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Abstract Quality estimation for machine translation is usually addressed as a
regression problem where a learning model is used to predict a quality score from
a (usually highly-redundant) set of features that represent the translation. This
redundancy hinders model learning, and thus penalizes the performance of quality
estimation systems. We propose different dimensionality reduction methods based
on partial least squares regression to overcome this problem, and compare them
against several reduction methods previously used in the quality estimation litera-
ture. Moreover, we study how the use of such methods influence the performance of
different learning models. Experiments carried out on the English-Spanish WMT12
quality estimation task showed that it is possible to improve prediction accuracy
while significantly reducing the size of the feature sets.

Keywords Machine translation · Quality estimation · Dimensionality reduction ·
Partial least squares regression

1 Introduction

Despite an intensive research in the last fifty years, machine translation (MT)
systems are still error-prone. Thus, a desirable feature to improve the broader
and more effective deployment of (nowadays) imperfect MT technology is the
capability of predicting the reliability, namely the quality, of the generated trans-
lations. Historically, translation quality assessment has been done manually by
human experts. These experts need to read the automatic translation and the
source text to be able to judge whether the translation is good or not which, ob-
viously, is a very time consuming task. Therefore, automatical translation quality
assessment is a crucial problem, either to present the translations in such way
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E-mail: jonacer@iti.upv.es
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Fig. 1 Dataflow of the proposed two-step quality estimation approach.

as to make end-users aware of the quality [Specia et al., 2009b], or to filter out
the translations according to the requirements of a given task and level of exper-
tise of the professional translator, e.g. to avoid professional translators spending
time reading / post-editing certain translations [Blatz et al., 2004,Quirk, 2004,
Specia et al., 2009a,González-Rubio et al., 2010]. This task, referred to as confi-
dence or quality estimation (QE), is concerned about predicting MT output qual-
ity without any information about the expected output. Quality information may
be provided for each word [Gandrabur and Foster, 2003,Ueffing and Ney, 2007,
Sanchis et al., 2007], sentence [Blatz et al., 2004,Quirk, 2004,Gamon et al., 2005,
Specia et al., 2009b] or document [Soricut and Echihabi, 2010]. This article fo-
cuses on sentence-level QE.

We distinguish the task of QE from that of MT evaluation by the need, in
the latter, of reference translations. The goal of MT evaluation is to compare an
automatic translation to reference translation(s) and provide a quality score which
reflects how close the two translations are. In QE, the task consist in estimating
the quality of the translation given only information about the input and output
texts and the translation process.

Sentence-level QE is typically addressed as a regression problem [Quirk, 2004,
Blatz et al., 2004,Specia et al., 2009b]. Given a translation generated by an MT
system (and potentially other additional sources of information) a set of features is
extracted. Then, a model trained using a particular machine learning algorithm is
employed to compute a quality score from these features. Most QE works consider
a fixed set of features and study the performance of different learning algorithms
on those features. However, feature sets tend to be highly redundant, i.e. there is
high multicollinearity between the features, and some of the features may even be
irrelevant to predict the quality score. Moreover, a set of translations labeled with
their “true” quality score is required to train the learning model. Since this labeling
process is usually done manually, training sets rarely contain enough labeled sam-
ples to accurately train the model. By removing irrelevant and redundant features
from the data, dimensionality reduction (DR) methods potentially improve the
performance of learning models by alleviating the effect of the “curse” of dimen-
sionality, enhancing generalization capability of the model, and speeding up the
learning process. Additionally, DR may also help the researchers to acquire better
understanding about their data by telling them which are the important features
and how they are related with each other. Despite these potential improvements,
works on QE usually put little attention on DR. For example, only six out of the
eleven participants to the QE task of the 2012 workshop on statistical machine
translation [Callison-Burch et al., 2012] applied DR, and even those participants
that used DR only implemented simple feature selection methods.

In this article, we propose two novel DR methods based on partial least squares
regression (PLSR) [Wold, 1966]. We consider both a DR method that selects a
subset of the original features, namely a feature selection method, and a method
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that projects the original data into a space of fewer dimensions, a feature extraction
method. Despite being usually more complex, feature extraction methods have a
potential advantage over feature selection: they can generate new features that
summarize the “information” contained in all original features. In contrast, the
information contained in the features discarded by a feature selection method
is inevitably lost. The proposed methods are compared to other DR methods
previously used in the literature: methods based on statistical multivariate analysis
such as PCA [Pearson, 1901] and PLSR regressors selection [Specia et al., 2009b],
and heuristic wrapper selection methods [Kohavi and John, 1997]. Moreover, we
study how these DR methods affect the performance of different learning models.

The performance of each DR method was evaluated by the prediction accuracy
of the models trained in the corresponding reduced feature sets. Figure 1 shows a
scheme of the process followed to obtain a quality score from a given translation.
First, from the translation, and additional information sources, we compute a
(possibly high-dimensional and highly-redundant) set of features that represent
the translation. Then, we apply a DR method to obtain a reduced feature set that
still contains the relevant information present in the original feature set. Finally,
we use a trained learning model to predict the quality score of the translation from
this reduced feature set. To assure an accurate comparison between the different
DR methods, identical pipelines were used to train the models. By providing a
detailed description and a systematic evaluation of these DR methods, we give the
reader various criteria for deciding which method to use for a given task.

