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Abstract

The cellular multiplicity of infection (MOI) is a key parameter for describing the interactions between virions and cells,
predicting the dynamics of mixed-genotype infections, and understanding virus evolution. Two recent studies have
reported in vivo MOI estimates for Tobacco mosaic virus (TMV) and Cauliflower mosaic virus (CaMV), using sophisticated
approaches to measure the distribution of two virus variants over host cells. Although the experimental approaches were
similar, the studies employed different definitions of MOI and estimation methods. Here, new model-selection-based
methods for calculating MOI were developed. Seven alternative models for predicting MOI were formulated that
incorporate an increasing number of parameters. For both datasets the best-supported model included spatial segregation
of virus variants over time, and to a lesser extent aggregation of virus-infected cells was also implicated. Three methods for
MOI estimation were then compared: the two previously reported methods and the best-supported model. For CaMV data,
all three methods gave comparable results. For TMV data, the previously reported methods both predicted low MOI values
(range: 1.04–1.23) over time, whereas the best-supported model predicted a wider range of MOI values (range: 1.01–2.10)
and an increase in MOI over time. Model selection can therefore identify suitable alternative MOI models and suggest key
mechanisms affecting the frequency of coinfected cells. For the TMV data, this leads to appreciable differences in estimated
MOI values.
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Introduction

The cellular multiplicity of infection (MOI), the number of

virions effectively infecting a cell, is a key parameter for

understanding the dynamics and evolution of virus populations.

This number is highly relevant for virus evolution because: (i) MOI

is a determinant of the amount of genetic drift at the cellular level

and the distribution of different viral genotypes over cells, (ii)

complementation, recombination or reassortment between differ-

ent genotypes can only occur in mixed-genotype infected cells,

whilst mixed-genotype infections can only occur if the MOI .1,

(iii) MOI will be a determinant of the respective importance of

different levels of selection in viral evolution, and (iv) for many

viruses, defective interfering particles can be generated and

maintained for substantial periods of time if MOI is high.

Competition between virus genotypes occurs at the between-host,

within-host, within-tissue and within-cell levels, and the relative

importance of different levels of selection is modulated by MOI.

For example, low MOI levels (MOI #1) relax selection at the

within-cell level and increase selection at higher levels [1–6].

Cellular MOI is therefore not only relevant to mechanisms at the

cellular level, but is of great relevance to understanding viral

evolution.

Although the importance of MOI is widely recognized, few

estimates of the MOI of a virus in a complex multi-cellular host

have been made. Three experimental approaches have been used.

First, the rate at which a non-infectious virus is lost from a mixed-

genotype population allows for estimation of MOI [7], leading to

an estimated MOI of 4.3 during the final round of baculovirus

replication in an insect host [8]. Second, a more direct approach to

measure MOI is to infect a host with two marked virus variants

and subsequently identify which variants are present in individual

cells using sophisticated fluorescent-marker-based [2,9] or PCR-

based methods [10]. MOI is then estimated by using a simple

mathematical model that considers how many cells have been

infected by one or both variants. Using this approach, it was

shown that during Tobacco mosaic virus (TMV) infection of Nicotiana

benthamiana there are few cells coinfected by both virus variants,

suggesting MOI is low and does not increase above 2 [9,11]. For

Cauliflower mosaic virus (CaMV) infection of Brassica rapa MOI rose

from 2 to 13 as the virus expanded, and dropped to 2 again as the

infection progressed even further [10]. Finally, tracking of

infection during cell-to-cell expansion of two virus variants was

used to estimate MOI during primary infection of Soil-borne wheat

mosaic virus (SBWMV), rendering an estimated MOI of 6 and 5 for

the first and second rounds of cellular replication in the inoculated
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leaf, respectively [2]. This elegant approach renders estimates of

cellular MOI during the first few rounds of cellular infection, but

more general application thereof may be difficult.

At first glance the concept of MOI is straightforward: it is the

mean number of virions successfully infecting a population of cells.

There are, however, two possible ways to define MOI: (i) the

number of infecting virions over the total number of cells, which is

referred to as mT and has a range [0,‘), or (ii) the number of

infecting virions in infected cells, mI, and has a range [1,‘). Both

definitions are valid and are likely to be used in different contexts.

The first definition is particularly useful for describing manipulable

units in an experiment (e.g., virion dose and the number of cells,

for infection of cultured cells). The second definition, however,

gives a more readily interpretable value for understanding the

population genetics and evolution of a virus population. In this

case only infected cells are of interest because no viral replication

or interactions between genotypes occur in uninfected cells.

However, in both cases there are problems when applying these

concepts to a complex multi-cellular host. In particular, two

important assumptions are being made: (i) the population of cells is

homogenous, with each cell being equally susceptible to viral

infection, and (ii) there is free mixing of virions and cells, such that

each cell is equally accessible to virions. Moreover, if two virus

variants are used to estimate MOI, then there must also be free

mixing of the two virus variants. Although these assumptions may

be largely met for a monolayer of cultured cells, they will probably

not be met for a multi-cellular organism, with its complex spatial

organization of differentiated cells with varying susceptibilities

[12,13]. A key question is therefore to what extent the assumptions

of current MOI models are met, and whether this has important

implications for making meaningful in vivo MOI estimates.

