7,2 = 0. In this way, methods
of generalized order (8,6) and effective order (10,8,6) are obtained. Two efficient schemes
correspond to T869 and V869 in Table 5.1 and Table 5.2, respectively [102].

5.2.3 Methods with modified potentials

Fourth-order methods incorporating modified potentials do exist with real and positive co-
efficients. In fact, two- and three-stage schemes have been extensively studied [43, 104, 45].
Methods of generalized order (𝑛, 4) also exist with positive real coefficients [87]. Here we con-
struct new methods of generalized order (6,4) and (8,4) with this property and generalize the
treatment to 6th-order schemes with complex coefficients. In all cases, we take compositions
TVT and VTV with up to 5 stages and denote them as

T𝑛M𝑚 = 𝑎1 (𝑏1 𝑐1)𝑎2 ⋯ 𝑎2 (𝑏1 𝑐1)𝑎1,
V𝑛M𝑚 = (𝑏1 𝑐1)𝑎1 (𝑏2 𝑐2) ⋯ (𝑏2 𝑐2)𝑎1 (𝑏1 𝑐1).

Here, the parenthesis is used to help counting of the number of exponentials, and the letter M
indicates that the methods use modified potentials. Notice that the number of free parameters
can differ for the TVT and VTV sequences with the same number of exponentials because
the exponent of a modified potential contains two parameters. The coefficients of the selected
methods are collected in Table 5.3 and Table 5.4 for the TVT and VTV compositions, respec-
tively.

Methods for general problems

4-stage compositions Under the restriction of having real positive coefficients, we have
obtained the fourth-order VTV method OMF-4M, already discovered in Ref. [104] (eq. (36)
therein).

The VTV composition allows one to build 6th-order methods, whereas the TVT needs an
extra stage. There is only one solution (and its complex conjugate) with all coefficients having
positive real part. It is denoted by V6M4 and can be found within the supplementary material
[5].
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Chapter 5. The ground state: Imaginary time propagation

Methods for near-integrable problems

We first consider (𝑛, 4) methods with real and positive coefficients. For schemes of generalized
order (8,6) we collect only complex solutions with positive real part.

(6,4) methods They require at least 3 stages to satisfy the following order conditions: 𝑓3,1 =
𝑓3,2 = 𝑓5,1 = 0. The coefficients 𝑎𝑖 and 𝑏𝑖 correspond to the methods (6,2) obtained in Ref. [94]
(without modified potentials). We have also considered methods with 4 stages in order to
have additional free parameters. As previously mentioned, there is the same number of order
conditions as parameters to get a method of order 6 for the VTV sequence, but there are no
solutions with coefficients being real and positive. To get a sixth-order method the following
conditions must also be satisfied: 𝑓5,2 = 𝑓5,3 = 𝑓5,4 = 0. The coefficients 𝑐𝑖 only appear
in 𝑓5,3 and 𝑓5,4 and can only be used to cancel these terms. The VTV sequence has three
free parameters which can be used to annihilate 𝑓5,3 and 𝑓5,4 and to minimize the absolute
value of 𝑓5,2 under the constraint that all coefficients must be real and positive. The TVT
sequence has only two free parameters which can be used to annihilate 𝑓5,3 and to minimize
the absolute value of the dominant term, 𝑓5,2, under the same constraint on the coefficients.
The best methods we have obtained are denoted by T64M4 and V64M4 and are published
online [5].

(8,4) methods They require at least 4 stages. The coefficients 𝑎𝑖 and 𝑏𝑖 correspond to the
methods (8,2) without using modified potentials and obtained in Ref. [94]. There is one co-
efficients 𝑐𝑖 in the TVT composition which can be used to cancel 𝑓5,3, and two coefficients
𝑐𝑖 in the VTV composition which can be used to annihilate 𝑓5,3 and 𝑓5,4. The solution with
𝑐2 = 𝑐3 = 0 was already obtained in [87]. We have collected the corresponding coefficients
for this method, V84MLR

4 , in Table 5.4. We have also considered methods with 5 stages in
order to have an additional free parameters. There is the same number of order conditions as
parameters to get a method of order (8,6) (which would be of order 6 for a general problem) but
obviously, there are no solutions with coefficients real and positive. As in the previous case,
the term 𝑓5,2 can not be zeroed using real positive coefficients. Then in both TVT and VTV
compositions, we have chosen the method which, while having real and positive coefficients,
minimize its absolute value. The best methods we have obtained are denoted by T84M5 and
V84M5.

(8,6) methods They require at least 5 stages and do not admit real and positive solutions
for the coefficients and we are forced to consider complex solutions. We have found only
one solution with positive real part in the coefficients for both TVT and VTV compositions.
The coefficients for the methods denoted by T86M5 and V86M5 are given in Table 5.3 and
Table 5.4, respectively.
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5.3 Numerical results

Table 5.1: Compositions TVT without modified potentials.

T845 = 𝑎1 𝑏1 𝑎2 𝑏2 𝑎3 𝑏3 𝑎3 𝑏2 𝑎2 𝑏1 𝑎1

𝑎1 = 0.071401131540044698 + 0.010155431019886789𝑖
𝑏1 = 0.178696854264631978 + 0.028197506313218021𝑖
𝑎2 = 0.236383805190074736 + 0.070427007139534522𝑖
𝑏2 = 0.198453474708154649 + 0.082962314733854963𝑖
𝑎3 = 1/2 − (𝑎1 + 𝑎2) = 0.1922... − 0.0806...𝑖
𝑏3 = 1 − 2(𝑏1 + 𝑏2) = 0.2457... − 0.2223...𝑖

T8647 = 𝑎1 𝑏1 𝑎2 𝑏2 𝑎3 𝑏3 𝑎4 𝑏4 𝑎4 𝑏3 𝑎3 𝑏2 𝑎2 𝑏1 𝑎1

𝑎1 = 0.055705821110864236 + 0.018670384565085049𝑖
𝑏1 = 0.115779449626990422 + 0.046131356173382847𝑖
𝑎2 = 0.118843282163492564 − 0.024151805322796634𝑖
𝑏2 = 0.129128920804026450 − 0.119039413303774209𝑖
𝑎3 = 0.158591515575195578 − 0.076302551893579599𝑖
𝑏3 = 0.184643464154438944 − 0.003053761445376182𝑖
𝑎4 = 1/2 − (𝑎1 + 𝑎2 + 𝑎3) = 0.1669... + 0.0818...𝑖
𝑏4 = 1 − 2(𝑏1 + 𝑏2 + 𝑏3) = 0.1409... + 0.1519...𝑖

