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D. Lauŕıa,∗, J. Sanchisa, M. Mart́ıneza, A. Hilarioa

a Instituto Universitario de Automática e Informática Industrial
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Abstract

This paper presents a methodology to constrain the optimization problem in LV-MPC so that validity of

predictions can be ascertained. LV-MPC is a model-based predictive control methodology implemented in

the space of the latent variables and is based on a linear predictor. Provided real processes are non-linear,

there is model-process mismatch, and under tight control, the predictor can be used for extrapolation. Ex-

trapolation leads to bad predictions which deteriorates control performance, hence the interest in validity of

predictions. In the proposed approach first two validity indicators on predictions are defined. The novelty

in the two indicators proposed is they neglect past data, and so validity of predictions is ascertained in

terms of future moves which are actually the degrees of freedom in the optimization. Second, the indi-

cators are introduced in the optimization as constraints. Provided the indicators are quadratic, recursive

optimization with linearised constraints is implemented. A MIMO example shows how ensuring validity of

predictions neglecting past data can improve closed-loop performance, specially under tight control outside

the identification region.

Key words: Data-driven, Model Predictive Control, Latent Variable, Prediction, Control Relevant

Identification, Validity of predictions

1. Introduction

In large-scale manufacturing processes such as chemical, food, or steel making processes; there are a large

number of CVs (Controlled Variables), and MVs (Manipulated Variables). Due to the multivariate nature of

the data, variables are highly correlated, and the effective dimension of the space in which they move is very

small. LVMs (Latent Variable Methods) can transform noisy and correlated data into a smaller informative
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set defined by the latent variables [1]. Another tool widely used in the process industry is Model-based

Predictive Control (MPC). MPC is widely used in industry due to its ability to handle multivariable systems

subject to input and output constraints [2, 3, 4].

The combination of these two powerful tools yields LV-MPC. LV-MPC is a model-based predictive control

methodology implemented in the space of the latent variables. LV-MPC can be applied to batch [5] and

continuous [6] processes. The advantages of using LV-MPC include:

• In LV-MPC, the dynamic matrices used to perform multi-step ahead predictions are obtained directly

from process data [7, 8]. Therefore, the model obtained is commensurate with its final use. This is

often denoted MPC Relevant Identification (MRI).

• Provided latent variable techniques are used for model identification, data requirements for the iden-

tification data set are very modest.

• MPC optimization is performed in the space of the latent variables. Then problems with large control

horizon can be solved at a reasonable computational cost. Alternatives to this approach in MPC

include move blocking strategies [9] and the use of Laguerre functions [10].

• Latent variable methods provide indicators of validity of the model referred to the identification data

set. Such indicators can be used in the optimization in LV-MPC to constrain the decision space and

avoid using the model for extrapolation. Consequently, better predictions can be obtained, specially

under tight control and in the event of disturbances or faults. Finally, better predictions lead to better

closed loop performance in MPC.

The second point in the list is normally the main reason that motivates using PLS as it can deal with

correlation in the data set. However, this paper focuses on the last item on the list: Ensure Validity of

Predictions in LV-MPC. Although industrial processes are non-linear, most implemented control solutions

are based on linear models [11, 12]. LV-MPC is based on a linear structure for predictions, thus there is

model-process mismatch. Under tight control, the predictor may be used in extrapolation mode leading to

erratic control moves. In [13] Hotelling’s T 2 index is weighted in the MPC cost function to avoid decisions

using the model outside its validity range. In [6] Hotelling’s T 2 index along with squared residuals in the

input space are weighted in the MPC cost function. Weighting such indices in the MPC cost function can

avoid the optimization to use the model outside its validity range, but yields the following drawbacks:

• (I) If past data is in a region outside the region spanned by the identification data set, validity indicators

provide a large value regardless of the future trajectory of the MVs. This alters the MPC cost function

not necessarily helping to decide a better future trajectory for the MVs.
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• (II) The weights are additional parameters that need be tuned. Small weights allow using the model

in extrapolation, and large weights alter the resulting decision of the controller. There is no tuning

strategy to ascertain validity of predictions in any situation.

The approach to ensure validity of predictions proposed in this paper overcomes the two drawbacks com-

mented above.

• (I) Two validity indicators based on Hotelling’s T 2 and the squared residuals in the input space are

defined. The novelty in the indicators defined is they neglect past data.

If validity indicators are considered in LV-MPC, the decision of the controller tries to keep validity

indicators inside the valid range. If validity indicators contain past data, and past data lays outside

the region spanned by the identification data set, validity indicators provide large values regardless

of the future trajectory of the MVs. Consequently, there may be no solution of the MVs to keep

validity indicators in the valid region because it is the past what causes the indicators to present

large values. If past data is neglected however, validity indicators define which future trajectories are

acceptable compared to those used for identification. Consequently, the decision of the controller is

not constrained by the past, which cannot be changed, but by having acceptable future trajectories of

the manipulated variables so that the predictor is not used in extrapolation.