Two mathematical models for estimating MOI, based on the

infection of a host with two marked virus variants and

subsequently the identification of which variants are present in

individual cells, have been proposed by González-Jara et al. [9]

and Gutiérrez et al. [10]. In this paper, these studies will

henceforth be referred to as Study 1 [9] and Study 2 [10]. Given

that it represents a fundamentally different approach to estimating

MOI, the model and data presented in Miyashita & Kishino [2]

will not be considered here. Our aim was to develop a better,

model-selection-based method to estimate MOI in complex multi-

cellular organisms in which simple models are likely to give

aberrant estimates of MOI. A new approach and methods for

calculating MOI for virus colonization of multi-cellular hosts are

presented, and consideration is given to the implications of using

different MOI estimation methods. We test whether the assump-

tion of a Poisson-distributed number of infecting virions over cells

is warranted, seven new models for estimating MOI are

developed, and it is shown how model selection can be applied.

Finally, MOI estimates generated by different methods for the two

experimental datasets are compared. These results reveal that

reported methods for estimating MOI are satisfactory for CaMV,

whereas for TMV an alternative model is better supported and

leads to different MOI estimates.

Materials and Methods

First, a description of the models used to estimate MOI in

Studies 1 and 2 is provided, along with some minor modifications

to the model fitting procedure for Study 1. Subsequently, a

method for determining whether the data follow a Poisson

distribution is presented. Next, alternative models for MOI

estimation are developed, and the model fitting and selection

procedure used is described.

Description of Previously Reported Approaches to MOI
Estimation

Model 1: MOI estimation method of Study 1. In order to

estimate MOI, González-Jara et al. [9] proposed that mI (the

number of infecting virions, considered only over the virus-

infected cells) be seen as a constant, and that the proportion of cells

infected only by variant A is then the zero-term of a binomial

distribution of the number of infecting virions of variant B:

Pr VB~vBð Þ~Pr Bð Þ=Pr A|Bð Þ

~
mI

vB

 !
pB

vB 1{pBð ÞmI{vB ,
ð1Þ

where VB is a random variable describing the number of virions of

variant B that is infecting a virus-infected cell, vB is a realization of

VB, and pB is the frequency of variant B estimated from the data as:

pB~1{pA~

f A\B
� �

zf A\Bð Þ
� ��

f A\B
� �

zf A\B
� �

z2f A\Bð Þ
� � ð2Þ

Throughout this study, we use f(?) to denote the observed

frequencies of each class of infected cells, whereas Pr(?) denote

the expected probabilities thereof. In equation 1, a statement of

equivalence to Pr Bð Þ=Pr A|Bð Þ is included to stress that the

binomial probability is calculated only over the fraction of infected

cells, Pr A|Bð Þ. Given that mI is constant, the expected frequency

of mixed-variant infected cells in the fraction of infected is then:

Pr A\Bð Þ=Pr A|Bð Þ~1{pA
mI{pB

mI : ð3Þ

Note that in this computation the observed frequency of

uninfected cells f A\B
� �

is not taken into consideration. The

predicted frequency of single and mixed-variant infected cells can

then be compared to the observed frequency by means of the

multinomial likelihood, although in Study 1 a G test [14] was used.

Nevertheless, to be able to compare the different methods for MOI

estimation, one can simply compare the observed fraction of

coinfected cells, f A\Bð Þ, to model predictions by means of the

binomial likelihood. For each individual observation:

L f A\Bð Þ=f A|Bð ÞDx,yð Þ

~
x

y

 !
f A\Bð Þy 1{f A\Bð Þð Þx{y

,
ð4Þ

where x is the total number of infected cells and y is the number of

mixed-variant infected cells, and we consider the sum of log-

likelihoods as a measure of model fit.

Model 2: MOI estimation method of Study 2. Study 2

[10] employs broadly the same experimental approach as Study 1,

although the authors’ method for MOI estimation assumes that

the distribution of infecting virions per cell follows a Poisson

distribution rather than being constant (Figures 1A and B), such

that Pr K~kð Þ~mk
Te

{mT
�
k!. The frequency of mixed-variant

infected cells is then:

Estimation of Cellular Multiplicity of Infection
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Pr A\Bð Þ=Pr A|Bð Þ~ 1{e{mTpað Þ 1{e{mTpbð Þ
1{e{mT

ð5Þ

See [15] for a detailed derivation of this equation. Here, pA could

be derived from the same data with equation 2, although in the

study the authors obtain estimates of pA by determining the

frequencies of variants in the whole leaf by means of qPCR [10].

The authors minimize the negative log likelihood, by obtaining

binomial likelihoods from the comparison of predicted and

observed number of mixed-variant infected cells, as in equation 4.

