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Abstract ROC curves and cost curves are two popular ways of visualising classifier
performance, finding appropriate thresholds according to the operating condition, and
deriving useful aggregated measures such as the area under the ROC curve (AUC) or
the area under the optimal cost curve. In this paper we present new findings and con-
nections between ROC space and cost space. In particular, we show that ROC curves
can be transferred to cost space by means of a very natural threshold choice method,
which sets the decision threshold such that the proportion of positive predictions
equals the operating condition. We call these new curves rate-driven curves, and we
demonstrate that the expected loss as measured by the area under these curves is lin-
early related to AUC. We show that the rate-driven curves are the genuine equivalent
of ROC curves in cost space, establishing a point-point rather than a point-line cor-
respondence. Furthermore, a decomposition of the rate-driven curves is introduced
which separates the loss due to the threshold choice method from the ranking loss
(Kendall 7 distance). We also derive the corresponding curve to the ROC convex hull
in cost space; this curve is different from the lower envelope of the cost lines, as the
latter assumes only optimal thresholds are chosen.
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1 Introduction and motivation

ROC curves [15 6] constitute a popular and highly useful graphical representation
of classifier performance. A point on a ROC curve visualises the true and false posi-
tive rates achieved by a particular decision threshold. A monotonic curve is obtained
by sweeping through all possible decision thresholds, and the area under the curve
(AUC) corresponds to the proportion of correctly ranked pairs of positive and nega-
tive examples. ROC curves can be used to identify optimal thresholds that yield points
on a ROC curve’s convex hull, as well as regions where one classifier dominates an-
other. Operating conditions (class and misclassification cost distributions) manifest
themselves as straight isometrics in ROC space.

Classification loss at a particular decision threshold is not visualised directly in
ROC curves, but has to be inferred from the true and false positive rate and operating
condition. Cost curves were proposed by Drummond and Holte [3} 4] as an alterna-
tive to ROC curves that explicitly visualise loss on the y-axis against the operating
condition on the x-axis. For example, if we fix the decision threshold and the class
distribution and vary the relative misclassification cost ¢ of one of the classes, then
loss will vary linearly with ¢ and we obtain a cost line. Since a fixed threshold cor-
responds to a point in ROC space, this suggests a point-line duality between the two
representations as noted by Drummond and Holte [4] (see Figure [I)). Further corre-
spondences include that between the ROC convex hull and the lower envelope of a
classifier’s cost lines, which both arise from optimal decision thresholds. Thus, cost
curves allow us to not only identify regions of dominance, but quantify exactly the
advantage in classification loss of the dominating classifier over the dominated one
at a particular operating condition.

However, the correspondence between ROC space and cost space is incomplete
to date. In particular, Drummond and Holte in [4]] did not propose a cost space equiv-
alent of a ROC curve. Furthermore, while linear interpolation between points in ROC
space has a clear interpretation as a random choice between two decision thresholds,
no similar construct has been proposed for cost space. In this paper we solve these and
related open problems by deriving the exact equivalent of a ROC curve in cost space.
The missing link here is a particular way of translating operating conditions into deci-
sion thresholds that is well-suited for models that are good rankers but do not neces-
sarily produce well-calibrated scores. This rate-driven threshold choice method sets
the decision threshold such that the proportion or rate of positive predictions equals
the operating condition. This leads to a piecewise cost curve where each segment in a
ROC curve corresponds to a quadratic cost curve segment. We show how this curve is
the real equivalent in cost space to ROC curves. The area under this rate-driven curve
can be easily shown to be linearly related to AUC. A decomposition of the rate-driven
curve is also derived, leading to a new curve, which we call Kendall curve, because it
depicts ranking performance (Kendall 7 distance to the perfect ranker) in cost space.
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Fig. 1 Point-to-line correspondence between ROC curves and (optimal) cost curves (some of the terms
used in this figure are defined in Sections 2] and [3). Left: A ROC curve corresponding to the ranking
0010001010. The diagonal lines are rate isometrics (lines connecting points with the same predicted
positive rate r; these have slope —m; /7y and intercept r/my, where my and 7; are the class priors), one for
each possible split point in the ranking. The isometric (bold line) going through the top left-hand corner has
rate 7p. Other rates can be achieved in expectation by means of a random choice between the two bordering
split points. Right: the corresponding optimal cost curve (shown for cost proportions instead of skews).
Each of the 11 points on the ROC curve corresponds to one of the 11 cost lines (dashed). Furthermore,
points on the ROC convex hull correspond to segments in the optimal cost curve. In particular, ROC point
(0/3, 0/7) corresponds to the top cost line emanating from the origin (which only touches the optimal cost
curve in the origin), ROC point (0/3, 2/7) corresponds to the ascending diagonal in cost space (which
intersects with the first segment of the optimal cost curve), ROC point (1/3, 5/7) corresponds to the bottom
cost line emanating from (0, 0.2) (which contributes the second segment of the optimal cost curve), point
(2/3, 6/7) —not strictly part of the convex hull since it connects two segments with the same slope—
corresponds to the bottom cost line emanating from (0, 0.4) (which touches the optimal cost curve at
cost = 0.5), and ROC point (3/3, 7/7) corresponds to the bottom cost line emanating from (0, 0.6) (which
establishes the final segment of the cost curve). The vertical line in bold represents the rate my = 0.7.

Thus, rather than an incomplete point-line duality as suggested by Drummond and
Holte in [4], we show a complete point-to-point correspondence between ROC space
and cost space for classifiers employing the rate-driven threshold choice method. Un-
der this interpretation ROC curves and cost curves are truly two sides of the same
coin.

The paper is organised as follows. Section [2)introduces basic notation and defini-
tions. Section3lintroduces a new threshold choice method based on rates, which leads
to the rate-driven curves, showing classification performance, and its area is shown to
be a linear function of AUC, as shown in Sectiond] Section [5]investigates how these
curves can be decomposed, introducing a new curve of ranking performance called
Kendall curve. Section [f] illustrates the point-point correspondence between ROC
space and cost space. This applies also to the convex hull, whose equivalent curve in
cost space, the convex skull, is discovered, and its relation with the lower envelope of
the cost lines is analysed in Section [7] Section [§]shows how rate-driven cost curves
and Kendall curves can be used in practice, especially focussing on screening appli-
cations and other classification settings where partial areas might be useful. Section
[)closes the paper with a discussion of the results.
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2 Notation and basic definitions

In this section we introduce some basic notation and the notions of ROC curves, cost
curves and the way expected loss is aggregated using a threshold choice method.