T869 = 𝑎1 𝑏1 𝑎2 𝑏2 𝑎3 𝑏3 𝑎4 𝑏4 𝑎5 𝑏5 𝑎5 𝑏4 𝑎4 𝑏3 𝑎3 𝑏2 𝑎2 𝑏1 𝑎1

𝑎1 = 0.042257897299860339 − 0.014215780224181831𝑖
𝑏1 = 0.094894869367770736 − 0.037963806472588094𝑖
𝑎2 = 0.095260398471830494 + 0.004518725891475591𝑖
𝑏2 = 0.097374660381711248 + 0.088518877931710497𝑖
𝑎3 = 0.099960578944766657 + 0.090271995071312563𝑖
𝑏3 = 0.118584793520055816 + 0.038356250608401259𝑖
𝑎4 = 0.148695530402608487 + 0.011438117187614089𝑖
𝑏4 = 0.136865119760326031 − 0.023587404969570006𝑖
𝑎5 = 1/2 − (𝑎1 + 𝑎2 + 𝑎3 + 𝑎4) = 0.1138... − 0.0920...𝑖
𝑏5 = 1 − 2(𝑏1 + 𝑏2 + 𝑏3 + 𝑏4) = 0.1046... − 0.1306...𝑖

5.3 Numerical results

As test bench for the numerical methods, we consider in the following two qualitatively dif-
ferent cases, the Pöschl-Teller potential and a perturbed harmonic oscillator, the latter being
a classic example of a near-integrable system and of practical interest [112]. These two prob-
lems can be numerically integrated using modified potentials. However, we compare the rel-
ative performance of the methods (with and without modified potentials) separately in order
to study the performance of the methods when it is not feasible to compute the gradient of the
potential.

The numerical integration proceeds as follows: Starting from random initial data, we iterate
with fixed time-step until the sufficiently large final time 𝑇 = 100 and compare the result
with the exact solution, 𝜓(𝑇), which has been obtained by integrating with a much smaller
time step. The spatial interval is fixed for all experiments to [−10, 10] and is discretized with
𝑁 = 128 equidistant mesh points. Similar results are obtained for larger 𝑁 = 256, 512, 1024.
At each step, we project the obtained vector to its real part and normalize it to one in ℓ2(ℝ),
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Chapter 5. The ground state: Imaginary time propagation

Table 5.2: Compositions VTV without modified potentials.

V8647 = 𝑏1 𝑎1 𝑏2 𝑎2 𝑏3 𝑎3 𝑏4 𝑎4 𝑏4 𝑎3 𝑏3 𝑎2 𝑏2 𝑎1 𝑏1

𝑏1 = 0.060017770752528926 − 0.009696150746907738𝑖
𝑎1 = 0.108904710931114447 − 0.075700232434276860𝑖
𝑏2 = 0.067017987316853817 + 0.003927567742822542𝑖
𝑎2 = 0.106594114300156182 + 0.139651903644940761𝑖
𝑏3 = 0.189300872388005476 + 0.091055103879530385𝑖
𝑎3 = 0.204897016414416105 + 0.009719057955143112𝑖
𝑏4 = 1/2 − (𝑏1 + 𝑏2 + 𝑏3) = 0.1837... − 0.0853...𝑖
𝑎4 = 1 − 2(𝑎1 + 𝑎2 + 𝑎3) = 0.1592... − 0.1473...𝑖

V869 = 𝑏1 𝑎1 𝑏2 𝑎2 𝑏3 𝑎3 𝑏4 𝑎4 𝑏5 𝑎5 𝑏5 𝑎4 𝑏4 𝑎3 𝑏3 𝑎2 𝑏2 𝑎1 𝑏1

𝑏1 = 0.032497706037458608 + 0.010641310380458924𝑖
𝑎1 = 0.087895680441261752 + 0.036052576182866484𝑖
𝑏2 = 0.094180923422602148 + 0.023866875362648754𝑖
𝑎2 = 0.095351855399045611 − 0.065128376035135147𝑖
𝑏3 = 0.101132953097231180 − 0.112201757337044841𝑖
𝑎3 = 0.121865575594908413 − 0.054974002471495827𝑖
𝑏4 = 0.160941382119434892 − 0.016127643896952891𝑖
𝑎4 = 0.141506882718462097 + 0.024607229046524026𝑖
𝑏5 = 1/2 − (𝑏1 + 𝑏2 + 𝑏3 + 𝑏4) = 0.1112... + 0.0938...𝑖
𝑎5 = 1 − 2(𝑎1 + 𝑎2 + 𝑎3 + 𝑎4) = 0.1068... + 0.1189...𝑖

Table 5.3: Compositions TVT with modified potentials.

T84M5 = 𝑎1 (𝑏1 𝑐1)𝑎2 (𝑏2 𝑐2)𝑎3 (𝑏3 𝑐3)𝑎3 (𝑏2 𝑐2)𝑎2 (𝑏1 𝑐1)𝑎1

𝑎1 = 0.058520963359694865
𝑏1 = 0.145381537601615725, 𝑐1 = 0.000245906549261228
𝑎2 = 0.207903047442871771
𝑏2 = 0.244351408696638327, 𝑐2 = 0.000259178561419125
𝑎3 = 1/2 − (𝑎1 + 𝑎2) = 0.2336...
𝑏3 = 1 − 2(𝑏1 + 𝑏2) = 0.2205..., 𝑐3 = 0.000938105701711153

T86M5 = 𝑎1 (𝑏1 𝑐1)𝑎2 (𝑏2 𝑐2)𝑎3 (𝑏3 𝑐3)𝑎3 (𝑏2 𝑐2)𝑎2 (𝑏1 𝑐1)𝑎1

𝑎1 = 0.063556051997493102 + 0.010606890396680920𝑖
𝑏1 = 0.156939525347224563 + 0.027931306200415819𝑖
𝑐1 = 0.000133739181746125 + 0.000085540153220213𝑖
𝑎2 = 0.208998817231756322 + 0.040240203826523395𝑖
𝑏2 = 0.222383136675982213 + 0.026033262090035938𝑖
𝑐2 = 0.000484323504408882 + 0.000241671051573332𝑖
𝑎3 = 1/2 − (𝑎1 + 𝑎2) = 0.2274... − 0.0508...𝑖
𝑏3 = 1 − 2(𝑏1 + 𝑏2) = 0.2414... − 0.1079...𝑖
𝑐3 = 0.000179180363327321 − 0.000858304413034511𝑖
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Table 5.4: Compositions VTV with modified potentials.

