

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

http://dl.acm.org/citation.cfm?id=2492312.2492322&coll=DL&dl=GUIDE

http://hdl.handle.net/10251/38978

Association for Computing Machinery (ACM)

Sáez Barona, S.; Crespo, A. (2013). Deferred setting of scheduling attributes in Ada 2012.
Ada Letters. 33(1):93-100. doi:10.1145/2492312.2492322.

Deferred Setting of Scheduling Attributes in Ada 2012 ∗

Sergio Sáez, Alfons Crespo
Grupo de Informática Industrial y Sistemas de Tiempo Real

Universidad Politécnica de Valencia
{ssaez,acrespo}@disca.upv.es

Abstract

Some scheduling techniques, specially in multiprocessor systems, require changing several task attributes atomically to
avoid scheduling errors and artifacts. This work proposes to incorporate the deferred attribute setting mechanism to cope
with this problem in the next Ada 2012.

1 Introduction

A real-time system is usually composed by a set of concurrent task that collaborate to achieve a common goal. A real-time
task has to produce its result within a temporal interval in order to be a valid result. To enforce this behaviour, the real-time
system designer assigns a given priority to each system task. These priorities are used by the underlying real-time operating
system (RTOS) to ensure a timeliness execution of the whole system.

In uniprocessor real-time systems using fixed priorities, the priority of a task tends to remain fixed during its entire lifes-
pan1. However, in uniprocessor systems using dynamic priorities and in several scheduling approaches used in multiprocessor
systems, the task has to update its scheduling attributes during the execution of the task’s code. When several attributes have
to be changed simultaneously some scheduling artifacts can arise if they are not updated atomically, giving rise to erroneous
schedules.

In order to correctly implement these real-time systems with dynamic attribute setting, the underlying run-time system
has to offer some support for atomically changing multiple attributes. This work proposes a flexible and scalable approach to
incorporate this support to the Ada 2012 Run-Time System (RTS).

The rest of the paper is organised as follows: next section presents dynamic attribute changing in uniprocessor systems.
Section 3 deals with multiprocessor scheduling and simultaneous setting of task attributes. Then, section 4 presents the
proposed approach to solve the presented issues. Section 5 proposes to add CPU affinities to Timing Events with deferred
setting support. Finally, section 6 shows some conclusions.

2 Scheduling Attributes in Uniprocessor Systems

In Ada 2005 the priority of a task is represented by the task attribute Priority and, when the EDF Across Priorities policy
is specified, by an absolute deadline. The Ada Run-Time System uses these scheduling attributes to choose which task or
tasks have to be executed at a given instant. The initial value of these scheduling attributes can be specified within the task
definition by means of the following pragmas:

pragma Priority (expression); −− See RM D.1
pragma Relative Deadline (relative deadline expression); −− See RM D.2.6

∗This work was partially supported by the Vicerectorado de Investigación of the Universidad Politécnica de Valencia under grant PAID-06-10-2397 and
European Project OVERSEE (ICT-2009 248333)

1Despite of priority changes due to priority inheritance protocols

1

Although on a uniprocessor system the priority of a task is not usually changed by the task itself, a periodic real-time task
scheduled under the EDF policy has to change its absolute deadline on each activation. Ada 2005 offers two procedures to
change the priority and the absolute deadline of a task that are shown bellow:

package Ada.Dynamic Priorities is
...

procedure Set Priority (Priority : in System.Any Priority ;
T : in Ada. Task Identification . Task Id := Ada. Task Identification . Current Task);

end Ada. Dynamic Priorities ;

package Ada.Dispatching.EDF is
...

procedure Set Deadline (D : in Deadline;
T : in Ada. Task Identification . Task Id := Ada. Task Identification . Current Task);

end Ada.Dispatching.EDF;

However, as both procedures are dispatching points, when a task calls the Set Deadline procedure to update its absolute
deadline before getting suspended until its next release, it could be preempted by a task with a closer deadline, causing the
scheduling artifacts shown in the Figure 1. It can be observed that when task T0 changes its deadline to the next absolute
deadline, the task T1 becomes more urgent and does not allow task T0 to execute its delay until statement until the task T1
executes its own Set Deadline procedure.

