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Abstract 

This paper presents a mathematical model for the propagation of errors in body segment 

kinematics to the location of the center of rotation. Three functional calibration 

techniques, usually employed for the gleno-humeral joint, are studied: the methods 

based on the pivot of the instantaneous helical axis (PIHA) or the finite helical axis 

(PFHA), and the ―symmetrical center of rotation estimation‖ (SCoRE). A procedure for 

correcting the effect of soft tissue artifacts is also proposed, based on the equations of 

those techniques and a model of the artifact, like the one that can be obtained by double 

calibration. An experiment with a mechanical analogue was performed to validate the 

procedure and compare the performance of each technique. The raw error (between 57 

and 68 mm) was reduced by a proportion of between 1:6 and less than 1:15, depending 

on the artifact model and the mathematical method. The best corrections were obtained 

by the SCoRE method. Some recommendations about the experimental setup for 

functional calibration techniques and the choice of a mathematical method are derived 

from theoretical considerations about the formulas and the results of the experiment. 
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Notation 

T
a  Transpose of vector a (row vector) 

Xtd  Displacement of point X 

te  Direction of the finite helical axis (unit vector) 

tg  Position vector of the marker cluster center 

I  Identity matrix 

tn  Direction of angular velocity/instantaneous helical axis (unit vector) 

  .,.,. TSP  Matrix operators — see definitions in (2), (3), (9) 

vtwtt q qq  Quaternion (scalar and complex vector components) 

tR  Rotation matrix 

Cr  Position vector of the center of rotation 

t   Instant of time 

tw  Angular velocity 

Xtu  Direction of the velocity at point X (unit vector) 

Xtv  Velocity at point X 

a  Error (artifact) of the variable a 

t  Rotation angle 

tθ  Orientation vector  tte  

  Phase variable 

tΩ  Rodrigues vector   tt e2/tan   

 

1 
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1. Introduction 2 

The correct location of joints is crucial in many kinematic and kinetic analyses of 3 

human motion. This problem may be solved by predictive methods, based on the 4 

position of visible anatomical landmarks and regression equations, or by functional 5 

calibration techniques (FCT) that infer the joint position by analyzing a set of planned 6 

gestures (Della Croce et al., 2005). FCT are often preferred when the kinematic model 7 

chosen for the joint is a good approximation to reality and the range of motion is wide 8 

enough to ensure high accuracy. These two conditions are met by some human joints, 9 

most notably the hip and gleno-humeral joints, which may be modeled as ―ball-and-10 

socket‖ articulations and have the greatest ranges of motion (Cereatti et al., 2010; 11 

Karduna et al., 1996). 12 

There is, however, controversy about the optimal mathematical approach to FCT. For 13 

the gleno-humeral joint in particular (GHJ), the International Society of Biomechanics 14 

(ISB) recommended calculating the pivot point of the instantaneous helical axes (Wu et 15 

al., 2005). A variation based on finite helical axes, to avoid inaccuracies and other 16 

problems in the derivation of velocities, has also been suggested (Halvorsen et al., 1999; 17 

Monnet et al., 2007). But in their comprehensive review, Ehrig et al. (2006) 18 

recommended the SCoRE method for estimating centers of rotation (CoR), on the basis 19 

of their results with numerical simulations. After that, others have compared the 20 

accuracy and repeatability of these methods applied to the GHJ, with diverging results 21 

(Lempereur et al., 2010; Monnet et al., 2007; Nikooyan et al., 2011).  22 

This apparent inconsistency suggests that no method is generally superior, so it is 23 

necessary to take into account the nature of potential errors that may affect the 24 
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calculation of CoR, and how they are propagated by each method, before choosing a 25 

specific procedure. Many evaluations of FCT have been done with simulations that 26 

added random noise to a theoretical motion (Camomilla et al., 2006; Ehrig et al., 2006, 27 

2011), but such simulations do not provide an adequate representation of actual errors in 28 

FCTs (Sangeux et al., 2011). Such errors are chiefly due to soft tissue artifacts (STA), 29 

which are simulated in some cases as ―continuous noise‖ signals, with sinusoidal or 30 

Gaussian motions added to marker positions (Begon and Lacouture, 2005; Begon et al., 31 