V84M5 = (𝑏1 𝑐1)𝑎1 (𝑏2 𝑐2)𝑎2 (𝑏3 𝑐3)𝑎3(𝑏3 𝑐3)𝑎2 (𝑏2 𝑐2)𝑎1 (𝑏1 𝑐1)
𝑏1 = 0.042308451243127365, 𝑐1 = 0.000232966269565498
𝑎1 = 0.142939324267716184
𝑏2 = 0.219303568753387110, 𝑐2 = 5.56677120231130 ⋅ 10−7

𝑎2 = 0.242474508234531493
𝑏3 = 1/2 − (𝑏1 + 𝑏2) = 0.2292..., 𝑐3 = 0.000794490777479431
𝑎3 = 1 − 2(𝑎1 + 𝑎2) = 0.2384...

V84MLR
4 = (𝑏1 𝑐1)𝑎1 (𝑏2 𝑐2)𝑎2 (𝑏3 𝑐3)𝑎2 (𝑏2 𝑐2)𝑎1 (𝑏1 𝑐1)

𝑏1 = 1/20, 𝑐1 = 3861−791√21
129600 , 𝑎1 = 1/2 − √3/28

𝑏2 = 49/180, 𝑐2 = 0, 𝑎2 = 1/2 − 𝑎1 = √3/28
𝑏3 = 1 − 2(𝑏1 + 𝑏2) = 16/45, 𝑐3 = 0

V86M5 = (𝑏1 𝑐1)𝑎1 (𝑏2 𝑐2)𝑎2 (𝑏3 𝑐3)𝑎3(𝑏3 𝑐3)𝑎2 (𝑏2 𝑐2)𝑎1 (𝑏1 𝑐1)
𝑏1 = 0.046213625838152095 − 0.007824529355983108𝑖
𝑐1 = 0.000035830461339520 + 0.000074370857685421𝑖
𝑎1 = 0.152650950104799817 − 0.030279967163699065𝑖
𝑏2 = 0.224258052678856384 − 0.050879282402761772𝑖
𝑐2 = 0.000338053435041382 − 0.000490508913279372𝑖
𝑎2 = 0.226364275186039762 − 0.016537249619936515𝑖
𝑏3 = 1/2 − (𝑏1 + 𝑏2) = 0.2295... + 0.0587...𝑖
𝑐3 = 0.000408311644874003 + 0.000484371967433683𝑖
𝑎3 = 1 − 2(𝑎1 + 𝑎2) = 0.2420... + 0.0936...𝑖

i.e., given the method Ψ[𝑝]
ℎ and initial conditions, 𝜙𝑛 ∈ ℝ𝑁 , we compute 𝜙𝑛+1 as

̃𝜙𝑛+1 = Ψ[𝑝]
ℎ 𝜙𝑛;

then, since ̃𝜙𝑛+1 is a complex vector (but 𝒪(ℎ𝑝) away from a real vector) we project on the
real space by removing the imaginary part

̄𝜙𝑛+1 = ℜ( ̃𝜙𝑛+1)

and then normalize the solution 𝜙𝑛+1 = ̄𝜙𝑛+1/‖ ̄𝜙𝑛+1‖, where the norm is given by

‖𝑤‖2 ≡ Δ𝑥
𝑁−1
∑
𝑗=0

𝑤2
𝑗 , 𝑤 = (𝑤0, … , 𝑤𝑁−1) ∈ ℝ𝑁 .

The computational cost is estimated by the number of Fourier transforms necessary until the
final time. In addition, the methods using complex coefficients are penalized by a factor 2
in the computational cost, which comes from the use of complex Fourier transforms instead
of real FFT. We repeat the numerical integrations for different values of the time step, i.e.,
ℎ = 𝑇/𝑀 for different values of 𝑀 and denote the approximate solution by 𝜙(𝑇) = 𝜙𝑛 in
each case. The error is measured as

error = ‖𝜓(𝑇) − 𝜙(𝑇)‖.
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Chapter 5. The ground state: Imaginary time propagation

This procedure will allow us to determine the efficiency of the new splitting methods, which
will depend on the desired accuracy, and thereby choose the methods which are most appropri-
ate for implementation with a more efficient algorithm that is based on variable time step and
order. We distinguish two types of problems: On the one hand, methods that include modified
potentials, the reference methods being Chin-4M (5.10), OMF-4M [104] and V84MLR

4 [87]
given in Table 5.4 as well as a differently optimized scheme with three modified potentials
SCB-4M[113] and on the other hand, methods without modifying potentials with the refer-
ence methods V82 [94], the fourth-order complex triple-jump scheme (5.11), referenced as
Yoshida 4 and a 6th-order complex coefficient method by Chambers [41]. As a reference, we
also include the results obtained by a 6-stage sixth-order extrapolation method which takes
the Strang splitting (5.3) as the basic method with the same decompositions like the other
methods (𝑇 + 𝑉 and 𝐻0 + 𝜀𝑉𝜀 for the perturbed problem, respectively), and it is used with
time steps ℎ, ℎ/2 and ℎ/3. We remark that all relevant methods in the cited papers have been
tested and the most efficient ones for this problem are included in the plots.

Pöschl-Teller potential

We have chosen the well-known one-dimensional Pöschl-Teller potential for the availability
of analytic solutions of the eigenstates

𝐻 = −1
2

𝜕2

𝜕𝑥2 − 𝜆(𝜆 + 1)
2 (sech(𝑥)2 − 1) , (5.15)

with 𝜆(𝜆 + 1) = 10. The results of our computation are shown in Figure 5.1a. The higher
order of the complex coefficient methods outweighs their extra cost starting from moderate
accuracy. The optimizations of the error terms can be clearly appreciated in the comparison
with the 4th order triple-jump (5.11). When we consider methods with modified potentials,
we observe that the new methods show only slight improvements with respect to the method
OMF-4M since both parts of the splitting 𝑇 and 𝑉 are of comparable size. As the desired
precision is increased, the new sixth order methods dominate in efficiency.