Examples or instances are taken from an instance space. The instance space is
denoted X and the output space Y. Elements in X and Y will be referred to as x and y
respectively. For this paper we will assume binary classifiers, i.e., ¥ = {0, 1}, where
0 is the positive class and 1 is the negative class. A crisp or categorical classifier is a
function that maps examples to classes. A model or scoring classifier is a function m :
X — R that maps examples to scores on an unspecified scale, such that a higher score
expresses a stronger belief that the example is negativeﬂln order to make predictions
in the ¥ domain, a model can be converted to a crisp classifier by fixing a decision
threshold ¢ on the scores. Given a predicted score s = m(x), the instance x is classified
in class 1 if s > ¢, and in class O otherwise.

For a given, unspecified model and population from which data are drawn, we de-
note the score density for class k by f; and the cumulative distribution function by F;.
Thus, Fy(t) = [*. fo(s)ds = P(s < t|0) is the proportion of class 0 points correctly
classified if the decision threshold is 7, which is the sensitivity or true positive rate
at ¢. Similarly, F(t) = [*_, fi(s)ds = P(s < t|1) is the proportion of class 1 points
incorrectly classified as 0 or the false positive rate at threshold ¢; 1 — Fj (¢) is the true
negative rate or specificity. Given a data set D C (X,Y), we denote by D, the subset
of examples in class k € {0, 1}, and set m; = |Dy|/|D|. We will use the term class pro-
portion for my (other terms such as ‘class ratio’ or ‘class prior’ have been used in the
literature). Given a model and a threshold 7, we denote by R(¢) = myFo(r) + m Fi (¢)
the predicted positive rate, i.e., the proportion of examples that will be predicted pos-
itive if the decision threshold is set at 7.

2.1 Operating conditions and overall loss

When a classification model is applied, the conditions or context might be different
to those used during its training. In fact, a model can be used in several contexts, with
different results. A context can imply different class proportions, different cost over
examples (either for the attributes, for the class or any other kind of cost), or some
other details about the effects that the application of a model might entail and the
severity of its errors.

One general approach to cost-sensitive learning assumes that the cost does not
depend on the example but only on its class. In this way, misclassification costs are
usually simplified by means of cost matrices, where we can express that some mis-
classification costs are higher than others [S]]. Typically, the costs of correct classifi-
cations are assumed to be 0. This means that for binary classifiers we can describe
the cost matrix by two values c; > 0, representing the misclassification cost of an
example of class k. We can normalise the costs by setting b = ¢o + ¢1 and ¢ = ¢o/b;

! We use 0 for the positive class and 1 for the negative class, but scores increase with p(1|x). That is, a
ranking from strongest positive prediction to strongest negative prediction has non-decreasing scores. This
is the same convention as used by, e.g., Hand in [11].
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we will refer to ¢ as the cost proportion. We set b = 2 so that loss is commensurate
with error rate (which assumes co = ¢y = 1).

The loss which is produced at a decision threshold ¢ and a cost proportion ¢ is
then given by the formula:

Qcost (t5¢) = como(1 — Fo(t)) + c1m Fi (1) (1)

=2{em(1 = Fo(1)) + (1 —c)mFi(1)}
We often are interested in analysing the influence of class proportion and cost propor-
tion at the same time. Since the relevance of ¢( increases with 7y, an appropriate way

to consider both at the same time is by the definition of skew, which is a normalisation
of their product:

A coTo CTo

B 2
Z comp+cim cmp+ (1—c)(l—m) (2)
From Eq. (I) we obtain
Qcost(t;c) N
coTo+c17m (1= Fo(1)) + (1 =2)Fi(1) = Qe (£:2) 3)

We will assume that the operating condition is either defined by the cost proportion
(using a fixed class distribution) or by the skew.

2.2 Threshold choice methods

A key issue when applying a model to several operating conditions is how the thresh-
old is chosen in each of them. If we work with a crisp classifier, this question van-
ishes, since the threshold is already settled. However, in the general case when we
work with a model as a scoring or probabilistic classifier, we have to decide how to
establish the threshold. The crucial idea is the notion of threshold choice method,
a function T'(c¢) or T(z) which converts an operating condition (cost proportion or
skew) into an appropriate threshold for the model. There are several reasonable op-
tions for the function 7: we can set a fixed threshold for all operating conditions; we
can set the threshold by looking at the ROC curve (or its convex hull) and using the
cost proportion or the skew to intersect the ROC curve (as ROC analysis does); we
can set a threshold looking at the estimated scores, especially when they represent
probabilities; or we can set a threshold independently from the rank or the scores.
For a comprehensive account of threshold choice methods, we refer to [[13]. The way
in which we set the threshold may dramatically affect performance.

In many real-world problems, when we have to evaluate or compare classification
models, we do not know the cost proportion or skew that will apply during deploy-
ment time. One general approach is to evaluate the model on a range of possible
operating points. From this interpretation, Adams and Hand [1]] suggest to set a dis-
tribution over the set of possible operating points and integrate over them. In this way,
we can define the overall or average expected loss in a range of situations as follows:

1
Lc é / Qcost(Tcost (C);C)WCOSI (C)dC (4)
0
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where Qo5 (t) is the expected cost for threshold ¢ as defined in Eq. , Teos 1S a
threshold choice method which maps cost proportions to thresholds, and we, (c) is a
distribution for costs in [0, 1]. We can define a similar construction for skews instead
of cost proportions:

1
L= / Oskew (Tskew (2):2)Wskew (2)dz ©®)
0

In the rest of the paper we will assume the uniform distribution for w.,s and wge,,
using U (c) and U (z) as subscripts.