2007), although STA do not generally follow those patterns (Cerveri et al., 2005). Other 32 

simulations use real motion patterns of individual markers that have been observed in 33 

previous studies (Halvorsen et al., 1999), or measured in a deformable mechanical 34 

analogue (MacWilliams, 2008). However, real STA patterns can be modeled with fewer 35 

variables and independently of specific marker configurations, taking into account that 36 

the kinematic calculations are only affected by the rigid motion component, which is 37 

usually a function of the motion cycle (De Rosario et al., 2012). 38 

The possibility of modeling STA as a function of joint kinematics (Camomilla et al., 39 

2013) provides the opportunity of attempting their correction. This idea is the basis of 40 

techniques like the double calibration, whereby the motion of markers in the bone frame 41 

is linearly interpolated between previously measured positions at the ends of the motion 42 

cycle (Cappello et al., 2005; Brochard et al., 2011). The objective of this paper is to 43 

apply that idea to FCT, disentangling the underlying mathematics and defining formulas 44 

to correct CoR errors from STA models. Those formulas, validated with real data from 45 

a mechanical analogue, are presented as the basis for informed decisions about what 46 

method may be more adequate in different situations, and strategies to reduce it. 47 
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2. Material and methods 48 

2.1. Mathematical methods 49 

Three different ways of calculating the CoR were considered. The supplementary 50 

material contains some mathematical proofs of the statements that are succinctly 51 

presented in this section. 52 

To simplify the calculations, the proximal segment was considered to be fixed, so that 53 

all the kinematic variables represent the relative motion of the distal segment, as seen in 54 

the proximal reference frame. Quaternions were preferred to other ways of representing 55 

rotations like matrices, Euler angles or orientation vectors, because they allowed more 56 

compact mathematical models of CoR errors, although it would be possible to derive 57 

such models from any other representation. For any unit quaternion, its complex vector 58 

and real scalar components, kjiq zyxvt qqq   and wtq  respectively, were defined by 59 

the rotation angle t  and the direction of the helical axis te  as follows (Chou, 1992): 60 

 


















2
cos,

2
sin t

wt
t

vt q


eq   (1) 61 

The formulas for calculating the CoR presented in the following subsections include 62 

two special matrices. The skew-symmetric matrix  aS  and the symmetric matrix  aP  63 

(where a  is any column vector), which respectively define the cross product of a  with 64 

another column vector, and the orthogonal projection on the plane normal to a , scaled 65 

by the squared norm of that vector: 66 

     babaSaS 






















 :

0

0

0

xy

xz

yz

aa

aa

aa

 (2) 67 
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 (3) 69 

2.1.1. Pivot of Instantaneous Helical Axis (PIHA) 70 

The method recommended by the ISB consists of calculating all the locations of the 71 

instantaneous helical axis during the calibration movements, and finding the nearest 72 

point to them (Woltring, 1990). This is equivalent to solving the following matrix 73 

equation: 74 

     








t

OttC

t

t ,unSrnP  (4) 75 

where Cr  is the position of the CoR, tn  is the unit vector of the angular velocity tw , 76 

and Otu  is the velocity at the origin ―normalized‖ by the amount of angular velocity, i.e: 77 

 
t

t
t

w

w
n   (5) 78 

 
t

Ot
Ot

w

v
u   (6) 79 

Since errors are very sensitive for low angular velocities, the frames where tw  is lower 80 

than 0.25 rad/s are usually discarded (Monnet et al., 2007; Stokdijk et al., 2000).  81 

2.1.2. Pivot of Finite Helical Axes (PFHA) 82 

The second method is a variant of the former, where the target point is the pivot of the 83 

finite helical axis (FHA), calculated from the displacement of  skin markers with respect 84 

to a fixed, reference position (Woltring, 1985). It is often used to calibrate the hip joint 85 
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center, but has also been applied to the GHJ (Lempereur et al., 2010). A weighting 86 

factor equal to  2/sin 2

t  may be used for an optimal compensation of small rotation 87 

errors (Ehrig et al., 2006). Using quaternions and the translation of the origin Otd , the 88 

PFHA equation with this weighting factor is similar to (4): 89 

        








t

Ot
vtvtwtC

t

vt q ,
2

d
qPqSrqP  (7) 90 

2.1.3. SCoRE 91 

The SCoRE method does not look for a fixed point, but a pair of points, one of each 92 

linked segment, that keep a minimal distance during the motion, such that the CoR is 93 

defined as the midpoint between them. The original equation defined by Ehrig et al. 94 

(2006) may be rewritten as a function of the vectors and matrices described above: 95 

 
   
   