It should be noted that despite being tested in a QE task, the proposed two-
step training and DR methods do not make particular assumptions about the
features or the learning model. Thus, they constitute a general methodology that
can be applied to a great variety of supervised learning tasks.

The rest of the article is organized as follows. In Section 2, we formalize the
regression approach to QE. In Section 3, we state the DR problem and present the
different DR methods under study. Section 4 is devoted to describe our experimen-
tal setting which include a description of the features extracted for each translation
(Section 4.2), and the different learning models used in the experimentation (Sec-
tion 4.3). In Section 5, we present and discuss the empirical results obtained in
the experimentation, and, finally, we conclude with a summary in Section 6.

2 Quality Estimation

We formalize QE as a regression problem where we model the relationship between
a dependent variable y (the quality score), and a vector of m explanatory variables
xT = (x1, . . . , xm) (the features that represent the translation). Given a data set
with n samples {yi,xi}

n
i=1

, our goal is to build a predictive model Mθ : Rm → R

with free parameters θ. The data set is usually represented in matrix form where
y is a vector that contains the quality scores, and X is a matrix where each row
is the feature vector of one training sample:
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To carry out the regression, the form of the model Mθ must be specified. Since
we do not know how y and X actually relate, we use different flexible models (see
Section 4.3) whose free parameters θ can be estimated to fit the data. Typically,
these models include a regularization term [Tibshirani, 1996] that facilitates the
learning process in the presence of noisy and collinear data. One of the goals of
the experimentation will be to study if regularized models can also benefit from
an explicit DR of the feature space.

3 Dimensionality Reduction

3.1 Motivation

The proposed QE formalization assumes that translation quality can be described
by a number of independent variables. Since these underlying variables are un-
known, in practice, we instead extract a (possibly larger) set of features that aim
at describing the prediction information contained in the underlying variables.
This approach implies to consider translation quality as governed by more vari-
ables than it really is, which results in several learning problems due to the addition
of irrelevant features, or the multicollinearity between them. However, provided
the influence of this “extra” features is not too strong as to completely mask the
original structure, we should be able to “filter” them out and recover the original
variables or an equivalent set of them. DR methods aim at somehow strip off this
redundant information, producing a more economic representation of the data.

DR can also be seen as a method to overcome the so-called “curse” of di-
mensionality. This term, coined in [Bellman, 1961], refers to the fact that, in the
absence of simplifying assumptions, the sample size needed to estimate a function
of several variables to a given degree of accuracy grows exponentially with the
number of variables. Responsible for the “curse” of dimensionality is the fact that
high-dimensional spaces are inherently sparse which is known as the empty space
phenomenon [Scott and Thompson, 1983]. This is a difficult problem in model es-
timation, as regions of relatively very low density can contain a considerable part
of the distribution, whereas regions of apparently high density can be completely
devoid of observations in a sample of moderate size. DR technology address these
problems, by reducing the input dimension of the function to be estimated.

3.2 Problem Statement and Approaches

The DR problem can be stated as follows: given a regression problem P1 : Rm → R,
we want to obtain an equivalent problem P2 : Rr → R where r << m. In other
words, we want to obtain a low-dimensional, compact representation of the input
data that still retains the information required to perform an accurate prediction.
Formally, DR is defined by a function ∆ that transforms an m-dimensional space
into an r-dimensional space:

∆ : Rm → R
r (1)

The determination of the dimension r of this compact representation is central
to the DR problem, because knowing it would eliminate the possibility of over- or
under-fitting. All the methods studied in this article take this intrinsic dimension
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as a parameter to be given by the user; a trial-and-error process is thus necessary
to obtain a satisfactory value for it.

Next, we describe the different DR methods tested in the experimentation. For
a more clear presentation, we distinguish between heuristic methods and methods
derived from statistical multivariate analysis.

3.3 Heuristic Feature Selection Methods

We consider heuristic wrapper [Kohavi and John, 1997] methods to address the
problem of feature selection. In the wrapper methodology, the learning model is
considered a perfect black box. In its most general formulation, this methodol-
ogy consists in using the prediction accuracy of a given learning model to assess
the relative usefulness of subsets of features. In practice, the different wrapper
methods are defined by the search strategy implemented to explore the space
of possible subsets. An exhaustive search can conceivably be performed if the
number of features is not too large. For example, all the subsets for 24 features
(224) were explored in [Soricut et al., 2012]. However, the problem is known to be
NP-hard [Amaldi and Kann, 1998] and the search quickly becomes computation-
ally intractable.

In out experimentation, we tested two search strategies that define two differ-
ent heuristic feature selection methods: ranking of feature selection, and greedy
forward selection. Since the computational complexity of these simple methods
depends on the complexity of the chosen learning model, we use symbol ζ(n,m)
to denote the time complexity to train the actual learning model with n samples
of m-dimensional feature vectors.

3.3.1 Rank of Feature

Rank of feature selection (RFS) generates subsets of features by selecting the
top-scoring features according to the prediction accuracy of a QE system trained
solely with that feature [González-Rubio et al., 2012]. RFS is typically used as a
baseline selection mechanism because of its simplicity, scalability and (somewhat)
good empirical success [Guyon and Elisseeff, 2003]. The computational complexity
of RFS to generate the first reduced feature set is given by O(m ·ζ(n, 1)); once the
scores for the features are computed, we can generate reduced groups of different
sizes with no further calculations. For example, the complexity of RFS if we use a
linear model1 is in O(m · n) given that ζ(n, 1) is proportional to n.