2.3 ROC curves and cost curves

The ROC curve [15}[6]] is defined as a plot of Fy (¢) (i.e., false positive rate at decision
threshold #) on the x-axis against Fy(¢) (true positive rate at 7) on the y-axis, with both
quantities monotonically non-decreasing with increasing ¢ (remember that scores in-
crease with p(1|x) and 1 stands for the negative class). The area under the ROC curve
is denoted by AUC. AOC = 1 — AUC denotes the area above the ROC curve. Figure[l]
(left) shows a ROC curve with AUC = 13/21 and AOC = 8/21. This model will be
a running example for the rest of the paper. An important concept in ROC analysis is
the notion of ROC isometrics [8]]. A ROC isometric is a line (or curve) that represents
the points with the same value for a given measure. If we focus on loss isometrics,
we have that they only depend on the skew z , leading to straight lines (called iso-cost
lines) whose slope equals ljz. Consequently, given a skew, we just slide a straight
line with the corresponding slope from the top-left corner (0,1) until we touch the
ROC curve. This point gives the optimal threshold for that skew and leads to optimal
decisions in case the ROC curve reliably represents the behaviour of the classifier for
the data at hand.

Cost space, as defined by Drummond and Holte [4] has Qe (t;z) on the y-axis
against skew z on the x-axis (Drummond and Holte use the term ‘probability cost’
rather than skew). We can plot cost space for cost proportions ¢ instead of skews on
the x-axis, as shown in Figure [2| In cost space, loss isometrics are horizontal lines.
This simplifies the procedure of determining the loss resulting from a given cost
proportion or skew. In particular, finding the classifier that minimises the loss for a
given skew on the x-axis amounts to finding the lowest cost line or cost curve at that
x-value.

While ROC curves arise from varying the classifier’s thresholds (interpolating be-
tween the resulting points in the empirical case), curves in cost space are established
by considering a range of skews or cost proportions. So a cost curve as a function of
z in our notation is: CCye (2) £ Qutew (T (2);2) = 2(1 — Fy(T(2))) + (1 —2) Fi (T (2)),
and similarly for cost proportions using Qpss-

The threshold choice method T is what characterises the cost curve. If we choose
a function T which sets a fixed threshold 7 regardless of the operating condition, then
we have that the loss varies linearly in cost space. For the interval of thresholds ¢
that give the same class assignments we clearly have the same line, which is called
the cost line (not to be confused with loss isometrics in ROC analysis). A cost line
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Fig. 2 The cost space of the model in Figure |1| (again, we use cost proportions ¢ instead of skews z).
The dashed lines represent all possible cost lines. The two red points correspond to two possible crisp
classifiers evaluated with cost values ¢ = 0.4 and ¢ = 0.6 respectively. The point at ¢ = 0.4 is the result
given by a classifier with F; = 1/3 and Fy = 5/7, leading to a cost line from 0.2 to 0.4. This gives a cost
of 0.28 for ¢ = 0.4. The point at ¢ = 0.6 is the result given by a classifier with F; = 1/3 and Fp =4/7,
leading to a cost line from 0.2 to 0.6. This gives a cost of 0.44 for ¢ = 0.6.

visualises how loss at a fixed threshold # changes between Fj (r) forz=0and 1 — F()
for z = 1, when using skews. Using cost proportions the cost lines run from 27 F; (¢))
for c = 0to 2m (1 — Fy(¢) for ¢ = 1. This is illustrated in Figure 2| From all cost lines
we can choose line segments (depending on where we change the threshold) and by
piecewise connecting them we have a ‘hybrid cost curve’ [4].

One way of choosing these segments is by considering the optimal threshold,
which is defined as follows:

shew(2) £ arglmin{stew (t:2)}. (6)

The optimal or minimum cost curve is then the lower envelope of all the cost lines.
The cost curve for this optimal choice is defined as CC%,, (z) £ Quew(TS,,, (2):2)-
Similar expressions are obtained for cost proportions. Figure ] (right) shows the op-
timal cost curve (using cost proportions) for the running example.

Note that our notation makes it explicit that other curves can be obtained in cost

space by changing the threshold choice method 7'.
3 The rate-driven threshold choice method
In Section 2.2 we mentioned that there are several ways to choose a threshold given

a soft or probabilistic classifier. One of the differences between ROC curves and cost
curves is precisely that the former is independent of the threshold choice method,
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while the cost curve completely depends on this choice. As mentioned above, classi-
cal cost curves represent how the loss of a classifier changes with the operating con-
dition assuming the optimal threshold choice method. However, there is in general
no guarantee that we will be able to find the optimal threshold choice at deployment
time. Furthermore, on many occasions, even assuming that the optimal choice on the
plot could ultimately match the optimal choice in the deployment data, we have to
consider that ROC analysis and cost curves are not always used, and decisions may
be made by choosing the threshold in a different way.

An alternative option is the score-driven threshold choice method, which assumes
a probabilistic classifier outputting scores between 0 and 1 and just sets T'(c) = c.
An assumption of equal misclassification costs might thus justify a threshold of 0.5
on naive Bayes’ estimates of the posterior probability. If the probability estimates are
well-calibrated this is a reasonable choice from the point of view of risk minimisation.
The score-driven threshold choice method leads to a different curve in cost space,
which has been termed the Brier curve [[12] since its area equals the Brier score, a
very common metric for evaluating probabilistic classifiers. This threshold choice
method is particularly sensitive to how the probabilities are estimated. If estimated
probabilities are highly concentrated (e.g., if half of them are in the range [0.4,0.6])
and we use a probability in this range as a threshold (e.g., 0.55), a minor variation in
the estimated probabilities will change predictions and hence loss dramatically. This
problem also affects the optimal threshold choice method, because we may determine
the optimal threshold on a ROC curve plotted with a validation data set and then take
the score (or estimated probability) that leads to this optimal choice. Clearly, the
score-driven threshold choice method and the optimal threshold choice method are
equivalent when the model is perfectly calibrated.

A third way of determining a decision threshold is by considering the proportion
of positives that we want to predict. If we find a point on the ROC curve (plotted with
a training or validation data set) that we want to use to set the threshold, we can just
calculate the predicted positive rate (the proportion of positive predictions) and use
this rate as the reference for the deployment data set. The only limitation of using
rates instead of a numerical score is that rates only make sense when we have a batch
of predictions. Nonetheless, this is a very common situation. This idea of making
decisions based on the rate instead of the scores leads to the rate-driven threshold
choice method below.

Recall that the predicted positive rate, abbreviated to rate, is defined as R(t) =
moFo(t)+ m Fi(¢). For skews we have R, (1) = (Fo(t) + F1(¢)) /2. The following thresh-
old choice method sets the threshold to achieve a rate equal to the operating condition.