   
    2

Ot

t tvtwt

vtvtwt

C

C

t tvtwt

vtwtvt

q

q

q

q d

TqS

qPqSr

TqS

qSqP
 










































 

qq
 (8) 96 

where C  is the vector that defines the distance between the two points, and  tqT  is 97 

defined for the quaternion tq  as: 98 

      T

vtvtwtvtt q qqIqPIT  2
q  (9)  99 

2.1.4. Error estimation 100 

If the CoR position were known beforehand, and the origin of coordinates were located 101 

at that point, Cr , Otu , and Otd  would ideally be null. Thus, in the presence of errors, 102 

assuming that they are small with respect to the main motion, equations (4), (7) and (8) 103 

may be used to calculate linear approximations of the CoR error Cr , as functions of the 104 

error in velocities and translations at the theoretical CoR: 105 
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       








t

CttC

t

t ,unSrnP   (10) 106 

        








t

Ct
vtvtwtC

t

vt q ,
2

d
qPqSrqP


  (11) 107 

 
   
   

   
    2

Ct

t tvtwt

vtvtwt

C

C

t tvtwt

vtwtvt

q

q

q

q d

TqS

qPqSr

TqS

qSqP 




 










































 

qq
 (12) 108 

Note that in these formulas all the variables, including the kinematic errors CtCt du  , , 109 

are defined in the reference frame of the fixed segment. However, STA are often 110 

represented in a frame attached to the moving segment  Ct

M

Ct

M
du  , . In such cases, 111 

those variables must be rotated before applying the equations: 112 

 ,; Ct

M

tCtCt

M

tCt d RduRu   (13) 113 

where tR  is the rotation matrix equivalent to tq . 114 

2.2. Experimental validation 115 

Given a model of the error in the kinematic variables, equations from (10) to (12) may 116 

be used to derive a model of the CoR error ( Cr ) and attempt its correction. This 117 

hypothesis was put to the  test in an experiment with a mechanical analogue to the 118 

gleno-humeral joint: a metallic rod with a spherical joint at one of its ends, covered by 119 

flexible foam that was loosely attached to the bar and stuck to the fixed base, simulating 120 

a soft mass of tissue around the rigid bone (Figure 1). A rigid plate with 20 reflective 121 

markers was attached to the free end of the bar to have a STA-free measure of its 122 

motion. A 3x4 marker grid (100×166 mm) was fixed to the foam surface about 150 mm 123 

away from the joint center. The motion of this mechanism was recorded by 4 cameras 124 

with Kinescan/IBV at 50 frames per second. 125 
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The finite and instantaneous motions of both marker clusters were analyzed by vector 126 

fields (Page et al., 2009b). That method gave the rotations of each marker cluster (i=1 127 

for the rigid bar, i=2 for the foam)  in terms of the Rodrigues vectors 128 

  ititit eΩ 2/tan  , which were transformed to quaternions: 129 

 
22

1

1
,

1 it

iwt

it

it

ivt q

ΩΩ

Ω
q







  (14) 130 

The displacements and velocities at the origin of coordinates were calculated from their 131 

homologous at the marker cluster centers (located at 0ig  in the reference position, itg  in 132 

instant t): 133 

 00 iiitiGtiOt ggRdd   (15) 134 

 ititiGtiOt wgvv   (16) 135 

The true CoR of the rigid bar was calculated by a preliminary calibration with the three 136 

methods, combining various movements (symmetric and asymmetric flexion, elevation, 137 

and half circumduction), each with three maximum angles, from 20º to 60º. The three 138 

resulting CoR were averaged, and its accuracy was assessed by the SCoRE residual 139 

(Ehrig et al., 2011). In subsequent calculations, the origin of the reference system was 140 

translated to this average, ―optimal‖ CoR. 141 

For the experimental measure of the CoR, three typical calibration motions were used, 142 

as defined in Table 1 (Leardini et al., 1999; Piazza et al., 2004). The motions of the bar 143 

and foam marker sets were recorded simultaneously. The foam markers were used to 144 

calculate the experimental CoR with STA, using the three methods. Since the origin of 145 

coordinates was located at the theoretical CoR, the resulting values were a measure of 146 

the CoR error. 147 
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The finite components of the STA in the moving frame  Ct

M

t

M
d ,q  were calculated 148 

from the relative motion between both marker sets (De Rosario et al., 2012). The 149 

corresponding field of velocities was estimated from their derivatives, considering small 150 