• (II) Validity indicators are added as constraints in LV-MPC. Such indicators are quadratic in the

variable of decision, then the resulting problem is a QCQP (Quadratically Constrained Quadratic

Program). The QCQP is solved as a sequence of QPs (Quadratic Programs) with linearisation of

quadratic constraints. To reduce the number of QPs that need be solved at each sampling time,

linearisation of each quadratic constraint is performed at the boundary of the constraint aligned with

the current point and the minimum of the constraint. Adding constraints instead of weighting the

validity indices in the cost function forces the decision to ascertain validity of the model whilst the LV-

MPC cost function remains unaltered. The drawback in this approach is the increase in computational

complexity to solve a sequence of QPs.

The structure of this paper is as follows: The LV-MPC approach for continuous processes in [6] is summed up

in Section 2. The validity indicators proposed in this paper are introduced in Section 3. How to include the

validity indicators in LV-MPC as constraints is explained in Section 4. In Section 5, a MIMO example shows

how ensuring validity of predictions can improve closed-loop performance, specially under tight control and

in the event of working outside the identification region. The paper ends with concluding remarks in Section

6.
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2. LV-MPC methodology

LV-MPC for continuous processes is presented in [6]. This Section briefly describes the LV-MPCmethodology

and reformulates the most relevant formulas in the sake of readability of the present paper. For further

details, the reader is referred to [6].

2.1. Model structure

The following linear structure for predictions is used in LV-MPC:

ŷf(k) = [

x(k)
︷ ︸︸ ︷

up(k) yp(k)
︸ ︷︷ ︸

,xp(k)

uf(k)
︸ ︷︷ ︸

,xf (k)

udof(k)
︸ ︷︷ ︸

,xdof (k)

]θ (1)

where θ is the dynamic matrix with appropriate dimensions, and

ŷf(k) = [yk+1 . . . yk+nf
] (2)

up(k) = [uk−1 uk−nb+1] (3)

yp(k) = [yk−1 yk−na
] (4)

uf(k) = [uk+nf−1 . . . uk+nu
] (5)

udof(k) = [uk+nu−1 . . . uk] (6)

where: nf , prediction horizon; nb, past horizon for inputs; na, past horizon for outputs; nu, control horizon;

yk ∈ R
1×no ; no, number of outputs; uk ∈ R

1×ni ; and ni, number of inputs.

2.2. Identification in the latent variable space

Identification data matrices can be obtained from Equation (1) for k ∈ [1 . . . N ], and PLS is used for

identification [14].

X = TPT +E; Y = UQT + F (7)

T = XW(P TW)−1

︸ ︷︷ ︸

,Z

(8)

U = TB (9)

Ŷ = XZBQT

︸ ︷︷ ︸

,θ

(10)
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where: X ∈ R
(N×nx), input space; nx, number of columns in x(k); N , number of samples in the identification

data set; T ∈ R
(N×nlv), input scores; nlv, number of latent variables; P ∈ R

(nx×nlv), input loadings;W ∈

R
(nx×nlv), input loadings to get orthogonal scores [15]; E ∈ R

(N×nx), input residuals; Y ∈ R
(N×ny), output

space; ny, number of columns in yf(k); U ∈ R
(N×nlv), output scores; Q ∈ R

(ny×nlv), output loadings;

F ∈ R
(N×ny), output residuals.

2.3. Control methodology

LV-MPC performs optimization in the space of the latent variables, ∆td, and takes the form: [Hereafter

the argument k is omitted in the sake of readability.]

min
∆td

||[rf − ŷf ]Wy||
2
F + λu||∆xdofWu||

2
F

︸ ︷︷ ︸

,JC

s.t. A∆tTd ≤ b (11)

where: ∆td, the decision variable in the LV-space; rf , the future references defined accordingly to ŷf ; Wy

and Wu, positive-definite matrices that weigh tracking errors and control increments; λu, weighs control

increments; ∆xdof , increments in the control moves; A and b, define linear constraints on the decision

variable. Note A and b are obtained from the upper, lower and rate limits of the manipulated variables and

using some matrices of the controller as explained in Section 2.4 in [6].

To perform the minimization; ŷf and ∆xdof are expressed in terms of ∆td:

ŷf = x∗

pS̄p +∆tdS̄d

∆xdof = ∆tdMdof

(12)

where

x∗

p , [[up uk−nb
]

︸ ︷︷ ︸

,u∗

p

[yp yk−na−1]
︸ ︷︷ ︸

,y∗

p

] (13)

The control sequence, xdof , is obtained from ∆td using the expression:

xdof = ∆tdMdofΨu + uk−1Φu (14)

Provided the receding horizon policy is used, only uk contained in xdof is eventually applied to the process.