Since RFS selects the features according to their individual prediction accuracy,
we expect to obtain subsets of features that also provide good prediction accuracy.
However, RFS does not take into account the correlations that may exist between
the different features, thus, these subsets will probably contain a large number of
redundant features.

3.3.2 Greedy Forward

Greedy forward selection [Kohavi and John, 1997,Avramidis, 2012] (GFS) incre-
mentally creates subsets of features by selecting at each iteration the feature that,

1 This particular setup can be considered as a lower bound of the complexity of RFS.
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Fig. 2 PCA example for a 2-dimensional gaussian distribution. The vectors represent the two
principal components of the data.

when added to the current set, yields the learned model that performs best. In
contrast to RFS, GFS recomputes the importance of each feature at each step
having into account the current subset of features. Thus, the computational com-
plexity of GFS to compute a reduced set of size r is O(

∑r
i=1

∑m−i+1

j=1
ζ(n, i)) that

is upper bounded by O(r ·m · ζ(n, r)). For example, if we use a linear model the
temporal complexity of GFS is in O(r2 ·m · n) given that ζ(n, r) ∝ n · r.

Since GFS selects at each step the feature that improves most the QE model
performance, we expect to obtain subsets with lower redundancy in comparison
to RFS. However, it requires to re-compute the contribution of each feature to the
QE model at each step, O(ζ(n, r)), which penalizes GFS complexity.

3.4 DR Methods Based on Statistical Multivariate Analysis

Statistical multivariate analysis is a generic term for any statistical technique con-
cerned with analyzing data in high dimensions [Anderson, 1958]. In particular, we
focus on statistical techniques to partition the variability of the data into compo-
nents attributable to different sources of variation. In this work, we consider two
of these techniques: principal component analysis (PCA), and partial least squares
regression (PLSR). Given a number of dimensions r, both PCA and PLSR com-
pute a transformation of the original data space into an orthogonal r-dimensional
space. However, they differ in the criteria followed to compute this transformation.

The main advantage of these methods stems in the orthogonality of the output
space; which means that the transformed features will be linearly independent by
construction. Therefore, using these transformations we obtain reduced feature sets
with almost no redundant information. Moreover, statistical multivariate methods
are mathematically well-founded and independent of the choosen learning model.
However, these methods also have an obvious drawback, i.e. new features are
computed as a linear combination of all original features which makes it often
difficult to interpret them.

3.4.1 Principal Component Analysis

Principal component analysis (PCA) [Pearson, 1901] defines a transformation of
the original data into a new space of features, known as principal components. This
transformation is defined in such a way that the first principal component has the
largest possible variance (that is, accounts for as much of the variability in the
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Fig. 3 Example of the principal component values (t1, t2) for a data point x in Figure 2.
Values t1, t2 are computed by projecting x over the corresponding eigenvectors (p1,p2).

data as possible), and each succeeding component in turn has the highest variance
possible under the constraint of being uncorrelated with the preceding components.
Therefore, each of these principal components represent one of the individual latent
factors that actually govern the variability of the data, as exemplified in Figure 2.

Given a matrix X whose rows represent the n samples and each column rep-
resents one of the m features, PCA is formalized by the following decomposition:

X = TP
T (2)

where P is the space transformation matrix that contains the eigenvectors of the
covariance matrix XTX, and the rows of T represent the principal components
of each training sample. The nonlinear iterative partial least squares (NIPALS)
algorithm [Wold, 1966] is commonly used to obtain the eigenvectors.

Given that the eigenvectors in P are unitary and orthogonal (PTP = I), we
can multiply both sides of Equation (2) by P to obtain the principal components
T of the data:

XP = T (3)

Figure 3 shows a graphical example of the computation of two principal com-
ponents t = (t1, t2) for a single data point x. Each principal component tk is
computed by projecting x over the corresponding unitary eigenvector pk. Specif-
ically, tk = x · pk = ||x|| · ||pk|| · cos(αk) = ||x|| · cos(αk), where αk is the angle
between x and pk.

PCA Projection

The principal components are linearly independent, and each of them accounts
for the maximum variability in X not explained by previous components, thus we
follow [González-Rubio et al., 2012] and select the first r components to create the
reduced feature sets. Since each of these components is a linear combination of the
original features, this is a feature extraction method. In the experiments, we use
PCA-P to denote this DR approach.

The complexity of PCA-P to compute a reduced set of size r is given by the
complexity of the NIPALS algorithm: O(r · m · n). Note that in contrast to the
previously presented heuristic methods, the cost of PCA-P does not depend on
the complexity of the chosen learning model.



