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Instituto Tecnológico de Informática, UPV, 46022 Valencia, Spain

Abstract. Business rules enhance the integrity of information systems.
However, their maintenance does not scale up easily to distributed sys-
tems with concurrent transactions. To a large extent, that is due to two
problematic exigencies: the postulates of total and isolated business rule
satisfaction. For overcoming these problems, we outline a measure-based
inconsistency-tolerant approach to business rules maintenance.

1 Introduction

Business rules, a.k.a. integrity constraints, are an approved means to support
the consistency of the modeling [26], the design [21], the development [4], the
operation [18], the quality maintenance [22] and the evolution [9] of information
systems, in particular if these activities are encased in distributed environments.

Although business rules are meant to avoid inconsistency, they also must work
well in the presence of data that violate some of the rules. This requirement of
inconsistency tolerance imposes itself even stronger in distributed systems, since
the risk of inconsistency is higher there than in centralized systems. The problem
addressed in this paper is to enable inconsistency-tolerant business rules not only
for individual updates of single-user databases, but also for concurrent database
transactions. Concurrency is the norm for distributed systems.

Many methods for checking declarative business rules have been proposed in
the literature [17]. Concurrent transactions also have been broadly covered [12]
[3] [28]. This paper deals with two common postulates that impede a combina-
tion of controlling data consistency by checking business rules, on one hand, and
guaranteeing consistency preservation by concurrent transactions, on the other.
The first postulate is that an update can be efficiently checked for integrity only
if the state before the update totally satisfies all constraints, without exception.
We call that the total integrity postulate. The second is that, for guaranteeing
integrity preservation by serializable concurrent transactions, each transaction is
supposed to preserve integrity when executed in isolation. We call this require-
ment the isolated integrity postulate. It will turn out that both postulates are
unrealistic and indeed not necessary to their full extent in practice.

We point out that the isolated integrity postulate must not be confused with
the well-known requirement of an isolated execution of transactions [3], i.e., that
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concurrent transactions should not step into each other’s sphere of control [5],
so that anomalies such as phantom updates, dirty or non-repeatable reads are
avoided. That requirement usually is complied with by ensuring the serializabil-
ity of schedules, or some relaxation thereof [28, 27]. However, serializability is
independent of the isolated integrity postulate, requiring that integrity be pre-
served in isolation: while serializability can be guaranteed automatically by the
scheduler of the DBMS, the isolated integrity postulate is usually expected to be
complied with by the designers, programmers and users of transactions.

The dispensability of the total integrity postulate has been unveiled in [10].
The isolated integrity postulate has been discussed and relaxed in [11]. More
precisely, total integrity has been shown to be a superfluous, and the isolated in-
tegrity postulate has been significantly relaxed, both by a concept of inconsistency-
tolerant integrity checking. That concept was based on ‘cases’, i.e., instances of
integrity constraints. Their violation can be tolerated as long as integrity check-
ing can guarantee that the amount of violated cases does not grow. In [7], a
significant generalization has been presented, based on inconsistency measures.
The latter permit the tolerance of integrity violation as long as integrity check-
ing can guarantee that the amount of measured inconsistency is not increased
by updates. In this paper, we show that measure-based integrity checking also
enables a significant weakening of the isolated integrity postulate.

In section 2, we characterize the postulates of total and isolated integrity.
In section 3, we recapitulate measure-based integrity checking. We are going
to see that it serves to get rid of the total integrity postulate as well as to
relax the isolated integrity postulate. In section 4, we address related work, with
an emphasis on integrity checking for concurrent transactions. If not specified
otherwise, we use conventional terminology and notations for logic databases [1],
as well as some basic notions of transaction concurrency [3].

2 Two Unnecessary Postulates

The total integrity postulate is going to be explained in 2.1, the isolated integrity
postulate in 2.2. Both postulates are unnecessary and actually bad, since they
invalidate predictions of the traditional theories of transaction processing [3] and
integrity maintenance [17] if databases contain inconsistent data.

2.1 The Total Integrity Postulate

Integrity checking can be exceedingly costly, unless some simplification method
is used [20]. That can be illustrated as follows. (As usual, lower-case letters x,
y, z denote variables, in the example below.)