Task release

Task deadline

TaskId / Task Prio

Se
t_
De
ad
li
ne

de
la
y
un
ti
l

T0

T1

delay until

Set_Deadline

Figure 1. Scheduling artifact during Set Deadline + delay until code sequence.

Although this anomalous behaviour does not cause a great damage in the scenario shown by Figure 1 (the only effect is that
task T0 executes its delay until after its deadline), Ada 2005 provides an additional procedure Delay Until And Set Deadline
to avoid these artifacts. Its behaviour is defined as follows:

The procedure Delay Until And Set Deadline delays the calling task until time Delay Until Time. When the task
becomes runnable again it will have deadline Delay Until Time + Deadline Offset . (RM D.2.6 15/2)

Using this procedure, the main loop of a periodic task scheduled under EDF policy will be as follows:

loop
−− Task code
−− Preparation code with scheduling artifacts
Next Time := Next Time + Period ;
Set Deadline (Next Time + Relative Deadline);
delay until Next Time;

end loop;

⇒

loop
−− Task code
...
−− It performs atomically Set Deadline + delay until
Next Time := Next Time + Period ;
Delay Until And Set Deadline(Next Time, Relative Deadline);

end loop;

2

3 Scheduling Attributes in Multiprocessor Systems

Real-Time and embedded systems are becoming more complex, and multiprocessor/multicore systems are becoming
a common execution platform in these areas. In order to achieve a predictable schedule of a set of real-time tasks in a
multiprocessor platform several approaches can be applied. Based on the capability of a task to migrate from one processor
to another, the scheduling approach can be:

Global scheduling: All tasks can be executed on any processor and after a preemption the current job can be resumed in a
different processor.

If the scheduling decisions are performed on-line, in a multiprocessor platform with M CPUs, the M active jobs with
the highest priorities are the ones selected for execution. If the scheduling decisions are computed off-line, releases
times, preemption instants and processors where tasks have to be executed are stored in a static scheduling plan.

Job partitioning: Each job activation of a given task can be executed on a different processor, but a given job cannot migrate
during its execution.

The processor where each job is executed can be decided by an on-line global dispatcher upon the job activation, or it
can be determined off-line by a scheduling analysis tool and stored in a processor plan for each task. The job execution
order on each processor is determined on-line by its own scheduler using the scheduling attributes of each job.

Task partitioning: All job activations of a given task have to be executed in the same processor. No job migration is allowed.

The processor where a task is executed is part of the task’s scheduling attributes. As in the previous approach, the order
in which each job is executed on each processor is determined on-line by the scheduler of that processor.

In addition to these basic approaches, new techniques that mix task partitioning with task that migrate from one processor
to another at specified times are already available in the literature. In this approach, known as task splitting, some works
suggest to perform the processor migration of the split task at a given time after each job release [1] or when the job has
performed a certain amount of execution [2]. It is worth noting that this approach normally requires the information about
the processor migration instant to be somehow coded into the task behaviour.

To apply some of these scheduling approaches some specific support at kernel and user-space level is needed, e.g. system
and CPU clock timers and dynamic scheduling attributes.

The forthcoming release of Ada 2012 is expected to offer explicit support for multiprocessor platforms through a compre-
hensive set of programming mechanisms shown in Listing 1 [3, 4]. Although these mechanisms have been shown adequate to
apply task and job partitioning, and task splitting techniques [5, 6], they will suffer the same kind of artifact shown in Figure
1. Next subsection shows why the current proposal found in [3, 4] is still inadequate for real-time multiprocessor systems.