Definition 1 The rate-driven threshold choice method for cost proportions is defined
as
Trd

cost

(©) 2R (c) 7

Similarly, for skews:
T, () 2R (2) ®)

We can achieve any rate, provided F and Fj are continuous. In the empirical case this
can be achieved by interpolation, as is customary in ROC curves. Thus, to achieve a
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rate that is between two split points of a ranking, we randomly choose between the
split points in such a way that the desired rate is achieved in expectation. Figure
(left) illustrates this graphically.

Example 1 Following the running example in Figure [T} and assuming that we have
scores {—3.20, —2.13, —1.15, —0.18, 0.21, 0.45, 1.47, 1.49, 1.93, 4.72} we can
explain how this threshold choice method works to make decisions, especially in the
empirical case. If we are given, e.g., a cost proportion of ¢ = 0.725, and we only
have ten examples in our data set, the rate 0.725 cannot be achieved with a single
split point. So, the rate which corresponds to cost proportion 0.725 must be achieved
in expectation by stochastic interpolation between the closest rate isometrics. In this
case, we have isometric A with rate 0.7 (making 7 positive predictions out of 10)
with any threshold 1.47 <t < 1.49, and isometric B with rate 0.8 (making 8 positive
predictions) with any threshold 1.49 <t < 1.93. We stochastically choose between
these by tossing a biased coin with probability 0.75 = (0.8 — 0.725)/(0.8 —0.7) of
choosing A. Note that this is quite different to choosing just the closest rate isometric,
which in this case would be to choose 0.7 as the rate, leading to a (somewhat simpler
but) biased decision rule. In any case, we see that the magnitudes of the scores are
irrelevant for the rate-driven threshold choice method. Only the ranks of the scores
matter.

Under this threshold choice method the loss at threshold ¢ = T/, (c) and cost
proportion ¢ can be entirely expressed in terms of c:

Qcost (t5¢) = 2{emy(1 = Fo(1)) + (1 —c)mFi(1)}
= 2{67170 +m F (l) — C[?‘C()Fo(t) +m F (l‘)]}
=2{c(m—R(1)) + mF1 (1)}
=2{e(m—c) +mF (R (c))} ©)

In the last step we have used # = R~!(c) and so ¢ = R(t). The notation F;(R~'(c))
stands for ‘the false positive rate at the decision threshold which achieves rate ¢’,
usually achieved by interpolation between two classifiers.

It will be useful to derive an alternative expression for Q.. in terms of Fy rather
than Fi:

Qcost (15¢) = 2{emo(1 — Fo(1)) + (1 —c)m Fi (1) }
=2{cmy — myFo(t) + (1 — ¢)[mFo(¢) + m F1(1)]}
=2{(1 = c)(R(t) —m0) +mo(1 — Fo(t))}
=2{(1—c)(c—m) +m(1 - Fo(R'(c))} (10)

where Fy(R™!(c)) means ‘the true positive rate at the decision threshold which achieves
rate ¢’.

The rate-driven threshold choice method is a natural way of choosing the thresh-
olds, especially when we only have a ranking or a poorly calibrated probabilistic
classifier. While in this paper we use this method to make the connection between
ROC space and cost space, it is a credible threshold choice method in itself, as
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an alternative to other methods. Clearly there are pros and cons for each threshold
choice method. In particular, it is worth pointing out that the optimal threshold choice
method utilises a ROC curve (and hence labelled data) to translate an operating con-
dition into a threshold, unlike the score-driven and rate-driven methods. The ability to
utilise this extra information provides the main appeal of the optimal threshold choice
method, but also introduces the danger of overfitting if the ROC curve on which the
optimal thresholds are determined is not representative. There is no guarantee that
the optimal thresholds on the training or validation data are also optimal in the de-
ployment context. Since in this paper the analysis concentrates on the case that the
true probability distributions are known, this drawback of the optimal method may
not always be apparent. Conversely, the score-driven and rate-driven methods can be
expected to be more robust against overfitting the decision threshold. The connection
between these threshold choice methods has been thoroughly explored in [13]], by
comparing the aggregated cost for all possible cost proportions.

However, the definition of a curve from the rate-driven threshold choice method
(including the interpolation of points between rates) and the analysis of the exact
meaning of each point (and each region) of the curve is yet to be explored. This is the
aim of this paper.

4 The rate-driven cost curve

We now introduce a new kind of cost curve that allows us to establish a one-to-one
correspondence between cost space and ROC space.

Definition 2 The rate-driven cost curve is defined as a plot of Qo (T4, (c);c) =
2{c(my —¢) +mF(R"'(c))} on the y-axis against ¢ on the x-axis. We can anal-
ogously define a version for skews as Quen (T (2);2) = z(1 —22) + Fi (R '(2))
against z.

Figure |3| shows the rate-driven cost curve corresponding to the model in Figure
Note that the rate-driven cost curve is continuous if the ROC curve is; if the ROC
curve is piecewise linear (e.g., because of linear interpolation in case of an empirical
curve), the rate-driven cost curve is piecewise parabolic because of the quadratic ¢
term in Q.. Figure E] demonstrates this.
We now show that the area under the rate-driven cost curve is related to the AUC.
The expected rate-driven loss for a range of cost proportions is:

1
L:iost £ /O Qcost(TC}lez (C);C)Wcost (C)dC (11)

If we use the uniform distribution for w,, (c) the expected loss is equal to the area
under the rate-driven cost curve.

Theorem 1 [|/3|]] Expected loss for uniform cost proportions using the rate-driven
threshold choice method is linearly related to AUC as follows:

L = mm(1 —24UC) +1/3
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Fig. 3 The rate-driven cost curve corresponding to the model in Figure The x-axis shows cost proportion.
The plot also shows the rate isometrics in cost space, as vertical lines.