8 Jesús González-Rubio et al.

3.4.2 Partial Least Squares Regression

PCA generates sets of orthogonal features where each feature explains the vari-
ability of the data X in one principal direction. However, this transformation
ignores the scores y to be predicted. Thus, although the features generated by
PCA-P contain almost no redundancy, they do not necessarily have to be the
best set of features to perform the prediction. Partial least squares regression
(PLSR) [Wold, 1966] is an alternative to PCA that takes into account y when
computing the transformation of X. Specifically, PLSR computes a ordered set of
latent variables such that each of them account for the maximum co-variability
between X and y under the constraint of being uncorrelated with previous la-
tent variables. Formally, PLSR builds the following model where b is a vector of
regressor coefficients, and f is a vector of zero-centered Gaussian errors:

y = Xb+ f (4)

Even though this is a linear regression model the estimation of the regression
coefficients b for PLSR is different from the conventional least squares regression,
see Section 4.3.1. The intuitive idea of PLSR is to describe y as well as possible,
hence to make ||f || as small as possible, and, at the same time, take advantage
of the relation between X and y. To do that, PLSR defines two independent
PCA-like transformations P and q (for X and y respectively) with E and f being
the corresponding residual errors, and a linear relation R linking both blocks:

X = TP
T +E y = Uq

T + f (5)

U = TR (6)

where matricesT andU are the projections fromX and y respectively. Specifically,
each of the columns of the T matrix represents one of the latent variables of X.

The NIPALS algorithm [Wold, 1966] is also used to solve this optimization
problem. In this case, b is estimated as:

b = Rq
T where R = W(PT

W)−1 (7)

where W is an internal weight matrix used by the algorithm that accounts for the
correlation between X and U. An exhaustive description of the NIPALS algorithm
for PLSR can be found in [Geladi and Kowalski, 1986].

Since PLSR is a much more sophisticated model than PCA, different elements
of the PLSR model can be used to obtain reduced feature sets. In addition to the
regressors-based selection method previously described in [Specia et al., 2009b],
we propose one new feature selection method, variance importance in projection,
and one new feature extraction method, PLSR projection. Similarly to PCA-P, the
computational complexity of these three PLSR-based DR methods is also given
by the complexity of the NIPALS algorithm, O(r ·m · n).

Feature Importance in Regression

Let us consider a linear model such as the one used by PLSR:

ŷ = b0 + b1x1 + · · ·+ bixi + · · ·+ bmxm (8)
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Regressor scores bi denote the expected value increment of the predicted quality
score ŷ by unitary increment of feature xi, i.e., they denote the importance of each
feature in the regression. However, due to the usually different scale of the features,
these values cannot be directly compared; first data need to be standardized by
subtracting the feature mean from the raw data values and dividing the difference
by the standard deviation. Standardized features become dimensionless, and then
regressors are directly comparable. We thus can create a reduced set of features
by selecting them in descending regressor absolute value (b in Equation (4)). This
method, first proposed by [Specia et al., 2009b], is labeled FIR in the experiments.

Variance Importance in Projection

Given the weight matrixW, we can compute the variance importance in projection
(VIP) [Chong and Jun, 2005] of the features. VIP is a score that evaluates the
importance of each feature to find the r latent variables. Therefore, similarly as
done for RFS in Section 3.3.1, we propose to select subsets of top-scoring features
according to their VIP. The VIP score for the kth feature is given by:

VIPk =

√

√

√

√

√

m
∑r

j=1

(

wkj

||wj ||

)2

ESSj

∑r
j=1

ESSj

(9)

where m is the number of original features, ESSj = b2jt
T
j tj is the square of the

contribution of the jth latent variable to the score predicted by the PLSR model,
tj is the jth column of matrix T, bj is the jth regressor coefficient in b, and

wkj

||wj ||

is the normalized value of weight wkj .

PLSR Projection

The latent variables are linearly independent, and each of them accounts for the
maximum co-variability between X and y not explained by previous latent vari-
ables. Thus, we propose to obtain a reduced feature set by extracting the first r

latent variables, i.e. the first r columns in matrix T. In contrast to PCA, the latent
variables computed by PLSR take into account the relation between the features
X and the quality scores y. Therefore, in addition of being linearly independent,
we expect the latent variables to attain more predictive potential than the equiv-
alent number of principal components. This feature extraction method is labeled
PLS-P in the experiments.

4 Experimental Setting

4.1 Data

We computed quality scores for translations of the English-Spanish news evalu-
ation data used in the shared QE task2 featured at the 2012 workshop on sta-
tistical MT [Callison-Burch et al., 2012]. Those translations were generated by a
phrase-based MT system [Koehn et al., 2007] trained on the Europarl and News
Commentaries corpora as provided for the shared translation task3. Evaluation

2 http://statmt.org/wmt12/quality-estimation-task.html
3 http://statmt.org/wmt12/translation-task.html
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data contains 1832 translations for training and 422 translations for test. Each
translation was manually scored by several professional translators in terms of
post-editing effort according to the following scheme:

1 - The translation is incomprehensible. It must be translated from scratch.
2 - About 50%–70% of the translation needs to be edited to be publishable.
3 - About 25%–50% of the translation needs to be edited.
4 - About 10%–25% of the translation needs to be edited.
5 - The translation is clear and intelligible. It requires little to no editing.

The final quality score of each translation (a real number in the range [1, 5])
is the average of the scores given by the different experts. Additionally, for each
translation the corresponding source sentence, and decoding information (decoding
graph and 1000-best translations) are available. We used these and the training
data of the shared translation task to compute the features of each translation.

4.2 Features

We extract a total of 480 features described in previous works for translation
QE [Blatz et al., 2004,Ueffing and Ney, 2007,Sanchis et al., 2007]. Some of these
features are highly-correlated, for example, we consider both the translation prob-
ability and the perplexity given by a language model. As described in Section 3.1,
working with such redundant features involves several learning issues. However,
these inherent learning issues make translation QE a task where DR techniques
may lead to important improvements in prediction accuracy.