Listing 1. Ada 2012 facilities to set the target CPU
package System.Multiprocessors .Dispatching Domains is

...
type Dispatching Domain (<>) is limited private ;
...

procedure Assign Task(Domain : in out Dispatching Domain;
CPU : in CPU Range := Not A Specific CPU;
T : in Task Id := Current Task);

procedure Set CPU(CPU : in CPU Range; T : in Task Id := Current Task);
function Get CPU(T : in Task Id := Current Task) return CPU Range;
procedure Delay Until And Set CPU(Delay Until Time : in Ada.Real Time.Time;

CPU : in CPU Range);
end System. Multiprocessors .Dispatching Domains;

3.1 Multiprocessor scheduling requirements

Some multiprocessor scheduling approaches require to specify the target CPU for each real-time task. Additionally, in
job partitioning and task splitting techniques the target CPU changes during the task lifespan. As each processor can have a

3

different set of tasks or to use an EDF scheduling policy, moving a task from one CPU to another could also require to change
its priority or its deadline. If all these task attributes are not changed atomically, some scheduling artifacts could arise giving
rise to incorrect schedules.

Figures 2 and 3 shown how a task can miss its deadline trying to change simultaneously its priority and its target CPU.
Both scenarios try to change task T0 from one CPU to another, but using a different priority into the new CPU. In Figure 2
the task T0 losses its deadline while executing the Set Priority + Set CPU sequence. After T0 changes its priority, the task
T1 has a greater priority and avoids the task T0 to complete the Set CPU statement until it is too late. Figure 3 shows a
different scenario where the incorrect sequence is Set CPU + Set Priority . The only solution to these situations is to provide a
mechanism to simultaneously change the priority and the target CPU. Similar requirements are needed when using dynamic
priorities.

CPU 0

CPU 1

Expected execution

Se
t_
CP
U

Se
t_
Pr
io
ri
ty

CPU 1

CPU 0

Task release

Task deadline

TaskId / Task Prio

Real execution

D0 D2

T0/P1

T0/P3 T1/P2

T2/P0

D1

D0

T2/P0 T0/P1

T0/P1T0/P3 T1/P2

D2

D1

Figure 2. Expected and real execution for Set Priority + Set CPU code sequence.

Task release

Task deadline

TaskId / Task Prio

Se
t_
CP
U

Se
t_
Pr
io
ri
ty

CPU 1

CPU 0CPU 0

CPU 1

Real executionExpected execution

D0

T0/P3

T0/P1 T1/P0

D2

D1

T0/P1

T2/P2

D0 D2

T0/P3

T0/P1 T1/P0

T2/P2

D1

Figure 3. Expected and real execution for Set CPU + Set Priority code sequence.

Although the scenarios shown in Figures 2 and 3 can be solved by encapsulating both Set CPU and Set Priority inside
a protected operation, this cannot be performed when the change of priority/deadline and target CPU is combined with a
delay until statement. As shown in the following examples, no correct sequence of code is valid using the current multipro-
cessor support proposal.

loop
−− Task code
...

Next Time := Next Time + Period ;
Set Deadline (Next Time + Relative Deadline);
Delay Until And Set CPU(Next Time, Next CPU);
−− Similar to scenario with Set Priority + Set CPU

end loop;

loop
−− Task code
...

Next Time := Next Time + Period ;
Set CPU(Next CPU);
Delay Until And Set Deadline(Next Time, Relative Deadline);
−− Similar to scenario with Set CPU + Set Priority

end loop;

These sequences of code are common in job partitioning schemes, in order to set the CPU where the next job is going to

4

be executed before the current job finishes, and in task splitting techniques, in order to reset the original CPU at the end of
the job after one or more splits.

Next section presents a proposal to cope with these kind of scenarios using deferred attributes. This proposal was already
briefly introduced in [6].

4 Deferred Attribute Setting

The Ada 2005 Reference Manual specifies the behaviour for a task that dynamically changes its priority or its deadline:

On a system with a single processor, the setting of the base priority of a task T to the new value occurs immedi-
ately at the first point when T is outside the execution of a protected action. (RM D.5.1 10/2)

On a multiprocessor, the implementation shall document any conditions that cause the completion of the setting
of the priority of a task to be delayed later than what is specified for a single processor. (RM D.5.1 12.1/2)

On a system with a single processor, the setting of the deadline of a task to the new value occurs immediately
at the first point that is outside the execution of a protected action. If the task is currently on a ready queue it is
removed and re-entered on to the ready queue determined by the rules defined below. (RM 2.6 16/2)

However, although the current Ada Issue AI05-167/11 [4] does not specify anything about protected objects, it seems
reasonable to apply similar restrictions to the setting of the CPU. The text could be as follows:

On a system with multiple processors, the setting of the target CPU of a task T to the new value occurs immedi-
ately at the first point when T is outside the execution of a protected action.