Perturbed harmonic oscillator

To illustrate the benefits of methods designed for near integrable systems, we use the Hamil-
tonian

𝐻 = −1
2

𝜕2

𝜕𝑥2 + 1
2𝜔2𝑥2 + 𝜀𝑉𝜀(𝑥),

and split it in a large part 𝐻HO = −1
2

𝜕2
𝜕𝑥2 + 1

2𝜔2𝑥2 and a small part 𝜀𝑉𝜀(𝑥). The trap frequency
is set to 𝜔 = 1 and the perturbation 𝜀𝑉𝜀 is given by the Pöschl-Teller potential in (5.15), with
𝜆(𝜆 + 1) = 2/5. The harmonic part 𝐻HO can be solved exactly via an exact splitting using
Fourier transforms, cf. Section 2.1, from which we recall

𝑒−𝑖𝛿𝐻HO ≡ 𝑒−𝑖 𝜔
2 tan( 𝛿𝜔

2 )𝑥2 𝑒−𝑖 1
2𝜔 sin(𝛿𝜔) 𝑝2 𝑒−𝑖 𝜔

2 tan( 𝛿𝜔
2 )𝑥2 ,

for |𝛿𝜔| < 𝜋 and 𝑝2 ≡ − 𝜕2
𝜕𝑥2 .
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Figure 5.1: In the first row, efficiency curves (error vs. number of FFTs) for methods without force
evaluations are presented, with the new methods (triangles) performing best for high accuracies. The
middle row depicts methods based on modified potentials. In the right column, T86M5 intersects with
V84M5 at precision 10−13, whereas it already improves on T84M5 at 10−9 for the left column. SCB-4M
has the parameters (cf. Ref. [113] for notation) 𝑡0 = 0.1215 and 𝑎1 = 0.33 and overlaps with Chin-4M
in the right plot and has thus been omitted. In the bottom row, the random initial conditions (green), the
ground states (black) and the potentials (dashed blue), scaled by 1/5 to fit the axis, are shown.
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Chapter 5. The ground state: Imaginary time propagation

From the computational point of view, it is suggested [4] to consider the VTV split instead
of the TVT split because it can be concatenated with the perturbation which only depends on
the coordinates and no additional FFTs are necessary, i.e.

⋯ 𝑒−𝑏𝑗+1𝜏𝜀𝑉 𝑒−𝑎𝑗𝜏𝐻HO𝑒−𝑏𝑗𝜏𝜀𝑉 ⋯

In Ref. [47], this decomposition is generalized to the two-dimensional problem 𝐻 = 1
2 (𝑝2𝑥 +

𝑝2𝑦) + 1
2(𝑤2

1𝑥2 + 𝑤2
2𝑦2) − Ω(𝑥𝑝𝑦 − 𝑦𝑝𝑥) and in Ref. [4] to the non homogeneous and possibly

time-dependent one-dimensional problem 𝐻 = 1
2𝑝2 + 1

2𝑤(𝑡)𝑥2 + 𝑓 (𝑡)𝑝 + 𝑔(𝑡)𝑥. For a more
complete discussion, see Chapter 2.

After the substitution 𝛿 = −𝑖ℎ, we have

𝑒−ℎ𝐻HO ≡ 𝑒− 𝜔
2 tanh( ℎ𝜔

2 )𝑥2 𝑒− 1
2𝜔 sinh(ℎ𝜔) 𝑝2 𝑒− 𝜔

2 tanh( ℎ𝜔
2 )𝑥2 ,

for |ℑ(ℎ)𝜔| < 𝜋 and ℜ(ℎ) > 0 (for numerical stability) and the perturbation part is easily
propagated after discretization by the exponential of a diagonal matrix. In this setting, the
higher order in the small parameter is amplified and the efficiency plots in Figure 5.1b indi-
cate that the new methods outperform the existing ones when high precision is sought and
overall when modified potentials are allowed. We observe in both examples that, when mod-
ified potentials can be computed without exceedingly large computational cost, they should
be used.

Further numerical experiments show that the efficiency curves are independent of the mesh
size, i.e., the norm of 𝑇 , and the cost only increases as 𝑁 log(𝑁) as expected. The reason for
this can be understood by following the evolution of the state vector along the iterations of
the algorithm. Whereas in the beginning one has a non-smooth configuration 𝑢0, after a few
steps the vector 𝑢𝑖 is close to an eigenstate and thus smoothened.

It is important to remark that the methods proposed in this work can be implemented in an
algorithm which uses variable step, variable order, variable mesh size and variable simple-
double precision. The best implementation can depend on the class of problems to be solved.
For illustration, we present an implementation with variable time steps.

5.3.1 Variable step method

The previous examples show that for low accuracies and large time steps, the (8,2) method
(with real coefficients) performs best. However, if we allow for variable time steps, as pro-
posed in [1, 89], the computational cost is drastically reduced. We propose an improved time-
stepping algorithm that is based on two different estimators for the eigenvalue.

Recall that fixing the time-step and iterating to convergence will yield an eigenvector with the
error being of the order of the method 𝒪(ℎ𝑝) since we are computing exactly the spectrum of
a perturbed Hamiltonian. Assume now that we are close to convergence, i.e, one has obtained
an eigenvector 𝑢𝑛 = 𝑣0 + 𝒪 (ℎ𝑝) and we consider the decomposition in the basis of exact
eigenvectors 𝑣𝑖 of 𝐻,

𝑢𝑛 =
𝑁−1
∑
𝑖=0

𝑑𝑖𝑣𝑖, where
𝑁−1
∑
𝑖=0

|𝑑𝑖 |2 = 1.
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5.3 Numerical results

It is clear that 𝑑𝑖 = 𝒪(ℎ𝑝), 𝑖 > 1 and due to the normalization 𝑑0 = 1 + 𝒪(ℎ2𝑝)). Then, an
energy estimation is given by

𝐸ℎ,1 ≡ 𝑢𝑇𝑛 𝐻𝑢𝑛 = 𝐸0 + 𝒪(ℎ2𝑝).

Alternatively, the energy can be estimated by the loss of norm in each time step,

̄𝑢𝑛+1 = 𝑒−ℎ𝐻𝑢𝑛 + 𝒪(ℎ𝑝+1) = 𝑒−ℎ𝐸0𝑣0 + 𝒪(ℎ𝑝+1),

which gives

𝐸ℎ,2 ≡ log (∥ ̄𝑢𝑛+1∥)
ℎ = 𝐸0 + 𝑐ℎ𝑝 + 𝒪 (ℎ𝑝+1) .

Combining both expressions yields an error estimate for the energy,

Δ𝐸ℎ ≡ 𝐸ℎ,2 − 𝐸ℎ,1 = 𝑐ℎ𝑝 + 𝒪(ℎ𝑝+1).

The convergence in energy is measured by comparison with the previous time step,

𝛿𝐸𝑛
ℎ ≡ 𝐸𝑛

ℎ,1 − 𝐸𝑛−1
ℎ,1 = 𝑑ℎ2𝑝 + 𝒪(ℎ2𝑝+1).

The time stepper then works as follows: Starting from a large step size, the time step is de-
creased by a factor 1/2 whenever the actual reduction in energy of the iteration 𝛿𝐸 falls below
the maximally reachable precision Δ𝐸, i.e., |𝛿𝐸| < (Δ𝐸)2 and the iteration is terminated once
the error estimate Δ𝐸 has reached a given tolerance.