Testing Whether the Distribution of Infecting Virions
Follows a Poisson Distribution

If the number of infecting virions over the total number of cells

(mT) follows a Poisson distribution, then the observed fraction of

uninfected cells f A\B
� �

can be used to predict mT [15], the

relationship being:

Figure 1. MOI Models. This figure illustrates the different MOI models. For all panels, the number of infecting virions per cell is on the abscissae,
and the frequency thereof is on the ordinate. The black portion of bars is the frequency of single-variant infected cells, whereas the striped portion
corresponds to the frequency of mixed-variant infected cells. The white portion of bars in Panels E and F corresponds to cells that are not infected by
the virus because they are invulnerable to infection, as a consequence of the aggregation of virus-infected cells. For all left-hand panels, half of the
cells are uninfected (Pr A\B

� �
= 0.5), whereas for the right hand panel, only one-fifth of the cells remain uninfected (Pr A\B

� �
=0.2). For each panel

we also report the overall frequency of mixed-variant infections (Pr A\Bð Þ), the mean number of infecting virions in infected cells (mI), and model
parameters. The frequency of the two virus variants is assumed to be 1:1 in all cases. Panels A and B illustrate Model 2, the simple Poisson model.
Panels C and D illustrate Model 3, which incorporates the effects of spatial segregation of virus variants during expansion, the strength of which is
determined by time (t) and a constant Y. Note that mI and the overall shape of the distributions are the same; the only difference is the lower
frequency of mixed-variant infections for Model 3. Panels E and F illustrate Model 4, which incorporates a fraction of cells b that can become infected,
and a fraction 1 2 b that cannot. For this model, the zero-term of the Poisson distribution is composed of only those cells can become infected but
are in fact uninfected, leading to a higher mI and Pr A\Bð Þ. Panels G and H illustrate Model 5, which incorporates super-infection exclusion as
determined by time and a parameter m. This leads to a reduction of both mI and Pr A\Bð Þ. For Model 5, we have not illustrated v, the level of super-
infection exclusion at t = 0, which has the same effect as m but in a time independent manner.
doi:10.1371/journal.pone.0064657.g001
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mT~{ ln f A\B
� �� �

: ð6Þ

This relationship is an inevitable outcome of the assumption

that mT follows a Poisson distribution, which does not seem to be a

contested assumption [10]. One can partition mT over the two

variants A and B using equation 2, and predict the frequency of

mixed-variant infections using equation 5. The predicted and

observed values for the frequency of mixed-variant infected cells

can then be compared using a one-sided exact binomial test. This

test was performed for the reported experimental data of Studies 1

and 2, pooling the data from multiple replicates (i.e., different

plants). Data were pooled because of two characteristics of Study

2: (i) the PCR method, although having many advantages, entails

that the number of replicate cells tested per plant (#50) is limited

and will introduce more sampling error than the fluorescence-

based method, and (ii) the test proposed here can only be applied

when there is a fraction of uninfected cells, which due to the high

cellular infection rate and the limited number of cells tested is not

always the case for individual plants in Study 2.

Alternative MOI Models
A series of alternative models of MOI, which incorporate

mechanisms that could occur during viral infection of a complex

multi-cellular host, were formulated.

Model 3. Models 1 or 2 may fail due to spatial segregation of

virus variants during expansion within the host plant [2,16,17].

Spatial segregation is understood to be the fact that the two

variants occupy different spatial locations within the plant, and

that it is therefore impossible for cellular coinfection to occur in

some locations in the host, irrespective of the actual MOI. Two

assumptions are made to model this process: (i) the fraction of cells

in which both variants are present (i.e., both virus variants have a

local presence) decreases at a constant rate, and (ii) once the

variants have been segregated, the rate at which they reunite is so

low that unification can be ignored. Under these assumptions, the

fraction of mixed-variant infections will be smaller than expected

for a given value of mT, such that:

Pr A\Bð Þ=Pr A|Bð Þ~e{ty 1{e{mTpað Þ 1{e{mTpbð Þ
1{e{mT

ð7Þ

where y is a constant determining how strong the effects of spatial

segregation are and t is time, as measured in days post-inoculation

(dpi). The range of y is therefore [0,‘); negative values are not

possible as spatial segregation cannot increase the frequency of

mixed-variant infections. Note equation 6 can be used to predict

the MOI with this model; y is only estimated for model selection

and does not affect MOI. As y increases, so does the effect of

spatial segregation of variants over time, although the distribution

of infecting virions per cell is not changed for this model

(Figures 1C and D) with respect to Model 2.

This model of spatial segregation captures the physical process

that results in a given fraction of mixed-variant infected cells at a

given time point, without mechanistically modeling the reasons

why this spatial segregation has occurred. Possible reasons why

spatial segregation occurs include population bottlenecks during

the colonization of new organs or tissues, host spatial structure and

super-infection exclusion (Model 5). The key point is that the

distribution of virions remains unchanged, whereas for any given

number of infecting virions the probability of both variants being

present drops to zero for a part of the population of cells.