STA rotations  vt

M

t

M
q 1q : 151 

  vt

M

t

M
qw  2  (17) 152 

 Ct

M

t

M

Ct

M

Ct

M
dwdv     (18) 153 

The displacement of the markers in the reference frame of the bar was measured, and 154 

the rotation artifact was compared to in vivo results published by Hamming et al. 155 

(2012). 156 

Assuming a systematic relation between the STA and the motion cycle, two artifact 157 

models were defined as functions of a phase variable   , determined for each gesture as 158 

presented in Table 1. In planar motions (Flex., Elev.),   was the main coordinate of the 159 

orientation vector tθ . For Circ., which had an oscillating FHA,   was a function of the 160 

main coordinates of tθ , which kept a quasi-sinusoidal progression over the motion 161 

cycle. 162 

Using this phase variable, an optimal estimation of the STA was attempted by fitting 163 

Ct

M

t

M
d ,q  to functional averages with one functional degree of freedom, as done by 164 

De Rosario et al. (2012). That model was used to confirm the validity of the equations, 165 

although it required having detailed knowledge of the STA during the whole 166 

measurement, which is not the normal situation. A simpler and more realistic 167 

estimation, analogous to what may be obtained by double calibration, was calculated by 168 

fitting piecewise linear regression equations: 169 
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 ,10  tf  (19) 170 

for Ct

M

t

M

t df  ,q , where 10 ,   were fitted separately for each motion, and for 171 

positive and negative values of  . Only 5% of the instants around the reference and end 172 

postures (smallest and greatest absolute values of  , respectively) were used for fitting 173 

the linear model, to simulate the double calibration procedure. The normalized 174 

infinitesimal parameters  Ct

M

t

M
un  ,  were derived from their finite counterparts for 175 

both the functional average and the linear interpolation (Page et al., 2009a, 2010), and 176 

all the variables were rotated to express them in the fixed reference frame. 177 

The goodness-of-fit was measured in both cases for the translational components 178 

 CtCt ud  , , which are the ones that influenced the CoR error, using the coefficient of 179 

determination 2R , i.e. the ratio between the variance explained by the STA model and 180 

the total variance of the STA parameters. 181 

Then, both STA models were used to predict the CoR errors from equations (10) to 182 

(12), and they were subtracted from the raw results to obtain ―corrected‖ centers. For 183 

each set of results (uncorrected CoR, values corrected by the functional average model, 184 

and values corrected by the linear model), a Chi-square test was used to assess whether 185 

the differences between the three methods (PIHA, PFHA, and SCoRE) were significant. 186 

The test statistic was 187 

 
 

,2
2

CmVar
T

r
  (20) 188 

where Cmr  represented the result of each method, and   was the expected size of 189 

accidental CoR errors, estimated as half the SCoRE residual of the reference CoR. 190 
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3. Results 191 

The SCoRE residual of the  ―true‖ CoR calculated in the preliminary calibration was 192 

6.6 mm, i.e. mm3.3 . The values obtained by PIHA, PFHA and SCoRE were at 193 

4.1 mm, 3.2 mm, and 1.2 mm from the average reference point, respectively (the 194 

SCoRE center was located in between the other two). 195 

Figure 2 shows the distribution of marker displacements in the moving frame. The 196 

interquartile ranges were between 10 and 20  mm, and the maximum values were below 197 

30 mm for the top and medial rows, but there were peaks between 30 and 50 mm for the 198 

bottom row. Table 2 compares the measured rotation artifacts with the humerus rotation 199 

errors reported by Hamming et al. (2012). 200 

Figures 3 and 4 show the observed and fitted values of the STA parameters that affected 201 

the CoR error: the relative translation and the normalized velocity at the theoretical 202 

CoR, in the moving reference frame. The fitted curves explained most of the observed 203 

variance in Ctd  ( 971.02 R  for the functional average, 0.895 for the linear 204 

interpolation). The fit of Ctu  was poorer ( 633.02 R  for the functional average, 0.619 205 

for the linear interpolation). 206 

Table 3 shows the experimental CoR errors for each method, before correcting the STA 207 

effects and after correcting them by functional average and linear interpolation. It may 208 

be seen that the uncorrected CoR had a large error (between 57.2 and 68.3 mm) in the 209 

Z-coordinate (the medio-lateral axis in the shoulder analogue), which was drastically 210 

reduced to less than 11 mm with both corrections. 211 

The highest and lowest errors varied across methods for each set of calculations, 212 

although PIHA gave the highest in two cases (uncorrected and linear interpolation), and 213 
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SCoRE the lowest in both corrections. To evaluate these differences in statistical terms, 214 