In order to follow the above mentioned restrictions, if a task invokes a procedure to change its attributes within a protected
action, the Ada RTS has to defer the priority/deadline/CPU change until the task is outside the execution of the protected
action. This deferred setting of task attributes can be used to solve the scheduling artifacts shown in the previous section.

This work proposes to add explicit support to perform a deferred setting of task attributes adding the following procedures:

package Ada.Dynamic Priorities is
...
−− Programs a deferred setting of the base priority
procedure Set Next Priority (Priority : in System.Any Priority ; T : in
Task Id := Current Task);
...

end Ada. Dynamic Priorities ;

package Ada.Dispatching.EDF is
...
−− Programs a deferred setting of the absolute deadline
procedure Set Next Deadline (D : in Deadline; T : in Task Id := Current Task);
...

end Ada.Dispatching.EDF;

package System.Multiprocessors .Dispatching Domains is
...
−− Programs a deferred setting of the target CPU
procedure Set Next CPU(CPU : in CPU Range; T : in Task Id := Current Task);
...

end System. Multiprocessors .Dispatching Domains;

The semantic of these procedures can sketched as:

The deferred setting of a task attribute will delay the effective attribute setting until the next dispatching point.
If the task T is inside the execution of a protected action, the setting of the new value occurs immediately at the
first point when T is outside the execution of the protected action.

5

With the introduction of these new procedures, the erroneous code presented in section 3.1 can be rewritten as follows:

loop
−− Task code
...

Next Time := Next Time + Period ;
Set Deadline (Next Time + Relative Deadline);
Delay Until And Set CPU(Next Time, Next CPU);

end loop;

loop
−− Task code
...

Next Time := Next Time + Period ;
Set CPU(Next CPU);
Delay Until And Set Deadline(Next Time,

Relative Deadline);
end loop;

⇒

loop
−− Task code
...

Next Time := Next Time + Period ;
Set Next Deadline (Next Time + Relative Deadline);
Set Next CPU(Next CPU)
delay until Next Time;

end loop;

As delay until statement is a dispatching point, the deferred attributes set by Set Next Deadline and Set Next CPU take
effect at that point. Also the code described in the scenarios of Figures 2 and 3 can be easily solved with the new procedures,
as shown in the right side of the next listings.

loop
−− Task code
...

Set Priority (Next Priority);
Set CPU(Next CPU);
...

end loop;

loop
−− Task code
...

Set CPU(Next CPU);
Set Priority (Next Priority);
...

end loop;

⇒

loop
−− Task code
...

Set Next Priority (Next Priority);
Set CPU(Next CPU);
...

end loop;

loop
−− Task code
...

Set Next CPU(Next CPU);
Set Priority (Next Priority);
...

end loop;

The proposed procedures give rise to a more orthogonal and cleaner task code. It can also be extended to cover other
existing task attributes or new proposed ones, if required. On the other side, the procedure Delay Until And Set CPU in
package System. Multiprocessors .Dispatching Domains will become unnecessary and the procedure Delay Until And Set Deadline
deprecated.

5 CPU affinity of Timing Events

Another feature of Ada 2005 highly required to support some of the multiprocessor scheduling approaches are the
Timing Events. They allow a task to execute protected actions at specific time instants, e,g. to program future changes to
its task attributes, required to perform a task split.