Consequently, a plausible and simple approach to modeling the

dynamics of spatial segregation will be an exponential function,

but other mathematical functions could be considered as well

without having major effects on model behavior.

Model 4. For viruses in general, the probability of infection

per virion may not be the same over all cells. Not all cells may be

equally vulnerable to viral infection [12,13,18] due to differences

in (i) the probability of infection even if a cell is exposed to the

virus, (ii) the probability that a cell will be exposed to the virus, or

(iii) both. This situation is exacerbated in plant viruses, because

they spread locally by means of cell-to-cell movement [2,19]. Cells

can only be infected by cell-to-cell movement if they are adjacent

to a virus-infected cell, which results in the spatial aggregation of

virus-infected cells [2,16]. If the probability of infection varies over

cells – for whatever reason – such differences will irrevocably result

in a higher frequency of mixed-variant infected cells at a given

level of cellular infection [20]. We chose to model these processes

using an approach developed by Barlow [21,22], such that:

mT~{ ln 1{f A\B
� ��

b
� �

: ð8Þ

b has a range [0,bmax), where bmax is the smallest value of f A|Bð Þ
for the dataset to which the model is to be fitted. There are two

ways to interpret the parameter b. First, there are only two

unconnected patches of cells, and the one containing no infected

cells (and therefore no infectious cells). The cells in the uninfected

patch can then be seen as being invulnerable to infection, and over

the whole population of cells there is a fraction 1– b that is

therefore invulnerable to infection. Second, b can be seen as a

measure of the spatial aggregation of virus-infected cells. For the

latter, when b= 1 there is no aggregation of infected cells and

when b< 0 there is maximum spatial aggregation of infected cells.

Because our modeling here concerns plant viruses in which cell-to-

cell movement is known to play an important role, the most

reasonable interpretation of b is the spatial aggregation of virus-

infected cells. On other hand, to illustrate the model it is easiest to

consider the effects of a predicted fraction of invulnerable cells has

on MOI and mixed-variant infections (Figures 1E and 1F). As the

fraction of invulnerable cells increases, so does mT.

Model 5. The assumption of independent action of viruses

during infection might fail. Plant viruses are thought to in some

cases exclude each other at the cellular level [16], a phenomenon

known as super-infection exclusion. In this case, the actual MOI

would be lower than predicted by the Poisson model. Moreover, to

allow for the possibility that such effects may change in strength

during the course of infection, the model was formulated as:

mT~{ve{tm ln f A\B
� �� �

, ð9Þ

where v is a constant that determines the strength of super-

infection exclusion at the cellular level at t = 0, and m is a constant

that determines how super-infection exclusion changes over time.

Given that we are not aware of a molecular mechanism that would

have the opposite effect of exclusion (i.e., inclusion of virions in a

cell that has already been infected by one virion), we set the range

of v to [0,1] and m to [0,‘). The key point of the model is that the

distribution of infecting virions is affected, whilst for any number

of infecting virions the probability of both variants occurring is the

same as Model 2 (Figure 1G and H).

Super-infection exclusion will lead to a reduction of mixed-

variant infections observed for each time point, similar to spatial

segregation of variants (Model 3). However, unlike spatial

segregation, super-infection exclusion leads to a reduction in

Estimation of Cellular Multiplicity of Infection
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mixed-variant infections because it affects the distribution of

infecting virions, lowering its mean (Figures 1G and 1H). It is

important to note that super-infection exclusion may also lead to

spatial segregation over time. If such an effect were to occur, one

would expect a lowered frequency of mixed-variant infections at

every time point, and the segregation of variants over time. Model

selection would then be expected to identify Model 8 (see below) as

the best supported model, because it incorporates both super-

infection exclusion and spatial segregation of variants, while not

specifying the mechanism that results in spatial segregation of

variants.

To allow for dynamic change in the strength of super-infection

exclusion, the mean number of infecting virions was modulated

with an exponential function. It could not be predicted a priori how

super-infection exclusion might change dynamically. An expo-

nential function and an extra constant regulating the strength of

super-infection exclusion at t = 0 (v) were therefore incorporated

because it offers greater flexibility than a linear model and first

attempts to fit the model showed this function allowed for better fit

than alternative functions. As its effects on mixed-variant

infections are similar, Model 5 is in effect a ‘stalking horse’ for

Model 3.

Models 6, 7, 8 and 9. The different alternative models of

MOI were also combined, especially since a clear hypothesis could

not be formulated a priori on what effect or combinations of effects

may account for the discrepancies between the Poisson model and

the data. The combined models and their free parameters are

given in Table 1. For Models 6, 8 and 9, y does not affect MOI

estimates directly but this parameter could affect estimates of other

model parameters (b, v and m) that do directly affect MOI during

model fitting.