Example 1. Let emp be a relation about employees, whose first column is a
unique name and the second a project assigned to the employee. The formula I
= ← proj(x, y), proj(x, z), y 6= z is a primary key constraint on the first column
of proj, a relation about projects, with unique identifiers in the first column. The



foreign key constraint I ′ = ∀x, y ∃z (emp(x, y) → proj(y, z)) on the y of emp
references the primary key of proj. Now, assume a transaction T that inserts
emp(Jack, p). Most integrity checking methodsM ignore I for checking T , since
I does not constrain emp. They only evaluate ∃z (emp(Jack, p) → proj(p, z)),
or rather its simplification ∃z proj(p, z), since emp(Jack, p) becomes true by
the transaction. If, e.g., (p, e) is a row in proj, M accepts the insertion. If no
tuple in proj matches (p, z), then M signals a violation of integrity.

Proofs of the correctness of methods for simplified constraints checking in
the literature all rely on the total integrity postulate, i.e., that integrity always
be totally satisfied, before updates are checked for preserving consistency. In
practice, however, it is rather the exception than the rule that this postulate is
complied with. In particular for applications such as business intelligence, dis-
tributed and replicated databases, legacy data maintenance, data warehousing,
data federation, etc, a certain amount of inconsistent data that violate con-
straints in committed states has to be lived with, at least temporarily.

Suppose that, for instance, the constraint I ′ in Example 1 is violated due to
the element emp(Jack, Illustra) in D, after a deletion of the Illustra project. Thus,
by definition, no traditional method that imposes the total integrity postulate
may check T , since not all constraints are satisfied. However, if the project
that Jack is assigned to is stored in the proj relation, T is rightfully sanctioned
by all common implementations of integrity checking, as already indicated in
Example 1. Example 2, in 3.1, will illustrate essentially the same point.

Hence, the total integrity postulate, which conventionally has always been
imposed, does not approve the correctness of integrity checking in practice, since
the latter often is performed in the presence of consistency violations. Fortu-
nately, however, that postulate can be abolished without incurring any cost and
without losing its essential guarantees, as shown in 3.1.

2.2 The Isolated Integrity Postulate

Integrity preservation has been a pronounced concern already in the early lit-
erature on transaction processing. We cite from [12]: “it is assumed that each
transaction, when executed alone, transforms a consistent state into a consistent
state; that is, transactions preserve consistency”. This is what we have called
the isolated integrity postulate. (The execution of a transaction T is isolated
when it is not concurrent with other transactions, or when the state transition
effected by T is as if having been executed alone.) Thus, the isolated integrity
postulate effectively presupposes the total integrity postulate. From the isolated
integrity premise, most authors in the field infer that then, also all sequentializ-
able schedules of concurrent transactions preserve ‘consistency’, i.e., integrity.

In general, not only the requirement of total integrity, but also the isolated
integrity postulate seems to be illusionary, particularly for distributed multi-user
databases, let alone for transactions in the cloud. In fact, it is hard to believe
than any client who authors a transaction T would ever bet on a consistency-
preserving outcome of T by blindly trusting that all other clients have taken the



same care as herself for making sure that their transactions preserve integrity in
isolation. Yet, in practice, most clients are confident about the integrity preserva-
tion of their transactions, although there is no theory to justify their optimism,
in the presence of inconsistency. Such a justification is given in Section 3.

3 Inconsistency Tolerance

Business rules state and enforce the integrity of business data. However, incon-
sistencies due to violations of business rules are unavoidable in practice. Hence,
rather than insisting that all business rules must be totally satisfied at all times,
it is necessary to tolerate constraint violations. Attempts to reduce or repair such
manifestations of inconsistency often are not affordable at update time. Thus,
updates should be checkable for consistency preservation even if some constraints
are violated. That idea is revisited in 3.1. In 3.2–3.4, we outline a generalization
of the results in 3.1 to concurrent transactions.

Throughout the rest of the paper, let the symbols D, I, IC , T , M stand for
a database, an integrity constraint, a set of integrity constraints, a transaction
and, resp., an integrity checking method. By D(IC ) = true and D(IC ) = false, we
denote that IC is satisfied or, resp., violated inD. We suppose that all constraints
are represented in prenex form, i.e., all quantifiers of variables appear leftmost.
That includes the two most common forms of representing integrity constraints:
as denials or in prenex normal form. Moreover, let DT denote the database state
obtained by applying the write set of T to D.