Proof

1
L{/dé/o Qcost(n’;i‘t(c);c)lj(c)dc
:/Olz{c(no—c)+ﬂ1F1 (R™'(c))}de

-1 1
:/ 2c(7r0—c)dc+/ 2mFi (R (c))dc
0 JO

1
The first integral evaluates to {Czﬂfo — %} o = my— 2/3. By a change of variable we
have ¢ = R(¢) and dc = R'(t)dr:

~+oo
2m Fy ()R (¢)dt

/0 o (R (¢))de —
=2m [ RO){mfo(t)+m )

— 21w [ Z Fi(1)fo(e)de + 27} [ Z Fi(0)fi(0)dt

1
— 27m (1 — AUC) + 21 / Fi(1)dF (1)
0

=2mm (1 —AUC) + 1}
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Summing both expressions and rearranging gives:

LY =my—2/3+2mym (1 —AUC) + 1}
=2mmy(1 —AUC) +m (1 —mp) +mp—2/3
= 71'171'0(1 —2AUC)+ 1/3

a

Corollary 1 Expected rate-driven loss for uniform skews is L{Jd = (1 -2AU0C)/4+
1/3.

So the expected rate-driven loss for a random ranker is 1/3. This reflects the
fact that the threshold choice method takes advantage of knowing c or z: this lifts
classification performance above that of a random classifier. On the other hand, the
expected loss for a perfect ranker is non-zero (actually 1/12), because rate-driven
thresholds are not always optimal. As we discussed in Section[3] this ‘non-optimality’
is the price we pay for using a method that is less prone to overfitting the decision
threshold.

To illustrate, Figure ] (left) shows the rate-driven curve for the worst ranker pos-
sible (top), a ranker where all scores tie (middle) and a perfect ranker (bottom). We
see that for the perfect ranker the rate-driven threshold choice method makes optimal
choices for c =0, ¢ = mp = 0.7 and ¢ = 1 but sub-optimal choices for other operating
conditions, which explains the non-zero area under the rate-driven curve. The reason
why we can only have 0 loss at ¢ = my (apart from the two extremes) is because this
is the only point where the predicted proportion of positives (the rate) matches the
actual proportion of positives (7). So, the rate-driven curve for a perfect ranker us-
ing the rate-driven threshold choice method can only be optimal in these three points.
In order to be optimal for other points the only possibility is to change the threshold
choice method.

5 Decomposing the expected rate-driven loss: Kendall curves

We note that the terms 2¢(m — ¢) in Eq. (9) and 2(1 — ¢)(c — m) in Eq. can be
positive as well as negative. Combining their positive parts results in the rate-driven
cost curve of a perfect ranker. An example of this curve was shown in Figure [] ( left,
bottom curve).

Lemma 1 The rate-driven cost curve for a perfect ranker is defined as followsﬂ'

oy [2e(m—c)  ife<nm
Qcost(Tcodst(c)’c) = {2(1 —c)(c—m) ifc > 7'58

with area 1/3 — mym.

2 Note that both conditions overlap for ¢ = 7y, but this does not lead to ambiguity since both expressions
are equal for ¢ = m.



ROC Curves in Cost Space 13

1.0
1.0

0.6
L
0.6
L

loss
loss

0.4

0.0 0.2
L L
0.0 0.2
L L

T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

cost proportion cost proportion

Fig. 4 Left: The worst rate-driven curve in clear grey, a classifier assigning the same score to all instances
in grey, and the optimal rate-driven curve in black (7p and 7; as in the running example). Right: The
Kendall curve for the running example (in light blue) after subtracting the dark red curve at the top from
the rate-driven cost curve at the bottom (also in dark red).

Proof The threshold where a perfect ranker achieves perfect classification is R~ (),
i.e. the left upper-hand corner in the ROC space. It follows that F; = 0 for ¢ < my and
Fy =1 for ¢ > my. We obtain the final expression if we consider | = 0 for ¢ < @y in
Eq. (9) and we consider Fy = 1 for ¢ > my in Eq. (I0). The area comes from Theorem([]
withAUC=1. O

Subtracting the expected rate-driven loss of a perfect ranker, which is the expected
loss due to the rate-driven threshold choice method choosing non-optimal thresholds,
from the expected loss given by Theorem|l|gives 27 (1 —AUC) = 2mym AOC: this
is the expected classification loss attributable to the model’s ranking performance.
Since the decomposition is pointwise for each ¢, we can construct a curve whose area
can also be interpreted as the expected classification loss due to ranking performance.
We call this new curve a Kendall curve, because, as we will see, its area is related to
the Kendall 7 distance [[14]] to the perfect ranking:

Definition 3 The Kendall curve is defined as follows:

e [ O5(c) =2mF (R (c)) if e < mp
e = {Q?(C) =2m(1—F(R(c))) ifc>m

The Kendall curve shows, for each cost proportion c, the expected loss of the model,
once the loss of a perfect ranker is discounted. This second loss is shared by all
models.

Theorem 2 Any rate-driven cost curve can be decomposed into the rate-driven cost
curve of a perfect ranker and the Kendall curve:

Qeost (Tig(€):€) = Qg (T (€):¢) + Q7 (c)

The area under the Kendall curve is 2mymiAOC.
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Proof This follows from Lemma|[I]and Eqgs. (9) and (I0). The area is obtained from
Theorem [[]and Lemma O

It is important to stress that the Kendall curve is the difference between two cost
curves (QF = Qcost — Q) but not itself a cost curve: notably, it does not intersect
with cost lines as the rate-driven cost curves do. In other words, we can distinguish
between the loss shared by all models — since it originates from the rate-driven thresh-
old choice method — and the loss originating from the model itself (expected classi-
fication loss attributable to the model’s ranking performance). Figure ] (right) shows
a Kendall curve (in light blue). If we focus on this curve, we see that some segments
are horizontal and some others are diagonal. It is very easy to see where positives
and negatives are. Given its ranking (00 1 000 1 0 1 0), we can match this ranking
to the curve (from left to right), and see that Os are shown horizontally and 1s are
shown diagonally, until the rate 7y is reached (0.7 in the figure), where things swap,
and 1s are shown horizontally and Os are shown diagonally. Since the perfect ranking
wouldbe (0000000 11 1), the Kendall curve shows how many discordant pairs
will need to be swapped to get the perfect ranking (8 in total). This is precisely the
Kendall 7 distance to the perfect ranking, denoted by K:. It is then easy to see that
K: = mynmnAOC, of which the area under the Kendall curve is just a normalisation
with a factor 2 /n?. This relation between the Kendall T distance and AUC is not new.
However, Kendall curves show this in a much more explicit way.