For the numerical experiments, we use the same configurations as for constant time step but
terminate the algorithm when convergence in energy is reached at Δ𝐸 < 10−10. The itera-
tions are initialized with random normalized data and a time step of 𝜏 = 10. The results are
displayed in Figure 5.2a for the Pöschl-Teller potential and in Figure 5.2b for the perturbed
harmonic oscillator with the same parameters as in the fixed-step size experiments. The error
is measured as the ℓ2 norm of the difference between the current value of the algorithm 𝜓(𝑡)
and the exact ground state 𝜙(𝑇) as in the previous experiments, error = ‖𝜓(𝑡) − 𝜙(𝑇)‖.

As expected, it is apparent that lower order methods show better smoothing behavior for the
first steps, when the wave function is still rough (recall that the algorithm is initialized by
a worst-case wave function). For higher precisions, the new methods clearly outperform the
existing ones, with the sole exception of the unperturbed setting with modified potentials,
where the globally optimized OMF-4M method can hardly be improved unless extremely
high precision is sought and the 6th-order methods of Table 5.4 and 5.3 become favorable
(not shown). Finally, if one is interested in very high accuracies, high order extrapolation
methods [46, 24] can be used for the last part of the time integration.

The results indicate that for low precision, i.e., for the first iterations, a lower order method
should be used and then, after a certain precision is reached, e.g., when the higher order
methods exhibit their superiority the algorithm should change to the optimal method, either
V8647 or V86M5 until convergence. Further preliminary experiments on this adaptive order
strategy have shown that there is plenty of room for optimization, e.g., by changing the initial
step-size, adjusting the step-size by a different factor or by modifying the control criterion.
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Figure 5.2: Evolution of precision in the discrete 𝐿2 norm of the position vector with the variable
time step algorithm described in Section 5.3.1. As in Fig. 5.1, the top row gives the results for standard
methods whereas the bottom rows shows methods with modifying potentials.

Each of which has certain advantages and disadvantages, depending on the initial conditions
and the range of precision.

For excited states, one expects an even better performance of the new methods since several
states have to be computed to high precision in order to avoid error accumulation and the
gains of the new methods are thus amplified. We have confirmed this conjecture by numerical
experiments. The results thereof are omitted since they do not contribute insight beyond the
presented experiments: They are qualitatively identical.
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Chapter6
CONCLUSIONS AND OUTLOOK

We summarize the contributions and conclusions of each chapter and end with a brief intro-
duction to a future line of work that for which this thesis serves as foundation.

6.1 Harmonic oscillators and rotating traps

The first part of this work contains contributions to the solution of a very common problem in
quantum mechanics, the harmonic oscillator. Fourier methods have shown a high performance
in solving many different problems which can be split into the kinetic part and a remainder
that is diagonal in the coordinate space. We have extended the Fourier methods to perturba-
tions of the time-dependent harmonic potential, and refer to them as Hermite-Fourier methods.
We introduce a new technique, based on algebraic correspondence between the quantum Lie
algebra and its classical mechanical counterpart, to find an expression for the exact solution
which is computable using fast Fourier transforms only. The technique extends to arbitrary
dimension and is compatible with time-dependencies after some time-averaging like the Mag-
nus expansion has been applied. Due to the finiteness of the harmonic oscillator algebra, the
averaged Hamiltonian is shown to be exactly exponentiatable using only FFTs. The decompo-
sitions prove to be highly efficient in numerical experiments and should be preferred over the
more commonly used expansions in Hermite polynomials. Similar considerations have been
applied to Hamiltonians that contain angular momenta. For non-autonomous potentials, the
(Magnus-)averaged Hamiltonian is still tractable by our method and we show how to compute
efficient approximations for the most general case of quadratic Hamiltonians in two dimen-
sions.

These results have then been combined to introduce Fourier methods for the numerical inte-
gration of perturbations of the time dependent harmonic oscillator which are useful for both
the Gross-Pitaevskii equation as well as for the linear Schrödinger equation. They solve the lin-
ear Schrödinger equation with a time-dependent harmonic potential to the desired order using
corresponding Magnus expansions and up to the accuracy given by the spatial discretization.
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Chapter 6. Conclusions and Outlook

These methods are fast to compute since FFTs can be applied and show a high accuracy when
the problem is a small perturbation of a quadratic Hamiltonian, an important application is
the propagation of rotating Bose-Einstein condensates. The principal ingredients were the
finiteness of the underlying algebra and the availability of the solution in the corresponding
classical mechanical system. Future research could identify other classes of problems where
similar algebraic structures allow to find decompositions that are easy to exponentiate by solv-
ing the problem in a simpler matrix setting.

6.2 Nonlinear Schrödinger equations

In the third chapter, modified potentials for the nonlinear Schrödinger equation have been de-
veloped and successfully applied in numerical examples. Nonlinear modified potentials arise
from commutators of Lie derivatives of the separable parts in the Gross-Pitaevskii equation
and after suitable reformulation, we show that they can be computed using FFTs only.

Furthermore, complex coefficient splittings have been studied and we have shown how to solve
the nonlinear SE in complex time. However, the constraint ℑ(𝑎𝑖) ≤ 0 and the consistency con-
dition, ∑𝑖 𝑎𝑖 = 1, necessarily require 𝑎𝑖 ∈ ℝ, while 𝑏𝑖 can be complex. We observed stability
problems for unbounded potentials which make current methods impracticable. A large num-
ber of new methods have been explored, but the superiority is not yet clear since there exist
highly efficient methods with real coefficients for perturbed problems [21, 27] and using mod-
ified potentials [25]. These results are pointers to future work, which falls in three classes: –
For which kind of nonlinearities is it possible to find cheaply computable perturbations, such
as the present modified potential? – Can we find efficient methods with real coefficients 𝑎𝑗
and complex 𝑏𝑗 that are more efficient than the current (all real) standards? And lastly, how
to cure the instabilities that are caused by complex 𝑎𝑗 (or equivalently, complex 𝑏𝑗 for un-
bounded potentials)? Numerical results indicate that introducing a cut-off in the exponents, or
somewhat similar, an appropriate shrinking of the domain, eases the stability issue. However,
it lacks an analysis with respect to the implications on the accuracy.