Model Selection and MOI Predictions
MOI models 2 through 9 all link f A\B

� �
to Pr A\Bð Þ,

allowing one to perform model selection to choose the model best

supported the data. Model 2 does not have any parameters that

need to be estimated. Models 3 through 9 were fitted to the pooled

data sets using the statistical computing software R 2.14 [23]. We

first performed grid searches, which minimized negative log

likelihood (NLL; determined using equation 4), over large

parameter spaces to search for a global solution. Stochastic hill

climbing was then performed separately on 1000 bootstraps of the

data, rendering parameter estimates and their 95% confidence

interval (CI). The Akaike Information Criterion (AIC) was used to

determine how much support the data provide to a particular

model. The estimates of mT rendered by the fitted models are then

the predictions of MOI, which were subsequently used to estimate

mI. Assuming both mI and mT are Poisson distributed, the

relationship between mI and mT will be that same as that of

zero-truncated Poisson distribution and a complete Poisson

distribution [24]:

mI~mTe
mT = emT{1ð Þ ð10Þ

Bootstrapping was also used to obtain the 95% CI for MOI

estimates.

Fitting of the Logistic Growth Model to the Data
In order to estimate the fraction of cells which will eventually

become infected, the logistic growth model:

Pr A|Bð Þt

~
Pr A|Bð Þ0k

Pr A|Bð Þ0z k{Pr A|Bð Þ0
� �

e{r0t
,

ð11Þ

was fitted to the inoculated leaf data of Study 1 and the complete

data of Study 2 using nonlinear regression (SPSS 20.0), where k is

the carrying capacity and r0 is the initial growth rate.

Results

The Two Methods for Estimating MOI Render a Different
Parameter

The MOI estimation methods of Studies 1 [9] and 2 [10]

provided different parameters, although both are called MOI. The

method of Study 1 (Model 1 in our study) estimates mI, the MOI

over infected cells, given that only this fraction is considered

(equation 3). For the method of Study 2 (Model 2 in our study), the

expected frequency of mixed-variant infected cells is divided by the

fraction of uninfected cells, and hence m-values concern the mean

of a non-truncated Poisson distribution (equation 5). This

difference is non-trivial; mI and mT have a different range, and

the relationship between their respective means is given by

equation 10. For low levels of infection, mI.mT whereas for higher

values mI < mT (Figure 2). Nevertheless, in this case the estimates

reported in the two studies are roughly comparable if considered

as mI estimates: for Study 2 the MOI is high, the majority of cells

tend to be infected [10] and hence the zero fraction of the

Table 1. Overview of Models 2 through 9.

Model Spatial segregation Aggregation of virus-infected cells Super-infection exclusion Model parameters

2 –

3 X Y

4 X b

5 X v, m

6 X X Y, b

7 X X b, v, m

8 X X Y, v, m

9 X X X Y, b, v, m

An X indicates the mechanisms incorporated by the different models. Note that Model 2 incorporates none of these mechanisms, and that Models 3–5 incorporate only
one mechanism. Model 1 is not included in the overview, given that we can only make a formal comparison of the Poisson-based models.
doi:10.1371/journal.pone.0064657.t001
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predicted Poisson distribution is small and does not lower the

estimate much.

The Simple Poisson Model is not Supported for either
Data Set

The two previously reported methods for calculating MOI differ

with respect to whether the number of infecting virions is assumed

to be constant (Model 1) or variable (Model 2), following a Poisson

distribution. A Poisson distribution represents the minimal

variation that would be expected for independently acting virions

infecting cells, and as such we would expect a priori that this is a

significant improvement. However, if the assumptions underlying

the Poisson-based model are not met, there could be important

implications for MOI estimates. A simple test of whether the

experimentally observed distribution of the two virus variants over

cells is similar to that predicted by a Poisson distribution was

therefore developed (See Materials and Methods), and the Poisson

model was rejected for both datasets (Table 2). Note that a similar

test could not be performed for Model 1, since this model is

concerned only with the fraction of infected cells.

For the Study 2 data, the Poisson model was rejected in all five

cases, and the observed frequency of mixed-variant infections was

significantly lower than model predictions in three cases and

significantly higher in two cases. To determine if this is not an

effect of pooling the data, tests were also performed for data from

individual plants when possible (i.e., f A\B
� �

w0). Despite the

decrease in power due to the smaller numbers, the Poisson model

is still rejected in six out of 14 cases: four cases being significantly

lower and two cases significantly higher (data not shown).

Although the differences between the data and model are highly

significant for Study 2, they are not as drastic as for the data of

Study 1.

Model Selection Results
A set of probabilistic models for predicting MOI, incorporating

different mechanisms that may account for the rejection of Model

2, were developed. For a detailed description of these seven models

(Models 3 to 9), see the Materials and Methods section. An

overview of the models is given in Table 1, and a description of the

models incorporating a single additional mechanism (Models 3, 4

and 5) is given in Figure 1. When model selection was performed

over the set of eight models (Model 2 as the null model, and

Models 3 to 9), it was found that for Study 1 Model 3 had the most

support (Table 3). Model 3 incorporates only a single additional

mechanism: spatial segregation of variants over time. There was

also some support for Model 6 (Table 3), which incorporates both

spatial segregation of variants and aggregation of infected cells.