6 Pointwise equivalence between ROC space and cost space

The construction of the rate-driven curves and the derivation of the Kendall curves
suggests that the correspondence between ROC space and cost space is much more
direct than previously thought. The geometrical connection is given by the distance
between the ROC curve and the ROC space square on one hand, and the height of the
points in the rate-driven curve on the other hand. In what follows, we will work with
empirical distributions. We will focus on the rate isometrics, which for the rate-driven
threshold choice method are given by the costs which match a rate, i.e., ¢ = i/n for
i=0...n.

We return to ROC curves to see that the area under the ROC curve can be obtained
in a diagonal way and not horizontally, as the following two propositions show.

Proposition 1 Given a point in ROC space (Fi(R™'(c)),Fo(R™'(c))), the segment
of the rate isometric connecting this point with the corresponding point of a perfect

classifier has length:
F(R!
po(e) 2 IR, o e <
0

Di(c) 2 (1=FR(R7'(c))) /@422 if e > m

4|

Proof If ¢ < my, the perfect classifier goes with fpr = 0 and increasing #pr reaching
the ROC heaven point (0,1) for ¢ = my. So, the length of the diagonal can be calcu-
lated as follows, using the definition of the rate (R(¢t) = myFy(t) + 71 Fi (), which,
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for the rate-driven threshold choice method leads to ¢ = R(t) = mFy(R™'(c)) +
mE (R (c))):

2
\/Fl (R™(c))* + (2F0(R‘ () + %Fl (R™!(c)) = Fo(R™"! (C))>

2 i
Q+<2>>mew@yE“£¢»wﬁ+#

If ¢ > my, the perfect classifier goes from the heaven point (0, 1) to (1, 1) with Fy(R™!(c)) =
1 constant and increasing Fi (R~ (c)), from ¢ = 7y to ¢ = 1. So, the length of the di-
agonal can be calculated as follows:

c— T

Di(e) £ d((Fi(R™'(c)), Fo(R™'(0))),(

2
¢(mm*u»—c‘“)-u1—%m4wnv

2
Q+(ﬁ)>0—@ml@m2
:U—%$1@»¢ﬁ+ﬁ

Note that when ¢ = my then Dy(c) = Di(c).

Figure |1| shows a ROC curve and the rate isometrics. Proposition || calculates
the length of the segment of each of these lines from the enclosing square (perfect
classifier) to the actual ROC curve. The AOC = 1 —AUC can be calculated from these
diagonal segments as follows.

Proposition 2 Given a model with n examples,

Y Do(ifm)+ % Diifn)
i=0 i=nmy+1

AOC ==
n\/ w3 +

Proof The proof can be constructed geometrically by summing diagonal “units”. It is
easy to see geometrically that it is tantamount to sum diagonal “unit” segments than
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squares, as follows:

@FP(;') v Y am— TP(i)

AOC — i=0 i=n7‘ro+12
T Tton
Given that F{(R"!(c)) = %z(f) we obtain, from Proposition that, for ¢ < 7y:
T T
FP(c) = nmFi(R™"(c)) = ——22Dy(c)

2 2
\/ TG+

TP) e have, for ¢ > my:

nmy °

Similarly, with Fp(R~!(c)) =

nmwy

[ =2 2
Ty + 7

nmy—TP(c) = nmy(1 — Fy(R™'(¢))) = Di(c)

Using these equivalences we get:

. n .
Y A2 Dy(H)+ Y nm— —AESD (L)
A0C = = et VEgtap

m 7r0n2
nio . n .
Y. Do(;)+ X Di(y)
i=0 i=nmy+1

/2 1 2
ny/ Ty +

O

For the example in the left part of Figure[6] we see that we have 8 squares above
the curve, so AOC is 8/(7-3) = 8/21. If we look at the diagonals, we have 0 + 1
+1+2+1+1+1+1+0+0+0=8 unit segments, with /73 + 72 /(m mon) =
0.762/(0.3-0.7-10) = 0.363 length each. So the sum of the length of the diagonal
isometrics from the ROC square to the ROC curve is 8 - 0.363. Dividing this value by
n\/ g+ m =10-0.762 we get 8/21.

Now we obtain a straightforward but important result which shows this exact cor-

respondence between the two spaces (the length of the segments of the rate isometrics
in ROC space and the loss value in cost space):

Theorem 3
Qé(c) 2 2
D = T
o(c) 2mmy VO o
i(c)
D _ ¥ 24
1(0) 27171 o 0 + 1

Proof From Proposition[I]and Theorem O
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Corollary 2 AOC can be calculated by a summation over Q°:

nmy . n -
igo QO(l/n) * i=n§o+1 Q] (l/”) (Z/H)KT
AOC = =
2w mon 2w mon

Proof From Theorem [3]and Proposition 2} O

This shows that AOC can be computed efficiently and exactly by adding the
heights of the points on the Kendall curve in cost space. The advantage of this calcu-
lation on cost space is that it connects this area to expected loss and it also provides a
way to calculate ‘partial” areas by considering particular cost ranges. Also, it can lead
to different metrics by changing the x-axis to a different (non-uniform) distribution,
if we are given (or we assume) some information about what costs proportions are
more likely.

7 Convex skull of the rate-driven curve

One useful construction over ROC curves is the notion of convex hull, which high-
lights the issue that some points in the ROC curve can never be chosen as optimal
points, since there are at least two other points in the curve for which an interpolation
leads to a better point. This convexification of the ROC curve accounts for the idea
that hybrid classifiers can also be constructed by interpolating between points which
are not at consecutive rate isometrics.

Drummond and Holte in [4] state that the “ROC concept of upper convex hull also
has an exact counterpart for cost curves: the lower envelope”. While a correspondence
between these two constructs can be established, this is only part of the story. First,
the correspondence assumes optimal thresholds, and it is important to stress that the
convex hull by itself does not imply that thresholds will be chosen optimally (as the
lower envelope does). Second, and as a consequence of this, the area under the lower
envelope is not even monotonically related to the area under the convex hull of the
ROC curve. Clearly, the lower envelope of cost lines cannot be considered the “exact
counterpart” of the ROC convex hull. The discovery of the rate-driven curve, which
relates ROC space and cost space in a pointwise manner, suggests that the exact
counterpoint of the ROC convex hull in cost space does indeed exist.