3. Validity Indicators for Predictions

Provided performance of any MPC strategy relies on the quality of predictions, validity indicators can be

introduced in the MPC problem to ascertain validity of predictions. Two validity indicators commonly used
5



are Hotelling’s T 2, and residuals in the input space. The former focuses on the regions of the scores and

the latter on error of projection from the original space to the latent variable space. These two indicators

assume the measured variables follow Gaussian distribution. For non-Gaussian processes, one can consider

using instead kernel methods or a combined solution that can tackle with the Gaussian and non-Gaussian

term [20]. The two indicators used in this paper, Hotelling’s T 2 and residuals in the input space, depend

on future moves as well as on past data. If validity indicators contain past data, and past data lays outside

the region spanned by the identification data set, validity indicators provide large values regardless of the

future trajectory of the MVs. Consequently, there may be no solution of the MVs to keep validity indicators

in the valid region because it is the past what causes the indicators to present large values. If past data

is neglected however, validity indicators define which future trajectories are acceptable compared to those

used for identification. Consequently, the decision of the controller is not constrained by the past, which

cannot be changed, but by having acceptable future trajectories of the manipulated variables so that the

predictor is not used in extrapolation. Two validity indicators for predictions based on Hotelling’s T 2, and

residuals in the input space that neglect past data are defined in this paper.

The former yields:

J̌t =
1

J̌tmax

ťŠ
2−1

a ťT (15)

where ť is the projection of the input space to the latent variable space neglecting past values; Š
2

a is a

diagonal matrix such that element i is the variance of the score ťi in the identification data set; and J̌tmax

is the value of the expression ťŠ
2−1

a ťT that includes 95% of the observations in the identification data set.

Provided J̌t is normalized, J̌t ≤ 1 implies the model is being used in the region in which it has been identified.

The latter can be expressed

J̌e =
1

J̌emax

ěěT (16)

where ě represents the error of projecting the input space to the latent variable space neglecting past values;

and J̌emax is the value of the expression ěěT that includes 95% of the observations in the identification data

set. Provided J̌e is normalized, J̌e ≤ 1 implies the model is being used in the region in which it has been

identified.

To include these indices in the controller, both indices need be expressed as a function of ∆td. J̌t(∆td)

can be derived from its definition in Equation (15), and the expression for ť in terms of ∆td provided in
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proposition 3.1

J̌t(∆td) = ∆tdȞt∆tTd + 2f̌Tt ∆tTd + x∗

p

ŇpZŠ
2−1

a ZT ŇT
p

J̌tmax

x∗
T

p (17)

Ȟt ,
ŇdZŠ

2−1

a ZT ŇT
d

J̌tmax

f̌Tt ,
x∗

pŇpZŠ
2−1

a ZT ŇT
d

J̌tmax

J̌e(∆td) can be derived from its definition in Equation (16), and the expression for ě in terms of ∆td

provided in proposition 3.2

J̌e(∆td) = ∆tdȞe∆tTd + 2f̌Te ∆tTd + x∗

p

ĚpĚ
T
p

J̌emax

x∗

p
T (18)

Ȟe ,
ĚdĚ

T
d

J̌emax

f̌Te ,
x∗

pĚpĚ
T
d

J̌emax

Proposition 3.1. ť = x∗

pŇpZ +∆tdŇdZ

Proof From Equations (8) and (1)

t = [xp xf xdof ]
︸ ︷︷ ︸

x

Z

ť is defined forcing past data to be zero

ť , [0 xf xdof ]
︸ ︷︷ ︸

,x̌

Z (19)

where 0 is a vector of zeros with the same dimensions of xp.

Provided uk+i is set to uk+nu−1 for i ∈ [nu, nf − 1], xf can be expressed:

xf = xdof




Ini

. . . Ini

0(nu−1)ni×(nf−nu)ni





︸ ︷︷ ︸

,Γ

(20)

then taking matrices 0 and I of appropriate dimensions,

x̌ = xdof [0 Γ I]

From the definition of x∗

p in Equation (13), and the expression for xdof in Equation (14):

x̌ = x∗

pŇp +∆tdŇd (21)
7



where

Ňp ,




Φu[0 Γ I]

0





Ňd , MdofΨu[0 Γ I]

thus,

ť = x∗

pŇpZ +∆tdŇdZ. �

Proposition 3.2. ě = x∗

pĚp +∆tdĚd

Proof From Equation (7)

X = TPT +E; ⇒ e = x − tPT

which neglecting past data as in Equation (19) can be expressed:

ě = x̌ − ťPT

Substituting ť in from Equation (19)

ě = x̌(I − ZPT )

Substituting in from Equation (21)

ě = x∗

pŇp(I − ZPT )
︸ ︷︷ ︸

,Ěp

+∆tdŇd(I − ZPT )
︸ ︷︷ ︸

,Ěd

thus

ě = x∗

pĚp +∆tdĚd. �

4. Add constraints on Validity Indicators

There are two options to consider validity indicators for predictions in the LV-MPC problem: soft constraints

or hard constraints. The soft constraints approach is used in [6] in which validity indicators that consider

past data are weighed in the control cost function. The main advantage of the soft constraints approach is

it is easier to implement, but yields the drawback that there is no tuning strategy to ascertain validity of

predictions in any situation. In this paper validity indicators for predictions are included as hard constraints

in the LV-MPC formulation. Note that if validity indicators are forced to be below 1, no extrapolation

is allowed; however, as predictions are expected to degrade gradually as the process moves away from the

identification envelope, one can leave some room for extrapolation by choosing a value above 1 for the
8



threshold. Then the hard constraints approach defined in this paper adds some complexity, but ensures

validity of predictions providing a tool to control how much extrapolation is allowed.