Following [Specia et al., 2009b], we consider both black-box and glass-box fea-
tures. On the one hand, black-box features (B) can be extracted given only the
input sentence and the translation produced by the MT system, i.e. the source
and target sentences, and possibly additional monolingual or parallel data. On
the other hand, glass-box (G) features may also depend on some aspect of the
translation process.

We distinguish between sentence- and subsequence-based features. Sentence-
based features consider the translated sentence as an atomic unit and represent
the translation as a whole. In contrast, subsequence-based features consider the
translation as a sequence, and are computed by combining the feature scores of
the subsequences (words or sequences thereof) contained in each translation.

4.2.1 Sentence-Based Features

– Source and translation lengths, and their ratio. (B, 3 features)
– Source and translation probabilities, probabilities divided by length, and per-

plexities computed by language models of order one to five. (B, 30 features)
– Translation probability, probability divided by translation length, and perplex-

ity computed by language models of order one to five trained on the complete
1000-best file, and in the particular 1000-best translations of each source sen-
tence. (G, 3 indicators × 5 orders × 2 training corpora = 30 features)

– Average length of the 1000-best translations, vocabulary size of the 1000-best
translations divided by average length, and 1000-best vocabulary size divided
by source length. (G, 3 features)
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– Proportion of death nodes in the decoding search graph. (G, 1 feature)
– Number of source phrases of sizes one to six used in decoding. (G, 6 features)
– Number and average size of the alternative translations considered in decoding

for source phrases of sizes one to six. (G, 12 features)

4.2.2 Subsequence-Based Features

We represent each subsequence feature by five sentence-level indicators: the av-
erage value of the subsequence scores in the translation, and the percentage of
scores belonging to each frequency quartile4. Each method represent a different
approach to summarize the subsequence scores. The average value is a rough in-
dicator that measures the “middle” value of them, while the quartile percentages
are more fine-grained indicators that denote how spread out the scores are. We
compute the following features for subsequences of sizes one to four:

– Number of translation options for each source word in a Model-1 lexicon trained
on the translation task data. (B, 1 × 5 = 5 features)

– Frequencies of source sentence subsequences in the training data of the trans-
lation task. (B, 4 sizes × 5 = 20 features)

– Confidence score of each translation word computed by a Model-1 lexicon as
in [Ueffing and Ney, 2007]. (B, 1 × 5 = 5 features)

– Posterior probabilities of translation subsequences computed on the 1000-best
translations [Ueffing et al., 2003]. We follow [Sanchis et al., 2007] and use four
different criteria to align the subsequences of the translation to the subse-
quences of the alternative 1000-best translations, and three different weighting
schemes to score each aligment. The accumulated score of the alignments of
each subsequence is normalized to obtain the posterior probability of the sub-
sequence. (B, 4 sizes × 4 criteria × 3 weightings × 5 = 240 features)

– Confidence scores of the translation subsequences computed from the cor-
responding posterior probabilities by a smoothed näıve Bayes classifier as
in [Sanchis et al., 2007]. We used three position correctness criteria to auto-
matically generate the reference correctness labels required to train the classi-
fication model. (B, 4 sizes × 3 criteria × 5 = 60 features)

We also compute the number of words in the translation with zero (< 10−7)
confidence according to the Model-1 lexicon (B, 1 feature), the number of source
subsequences that do not appear in the training data of the translation task (B,
4 sizes = 4 features), the number of translation subsequences with zero (< 10−7)
posterior probability (B, 4 sizes × 4 criteria × 3 weightings = 48 features), and
the number of translation subsequences classified as correct by the näıve Bayes
classifier (B, 4 sizes × 3 criteria = 12 features).

4.3 Machine Learning Models

Now, we describe the particular learning models (Mθ in Section 2) tested in the
experiments. We use the WEKA [Hall et al., 2009] package to estimate the values
of the free parameters θ that best fit training data.

4 Frequency quartiles were computed on the training data of the shared translation task.
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4.3.1 Linear Regression

Linear regression assumes a linear relationship between the prediction value yi and
the vector of features xi which is modeled by a vector of weights θT = (θ1, . . . , θm).
Formally, linear regression models take the form of a set of equations:

yi = θ1xi1 + · · ·+ θmxim + ǫi, i = 1, . . . , n (10)

where n is the number of training samples, m is the number of features, and ǫi are
zero-centered Gaussian error variables. Often all equations are stacked together
and written in matrix form:

y = Xθ + ǫ (11)

The most common technique to estimate the free parameters θ of linear models
is known as least squares estimation. This method minimizes the sum of squared
errors, and leads to a closed-form expression for the optimum values of θ:

θ̂ = (XT
X)−1

X
T
y (12)

Additionally, different regularization techniques are usually implemented to
prevent ill-posed learning problems when multicollinearity is present. Regular-
ization techniques deliberately introduce bias into the estimation of θ̂ to pe-
nalize complex models. In the experiments, we used ridge and LASSO regres-
sion [Tibshirani, 1996]. Both methods constraint the norm of the parameter vector
(L2-norm ridge and L1-norm LASSO) to be lower than a given value γ.

4.3.2 Support Vector Machines

In practice, few natural phenomena exhibit a linear relationship between their
explanatory variables x and the corresponding dependent variable y. Thus, linear
regression cannot adequately describe such nonlinear phenomena.