Definition 4 The convex skull of a rate-driven curve of a model m is defined as the
rate-driven curve of the convexified model Conv(m) (its convex hull in ROC space).
The convex skull of a Kendall curve of a model m is defined as the Kendall curve of
Conv(m).

An example is shown in Figure [5] The solid dark red line is the counterpart of the
ROC curve while the dashed dark red line is the counterpart of the convex hull. We
call this counterpart the convex skull, since it is geometrically related to the notion
of convex skull, which is the biggest convex polygon which fits inside a non-convex
polygon [2]. The difference in our case is that we do not really have polygons, since
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Fig. 5 The rate-driven curve is shown in solid dark red, its convex skull in dashed dark red, the Kendall
curve in solid light blue and its lower convex hull in dashed light blue. The lower envelope is shown in
dashed black.

the segments are parabolic. Fortunately, there is no need to apply any complex algo-
rithm to calculate the convex skull. There are two options for calculating Conv(m) in
Definition[4] above.

One option is to calculate the convex hull geometrically in ROC space. A second
option is to apply the Pair Adjacent Violators (PAV) algorithm [7]] directly to the rank-
ing. Given a set of training cases ordered by the scores assigned by a classification
model, the PAV algorithm first assigns a probability 0 to each positive instance and
a probability 1 to each negative instance creating a group for each instance. The al-
gorithm then looks, at each iteration, for “adjacent violators”: adjacent groups whose
probabilities locally decrease rather than increase. In these cases, the algorithm pools
the groups and replaces their probability estimates with the average of the group’s val-
ues. This process stops when the entire sequence is monotonically non-decreasing.
The result is a sequence of instances, each of which has a score and an associated
probability estimate, which can then be used to map scores into probability estimates
and recalculate the rank (with ties). The equivalence of these two ways of calculating
Conv has been recently shown in [7], where the algorithm is directly linked to the
convex hull.

In fact, this second option is very easy to apply if we work with the Kendall curve
(in solid light blue in Figure [3). As we discussed in previous sections, horizontal
segments correspond to positives or negatives (depending on which side of the rate
isometric 7y we are). This convex hull of the Kendall curve (which is lower convex
for two portions, one from cost 0 to 7y and the other one from cost 7y to 1) is shown
in dashed light blue in Figure 3}
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The first clear outcome is that the area under the convex skull follows the same
linear relation to the convex hull in ROC space as established by Theorem (1| The
second outcome is that we can now better understand what the lower envelope means
and its relation to the convex hull. Specifically, the lower envelope is an optimal cost
curve, showing the loss for optimal decisions. This is an idealistic situation, since
it assumes that the optimal thresholds in the training or validation data set for each
operating condition will be valid as well for any future test set. The convex skull,
on the other hand, shows the loss for the rate-driven threshold choice method after
applying the PAV algorithm to the ranking. It gives a new interpretation of the convex
hull in ROC space as a measure of classification performance of a model which has
been processed by the PAV algorithm.

In the example in Figure[5] the convex skull and the lower envelope only match for
¢ = 0.2. For this cost proportion, the rate leads to split the ranking: 00 10001010
after the two first Os. This gives the lowest loss for ¢ = 0.2 for this ranking (5 zeros
misclassified as ones, with cost 0.2 each makes a total loss of 1.0, which cannot be
improved at any other split). We can see that the lower envelope can be attained by
shifting the points of the convex skull along their corresponding cost line, to the right
or to the left depending on their position. This shows that the convex skull does not
represent optimal choices with respect to the operating condition.

8 Partial areas and illustrative examples

Screening is one of the most common applications in data mining. The goal of screen-
ing is to rank the instances in terms of the probability of an event (e.g. purchase,
failure, disease, etc.) in order to find the greatest percentage of positive cases with
the minimum percentage (or rate) of data inspected. Typical examples of screening
applications are offer/mailing campaign design (e.g., in e-commerce, customer rela-
tionship management, etc.) or prevention policies (e.g., in medicine). Since ranking
quality is crucial for this task, one common evaluation metric for the evaluation of
ranking classifiers in these applications is the AUC.

However, it is almost never the case that we are interested in the performance of
a model from an inspection rate of 0% to an inspection rate of 100%. Typically, we
work with some economic constraints about the minimum and maximum rates that
are sensible in the application domain. In other words, we may be interested in the
partial performance in a range of inspection rates.

Let us consider again the running example we introduced in Figure [I] which had
the ranking: 00 1 00 0 1 0 1 O over a training or validation set. Let us call it model
A.Tts AUC was 13/21. This ranking is neatly represented by the Kendall curve (solid
light blue) in Figure[5] Now consider another model (B) with the following ranking:
0001011000 over the same data set. The ranking is represented by the ROC
curve and Kendall curve in Figure (7| The AUC is 11/21. While the overall quality of
model B is worse than model A, both ROC curves cross at some points, so we cannot
say that one model dominates the other for the whole range of operating conditions.
However, current practice in screening applications would just simply choose model
A (if hybridisation between both models is not possible).
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Fig. 6 Model A. ROC curve (left) and Kendall curve (right). The shadowed polygons represent partial
areas over the ROC curve (left) and under the Kendall curve between rates 0.1 and 0.5. This area is (0.1 +
0.2 + 0.2)/10 = 0.05. The numbers on the ROC curve (left) from 1 to 8 represent the diagonals Dy and D,
as for Proposition

Imagine that we want to use this model to plan a mailing campaign for a new set of
customers. The existence of constant costs for the mailing campaign suggests that the
offer should be sent to no less than 10% of the customers. Also, according to budget
limitations, the number of offers cannot exceed 50%. These two constraints imply
that we are interested in the quality of the ranking between 10% and 50% predicted
positives. Which model is best in this situation? The problem of this question is that
we are not asking what model is best in a specific operating condition (e.g., a rate
equal to 40%), but in a range of operating conditions. Interestingly, Kendall curves
are the right plot to answer this question, because we can calculate partial areas in a
straightforward way. In Figure[6] we can see that the partial area under the Kendall
curve between rates 0.1 and 0.5 is exactly 0.05 for model A ((0.2/2 + 0.2 + 0.2)/10).
However, in Figure [/| we see that this partial area for model B is just 0.03 ((0.2/2 +
0.2)/10). Consequently, for this range of contexts, model B is preferrable over model
A.