In general, each method M is a mapping which takes triples (D, IC , T ) as
input and returns either OK, which means that M sanctions T as integrity-
preserving, or KO, which indicates that T would violate some constraint.

3.1 Getting Rid of Total Integrity

In [10], we have shown that, contrary to common belief, it is possible to get rid
of the total integrity postulate for most approaches to integrity checking without
any trade-off. Methods which continue to function well when this postulate is
renounced are called inconsistency-tolerant. The basic idea is illustrated below.

Example 2. Let I and I ′ be as in Example 1. Most integrity checking meth-
ods M accept the update insert (Jack, p) if, e.g., (p, e) is a row in proj. Now,
the positive outcome of this integrity check is not disturbed if, e.g., also the
tuple (p, f) is a row in proj. That may be somewhat irritating, since the case
← proj(p, e), proj(p, f), e 6= f of I then is violated. However, this violation has
not been caused by the insertion just checked. It has been there before, and the
assignment of Jack to p should not be rejected just because the data about p
are not consistent. After all, it may be part of Jack ’s new job to cleanse poten-
tially inconsistent project data. In general, a transaction T that preserves the
integrity of all consistent data without increasing the amount of extant incon-
sistency should not be rejected. And that is exactly whatM’s output indicates:
no case of any constraint that is satisfied in the state before T is committed is
violated after T has been committed.



3.2 Inconsistency Measures

Example 2 conveys that each update which does not increase inconsistency can
and should be accepted. The following definitions serves to make precise what
it means to have an increase or decrease of inconsistency.

Definition 1. (µ,�) is called an inconsistency measure (in short, measure) if
µ maps tuples (D, IC ) to a metric space that is partially ordered by �. We may
identify a measure (µ,�) with µ if � is understood.

Example 3. A simple border-case measure β is given by β(D, IC ) =D(IC ), with
the ordering true ≺ false, i.e., constraint satisfaction (D(IC ) = true) means lower
inconsistency than constraint violation (D(IC ) = false). In fact, β is used by all
conventional integrity checking methods, for deciding whether a given transac-
tion T on a database D that satisfies its constraints IC should be accepted (if
DT (IC ) = true) or rejected (if DT (IC ) = false).

A less trivial inconsistency measure, for example, as defined in [8], is the
function that maps (D, IC ) to the cardinality of the set of cases of violated
constraints. Inconsistency can also be measured by taking such sets themselves,
as elements of the powerset of all cases of IC , together with the subset ordering.

3.3 Generalizing Inconsistency-tolerant Integrity Checking

Inconsistency-tolerant integrity checking can now be defined as follows.

Definition 2. (measure-based inconsistency tolerance)
Let M be a mapping from triples (D, IC ,T ) to {OK,KO}, so that T is either
accepted or, resp. rejected, and (µ,�) an inconsistency measure. M is called a
sound, resp., complete method for integrity checking if, for each triple (D, IC ,T ),
(1) or, resp., (2) holds.

M(D, IC , T ) = OK ⇒ µ(DT , IC ) � µ(D, IC ). (1)

µ(DT , IC ) � µ(D, IC ) ⇒ M(D, IC , T ) = OK. (2)

If (1) holds, then M is also called measure-based, and, in particular, µ-based.

Definition 2 generalizes the traditional definition of integrity checking signif-
icantly, in two ways. Firstly, the traditional measure used for sizing constraint
violations is binary, and thus very coarse: IC is either violated or satisfied in D,
i.e., there is no distinction with regard to different amounts of (in)consistency.
As opposed to that, the range of an inconsistency measure µ may be arbitrar-
ily fine-grained. Secondly, the total integrity postulate is imposed traditionally,
i.e., D(IC ) = true is required. As opposed to that, this postulate is absent in
Definition 2, i.e., M does not need to worry about extant constraint violations.