However, the difference in model fit (i.e., NLL) between Models 6

and 3 is minimal, suggesting that the most important mechanism

required is the spatial segregation of virus variants. Similar results

were obtained for the data of Study 2 (Table 4). Overall, the best-

supported model was Model 6, but of the models incorporating

only a single additional mechanism, Model 3 was again the best

supported. Moreover, given that most cells are virus-infected in the

data of Study 2 [10], aggregation of infected cells cannot play a

very important role. Therefore, for both data sets the spatial

aggregation of variants best describes the discrepancies between

the data and the simple Poisson model, with a secondary role for

the aggregation of virus-infected cells in Study 2. However, model

parameter estimates reveal that both effects are considerably

weaker for the data of Study 2, where the discrepancies between

the data and the Poisson model are also smaller (Table 2).

A logistic growth model was fitted to the data to estimate the

carrying capacity (k), expressed as a proportion of total cells, and

test whether the kinetics of replication suggest that infection will

saturate before all cells are infected. This procedure generated k
estimates, with the 95% CI in brackets, of 0.846 (0.756–0.936) for

Study 1 and 0.961 (0.850–1.072) for Study 2. For Study 1 virus

expansion appears stop to before all cells have become infected,

whereas for Study 2, infection levels are very high and almost all

cells become infected. If we consider the alternative interpretation

of b as the frequency of cells which are vulnerable to infection, k
estimates from the logistic growth model should be roughly

comparable to b. For Study 1, b estimates, with the 95% CI in

brackets are 0.979 (0.931–1), whereas for Study 2 b is 0.995

(0.995–1) (Tables 3 and 4). The 95% CIs for the two estimated

parameters therefore overlap for both Studies 1 and 2. Neverthe-

less, k estimates appear to be somewhat lower than those of b, and

the parameter estimates may not allow for a meaningful

comparison as the maximum value of b is 1. Note that although

b < 1, for Study 2 it still has an effect on model fit and MOI

estimates because most cells are infected (equation 8).

Predicted MOI Values
To better understand the implications of the different models for

MOI estimation, three approaches were used to estimate MOI for

data from Studies 1 and 2. First, the method of Study 1 (Model 1)

was used to estimate mT. Second, the method of Study 2 (Model 2)

was used to estimate mT, and equation 10 was then used to

estimate mI values. Third, the best-supported model was used to

estimate mI, by means of equations 8 and 11. For Study 1,

estimated mI values were highly similar for Models 1 and 2, whilst

Model 3 gave a diverging result (Figure 3). The results for Models

1 and 2 are similar to the results of Study 1 [9,11] and the results

for pooled data of Study 2 (see Figure S2 in [10]). The similarity of

the results for Models 1 and 2 is somewhat surprising, given that

Model 1 assumes the number of infecting virions to be fixed and

Model 2 assumes it follows a Poisson distribution. Model 3 renders

much higher estimates of MOI for the data of Study 1 than

Models 1 and 2. This difference results from including the

predicted effects of spatial segregation of variants as infection

progresses, because this mechanism allows for the combination of

a high rate of cellular infection and a low rate of mixed-variant

infected cells. For the data of Study 2, MOI estimates of the

Figure 2. A comparison of mT and mI. The relationship between mT

(abscissae) and mI (ordinate) is plotted as the continuous line. The
dotted line is a 1:1 relationship, given for comparative purposes.
mI.mT, although for higher values (.4) the difference becomes very
small. Note that mT and has a range [0,‘) whilst mI has a range [1,‘).
doi:10.1371/journal.pone.0064657.g002
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Table 2. Test of the Poisson model.

Study Leaf Day pa mT

Pr A\Bð Þ f A\Bð Þ

Binomial P Da

1 Ib 2 0.505 0.03 0.007 0.030 0.080

Ib 4 0.447 0.14 0.034 0.039 0.524

Ib 7 0.431 0.74 0.181 0.045 ,0.001*** ,

Ib 11 0.375 1.72 0.380 0.027 ,0.001*** ,

Sc 4 0.117 1.06 0.109 0.040 ,0.001*** ,

Sc 7 0.136 1.08 0.126 0.051 ,0.001*** ,

Sc 11 0.303 1.73 0.348 0.030 ,0.001*** ,

2 6 15 0.898d 3.40 0.289 0.207 0.019* ,

12 27 0.866d 2.21 0.246 0.426 ,0.001*** .

21 41 0.924d 5.12 0.321 0.476 ,0.001*** .

33 56 0.788d 3.78 0.536 0.430 0.006** ,

43 72 0.823d 3.80 0.478 0.223 ,0.001*** ,

A test of the Poisson model, using the proportion of uninfected cells to predict the occurrence of mixed-variant infected cells.
aD indicates whether the observed frequency of mixed-variant infected cells f A\Bð Þ is greater than or less than the predicted value Pr A\Bð Þ, if the difference is
significant.
bThe inoculated leaf.
cSystemically infected leaf.
dIn these cases pa is the mean qPCR-measured frequency, instead of being derived from the frequencies of infected cells, given that these data are not reported in the
study.
doi:10.1371/journal.pone.0064657.t002

Table 3. Model selection with the data of Study 1.