It can be argued that these values can be calculated analytically. Of course they
can, but it is much easier to see this in a plot with the Kendall curves, especially when
we have thousands of examples (and not ten such as here). We can see the regions
where each model dominates, and we can quantify the ranking loss for every possible
region. In addition, the convex skull gives us information about the cutpoints that are
sub-optimal. For instance, for model A (Figure[5), we know that in the range of rates
between 0.1 and 0.5, we should never choose 0.1, 0.3 and 0.4, because the ranking is
0010001010, and one can get more positives (0) further right on the ranking
(e.g., 0.1 makes just the first example a true positive, while 0.2 makes the two first
examples true positives). Note that this is just seen as horizontal segments in the
Kendall curves. Similarly, for model B (Figure , we should never choose 0.1, 0.2
and 0.4.
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Fig. 7 Model B. Left: ROC curve for the ranking 000 1 0 1 1 0 0 0. Right: Kendall curve with its convex
skull in light blue, and rate-driven cost curve with its convex skull in dark red. Optimal cost curve in dashed
black.

This information can also be obtained in the ROC space, especially with the
equivalence we derived in Theorem [2| This way we can calculate that the partial
AOC (between rates 0.1 and 0.5) for model A is 0.119 while it is 0.071 for model B.
‘We can even show this area between two isometrics in the ROC curves. However, this
procedure is certainly much more difficult than in the cost space.

This application of Kendall curves is related to their interpretation in terms of
the screening applications we are considering now: the area under the Kendall curve
between two rates 71 and r, represents how many screening mistakes one would make
on average if all the cutpoints between r| and r, were considered equiprobable. This
is the same approach as in [9]], but now we show it graphically and for partial regions.
In fact, if one has further information about the distribution of the rates (e.g., if one
thinks that a 20% for an inspection rate is more likely than 30%), then we could just
‘warp’ the x-axis of the plots using this information (as a distribution) and calculate
the area accordingly.

While we have illustrated this for ranking models, this can also be shown for
classification models using the rate-driven threshold choice method. For instance, if
we have a spam filtering model, we can have information (or make the assumption)
that a false positive (predicted spam being actual ham) will always have higher cost
than a false negative (predicted ham being actual spam), i.e. ¢c; > ¢o (and clearly
¢ < 0.5). This means that we could compare models by looking at their partial rate-
driven cost curves. In this case, we would just calculate the area under the rate-driven
cost curve between rates 0 and 7. This would tell us which model is best for that
range of operating conditions using the rate-driven threshold choice method.

We can see all this in practice for a more realistic example. We chose the Ger-
man credit data set [10] because it is illustrative for screening applications and cost-
sensitive problems. Class O represents good customers (profitable customers for a
credit) while class 1 represents bad customers. Figure [8[ compares two models (a k-
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Fig. 8 Two Kendall curves for the German credit data set using k-nearest neighbours, in yellow, and a
decision tree, in dark red. The solid vertical line shows my = 0.69. The vertical dotted lines show the
region of interest.

nearest neighbours, kNN, in yellow, and a decision tree, J48, in dark red) using cost
space and their rate-driven cost curves.

If we want to use these two models for classification using the rate-driven thresh-
old choice method, we can see that, depending on the operating condition, one model
can be better than the other. Typically, bad customers classified as good customers
(false positives) have much higher cost than false negatives (the German credit data
set sets this ratio to 5:1). Since the prior distribution may vary and the particular cost
matrix may depend on other circumstances, it is reasonable to analyse both models
in a range of operating conditions. Let us assume that we are given a region of, say,
rates between 0 and 0.35. With this region, which is shown with dotted vertical lines
in Figure 8] we can calculate the partial areas of the rate-driven cost curves (between
0 and 0.35), which are 0.093 for the J48 model, and 0.091 for the kNN model. Con-
sequently, the kNN model is better for the range of rates we want to consider. This
contrasts with the total area, which, in this case, is lower (better) for the J48 model
(0.27) than the kNN model (0.29).

Interestingly, the same choice would be obtained for any partial calculation using
the rate-driven cost curve or the Kendall curve. However, if we want to calculate the
expected misclassification loss, then it is the rate-driven cost curve we need to look
at. If we want to calculate the expected number of misclassifications for a screening
application, then it is the Kendall curve we would look at.
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9 Concluding remarks

The definition of cost curve in the literature has been partially elusive. While it is
clear what cost lines are, it was not clear what the options are for drawing different
curves in cost space, which of them were valid and, more importantly, whether they
correspond to curves or representations in ROC space. In this paper we have clarified
the relation between both spaces, by defining the rate-driven cost curve as the true
companion of ROC curves in cost space. We have furthermore demonstrated that it is
possible to visualise classification performance and ranking performance in the same
plot by means of the Kendall curve.

Our main instrument was the rate-driven threshold choice method, which leads
to a point-point correspondence between the ROC curve and the rate-driven curve,
and also between the ROC convex hull and the convex skull. This provides a richer
view of cost space, since different cost curves arising from different threshold choice
methods can be contrasted and compared.

While cost curves were initially introduced for skews, we have worked with cost
proportions in this paper, but a generalisation to skews should be straightforward. We
plan to work on the use of rate-driven curves to choose among models and construct
hybrid classifiers.

Another interesting avenue for further work is a comparison with the recently
proposed Brier curves [[12]], especially because it has been shown in [[13]] that the rate-
driven threshold choice method is equal to the score-driven threshold choice method
when scores are evenly spaced (however, Brier curves do not interpolate and their
exact equivalence in this particular score disposition would only be asymptotical).
By comparing different curves in the same space we should be able to decide which
threshold choice method is best for a particular operating condition, leading to a new
dimension of dominance. This comparison of several curves (using different thresh-
old choice methods) would usually be carried out for different data sets. For instance,
we could plot the curves using a labelled training data set, from which the threshold
choices could be derived for each operating condition, and then these choices could
be used to represent curves on a different labelled validation data set. This would
show that some curves may be too optimistic on the training data set and may lead to
worse choices on the validation data set.

The source code in R for plotting rate-driven curves and Kendall curves can be
found athhttp://users.dsic.upv.es/~flip/RDC/.
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