Definition 2 formalizes that a method M is inconsistency-tolerant if its out-
put OK for a transaction T guarantees that the amount of inconsistency in



(D, IC ) as measured by µ is not increased by executing T on D. Moreover, each
T that, on purpose or by chance, repairs some inconsistency without introduc-
ing any new violation will be OK-ed too by M. Thus, inconsistency-tolerant
integrity checking will decrease the amount of integrity violations over time.

Note that it follows by the definition above that each inconsistency-tolerant
M returns KO for any transaction the commitment of which would violate a
hitherto satisfied case of some constraint. It is then up to the agent who has
called M for checking integrity to react appropriately to the output KO

A defensive reaction is to simply cancel and reject the transaction. A more
offensive reaction could be to modify (‘repair’) the database, the constraints
or the transaction, so that an increase of the amount of integrity violations is
undone. Such measure-based database repairs are dealt with in [6].

3.4 Relaxing Isolated Integrity

To say, as the isolated integrity postulate does, that a transaction T “preserves
integrity in isolation”, means: For a given set IC of integrity constraints and
each state D, each I ∈ IC is satisfied in DT if I is satisfied in D.

Now, let us apply the concept of inconsistency-tolerant business rules check-
ing in 3.1 not only to transactions executed in isolation, but also to concurrent
transactions. Thus, we abandon the premise “if I is satisfied in D” and weaken
the consequence “each I ∈ IC is satisfied in DT ”, as in Definition 2.

In [11], we could show that this is possible for integrity checking methods that
preserve all satisfied cases of integrity constraints, while tolerating those that
are violated in the state before a given transaction is executed. By an analogous
abstraction, the isolated integrity postulate can be weakened as follows.

For each tuple (D, IC ), each measure (µ,�) and each transaction T ,

µ(DT , IC ) � µ(D, IC ) (∗)
must hold whenever T is executed in isolation.

Clearly, (*) relaxes the traditional isolated integrity postulate, since neitherD
nor DT are required to satisfy all business rules in IC . Rather, T only is required
to not increase the measured amount of inconsistency. Thus, by analogy to the
proof of Theorem 3 in [11], we arrive at the following generalization.

Theorem 1. Let H be the execution of a serializable history of transactions,
T be a transaction in H such that (*) holds whenever T is executed in isolation,
Di be the input state of T in H and Do be the output state of T in H. Then,
µ(DT

o , IC ) � µ(Di, IC ) holds.

We point out that this result does not endorse that the inconsistency of all
of D and DT must be measured. On the contrary: measure-based inconsistency-
tolerant integrity checking can proceed as for distributed systems without con-
currency. In other words, T is committed only if it does not increase the amount
of inconsistency, which usually is checked incrementally, without actually assess-
ing the total amount of inconsistency in any state.



Note that the relaxation of the isolated integrity postulate outlined above
still asks for the serializability, i.e., a highly demanding isolation level, of all
concurrent transactions. Thus, we cannot expect that integrity guarantees of
the form (*) would continue to hold in general if the isolation level is lowered.
(For a general critique of lowering isolation levels, see [2].) Future work of ours
is intended to investigate possible relaxations of the isolation level of concurrent
transactions such that sufficient integrity guarantees can still be given.

4 Related Work

Most papers about integrity maintenance do not deal with transaction concur-
rency. Also the work in [14], which proposes realizations of declarative integrity
checking in distributed databases, largely passes by transaction concurrency. On
the other hand, most papers that do address concurrency take it for granted that
transactions are programmed such that their isolated execution never causes any
integrity violation, i.e., they don’t care how integrity is ensured.

As an exception, the work documented in [15], addresses both problem areas.
However, the proposed solutions are application-specific (flight reservation) and
seem to be quite ad-hoc. Also the author of [23] is aware of the problem, and
argues convincingly to not be careless about consistency issues. However, with
regard to semantic integrity violations in concurrent scenarios, he only exhibits
a negative result (the CAP theorem [13]), but does not investigate inconsistency-
tolerant solutions. There do exists solutions for reconciling consistency, availabil-
ity and partition tolerance in distributed systems, e.g., [29] [24]. However, the
consistency they are concerned with is either transaction consistency (i.e., the
avoidance of dirty reads, unrepeatable reads and phantom updates) or replica-
tion consistency (i.e., that all replicas consist of identical copies, so that there
are no stale data), not the semantic consistency as expressed by business rules.