Model Parameter estimates NLL AIC DAIC AW

2 – 2142.528 4285.056 4179.399 0

3 Y= 0.213 [0.200–0.224] 51.829 105.657 – 0.595

4 b= 1 [0.976–1] 2142.528 4287.056 4181.399 0

5 v= 1 [0.998–1] 53.400 110.800 5.142 0.046

m= 0.217 [0.205–0.228]

6 Y= 0.218 [0.206–0.235] 51.777 107.554 1.896 0.231

b= 0.979 [0.931–1]

7 b= 1 [0.970–1] 53.400 110.800 7.142 0.017

v= 1 [*]

m= 0.217 [0.206–0.230]

8 Y= 0.213 [0.099–0.219] 51.829 109.657 4.000 0.081

v= 1 [*]

m= 0 [0–0.116]

9 Y= 0.218 [0.100–0.229] 51.777 111.554 5.896 0.031

b= 0.979 [0.939–1]

v= 1 [*]

m= 0 [0–0.120]

MOI Models 2–9 were fitted to the pooled data of Study 1 [9]. We give estimates
of model parameters with the 95% CI in parenthesis, and an asterisk indicates
the lower and upper 95% CI limits coincide with the estimate parameter value.
For each model we also provide the negative log likelihood (NLL), Akaike
information criterion (AIC), the difference between a given model and the best-
supported model in AIC (DAIC), and the Akaike Weight (AW). Overall, Model 3 is
the best-supported model, although there is also some support for Model 6,
which combines the single mechanisms incorporated in Models 3 and 4. The
improvement in model fit (NLL) between Models 6 and 3 is, however, minimal.
doi:10.1371/journal.pone.0064657.t003

Table 4. Model selection with the data of Study 2.

Model Parameter estimates NLL AIC DAIC AW

2 – 65.029 132.057 33.497 0

3 Y= 0.004 [0.001–0.024] 55.579 113.158 14.597 0.001

4 b= 1 [0.995–1] 65.029 134.057 35.497 0

5 v= 1 [*] 56.540 117.079 18.519 0

m= 0.005 [0.002–0.009]

6 Y= 0.005 [0.002–0.008] 47.280 98.561 – 0.755

b= 0.995 [0.995–1]

7 b= 0.995 [0.995–1] 47.955 101.910 3.349 0.142

v= 1 [0.902–1]

m= 0.006 [0.003–0.098]

8 Y=0.004 [0–0.019] 55.579 117.158 18.597 0

v= 1 [0.986–1]

m= 0 [0–0.006]

9 Y= 0.005 [0–0.009] 47.280 102.561 4.000 0.102

b= 0.995 [0.995–1]

v= 1 [0.998–1]

m= 0 [0–0.008]

MOI Models 2–9 were fitted to the pooled data of Study 2 [10]. We give
estimates of model parameters with the 95% CI in parenthesis, and an asterisk
indicates the lower and upper 95% CI limits coincide with the estimate
parameter value. For each model we also provide the negative log likelihood
(NLL), Akaike information criterion (AIC), the difference between a given model
and the best-supported model in AIC (DAIC), and the Akaike Weight (AW).
Overall, the best-supported model is Model 6, which combines the single
mechanisms incorporated in Models 3 and 4. Of the models adding only one
addition mechanism to the original Poisson model (Models 2–4), Model 3 leads
to the greatest improvement in fit (i.e., it has the lowest NLL).
doi:10.1371/journal.pone.0064657.t004
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different models diverge less, although Model 6 predicts that the

MOI will remain somewhat more constant over time than do

Models 1 and 2. Particularly at later time points in infection,

Model 6 predicts MOI values that are considerably higher than

those predicted by Models 1 and 2. This discrepancy can again be

attributed to the spatial segregation of virus variants in Model 6.

Discussion

MOI has been estimated for complex multi-cellular organisms

using sophisticated experimental setups and mathematical models

[8,9,10]. Nevertheless, the concept of MOI is still largely based on

virus infections in cell culture, where there is a homogeneous

population of cells in a largely unstructured environment in which

virions can freely mix. By considering MOI during virus spread at

the cellular level, Miyashita & Kishino [2] have developed the

concept further. However, such a development is also necessary

when considering MOI at the level of the whole host or host

organs. By means of comparing the data to predictions of the

Poisson null-model (Model 2) and by performing model selection

over a range of alternative models (Models 3 to 9), it has been

shown here that the simple ‘cell culture’ model is in some cases not

sufficient to estimate MOI. Moreover, these results demonstrate

that the alternative models can render better-supported estimates

of MOI for some data sets. As such, the combination of these

alternative models of MOI and model selection is a useful tool for

calculating MOIs based on experimental data.