Support vector machines [Cortes and Vapnik, 1995] (SVMs) are a class of ma-
chine learning models that, as linear regression, assume a linear relationship be-
tween X and y. However, prior to any calculation, SVMs project the data into an
alternative space. This projection, defined by a kernel function ϕ(x), may be non-
linear; thus, though a linear relationship is learned in the projected feature space,
this relationship may be nonlinear in the original input space. Choice of the ker-
nel determines whether the resulting SVM is a polynomial regressor, a two-layer
neural network, a radial basis function machine, or some other learning machine.

The linear relationship is estimated as a regularized (L2-norm) optimization
problem. In contrast to linear regression, the SVM model depends only on a subset
of the training data, because the cost function for building the model does not
care about those training samples that already lie within a given margin. There
exist several specialized algorithms for solving the quadratic programming problem
that arises. For example, sequential minimal optimization [Platt, 1999] breaks the
problem down into 2-dimensional sub-problems that can be solved analytically.

Preliminary experiments studying different kernels showed that radial basis
kernel obtained among the best results and additionally was easier to train than
other kernels such as polynomial kernels. Therefore, in the experimentation we
used SVMs with a radial basis kernel.
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Fig. 4 Example of a regression tree. It uses four feature comparisons to partition the data-
space, and gaussian normal distributions to model the data on each of the five partitions.

4.3.3 Regression Trees

Typical regression models, such as linear regression or SVMs, are global. In other
words, there is a single predictive formula holding over the entire data-space. When
the data has lots of features which interact in complicated, nonlinear ways, assem-
bling a single global model can become a very difficult problem. An alternative
regression approach is to recursively partition the data-space into smaller regions,
until they are simple enough to fit elemental models to them.

Regression trees use a tree structure to represent such a recursive partition.
Each of the terminal nodes of the tree represents a region of the partition, and
has attached to it a simple model which applies in that region only. We start at
the root node of the tree, and ask a sequence of questions about the features. The
interior nodes are labeled with questions, and the edges between them are labeled
with the answers. Typically, each question refers to only a single feature, and has a
yes or no answer, e.g., “Is Horsepower > 50?” or “Is GraduateStudent == FALSE?”.
Features can be of different types (continuous, discrete, categorical, etc), and more-
than-binary questions can be done, but these can always be accommodated as a
larger binary tree. Figure 4 shows an example of a regression tree using gaussian
normal distributions to model the data on each partition.

Once we fix the tree structure, local models are completely determined, and
easy to find, so all the effort should go into finding a good tree structure, which is
to say into finding a good partitioning of the data-space. In our experiments, we
specifically use M5 regression tree [Quinlan, 1992] because one of the best submis-
sions to the 2012 QE task [Callison-Burch et al., 2012] used such tree model.

5 Experiments

5.1 Methodology

We extracted the 480 features described in Section 4.2 for each of the automatic
translations in the evaluation data of the QE task. As a result, we obtained a
training and a test set of 480-dimensional real vectors with 1832 and 422 samples
respectively. All features were standardized by subtracting the feature mean from
the raw values, and dividing the difference by the standard deviation.
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Fig. 5 SVMs cross-validation training results for different DR methods as a function of the
size of the reduced feature set. In comparison, the baseline SVM trained on the 480 original
features obtained 0.71 RMSPE. Best PLS-P results were statistically better than the rest.

Then, we carried out an exhaustive experimentation to test the different DR
methods described in Section 3, and to study how their use affect the prediction
performance of the different learning models presented in Section 4.3. We tested
all 18 combinations of a DR method and a learning model in a series of two-step
experiments as depicted in Figure 1. Since we did not know the optimum size
r of the reduced feature set (see Section 3.2), each experiment involved several
trains of the model with reduced feature sets of different sizes. For each size, we
performed a cross-validation training with ten randomly-chosen data splits to learn
the meta-parameters of the models, e.g. the γ parameter of ridge regression.

5.2 Evaluation Criteria

Since we view DR as a way to build robust prediction models, we evaluated each
DR method by the prediction accuracy of the regression models trained on the cor-
responding reduced feature sets. The performance of a regression model is usually
measured by the average error of the predictions ŷ = {ŷ1, . . . , ŷn} with respect to
the actual scores y = {y1, . . . , yn}. Specifically, we compute the root mean squared
prediction error (RMSPE) as in [Specia et al., 2009b]:

RMSPE(y, ŷ) =

√

√

√

√

1

n

n
∑

i=1

(yi − ŷi)2 (13)

where n is the number of test samples. RMSPE quantifies the average deviation
of the estimation with respect to the expected score. I.e. the lower the value, the
better the performance of the learning model.

5.3 Cross-Validation Training Results

We now present the results for cross-validation training experiments. The conclu-
sions were similar for all learning models. Thus, to keep the presentation clear, we
only show RMSPE results using SVMs as learning model. Figure 5 shows SVMs
cross-validation RMSPE for the different DR methods presented in Section 3.
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Fig. 6 Cross-validation training results for linear ridge regression using PCA-P and PLS-P DR
methods. We also display baseline results for LASSO regression, and PLSR (Equation (4)). As
for SVMs in Figure 5, PLS-P outperforms any other tested approaches. Additionally, note that
the use of the proposed two-step training procedure, see Figure 1, allows to smooth the rough
learning curves obtained by conventional PLSR, compare PLSR and PLS-P learning curves.