The minimization problem in Equation (11) can be augmented with constraints on J̌t and J̌e.

min
∆td

JC s.t.







A∆tTd ≤ b

J̌t ≤ 1

J̌e ≤ 1

(22)

Note from Equations (17) and (18) that J̌t and J̌e depend quadratically on ∆td, and so the problem in

Equation (22) is a QCQP.

In a QCQP we minimize a convex quadratic function over a feasible region that is the intersection of

ellipsoids [16]. In a QP however, we minimize a convex quadratic function over a feasible region that is

the intersection of hyperplanes. A mean to simplify the QCQP is to transform it into a QP by bounding

the ellipsoids by hyperplanes provided quadratic constraints are convex. Such hyperplanes are obtained

by linearising the ellipsoids at some points of interest. Such an approach provides a solution for the first

iteration and improves it in terms of satisfying quadratic constraints as the algorithm evolves. The advantage

of this approach is it can be stopped before it converges, if a solution is needed at that time as can happen

in real-time implementations. However, if there is enough time, the algorithm can converge and provide a

solution that ascertains quadratic constraints.

Given the set of hyperplanesAt∆tTd ≤ bt that bounds quadratic constraint J̌t ≤ 1, and the set of hyperplanes

Ae∆tTd ≤ be that bounds quadratic constraint J̌e ≤ 1, the QCQP in Equation (22) is reformulated:

min
∆td

JC s.t.







A∆tTd ≤ b



At

Ae



∆tTd ≤




bt

be




(23)

At, bt, Ae, and be are needed to solve the problem in Equation (23), however, they are initially unknown.

The problem in Equation (23) can be solved by means of the following iterative procedure, where ∆tdi

stands for ∆td at iteration i.

1. At, bt, Ae, and be are initialized empty,

2. ∆tdi
comes from solving the QP in Equation (23)

3. the algorithm finishes if ∆tdi
satisfies both quadratic constraints: J̌t ≤ 1 and J̌e ≤ 1

4. if J̌t ≤ 1 does not hold; J̌t is linearised, and At, bt are augmented with the linearised constraint

5. if J̌e ≤ 1 does not hold; J̌e is linearised, and Ae, be are augmented with the linearised constraint

6. go to step 2
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Linearisation of the quadratic constraints on steps 4 and 5 in the above procedure is implemented taking the

first order Taylor approximation of the quadratic constraints. Two approaches depending on which point is

used for linearisation are considered:1

• (I) Linearise J̌t ≤ 1 at the current solution ∆tdi

• (II) Linearise J̌t ≤ 1 at ∆tdti
. ∆tdti

is defined such that J̌t(∆tdti
) = 1, and it is aligned with the

current solution ∆tdi
and ∆tdt

. Where ∆tdt
minimizes J̌t in Equation (17) wich can be expressed

∆tdt
= −fTt H−1

t . The expression for ∆tdti
is derived in proposition 4.1.

The First order Taylor approximation of the quadratic constraint J̌t ≤ 1 at iteration i is derived in propo-

sition 4.3

Ati∆tTd ≤ Bti .

In the sake of clarity and to compare both linearisation approaches, the following two-dimensional example

is considered:

JC = ∆td




0.1 0.1

0.1 0.2



∆tTd + 2 [−0.2 0]∆tTd

J̌t = ∆td




0.1 0

0 0.01



∆tTd + 2[0.05 0]∆tTd + 0.8

In Figures 1 and 2: the contour plot of the cost function JC is in grey; the area inside the ellipse satisfies

constraint J̌t ≤ 1; ∆tdi
is the solution of the QP problem with the current constraints; ∆tdt

is the minimum

of J̌t; and ∆tdti
is aligned with ∆tdi

and ∆tdt
and intersects with the boundary of the quadratic constraint

J̌t(∆tdti
) = 1.

Constraint J̌t ≤ 1 is linearised at ∆tdi
and represented in thick line in Figure 1, whereas in Figure 2 it

is linearised at ∆tdti
. From those figures, the second approach linearises the constraint at the boundary

which is the area of interest, and consequently the algorithm converges faster to a solution that satisfies

constraints.

Summing up, this section defines an iterative procedure to solve the resulting QCQP obtained when adding

validity constraints into the LV-MPC problem. The procedure is iterative and at each iteration quadratic

constraints are linearised and a QP is solved.