The new methods presented here, however, also have additional

advantages. For both studies, similar models received the most

support from the data. For the datasets of both studies, the best-

supported model incorporated the spatial segregation of variants

(Model 3). For Study 2, it was clear that a further mechanism was

also required: the aggregation of virus-infected cells (Model 4), as

embodied in the model combining these two mechanisms (Model

6). Model 6 also had limited support for the Study 1 data, but the

improvement in fit over Model 3 is minimal. Knowing what

mechanisms lead to the rejection of the Poisson model is of interest

Figure 3. A comparison ofmI estimates fromModels 1, 2 and 6. The estimated MOI (mi) is given for the inoculated leaf in Study 1 (Panels A, D
and G), for the systemic leaf in Study 1 (Panel B, E and H), and for different systemic leaves collected at different times points in Study 2 (Panel C, F
and I) using Model 1 (Panels A–C), Model 2 (Panels D–F), Model 3 (Panels G and H, blue lines and diamonds) and Model 6 (Panel I, red lines and
squares). Model 3 is the best-supported model for the Study 1 data, whereas Model 6 is the best-supported model for the Study 2 data. The days
post-inoculation (dpi) are given on the abscissae, whereas mI is the ordinates. Error bars represent the 95% CI, and are marked with an asterisk when
they extend to infinity (Panel I at 21 dpi). For the data of Study 1 (Panels A, B, D, E, G, and H), Models 1 and 2 both predict that MOI remains low
throughout infection. On the other hand, Model 3 predicts that MOI increases over time, as this model incorporates the effects of spatial segregation
of variants (Panels G and H). Note that Model 6 predictions are nearly identical to Model 3 predictions for Study 1. For the data of Study 2 (Panels C, F
and I), model predictions are roughly similar and the dynamic pattern is the same. However, the differences in MOI over time are less pronounced for
Model 6, in particular the decrease of MOI towards the end of infection. This difference is again due to predicted segregation of variants incorporated
in Model 6, although the predicted effects thereof are much weaker for the data in Study 2 than in Study 1 (Tables 3 and 4).
doi:10.1371/journal.pone.0064657.g003

Estimation of Cellular Multiplicity of Infection

PLOS ONE | www.plosone.org 8 May 2013 | Volume 8 | Issue 5 | e64657



for better understanding the infection process. The fact that the

including the spatial segregation of virus variants over time leads to

high levels of support is therefore noteworthy and suggests that

perhaps this model has a degree of generality. Nevertheless, the

differences in support for the models (i.e., DAIC values in Tables 3

and 4) again suggest that the deviations from the simple Poisson

model (Model 2) are much smaller for the data of Study 2 than of

Study 1. Moreover, it should be considered that the DAIC

between Models 3 and 5, which incorporates time-varying super-

infection exclusion, was not very large for both datasets (Tables 3

and 4). Further experimental confirmation of these results is

therefore needed before it can be concluded with a reasonable

degree of certainty what is the chief mechanism leading to low

levels of cellular co-infection.

The approach presented here does not lead to highly divergent

results for the data of Study 2. There are some differences in MOI

estimates, but the dynamic pattern is the same and values are

roughly comparable (Figure 3). Moreover, although the results do

not support a Poisson-distributed number of infecting virions, the

discrepancies between the data and model are minor. Further-

more, during model selection the improvement in model fit –

although being appreciable – is not nearly as large as for the Study

2 data (Tables 3 and 4). Finally, small values are estimated for y
and b, suggesting that the deviation from the Poisson model is not

important. Overall, therefore, our analysis suggests that for the

estimation of MOI for the data of Study 2, Models 1 and 2 are

satisfactory, given that the deviations from the Poisson model are

small and do not have large effects on estimates. It can therefore

be concluded that even if the data only roughly approximate the

assumption of a Poisson-distributed number of infecting virions,

Models 1 and 2 still give surprisingly good estimates of MOI. A

test of whether the data meet this assumption (e.g., Table 2) is

therefore a useful diagnostic tool, although given the apparent

robustness of Models 1 and 2, considering whether the expected

frequencies are ‘ball park’ estimates is more important than

statistical significance. These results therefore exemplify the

limitations of simple models when model assumptions are not

met (results for Study 1), while simultaneously demonstrating that

these same simple models are remarkably robust to small

violations of model assumptions (results for Study 2).

For the data of Study 1, MOI values predicted by Model 3 are

much higher than MOI values predicted by Models 1 and 2. In

this case, model selection predicts that there will be strong spatial

segregation of variants during TMV infection of N. benthamiana.

Whether these predicted patterns occur during actual infection of

plants can be empirically tested, and suggests new avenues of

experimental research. Ultimately, our research strongly reinforces

the idea that for the estimation of in vivo MOI in multicellular

organisms, it is indispensable to move beyond the ‘cell culture’

conceptual model and consider the effects of spatial processes

occurring during viral expansion in these complex hosts [2].
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