The results of the four feature selection methods were very close, and all
of them slightly outperformed the baseline SVM model trained with the whole
480-dimensional feature set (0.71 RMSPE). Rank of feature selection (RFS), vari-
ance importance in projection (VIP), and feature importance in regression (FIR)
obtained virtually the same results. Their performance improved as more features
were selected, and they required to select above 100 features to reach their top
performance. Then, as more features were selected their results slowly converged
to the performance of the baseline model. Since these methods do not take into
account the correlations that may exist between the features, their reduced fea-
ture sets were highly-redundant; which explains the large number of features they
needed to stabilize. In contrast, greedy forward selection (GFS) obtained great
improvements with few features. However, its higher computational complexity
complicates its practical deployment; reason why we carried out experiments only
up to 30 features. Nevertheless, with only these 30 features it was able to equal
the performance of the baseline model trained on the original 480 features.

Regarding the two feature extraction methods, they exhibited important dif-
ferences in performance. PCA projection (PCA-P) obtained worse results than
the four feature selection methods, moreover it did not even improve the re-
sults of the baseline model. PCA-P reached its top performance when ∼ 120
principal components were generated, and it slightly deteriorated as the num-
ber of features increased. In contrast, PLSR projection (PLS-P) obtained much
better results consistently outperforming PCA-P and all feature selection meth-
ods. Moreover, with only five latent variables PLS-P was able to outperform the
baseline SVM model trained with 480 features, and it only required 44 features
to reach its top performance. Additionally, the performance difference observed
between the best result of PLS-P and the rest of the DR methods was signif-
icant with a probability of improvement of 95% according to a pair-wise boot-
strap analysis [Bisani and Ney, 2004]. These results indicate that PLS-P generates
more “information-dense” features that constitute a better summary the original
high-dimensional feature set.

Although results in Figure 5 are representative for all learning models, we
observed important differences in the stability of the learning curves of the different
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Ridge Support vector Regression

regression machines trees

NF RMSPE NF RMSPE NF RMSPE
Original

480 0.79 480 0.97 480 0.87
features

RFS 69 0.83 162 0.84 72 0.91
GFS 22 0.82 22 0.83 16 0.89
VIP 67 0.83 126 0.83 57 0.88
FIR 82 0.83 136 0.82 71 0.86

PCA-P 57 0.83 122 0.81 31 0.90
PLS-P 55 0.78 44 0.78 9 0.88

Table 1 Prediction results (RMSPE) on the test set for the different DR methods and learning
models under study. NF denotes the number of features of the reduced test sets. Best results
for each learning model are displayed in bold. As a comparison, the result for a linear LASSO
regression model was 0.82 RMSPE.

models. Figure 6 displays training cross-validation results for linear ridge regression
using PCA-P and PLS-P as DR methods. We present results only for these two DR
methods for simplicity. Since the baseline ridge model (trained with the original
480 features) obtained a dreadful RMSPE of 16.73, we present results for two
alternative linear regression baselines: a LASSO regression model also trained with
all the original 480 features, and for the predictions directly generated by the PLSR
model according to Equation (4). In contrast to the results for SVMs, we now
obtained rougher learning curves with large performance variations, particularly
as we increased the number of features. However, the proposed two-step training
procedure (see Figure 1) partially addresses this problem. This is exemplified in
the comparison between PLSR and PLS-P. Both methods use a linear model to
predict the quality scores from the projected data, however PLS-P obtains a much
smother learning curve than PLSR. Finally, we could extract the same conclusion
as for SVMs: among all the tested DR methods, PLS-P is the best performing one
allowing us to improve the performance of even sophisticated regularized models
such as SVMs or linear LASSO regression.

These results show that the proposed two-step training is an efficient procedure
to deal with noisy and correlated input features, and it can outperform models
such as LASSO regression and PLSR that integrate DR in their formulation.

5.4 Blind Test Results

Next, for each combination of a DR method and a learning model, we built a new
model using the full training set and the best configuration (size of the reduced
feature set, and values of the meta-parameters of the learning model) observed
in the corresponding cross-validation experiments. Then, we reduced the test set
to the optimal dimension estimated by cross-validation training, and tested the
performance of the new trained model for the reduced test set. Table 1 displays
these results. In contrast to the previous cross-validation experiments, results on
the test set were quite different for the three learning models. While for SVMs,
the use of DR improved the performance of the baseline model trained on the 480
original features, no improvement was obtained at all for linear ridge regression,
or for regression trees. This was quite a surprising result. Given the large improve-
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ments over the baseline obtained in the cross-validation experiments, we expected
to obtain similar improvements over baseline in test.

To better understand these results, we carried out a multivariate Hotelling’s
two-sample T-squared test [Hotelling, 1931,Anderson, 1958] to study the possible
differences that may exist between the training and test feature sets. The objec-
tive of such tests is to determine whether two samples, in our case the training
and test sets, have been sampled from the same population or not. The result
of the test indicated that there were a statistically significant difference between
the two feature sets (p < 0.01), and thus they seemed to come from different
populations. Since the training and test translations come from a similar news
domain [Callison-Burch et al., 2012], we hypothesize that the difference between
the feature sets was mainly due to the specific chosen features. In fact, results
of individual Student’s two-samples t-tests for each feature showed that 260 of
the 480 extracted features were significantly different (p < 0.01) between training
and test. For example, the number of words with zero posterior probability is sig-
nificantly different between the samples in training (µ = 1.7, σ = 1.39) and test
(µ = 0.90, σ = 0.80).