Table 3 also presents the T-statistics defined in (20). Their comparison with a 2

2  215 

distribution shows that the resulting error was not significantly different between the 216 

three methods  05.0p , specially after the corrections. 217 

4. Discussion 218 

The effect of marker errors in the calculation of rotation centers has already been 219 

studied analytically for planar motion (Bryant et al., 1984; Crisco III et al., 1994), and 220 

also for 3-D instantaneous kinematics (Page et al., 2007). This study has extended that 221 

approach to the analysis of the 3-D CoR, giving explicit error formulas for three FCT 222 

methods that are usually applied to the GHJ (PIHA, PFHA, and SCoRE), and proposing 223 

a procedure to correct STA effects that can be summarized in three steps: 224 

1. Measure the motion and obtain a first estimation of the CoR by the normal 225 

procedure, with equations (4), (7), or (8) — or equivalent formulas with the 226 

preferred rotation formalism. 227 

2. Define a model the translational component of the STA at the estimated CoR 228 

 CtCt ud  , . 229 

3. Repeat step #1, replacing Otu  or Otd  by Ctu  or Ctd  in the corresponding 230 

formula, and subtract the result from the first estimation of the CoR. 231 

The properties of the error model and the correction method were illustrated by an 232 

experiment with a mechanical analogue, a frequent resource for experimental 233 

validations of mathematical procedures (Camomilla et al., 2006; MacWilliams, 2008; 234 
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Piazza et al., 2001), since they facilitate testing multiple configurations and movements, 235 

with rigorous control of the errors. 236 

An important point is that the only element of STA that matters in FCT is the 237 

translational component of the artifact (displacement or velocity, depending on the 238 

algorithm) at the CoR. However, rotation or angular velocity errors also create 239 

translational errors proportional to the distance between the CoR and the marker cluster 240 

center (Crisco III et al., 1994; Woltring et al., 1985, 1990). Thus, the recommendation 241 

of placing the markers away from the joint to increase the signal-to-noise ratio 242 

(Kratzenstein et al., 2012) should be approached cautiously, to avoid large marker 243 

eccentricities. Related to this, it is notable that the cluster of foam markers was mainly 244 

separated from the CoR in the direction of the Z-axis, and the CoR error in that axis 245 

(before correcting it) was about 10 times the error in the other directions. 246 

Regarding the different calculation techniques, the most important formal distinction is 247 

between the velocity-based method (PIHA) and those based on positions (PFHA, 248 

SCoRE). The latter may be preferred for noisy data, where velocities cannot be derived 249 

accurately. Likewise, velocity errors may also increase in calibrations that include 250 

quick, ―explosive‖ gestures (Begon et al., 2007). On the other hand, if the STA is a 251 

displacement of the markers that remains approximately constant during the central part 252 

of the motion cycle, and its main increment occurs at the ends of the cycle, PIHA may 253 

be less sensitive to such errors than position-based methods. In the reported experiment, 254 

uncorrected errors were higher for PIHA, and the estimations of velocity errors were 255 

worse fitted to the actual STA than the finite translation error. As could be expected 256 

from that, the correction of the CoR by the PIHA method was outperformed by at least 257 

one of the other methods, although the differences were not significant. 258 
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The difference between PFHA and SCoRE is more subtle: both are optimizations of 259 

similar objective functions (a point of minimum relative displacement, and a couple of 260 

points with minimum separation during the measurement, respectively). SCoRE is 261 

advantageous when the error comes from both linked segments, since it does not 262 

introduce a bias depending on what segment is considered ―fixed‖ in the analysis. In the 263 

reported experiment, one of the segments was actually fixed, so that advantage could 264 

not be noticed. Accordingly, although SCoRE performed better than PFHA for both 265 

error corrections, the differences between PFHA and SCoRE were not significant, as 266 

also happened in previous studies with simulated and real data (Ehrig et al., 2006; 267 

Lempereur et al., 2010). In fact, the comparison of equations (7) and (8) shows that 268 

PFHA and SCoRE are mathematically equivalent if the motion is perfectly symmetrical 269 

with respect to the reference position (  vtt qS  would add up to zero in that case). 270 