1Linearisation of the quadratic constraint J̌t ≤ 1 is explained, but the same procedure applies to J̌e ≤ 1.
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∆tdi

∆tdt

∆tdti

Figure 1: Linearise at ∆tdi

Proposition 4.1. ∆tdti
such that J̌t(∆tdti

) = 1, and it is aligned with the current solution ∆tdi
and ∆tdt

is obtained:

∆tdti
= ∆tdt

+ γ̌t(∆tdi
−∆tdt

)

Proof ∆tdti
is a point which satisfies:

• ∆tdti
is aligned with ∆tdi

and ∆tdt

• ∆tdti
is in-between ∆tdi

and ∆tdt

• J̌t(∆tdti
) = 1

The first requirement can be expressed:

∆td(γt) = ∆tdt
+ γt(∆tdi

−∆tdt
)

where γt ∈ R. For the second requirement to hold γt ∈ [0, 1]. Substituting ∆td in proposition 3.1

ť(γt) = x∗

pŇpZ + (∆tdt
+ γt(∆tdi

−∆tdt
))

︸ ︷︷ ︸

∆td

ŇdZ

11



∆tdi

∆tdt

∆tdti

Figure 2: Linearise at ∆tdti

which yields

ť(γt) = x∗

pŇpZ+∆tdt
ŇdZ

︸ ︷︷ ︸

,M̌t

+ γt(∆tdi
−∆tdt

)ŇdZ
︸ ︷︷ ︸

,Ňt

Substituting ť(γt) in Equation (15)

J̌t(γt) =
(M̌t + γtŇt)Š

2−1

a (M̌T
t + γtŇ

T
t )

J̌tmax

=
ŇtŠ

2−1

a ŇT
t

J̌tmax
︸ ︷︷ ︸

,at

γ2
t +

2M̌tŠ
2−1

a ŇT
t

J̌tmax
︸ ︷︷ ︸

,bt

γt +
M̌tŠ

2−1

a M̌T
t

J̌tmax
︸ ︷︷ ︸

,ct

The third requirement can be expressed

J̌t(γ̄t) = 1

where γ̄t comes from solving the above second order equation

γ̄t =
−bt ±

√

b2t − 4at(ct − 1)

2at
.

Provided J̌t is symmetric to its minimum; and both J̌t(γ̄t) are aligned with the point that minimizes J̌t,

the absolute value of the two solutions in the previous equation are equal. Since we are only interested in

12



values of γt ∈ [0, 1] we take the positive solution. Note that in case γ̄t > 1, the current solution ∆tdi
already

satisfies the constraint and no linearisation of the quadratic constraint is needed. Consequently ∆tdti
need

be computed only if γ̄t ≤ 1

γ̌t =
−bt +

√

b2t − 4at(ct − 1)

2at
.

and ∆tdti
can be expressed

∆tdti
= ∆tdt

+ γ̌t(∆tdi
−∆tdt

). �

Proposition 4.2. ∆tdei
such that J̌e(∆tdei

) = 1, and it is aligned with the current solution ∆tdi
and ∆tde

is obtained:

∆tdei
= ∆tde

+ γ̌e(∆tdi
−∆tde

)

Proof ∆tdei
is a point which satisfies:

• ∆tdei
is aligned with ∆tdi

and ∆tde

• ∆tdei
is in-between ∆tdi

and ∆tde

• J̌e(∆tdei
) = 1

The first requirement can be expressed:

∆td(γe) = ∆tde
+ γe(∆tdi

−∆tde
)

where γe ∈ R. For the second requirement to hold γe ∈ [0, 1]. Substituting ∆td in proposition 3.2

ě(γe) = x∗

pĚp + (∆tde
+ γe(∆tdi

−∆tde
))

︸ ︷︷ ︸

∆td

Ěd

which yields

ě(γe) = x∗

pĚp +∆tde
Ěd

︸ ︷︷ ︸

,M̌e

+ γe(∆tdi
−∆tde

)Ěd
︸ ︷︷ ︸

,Ňe

Substituting ě(γe) in Equation (16)

J̌e(γe) =
(M̌e + γeŇe)(M̌

T
e + γeŇ

T
e )

J̌emax

=
ŇeŇ

T
e

J̌emax
︸ ︷︷ ︸

,ae

γ2
e +

2M̌eŇ
T
e

J̌emax
︸ ︷︷ ︸

,be

γe +
M̌eM̌

T
e

J̌emax
︸ ︷︷ ︸

,ce
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The third requirement can be expressed

J̌e(γ̄e) = 1

where γ̄e comes from solving the above second order equation

γ̄e =
−be ±

√

b2e − 4ae(ce − 1)

2ae
.

Provided J̌e is symmetric to its minimum; and both J̌e(γ̄e) are aligned with the point that minimizes J̌e,

the absolute value of the two solutions in the previous equation are equal. Since we are only interested in

values of γe ∈ [0, 1] we take the positive solution. Note that in case γ̄e > 1, the current solution ∆tdi
already

satisfies the constraint and no linearisation of the quadratic constraint is needed. Consequently ∆tdei
need

be computed only if γ̄e ≤ 1

γ̌e =
−be +

√

b2e − 4ae(ce − 1)

2ae
.

and ∆tdei
can be expressed

∆tdei
= ∆tde

+ γ̌e(∆tdi
−∆tde

). �

Proposition 4.3. The first-order Taylor approximation of the quadratic constraint J̌t ≤ 1 at a point β can

be expressed

Ati∆tTd ≤ Bti

Proof The first-order Taylor approximation of the quadratic constraint J̌t ≤ 1 at a point β

∂J̌t
∂∆td

∣
∣
∣
∣
β

(∆td − β) + J̌t(β) ≤ 1 (24)

β = ∆tdi
or β = ∆tdti

depending on which linearisation point is selected. The first derivative of J̌t in

Equation (17) with respect to ∆td
∂J̌t
∂∆td

= 2∆tdHt + 2fTt

then
∂J̌t
∂∆td

∣
∣
∣
∣
β

= 2βHt + 2fTt .