In addition to the relatively small number of training samples (1832), this mis-
match between the distribution of the features values in the training and test sets
may be the explanation for the unintuitive results displayed in Table 1, compared
to the cross-validation results in Figure 5 and Figure 6 where PLS-P largely im-
proved Baseline. DR methods obtain a reduced feature set based on the training
set, thus, if the training set is not representative of the test set, as proved by
the Hotteling’s test, the computed reductions cannot be adequate for test. Also,
the fact that SVMs actually improved baseline test results when DR methods
were used can be explained by the fact that SVMs are more complex models than
ridge regression and regression trees. SVMs performance is more heavily penalized
due to the lack of data. Thus, we hypothesize that the use of reduced feature
sets, even if they are inadequate, allows to improve SVMs performance5. Despite
these problems, Table 1 shows that PLS-P was the top-performing DR method
for linear regression and SVMs. However, for regression trees, all methods ob-
tained similar results. This fact indicates that regression trees were not able to
fully exploit the more “information-dense” features generated by PLS-P. Since
these “information-dense” features are the combination of several of the original
features, we hypothesize that they are also more difficult to be partitioned into
regions to create the tree structure of the model. Nevertheless, even in this pes-
simistic setting PLS-P generated reduced sets of features that performed similarly
as the original 480 features. We consider that, given the cross-validation results
in Section 5.3, larger performance improvements could be expected whenever an
adequate set of features, and/or a large enough training set are provided.

Additionally, since the time required to train the model and to perform the
prediction are directly related to the number of features, an additional advantage
of DR methods is that they can improve the practical deployment of QE technology
by reducing training / test time. For example, training an SVM model (including
meta-parameter optimization) using the original 480 features typically required
∼30 hours in our test machine, while the training time using the optimal 44 latent
variables extracted by PLS-P was below three hours.

5 Few features imply few parameters to be estimated with the same amount of data.
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5.5 Feature Analysis

We perform a final analysis on the features that contribute more to create the
reduced feature sets. For feature selection methods, we simply looked for the most
frequently selected features. For PCA-P and PLS-P, that combine the original
features into new features (the principal components and the latent variables re-
spectively) by a matrix transformation (P in Equations (2) and (6)), we computed
the contribution of each feature by summing up the absolute value of the scores
in the corresponding column of P. We then can highlight the following features:

– Source and translation lengths and language model probabilities.
– Vocabulary of the 1000-best translations divided by their average length.
– Number of source phrases of size one used in decoding.
– Number of source phrases used in decoding.
– Frequencies of source subsequences (sizes one to four). †
– Posterior probabilities of translation subsequences (sizes one and two).†
– Probability of the translation subsequences (sizes one and two) by a näıve

Bayes’ classifier.†

Additionally, for the subsequence-based features (marked with †) the most im-
portant sentence-level indicators were specifically the average value of the feature,
and the number of subsequences in the first and fourth quartile.

Despite this general result, we observed slight differences in the importance
of each feature according to the different methods. For example, the simple RFS
method tended to add lots of similar features, such as the posterior probabilities of
the target subsequences, which independently are quite informative but together
are highly redundant. In contrast, the more computationally complex GFS method
selected only one or two features that represent all features of the same type.

6 Summary and Future Work

We have proposed two novel DR methods based on PLSR and compared them
against several DR methods previously used in the QE literature. The DR methods
under consideration can be classified by their theoretical background: statistical
multivariate analysis or heuristic methods, or by how they perform the reduction:
feature selection or feature extraction methods. Moreover, we have studied how
DR affect the prediction performance of different learning models.

We have evaluated each DR method by the prediction performance of the
learning models trained on the corresponding reduced feature set. This quality
measure has the advantage of automatic evaluation, and, using identical pipelines
to train the models, it allows us to accurately compare the different DR methods.
The key results of the experiments are as follows:

– Feature extraction methods can outperform feature selection methods.
– Methods based on multivariate analysis can outperform heuristic methods.
– To obtain a good prediction performance, DR methods have to take into ac-

count the scores to be predicted.
– The performance-wise ranking of the DR methods is to a great extent inde-

pendent of the chosen learning model.



Dimensionality Reduction Methods for Machine Translation Quality Estimation 19

– However, for simple models such as linear regression the use of some DR meth-
ods may result in erratic learning curves.

One of the proposed DR methods, PLS-P, can be seen as a summary of the
conclusions: a feature extraction method based on multivariate analysis that takes
into account the values to be predicted to perform the reduction. Thus, it con-
sistently obtained the best results in the cross-validation training experiments.
Additionally, the unintuitive results observed in test (where PLS-P did not im-
prove baseline) can be explained by a difference between the distribution of the
features in training and test. The use of statistical tests to detect this problem is
then a necessary tool to build robust QE systems.

As future work, we plan to explore additional feature selection methods based
on redundancy minimization and relevancy maximization, and new feature ex-
traction methods based in nonlinear projections, and also to integrate statistical
tests over the features as a preliminary step to filter out problematic features.
Additionally, we also plan to investigate automatic techniques to estimate the in-
ternal dimension r of the problem, interactions between the features, and outliers
detection methods to efficiently use of the (usually) scarce training data.
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