6.3 Semiclassical Schrödinger equations

The difficulty when treating semiclassical Schrödinger equations arises from the presence
of a small parameter 𝜀, which can be interpreted as a long-time integration. Higher-order
methods are particularly suitable for this problem since larger time-steps are allowed. The
number of exponentials for classical splittings, however, grows exponentially with the order
of the method. We show how to apply the symmetric Zassenhaus algorithm to produce arbi-
trary order methods that grow only linearly in the number of exponentials, but come at the
expense of computing commutators. Working in the algebra of linear operators, we show that
the commutators can be exponentiated using only a few Lanczos iterations since the Zassen-
haus algorithm has already reduced their size drastically. Subsuming the spatial and temporal
discretization parameters, Δ𝑥 and ℎ, respectively, into powers of the semiclassical variable 𝜀,
we explicitly derive algorithms of local error 𝒪(𝜀7/2) for ℎ = 𝒪(√𝜀) and Δ𝑥 = 𝒪(𝜀).

Thereafter, we briefly address methods that originate from a discretization using Hagedorn-
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wavepackets, i.e., shifted and scaled eigenfunctions of the harmonic oscillator. It turns out,
that methods recently published [54, 60] can be understood as Magnus integrators and we
propose to solve the classical mechanical system for parameters Π using higher-order RKN
splitting methods and approximate the evolution of the weights 𝑐𝑘 by Magnus integrators.

In the last part, non-autonomous potentials in the semiclassical Hamiltonian are considered.
We distinguish between two qualitatively different cases, (𝜀-independent) slow and fast time-
dependencies. It is shown how the Zassenhaus method can be applied in both situations after
a previous averaging using the Magnus expansion, for which the truncation error is studied.
The initial step of the algorithm consists of an asymmetric splitting in order to guarantee a
decrease in size of the exponents along the course of the method. This can be understood as
a combination of standard splitting methods with the Zassenhaus-split and can possibly be
generalized to standard Magnus integrators in order to reduce the number of commutators.
Methods for both situations have been derived explicitly for both cases, using Taylor expan-
sions of the slow potential or integrals of the fast potential. The former can also be carried
out using momentum integrals in a straightforward fashion. In the latter case, the fast time-
dependency has been assumed to be scalar, and future studies could extend the methodology
to more general potentials. Furthermore, it remains to be seen whether the constructions can
be turned into efficient algorithms for particular problems, when no closed-form solutions of
the spatial and temporal derivatives and integrals of the potential are available.

6.4 Imaginary time

In Chapter 5, we have studied the Schrödinger eigenvalue problem by the imaginary time
propagation method and proposed splitting schemes with positive real coefficients using mod-
ified potentials as well as with complex coefficients that can overcome the order barrier for
parabolic problems since the coefficients have only positive real parts. The obtained sixth or-
der methods are clearly superior to any classical ones for high precisions. On the other hand,
when the gradient of the potential can be cheaply evaluated, the high order methods with com-
plex coefficients are efficient only at very high accuracies due to the double cost caused by
complex arithmetic.

We have proposed different high order methods to reach highly accurate results. An efficient
implementation should take into account, for example, a preliminary time integration on a
coarse mesh using simple precision arithmetic in order to get, as fast as possible, a smooth
and relatively accurate solution from a random initial guess, and next consider a refined mesh
using arithmetic in double precision. For simple precision arithmetic and low accuracies, it
suffices to consider only low order methods, and when higher accuracies are desired, we turn
to double precision, variable time step and variable order methods. The best algorithm could
depend on the class of problems to solve.

It is also important to remark that the form of the exponent allows that the techniques presented
in this work can also be transferred to other areas whenever splitting is appropriate and the
integration has to be performed forward in time, e.g., statistical mechanics of quantum systems,
where one has to compute the Boltzman operator exp(−𝛽𝐻), with 𝛽 = (𝑘𝑇)−1 or quantum
Monte-Carlo simulations [11].
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6.5 Outlook

Many of the presented techniques can be applied to problems arising in the extremely active
field of quantum optimal control. In a preliminary study, we have applied geometric integrators
to classical mechanical control problems to demonstrate their superiority [7], and we expect
that one can improve on the commonly used methods of Rabitz et al., see the review articles
[128, 36]. The dynamics of a controlled quantum system are governed by

𝑖𝜕𝑡𝜓(𝑥, 𝑡) = (𝑇 + 𝑉(𝑥) − 𝜀(𝑡)𝜇(𝑥)) 𝜓(𝑥, 𝑡), 𝜓(𝑥, 0) = 𝜓0(𝑥),

with the usual operators for kinetic energy 𝑇 = − ∆
2𝑚 and the dipole moment 𝜇 (usually 𝜇 = 𝑥).

A suitable objective functional to be maximized is

𝐽 = ⟨𝜓(𝑇)|𝑂𝜓(𝑇)⟩ − 𝛼0 ∫𝑇
0 𝜀(𝑡)2𝑑𝑡

− 2ℜ [∫𝑇
0 ⟨𝜒(𝑡)| 𝜕

𝜕𝑡 + 𝑖 [𝑇 + 𝑉 − 𝜇𝜀(𝑡)] |𝜓(𝑡)⟩𝑑𝑡] ,

with the Lagrange multiplier 𝜒(𝑡). The components lead to maximizing the expectation value
of the sought observable 𝑂 at the final time, minimizing the energy-input in the system, pe-
nalized by 𝛼0 > 0 and the error in the Schrödinger equation. Setting the variation to zero,
𝛿𝐽 = 0, one obtains the set of coupled PDEs

𝑖 𝜕
𝜕𝑡 𝜓(𝑡) = [𝑇 + 𝑉 − 𝜇𝜀(𝑡)] 𝜓(𝑡), 𝜓(0) = 𝜓0,

𝑖 𝜕
𝜕𝑡 𝜒(𝑡) = [𝑇 + 𝑉 − 𝜇𝜀(𝑡)] 𝜒(𝑡), 𝜒(𝑇) = 𝑂𝜓(𝑇),
𝛼0𝜀(𝑡) = −ℑ⟨𝜒(𝑡)|𝜇𝜓(𝑡)⟩,

or, equivalently

𝑖 𝜕
𝜕𝑡 𝜓(𝑡) = [𝑇 + 𝑉 + 𝜇

𝛼0
ℑ⟨𝜒(𝑡)|𝜇𝜓(𝑡)⟩] 𝜓(𝑡), 𝜓(0) = 𝜓0, (6.1)

𝑖 𝜕
𝜕𝑡 𝜒(𝑡) = [𝑇 + 𝑉 + 𝜇

𝛼0
ℑ⟨𝜒(𝑡)|𝜇𝜓(𝑡)⟩] 𝜒(𝑡), 𝜒(𝑇) = 𝑂𝜓(𝑇). (6.2)

This system is usually solved by iterative methods, e.g., [132, 129, 70]: Initialize with some
guess for the laser field 𝜀(𝑡) (e.g. 𝜀 = 0) to compute 𝜓[0](𝑡) and then,

1. integrate (6.2) backwards using 𝜓[0] to obtain 𝜒[1](𝑡), with final condition 𝜒[1](𝑇) =
𝑂𝜓[0](𝑇).