Reorganising terms in Equation (24)

∂J̌t
∂∆td

∣
∣
∣
∣
β

︸ ︷︷ ︸

,Ati

∆td ≤ 1− J̌t(β) +
∂J̌t
∂∆td

∣
∣
∣
∣
β

β

︸ ︷︷ ︸

,Bti

Note that for β = ∆tdti
, J̌t(β) = J̌t(∆tdti

) = 1 thus

Bti =
∂J̌t
∂∆td

∣
∣
∣
∣
β

β. �
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Proposition 4.4. The first-order Taylor approximation of the quadratic constraint J̌e ≤ 1 at a point β can

be expressed

Aei∆tTd ≤ Bei

Proof The first-order Taylor approximation of the quadratic constraint J̌e ≤ 1 at a point β can be expressed

∂J̌e
∂∆td

∣
∣
∣
∣
β

(∆td − β) + J̌e(β) ≤ 1 (25)

β = ∆tdi
or β = ∆tdei

depending on which linearisation point is selected. The first derivative of J̌e in

Equation (18) with respect to ∆td
∂J̌e
∂∆td

= 2∆tdHe + 2fTe

then
∂J̌e
∂∆td

∣
∣
∣
∣
β

= 2βHe + 2fTe .

Reorganising terms in Equation (25)

∂J̌e
∂∆td

∣
∣
∣
∣
β

︸ ︷︷ ︸

,Aei

∆td ≤ 1− J̌e(β) +
∂J̌e
∂∆td

∣
∣
∣
∣
β

β

︸ ︷︷ ︸

,Bei

Note that if β = ∆tdei
, then J̌e(β) = 1 and

Bei =
∂J̌e
∂∆td

∣
∣
∣
∣
β

β. �

5. Simulation results and discussion

In this section the model of a boiler is controlled by means of

DM Traditional data-driven MPC approach with no validity indicators [17]

LV-MPC The methodology proposed in [6] with no validity indicators

LV-MPC-cons LV-MPC with constraints on J̄t and J̄e to ensure model validity. These indicators are

equivalent to J̌t and J̌e defined in section 3, but past is not neglected.

LV-MPC-cons-neg LV-MPC with constraints on J̌t and J̌e to ensure model validity.

In this section first a description of the process is provided; second control parameters are set; third the

predictor is obtained from data; and finally two control scenarios are considered: normal operation, and

large changes in set points and disturbance.
15



5.1. Process description

The process to control is the nonlinear model of a Boiler proposed by Pellegrinetti and Bentsman [18].

The model has been developed in Simulink2 including some changes: several coefficients have been slightly

modified, restricted ranges for the inputs and outputs have been selected and normalized in percentage.

However, the following main features of the model have been preserved:

• It has a relatively low complexity while faithfully capturing the essential plant dynamics and its

nonlinearities over a wide operating range.

• The model is control oriented in that the manipulated variables, the controlled variables and the

significant disturbance are explicitly shown.

• The model is realistic in that the constraints on the manipulated variables are known, and the mea-

surement noise and time delays are present on the outputs.

The variables in the process and their working points are:

• MVs:

– u1: Fuel flow; range [0 100]; operating point 35.21%

– u2: Water flow; range [0 100]; operating point 57.57%

• Disturbance:

– m1: load level; range [0 100]; operating point 46.36%

• CVs:

– y1: Steam pressure; range [0 100]; operating point 60%

– y2: Water level; range [0 100]; operating point 50%

The main control difficulties in this multivariable process are caused by the coupling, the non-minimum

phase, the integration and the load disturbance.

2http://www.dia.uned.es/~fmorilla/benchmarkPID2012/
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5.2. Control parameters

The sampling time is defined from the step response of the process to a step of 10% in the inputs (Figures

3 and 4) and disturbance (Figure 5). From the dynamic response of both outputs, the time constant of the

process is about 50 seconds, and Ts is set as the time constant divided by 10, then Ts = 5 s.
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45
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55
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time (s)

Figure 3: Step in u1
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Figure 4: Step in u2
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Figure 5: Step in m1

It is convenient in MPC to choose nu and nf such that nf −nu is greater than or equal to the process settling

time towards changes in the MVs. From Figure 4, settling time for output y1 is about 300 seconds. y2

has an integrator hence it does not settle, however it moves at a constant rate 100 seconds after the step.

Consequently, nf − nu is set to 300 seconds, and for Ts = 5 s

nf − nu =
300

5
= 60 samples.

According to the experience of the authors, nu can be set as half the value set for nf − nu, which in this

case yields nu = 30. However, from Figure 5, the settling time of y1 to a change in m1 is about 600 seconds,

then nf should be at least 600 seconds:

nf =
600

5
= 120 samples

then

nf − nu = 60 ⇒ nu = nf − 60 = 120− 60 = 60 samples.