However, when Timing Events are used to wake up a real-time task, it should be taken into account that the processor where
the task has to be executed can be different from the one used to program the TimingEvent. This scenario can introduce a
unnecessary scheduling overhead: a TimingEvent produces a clock interrupt in a processor P1, this processor executes the
TimingEvent handler and wakes up a task that has to be executed in a different processor P2; after the handler execution,
the processor P1 has to send an Inter-Processor Interrupt (IPI) to force the scheduler execution in processor P2. It will be

6

clearly more efficient, if the TimingEvent handler can be programmed to be executed directly in processor P2. However,
implementation details have to be carefully studied in the case of using multiple timer queues. In this case, if the timer queue
of the target processor P2 is empty, the above scenario may require also an IPI to program the clock interrupt in P2.

This work proposes a modification of the package Ada.Real Time.Timing Events to add the following procedures:

package Ada.Real Time.Timing Events is
type Timing Event is tagged limited private ;
...
−− Set the CPU where the current handler has to be executed
procedure Set CPU(Event : in out Timing Event;

CPU : in CPU Range);
−− Set the CPU where the next handler established with Set Handler has to be executed
procedure Set Next CPU(Event : in out Timing Event;

CPU : in CPU Range);
...

end Ada.Real Time.Timing Events;

The procedure Set CPU allows the programmer to specify where the handler that is already set has to be executed. It
allows changing the target CPU of a programmed TimingEvent if the implicated task migrates from one CPU to another 2.
The procedure Set Next CPU establishes the target CPU to be used for the next handler when the procedure Set Handler was
used. If no handler is set, both procedures behave identical.

Depending on the available clock interrupt hardware, the Ada RTS can implement one or multiple queues to store the
active Timing Events. In the case of a global Timing Events queue, the CPU information can be used to configure the interrupt
controller and set the clock interrupt affinity to the target CPU of the closer event. In the case of a per-CPU clock interrupt
hardware, multiple Timing Events queues can be used. This could require to move Timing Events from one to another when the
Set CPU is used. In both cases, the invocation of the procedure Set CPU can require a reconfiguration of the clock interrupt
hardware, while the invocation of the Set Next CPU is only used to configure the next event or to store it in a processor specific
events queue.

6 Conclusions

A small set of modifications for the next Ada 2012 have been proposed to allow simultaneous setting of multiple task
attributes. This behaviour is required to adequately support some of the multiprocessor scheduling approaches. The proposed
solution is based on the introduction of deferred attributes.

The setting of deferred attributes allows the application to specify a set changes of task attributes that a task will apply
in the next dispatching point. This gives rise to a simpler and scalable interface for simultaneously changing multiple task
attributes. A similar interface has been proposed for the Timing Events mechanism, allowing the Ada RTS to implement it
efficiently in multiprocessor platforms.

References

[1] K. Lakshmanan, R. Rajkumar, and J. P. Lehoczky, “Partitioned fixed-priority preemptive scheduling for multi-core pro-
cessors,” in 21st Euromicro Conference on Real-Time Systems, ECRTS 2009, pp. 239–248, IEEE Computer Society,
2009.

[2] S. Kato, N. Yamasaki, and Y. Ishikawa, “Semi-partitioned scheduling of sporadic task systems on multiprocessors,”
in 21st Euromicro Conference on Real-Time Systems, ECRTS 2009, (Los Alamitos, CA, USA), pp. 249–258, IEEE
Computer Society, 2009.

[3] A. Burns and A. J. Wellings, “Dispatching domains for multiprocessor platforms and their representation in Ada,” in
15th International Conference on Reliable Software Technologies - Ada-Europe, pp. 41–53, 2010.

2This action can produce a considerable overhead and its use must be carefully studied

7

[4] Ada 2005 Issues. AI05-0167-1/11, Managing affinities for programs executing on multiprocessors, 2011. Version: 1.17.
Status: Amendment 2012.

[5] B. Andersson and L. M. Pinho, “Implementing multicore real-time scheduling algorithms based on task splitting using
Ada 2012,” in 15th International Conference on Reliable Software Technologies - Ada-Europe, pp. 54–67, 2010.

[6] S. Sáez and A. Crespo, “Preliminary multiprocessor support of Ada 2012 in GNU/Linux systems,” in 15th International
Conference on Reliable Software Technologies - Ada-Europe, pp. 68–82, Springer, 2010.

8