2. integrate (6.1) forwards using 𝜒[1] to obtain 𝜓[1].

It can be shown that this method is monotonically convergent, increasing the value of func-
tional in every step. In usual implementations, the Schrödinger equations (6.1),(6.2) are solved
with the Strang splitting, however, the procedure requires many iterations until convergence
and more accurate, faster converging procedures would be of high impact.
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AppendixA
ALGEBRAIC TOOLS

A.1 Algebra

Terms up to order seven of the symmetric BCH formula expressed in a Hall basis.

sBCH(ℎ𝑋, ℎ𝑌) = ℎ(𝑋 + 𝑌) − ℎ3 ( 1
24 [[𝑌, 𝑋], 𝑋] + 1

12 [[𝑌, 𝑋], 𝑌])
+ ℎ5( 7

5760 [[[[𝑌, 𝑋], 𝑋], 𝑋], 𝑋] + 7
1440 [[[[𝑌, 𝑋], 𝑋], 𝑋], 𝑌] + 1

180 [[[[𝑌, 𝑋], 𝑋], 𝑌], 𝑌]
+ 1

720 [[[[𝑌, 𝑋], 𝑌], 𝑌], 𝑌] + 1
480 [[[𝑌, 𝑋], 𝑋], [𝑌, 𝑋]] − 1

360 [[[𝑌, 𝑋], 𝑌], [𝑌, 𝑋]])
+ ℎ7(− 31

967680 [[[[[[𝑌, 𝑋], 𝑋], 𝑋], 𝑋], 𝑋], 𝑋] − 31
161280 [[[[[[𝑌, 𝑋], 𝑋], 𝑋], 𝑋], 𝑋], 𝑌]

− 13
30240 [[[[[[𝑌, 𝑋], 𝑋], 𝑋], 𝑋], 𝑌], 𝑌] − 53

120960 [[[[[[𝑌, 𝑋], 𝑋], 𝑋], 𝑌], 𝑌], 𝑌]
− 1

5040 [[[[[[𝑌, 𝑋], 𝑋], 𝑌], 𝑌], 𝑌], 𝑌] − 1
30240 [[[[[[𝑌, 𝑋], 𝑌], 𝑌], 𝑌], 𝑌], 𝑌]

− 53
161280 [[[[[𝑌, 𝑋], 𝑋], 𝑋], 𝑋], [𝑌, 𝑋]] − 11

12096 [[[[[𝑌, 𝑋], 𝑋], 𝑋], 𝑌], [𝑌, 𝑋]]
− 3

4480 [[[[[𝑌, 𝑋], 𝑋], 𝑌], 𝑌], [𝑌, 𝑋]] − 1
10080 [[[[[𝑌, 𝑋], 𝑌], 𝑌], 𝑌], [𝑌, 𝑋]]

− 1
4032 [[[[𝑌, 𝑋], 𝑋], [𝑌, 𝑋]], [𝑌, 𝑋]] − 1

6720 [[[[𝑌, 𝑋], 𝑌], [𝑌, 𝑋]], [𝑌, 𝑋]]
− 19

80640 [[[[𝑌, 𝑋], 𝑋], 𝑋], [[𝑌, 𝑋], 𝑋]] − 1
10080 [[[[𝑌, 𝑋], 𝑋], 𝑌], [[𝑌, 𝑋], 𝑋]]

+ 17
40320 [[[[𝑌, 𝑋], 𝑌], 𝑌], [[𝑌, 𝑋], 𝑋]] − 53

60480 [[[[𝑌, 𝑋], 𝑋], 𝑋], [[𝑌, 𝑋], 𝑌]]
− 19

13440 [[[[𝑌, 𝑋], 𝑋], 𝑌], [[𝑌, 𝑋], 𝑌]] − 1
5040 [[[[𝑌, 𝑋], 𝑌], 𝑌], [[𝑌, 𝑋], 𝑌]])

+ 𝒪(ℎ9) . (A.1)
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Chapter A. Algebraic tools

A.2 Structure coefficients for rotating oscillator

Table A.1: Structure coefficients for the basis elements 𝐸𝑗 defined in (2.61). The coefficients have to be
read from left to right and multiplied with the imaginary unit 𝑖, e.g., [𝐸1, 𝐸2] = [𝑥, 𝑝𝑥] = 𝑖𝐸15 = 𝑖.

𝐸1(𝑥) 𝐸2 𝐸3 𝐸4 𝐸5 𝐸6 𝐸7 𝐸8

𝐸1 0 𝐸15 0 2𝐸2 𝐸1 0 0 0
𝐸2 −1 0 −2𝐸1 0 −𝐸2 0 0 0
𝐸3 0 2𝐸1 0 4𝐸5 2𝐸3 0 0 0
𝐸4 −2𝐸2 0 −4𝐸5 0 −2𝐸4 0 0 0
𝐸5 −𝐸1 𝐸2 −2𝐸3 2𝐸4 0 0 0 0
𝐸6 0 0 0 0 0 0 𝐸15 0
𝐸7 0 0 0 0 0 −1 0 −2𝐸6
𝐸8 0 0 0 0 0 0 2𝐸6 0
𝐸9 0 0 0 0 0 −2𝐸7 0 −4𝐸10
𝐸10 0 0 0 0 0 −𝐸6 𝐸7 −2𝐸8
𝐸11 0 𝐸6 0 2𝐸14 𝐸11 0 𝐸1 0
𝐸12 −𝐸7 0 −2𝐸13 0 −𝐸12 −𝐸2 0 −2𝐸14
𝐸13 0 𝐸7 0 2𝐸12 𝐸13 −𝐸1 0 −2𝐸11
𝐸14 −𝐸6 0 −2𝐸11 0 −𝐸14 0 𝐸2 0

… 𝐸9 𝐸10 𝐸11 𝐸12 𝐸13 𝐸14
𝐸1 0 0 0 𝐸7 0 𝐸6
𝐸2 0 0 −𝐸6 0 −𝐸7 0
𝐸3 0 0 0 2𝐸13 0 2𝐸11
𝐸4 0 0 −2𝐸14 0 −2𝐸12 0
𝐸5 0 0 −𝐸11 𝐸12 −𝐸13 𝐸14
𝐸6 2𝐸7 𝐸6 0 𝐸2 𝐸1 0
𝐸7 0 −𝐸7 −𝐸1 0 0 −𝐸2
𝐸8 4𝐸10 2𝐸8 0 2𝐸14 2𝐸11 0
𝐸9 0 −2𝐸9 −2𝐸13 0 0 −2𝐸12
𝐸10 2𝐸9 0 −𝐸11 𝐸12 𝐸13 −𝐸14
𝐸11 2𝐸13 𝐸11 0 (𝐸5 + 𝐸10) 𝐸3 𝐸8
𝐸12 0 −𝐸12 −(𝐸5 + 𝐸10) 0 −𝐸9 −𝐸4
𝐸13 0 −𝐸13 −𝐸3 𝐸9 0 (𝐸10 − 𝐸5)
𝐸14 2𝐸12 𝐸14 −𝐸8 𝐸4 (𝐸5 − 𝐸10) 0