Constraints are defined for the MVs and their rate:

• 0 ≤ ui ≤ 100, ∀i ∈ [1, 2]

• |∆ui| ≤ 1%/sec, ∀i ∈ [1, 2]

17



Future references are assumed unknown,

rk+i = rk+1, ∀i ∈ [1, nf ]

The weight of the control moves is set so that a fast response is obtained

λu = 1

5.3. Identification

The identification and validation data sets in Figure 6 are obtained in closed-loop. According to [19]

closed-loop tests have many advantages over openloop tests. A closed-loop test is easy to carry out, will

reduce the disturbance to process operation, and will excite more control-relevant information content of the

underlying process. The continuous blue plots represent the identification data set, and the discontinuous

green plots represent the validation data set. To obtain the identification and validation data sets the process

is controlled using two PID controllers. The set points of the CVs are moved around the working point;

steps of 10% amplitude are added to m1; and steps of 20% amplitude are added to the MVs.

Prior to identification, the set point is removed form the MVs and the CVs. m1 is not considered in the

model. To decide the order of the model, na and nb are swept and two indicators are evaluated for the

validation data set. The two indicators are the sum of squared prediction errors one-step ahead J̄OSAPI ,

and multi-step ahead J̄LRPI , both of them normalized to the number of quadratic terms to sum:

J̄OSAPI =
1

Nno

N∑

k=1

||yk − ŷk||
2
F ; J̄LRPI =

1

Nnonf

N∑

k=1

||yf(k)− ŷf(k)||
2
F .

Figure 7 plots the values of J̄OSAPI and J̄LRPI for different values of n, being na = n and nb = n. From

Figure 7(a) n ≥ 4, and from Figure 7(b) 2 ≤ n ≤ 4, then a fourth order linear model is used to approximate

the nonlinear process: na = nb = 4.

In this section two models are fit: the LV-MPC model and the DM model. Both models are fourth order

linear models as defined in Section 2.1, but the DM model is fit using Least Squares and the LV-MPC model

is a PLS model (Section 2.2). The next step is to choose nlv for the LV-MPC model. nlv can take any value

in-between 1 and the number of columns in x(k), which in this example yields (nb−1)ni+nano+nfni = 254

columns in x(k). Consequently nlv can take any value in-between 1 and 254, however, the controller has

nuni = 120 d.o.f., then nlv is to be swept in-between 1 and 120.

Figure 8 plots in continuous blue line J̄OSAPI(n) and J̄LRPI(n) for the LV-MPC model, and in discontinuous

black line J̄OSAPI(n) and J̄LRPI(n) for the DM model. From Figure 8(a), nlv ≥ 80. From Figure 8(b),
18



40 ≤ nlv ≤ 60 or nlv ≥ 100. Then3

nlv = 100.

Predictive performance of the two models obtained is tested performing predictions for the validation data

set. Figures 9 and 10 contain one-step ahead predictions, predictions in the far prediction horizon, and the

coefficient of determination R2 evaluated for predictions from k+ 1 up to k+ nf . Note the LV-MPC model

contains 100 latent variables out of the 254 columns in the input vector of the model, but still performs as

the DM model. One-step ahead predictions are almost exact for both outputs, then R2 in the near horizon

reaches 1. Predictions at k + nf slightly differ from the real output, but R2 is always above 0.8, then the

predictor is considered to successfully approximate the process in the prediction window.

3Note that, as previously stated, the number of columns in x(k) is 254, and nlv = 100, thus a reduction of 60% in the

number of variables has been performed.
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Figure 6: Identification and validation data sets
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Figure 7: Identification Indicators versus n.
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Figure 8: Identification Indicators versus nlv . LV-MPC model (+ symbol) and DM model (dashed-line). Note in the DM

model there is no nlv , then a constant value for both indicators is provided.
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Figure 9: Validation results for y1 removing the working point.
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Figure 10: Validation results for y2 removing the working point.
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5.4. Control results: normal operation

The different control strategies are tested in a situation similar to the identification experiment. Steps are

applied to the set points of the CVs. From Figure 11, LV-MPC strategies slightly outperform DM. Note in

LV-MPC the controller has 100 d.o.f., whilst in DM there are nuni = 120 d.o.f.. LV-MPC equals LV-MPC-

cons-neg provided quadratic constraints neglecting past data are not active for large periods of time (Figure

13). In LV-MPC-cons, quadratic constraints in Figure 12 are active in some intervals, which provides a

slightly different closed-loop response.