Finally, it has been shown how the correction from estimated STA patterns may 271 

drastically reduce the error of the CoR. In the example experiment, the proportion 272 

between corrected and uncorrected errors ranged from 1:6 to 1:15. Those ratios were 273 

better than the ones obtained by improving the marker cluster design (Kratzenstein et 274 

al., 2012), solidification procedures (Begon and Lacouture, 2005), or different variants 275 

of the Optimal Common Shape Technique (Heller et al., 2011). 276 

Nevertheless, such quantitative results must be treated with caution, since they come 277 

from an artificial experimental setup, which may not represent the actual kinematic 278 

characteristics of human motion and artifacts in real conditions. In this case, the relative 279 

motion of the markers was similar to typical values of human STA in the top and central 280 

rows, and within reported ranges but larger than usual in the bottom row (Leardini et al., 281 

2005; Stagni et al., 2005). The average STA rotations were also normal, although the 282 
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peak values of the elevation angle and plane were higher than in vivo results. Likewise, 283 

the uncorrected CoR error (over 57 mm) was greater than the errors reported for human 284 

joints using the same methods, which are normally lower than 40 mm (Cereatti et al., 285 

2009). The relative performance of the error correction method might be overestimated 286 

due to such great initial errors, but in any case, the error of the corrected CoR (between 287 

3.6 and 11 mm) was lower than the 15-to-20 mm error reported for in vivo measures of 288 

the GHJ (Lempereur et al., 2010; Nikooyan et al., 2011), in spite of the large initial 289 

error. 290 

An additional advantage of this method for estimating and correcting CoR errors is that 291 

it can be implemented with the same computer programs that are used for calculating its 292 

position by standard procedures. The only challenging part is obtaining a model of the 293 

STA. But it has been shown that even simple estimations like a piecewise linear 294 

interpolation achieved excellent results. Thus, this method can be applied to obtain 295 

improved estimations of the CoR of real joints by means of the normal FCT procedures, 296 

plus a double calibration or other linear approximations of STA (Camomilla et al., 297 

2013). 298 
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Table 1. Description of the three motions used for the FCT and the variable that 

represented the cycle progression. 

Motion Description Phase variable    

Flex. Five asymmetric flexion-extension cycles 

around the Z-axis, from -15º to 45º 

Z-coordinate of tθ  ( z ) 

Elev. Five elevation cycles around the X-axis, from 

0º to 40º 

X-coordinate of tθ  ( x ) 

Circ. Five half circumduction cycles around the Y-

axis, at 25º of elevation 

Angle of z  wrt x  
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Table 2. Errors in Euler angles (XZ’Y’’ sequence) of the measured prototype, compared 

with in vivo measures of the humerus. 

  Elevation angle (X) Elevation plane (Z’) Axial rotation (Y’’) 

Mean In vivo
1 

2.3 1.2 5.3 

 Prototype 1.2 2.4 2.3 

     

Peak In vivo
1 

4.0 2.1 6.3 

 Prototype 7.1 4.4 5.4 

1
 For various flexion and abduction movements (Hamming et al., 2012) 
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Table 3. CoR errors: uncorrected, and corrected by subtraction of the estimated STA 

effects (functional average and linear interpolation estimates). The T-statistic and 

p-values refer to each group of errors. 

 

X (mm) Y (mm) Z (mm) 

norm 

(mm) T p 

Uncorrected       

PIHA -5.0 -6.3 67.8 68.3 5.752 0.056 

PFHA -4.3 1.2 57.0 57.2   

SCoRE -5.3 -4.6 62.4 62.8   

       

Functional 

average 

      

PIHA -2.7 0.6 5.8 6.4 1.099 0.577 

PFHA -2.7 7.9 -0.5 8.4   

SCoRE -2.6 0.9 2.3 3.6   

       

       

Linear 

interpolation 

      

PIHA -5.1 -1.1 10.2 11.0 0.869 0.647 

PFHA -4.8 6.5 1.9 8.5   

SCoRE -4.1 -1.2 4.6 6.7   
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Figure 1. Experiment setup 
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Figure 2. Displacements of the foam markers in the bar-embedded frame (sorted by 

rows of the marker grid). 
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Figure 3. Observed and fitted translations associated with the STA at the CoR, seen in 

the reference frame of the moving segment. Solid lines: functional average; dashed 

lines: linear interpolation. 
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Figure 4. Observed and fitted normalized velocities of the STA at the CoR, seen in the 

reference frame of the moving segment. Solid lines: functional average; dashed lines: 

linear interpolation. 
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