A proposal to rewrite concurrent transactions such that conflicts at com-
mit time are avoided is proposed in [16]. The authors outline how to augment
transactions with read actions for simplified constraint checking and with locks,
so that their serializable execution guarantees integrity preservation. However,
ad-hoc transactions are not considered.

For replicated database systems, the interplay of built-in integrity checking,
concurrency and replication consistency has been studied in [19]. In that paper,
solutions are provided for enabling integrity checking even in systems where
the isolation level of transactions is lowered to snapshot isolation [2]. However,
inconsistency tolerance in the sense of coping with extant integrity violations has
not been considered in [19]. Thus, for the snapshot-isolation-based replication
of databases, more research is necessary in order to clarify which consistency
guarantees can be given when inconsistency-tolerant integrity checking methods
are used in the presence of inconsistent cases of constraints.



5 Conclusion

Since the beginnings of the field of computational databases, the obligation
of maintaining the integrity of business rules in multi-user systems, and thus
the avoidance of inconsistency, has rested on the shoulders of designers, imple-
menters, administrators and end users of transaction processing. More precisely,
integrity maintenance for concurrent transactions, particularly in distributed
systems, is delegated to a multitude of individual human actors who, on one
hand, have to trust on each other’s unfailing compliance with the integrity re-
quirements, but, on the other hand, usually do not know each other.

The long-term objective toward which this paper has made some steps is that
this unreliable distribution of responsibilities for integrity preservation should
give way to declarative specifications of integrity constraints that are supported
by the DBMS, just like some fairly simple kinds of constraints are supported for
sequential transactions in non-distributed database systems.

With this goal in vision, we propose the following. For each transaction T ,
the DBMS should determine autonomously whether the state transition effected
by T preserves integrity or not, and react accordingly. In this paper, we have
removed two major obstacles that hitherto may have turned away researchers and
developers from striving for such solutions: the postulates of total and isolated
integrity preservation.

For overcoming the total integrity postulate, i.e., the traditional misbelief
that integrity can be checked efficiently for a transaction T only if the state before
T totally satisfies all constraints, we have revisited the work in [10]. There, it
has been shown that the total integrity postulate can be waived without further
ado, for most (though not all) integrity checking methods.

We have reaffirmed that the advantages of dumping the total integrity postu-
late even extend to relaxing the isolated integrity postulate. More precisely, the
use of an inconsistency-tolerant integrity checking method to enforce business
rules for concurrent sequentializable transactions guarantees that no transaction
can violate any case of any constraint that has been satisfied in the state be-
fore committing if all transactions preserve the integrity of the same cases in
isolation. Conversely stated, our result guarantees that, if any violation hap-
pens, then no transaction that has been correctly and successfully checked for
integrity preservation by an inconsistency-tolerant method can be held respon-
sible for that. The most interesting aspect of this result is that it even holds in
the presence of inconsistent data that violate some business rule.

We have seen that more research is needed for systems in which the iso-
lation level of concurrent transactions is compromised. In particular, for non-
sequentializable histories of concurrent transactions, it should be interesting to
elaborate a precise theory of different kinds of database states. Such a theory
should allow to differentiate between states that are committed locally, states
that are committed globally, states that are “seen” by a transaction and states
that are “seen” by (human or programmed) agents or clients that have issued
the transaction. It should also be able to predict which consistency guarantees
can be made by which methods for transitions between those states.



This area of research is important because most commercial database man-
agement systems compromise the isolation level of transactions in favor of a
higher transaction throughput, while leaving the problem of integrity preser-
vation to the application programmers. First steps in this direction had been
proposed in [11].

Another important, possibly even more difficult area of upcoming research is
that of providing inconsistency-tolerant transactions not only in distributed and
replicated systems with remote clients and servers, but also for databases in the
cloud, for big volumes of data and for No-SQL data stores. These are intended
to be the objectives of future projects. So far, some special-purpose solutions
exist (e.g., [30]). Their generalizability is doubtful, or at least less than obvious.
In fact, the lack of genericity may be a weakness or a strength. After all, a move
away from the universality-oriented attitude toward solutions to problems in the
field of databases, which was common in the past, seems to be the way of the
future, as argued in [25].
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