Summing up, in normal operation all the control strategies evaluated perform similarly.
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Figure 11: Closed-loop time response in normal operation. DM, continuous blue line; LV-MPC, dashed green line; LV-MPC-

cons, dotted red line; LV-MPC-cons-neg, dash-dotted black line.
24



50 100 150 200 250 300 350 400 450 500
0

0.5

1

k

Figure 12: LV-MPC-cons: J̄t, continuous blue line; J̄e dash-dotted red line.
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Figure 13: LV-MPC-cons-neg: J̌t, continuous blue line; J̌e dash-dotted red line.
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5.5. Control results: large changes in set points and disturbance

The control strategies are evaluated in a situation different to that in the identification data set. Three

events happen during the experiment: first a large change in the set point for y1, second a large change

in the disturbance m1, and third a large change in the set point for y2. From the closed-loop response in

Figure 14:

• DM: Presents the strongest interaction, but can reach any point as model validity is not ascertained.

• LV-MPC: Equivalent to DM, but has less d.o.f..

• LV-MPC-cons: Interaction to a change in y1 is considerably reduced as the predictor is used in the

range in which it is valid. From Figure 15, J̄t is at the boundaries of constraints continuously, and J̄e

increases when m1 changes. Constraints on J̄t and J̄e reduce interaction and provide better control if

the process is in the area in which it has been identified. However, the resulting control is biased when

there is a change in y2 because the process is being operated considerably outside the identification

region.

• LV-MPC-cons-neg: Interaction to a change in y1 is considerably smaller to that obtained in DM and

LV-MPC, but slightly above that obtained if past is not neglected. From Figure 16, J̌t and J̌e go to

saturation only when changes happen in the experiment. Neglecting past data relaxes constraints on

validity and prevents the controller from being biased.

Summing up, constraints on validity of the model neglecting past data can provide better results in the

event of situations not included in the identification experiment.

Finally, the difference between linearising quadratic constraints at ∆tdti
and at ∆tdi

is compared in Figure

17. The mean value of the constraint for the different instants of the control experiment versus the number

of iteration of the sequential QP is represented. The continuous blue plot represents the vale of J̄t linearising

at ∆tdti
, and the dashed red plot represents the vale of J̄t linearising at ∆tdi

. In the first iteration the QP

runs with no linearised constraint, and so both approaches present the same vale of J̄t. For the second

iteration, the approach linearising at ∆tdti
provides a mean value of J̄t closer to 1. In both approaches J̄t

converges to 1, but if the linearisation is performed at ∆tdti
, the algorithm converges at a faster rate. In

real-time applications, computing time bounds the maximum number of iterations of the QP to implement,

hence a faster convergence can be of importance. Therefore, linearising at ∆tdti
is better than linearising

at ∆tdi
.
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Figure 14: Closed-loop time response in the event of a large change in the set point for y1. DM, continuous blue line; LV-MPC,

dashed green line; LV-MPC-cons, dotted red line; LV-MPC-cons-neg, dash-dotted black line.
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Figure 15: LV-MPC-cons: J̄t, continuous blue line; J̄e dash-dotted red line.
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Figure 16: LV-MPC-cons-neg: J̌t, continuous blue line; J̌e dash-dotted red line.
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Figure 17: Decrease rate of J̄t. Linearising at ∆tdti
, continuous blue line; linearising at ∆tdi

, dashed red line.
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6. Conclusions

This paper proposes a strategy to ascertain validity of predictions in LV-MPC. Validity of predictions is

important in that closed-loop performance of the controller heavily relies on the quality of predictions.

Performing predictions outside the area in which the predictor has been identified implies extrapolation and

can lead to poor predictions.

The proposed strategy for validity of predictions in LV-MPC defines two indicators based on Hotellings’

T 2 and squared residuals of projection in the input space. The indicators proposed neglect past data,

and it is shown through an example how considering the indicators that neglect past data can provide

better results. The reason is adding constraints on validity indicators provides a conservative framework to

regulate extrapolation and neglecting the past relaxes such conservative framework while ensuring validity

of predictions in terms of decisions on the manipulated variables. The added constraints can lead to a

biased control if the current situation is not contained in the identification data set and extrapolation is not

allowed, especially if past data is considered in the validity indicators.

The proposed indicators are quadratic expressions in the variable of minimization, which yields a QCQP

to be solved on-line at each sampling instant. The strategy adopted to solve the QCQP is a sequence of

QPs. The advantage of such an approach is with one iteration there is one solution available, and such

solution can be improved accounting for quadratic constraints as long as there is remaining computing time.

Constraints are linearised not at the current point, but at the boundary of the constraint aligned with the

current point and the minimum of the validity indicator. It is shown through an example how this approach

reduces the value of the validity indicator at a faster rate.

Finally, it has been shown through an MIMO example that better closed-loop results can be obtained using

the proposed strategy to ensure validity of predictions in LV-MPC. Some guidelines for future work include

adding measurable disturbances to the model, and programming the controller to run in a real time target

and use it to control fast real processes on-line.
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[11] N. Blet, D. Meǵıas, J. Serrano, C. de Prada, Non linear MPC versus MPC using on-line linearisation - a comparative

study, in: IFAC, 2002.

[12] S. J. Qin, T. A. Badgwell, A survey of industrial model predictive control technology, Control Engineering Practice 11

(2003) 733–764.

[13] J. Flores-Cerrillo, J. MacGregor, Control of batch product quality by trajectory manipulation using latent variable models,

Journal of Process Control 14 (2004) 539–553.
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