𝐸1 = 𝑥, 𝐸2 = 𝑝𝑥, 𝐸3 = 1
2𝑥2, 𝐸4 = 1

2𝑝2𝑥 , 𝐸5 = 1
2 (𝑥𝑝𝑥 + 𝑝𝑥𝑥) ,

𝐸6 = 𝑦, 𝐸7 = 𝑝𝑦, 𝐸8 = 1
2𝑦2, 𝐸9 = 1

2𝑝2𝑦 , 𝐸10 = 1
2 (𝑦𝑝𝑦 + 𝑝𝑦𝑦) ,

𝐸11 = 𝑥𝑦, 𝐸12 = 𝑝𝑥𝑝𝑦, 𝐸13 = 𝑥𝑝𝑦, 𝐸14 = 𝑦𝑝𝑥, 𝐸15 = 1.
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A.3 Composition for the rotating oscillator

A.3 Composition for the rotating oscillator

The composition of flows of classical mechanical systems corresponding to the Hamiltonians
given in the exponents can be written as

𝑒𝑛1 𝑥2
2 𝑒𝑓1 𝑦2

2 +𝑔1
𝑝2𝑥
2 −𝑒1𝑦𝑝𝑥𝑒𝑓2 𝑥2

2 +𝑔2
𝑝2𝑦
2 +𝑒2𝑥𝑝𝑦𝑒𝑓3 𝑦2

2 +𝑔3
𝑝2𝑥
2 −𝑒3𝑦𝑝𝑥 = 𝐴 ∈ ℝ4×4, (A.2)

with coefficients of the matrix 𝐴 = (𝑎𝑖,𝑗),

𝑎1,1 = 1 − 𝑒1𝑒2 − 𝑓2𝑔1
𝑎2,1 = 𝑒2
𝑎3,1 = −𝑓2 + (−1 + 𝑒1𝑒2 + 𝑓2𝑔1)𝑛1
𝑎4,1 = −𝑒2𝑓1 − 𝑒1𝑓2
𝑎1,2 = 𝑒2𝑓3𝑔1 + 𝑒3(−1 + 𝑓2𝑔1) + 𝑒1(−1 + 𝑒2𝑒3 + 𝑓3𝑔2)
𝑎2,2 = 1 − 𝑒2𝑒3 − 𝑓3𝑔2
𝑎3,2 = 𝑒3𝑓2 + 𝑒2𝑓3 − (𝑒2𝑓3𝑔1 + 𝑒3(−1 + 𝑓2𝑔1) + 𝑒1(−1 + 𝑒2𝑒3 + 𝑓3𝑔2))𝑛1
𝑎4,2 = 𝑒1𝑒3𝑓2 − 𝑓3 + 𝑒1𝑒2𝑓3 + 𝑓1(−1 + 𝑒2𝑒3 + 𝑓3𝑔2)
𝑎1,3 = 𝑔3 − 𝑒1(𝑒3𝑔2 + 𝑒2𝑔3) − 𝑔1(−1 + 𝑒2𝑒3 + 𝑓2𝑔3)
𝑎2,3 = 𝑒3𝑔2 + 𝑒2𝑔3
𝑎3,3 = 1 − 𝑒2𝑒3 − 𝑓2𝑔3 + (𝑒1𝑒3𝑔2 − 𝑔3 + 𝑒1𝑒2𝑔3 + 𝑔1(−1 + 𝑒2𝑒3 + 𝑓2𝑔3))𝑛1
𝑎4,3 = 𝑒1 + 𝑒3 − 𝑒1𝑒2𝑒3 − 𝑒3𝑓1𝑔2 − (𝑒2𝑓1 + 𝑒1𝑓2)𝑔3

𝑎1,4 = −𝑒2𝑔1 − 𝑒1𝑔2
𝑎2,4 = 𝑔2
𝑎3,4 = 𝑒1𝑔2𝑛1 + 𝑒2(−1 + 𝑔1𝑛1)
𝑎4,4 = 1 − 𝑒1𝑒2 − 𝑓1𝑔2

The expressions can be derived easily as shown for the the first two exponentials,

𝑒𝑛1 𝑥2
2

⎛⎜⎜⎜⎜⎜⎜
⎝

𝑥
𝑦
𝑝𝑥
𝑝𝑦

⎞⎟⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑥
𝑦

𝑝𝑥 + {𝑝𝑥, 𝑛1 𝑥2
2 }−

𝑝𝑦

⎞⎟⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑥
𝑦

𝑝𝑥 − 𝑛1𝑥
𝑝𝑦

⎞⎟⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0
0 1 0 0

−𝑛1 0 1 0
0 0 0 1

⎞⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜
⎝

𝑥
𝑦
𝑝𝑥
𝑝𝑦

⎞⎟⎟⎟⎟⎟⎟
⎠

,

and

𝑒𝑓3 𝑦2
2 +𝑔3

𝑝2𝑥
2 −𝑒3𝑦𝑝𝑥

⎛⎜⎜⎜⎜⎜⎜
⎝

𝑥
𝑦
𝑝𝑥
𝑝𝑦

⎞⎟⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜⎜⎜
⎝

𝑥 + {𝑥, 𝑔3
𝑝2𝑥
2 − 𝑒3𝑦𝑝𝑥}−
𝑦
𝑝𝑥

𝑝𝑦 + {𝑝𝑦, 𝑓3 𝑦2

2 − 𝑒3𝑦𝑝𝑥}−

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑥 + 𝑔3𝑝𝑥 − 𝑒3𝑦
𝑦
𝑝𝑥

𝑝𝑦 − 𝑓3𝑦 + 𝑒3𝑝𝑥

⎞⎟⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜⎜
⎝

1 −𝑒3 𝑔3 0
0 1 0 0
0 0 1 0
0 −𝑓3 𝑒3 1

⎞⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜
⎝

𝑥
𝑦
𝑝𝑥
𝑝𝑦

⎞⎟⎟⎟⎟⎟⎟
⎠

.
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