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Abstract

Object This study demonstrates that 3T SV-MRS data can be used with the currently available automatic brain
tumour diagnostic classifiers, which were trained on databases of 1.5T spectra. This will allow the existing
large databases of 1.5T MRS data to be used for diagnostic classification of 3T spectra, and perhaps also the
combination of 1.5T and 3T databases.

Materials and Methods Brain tumour classifiers trained with 154 1.5T spectra to discriminate among high grade
malignant tumours and common grade Il glial tumours were evaluated with a subsequently-acquired set of 155
1.5T and 28 3T spectra. A similarity study between spectra and main brain tumour metabolite ratios for both field
strengths (1.5T and 3T) was also performed.

Results Our results showed that classifiers trained with 1.5T samples had similar accuracy for both test datasets
(0.87+0.03 for 1.5T and 0.88 +0.03 for 3.0T). Moreover non-significant differences were observed with most
metabolite ratios and spectral patterns.

Conclusion These results encourage the use of existing classifiers based on 1.5T datasets for diagnosis with 3T
'H SV-MRS. The large 1.5T databases compiled throughout many years and the prediction models based on
1.5T acquisitions can therefore continue to be used with data from the new 3T instruments
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Abbreviations

'H SV-MRS single voxel proton magnetic resonance
spectroscopy

ACC
ANN
CDSS
CG2G

accuracy
artificial neural networks

clinical decision support systems
common grade II glial

G geometric mean of recalls

HGM
KNN
LDA

high grade malignant
k-nearest neighbors

linear discriminant analysis
PI peak integration

SNR
sSw

signal-to-noise ratio
stepwise

TE echo time

1. Introduction

The current development of automatic brain tumour classifiers
based on single voxel proton magnetic resonance spectroscopy
("H SV-MRS) data has provided promising results for brain
tumour diagnostic support [1, 2, 3, 4]. A growing number
of studies and applications have been presented in the last
few years showing the ability of MRS to distinguish among

different brain tumour tissue types [5, 6, 7, 8, 9, 10, 11, 12].

These systems are mostly based on the pattern recognition
approach, where classification models have been inferred from
experimental data, after the extraction of relevant features
[13, 14, 15].

The learning procedures commonly used in pattern recog-
nition assume that samples are independent and identically
distributed; therefore, these classifiers are expected to be use-
ful when classifying spectra acquired in similar configurations
to those in the training data. This assumption represents a
challenge when new spectra are acquired with an evolving
technology, such as changing from 1.5T to 3T MR scanners.
3T scanners are becoming widely available in the clinical
environment, complementing the more common 1.5T scan-
ners. Their increased magnetic field improves signal-to-noise
ratio (SNR), and spectral resolution: the latter is particularly
important for short echo time (TE) spectra [16, 17] as fine
structure in the Gln/Glu region of the spectrum downfield
from NAA is better resolved, and resonances downfield from
water are better visualized [17]. This better resolution of
overlapping signals from coupled spin systems also improves
metabolic characterization, thus enhancing the diagnostic abil-
ities of MRS

Despite these advantages, it would take many years to
develop databases of 3T brain tumour spectra comparable to
those currently available at 1.5T, so there is a strong incen-
tive to use 1.5T-based classifiers to characterize 3T spectra.
However, the currently available 1.5T based classifiers have
not been validated on 3T data and it is not yet known whether
we can expect a decrease in their level of performance due
to differences in the overall spectral patterns. Such differ-
ences may arise from a variety of factors, both biophysical
and instrumental: differences due to coupling or T2 relaxation
times; and artefacts arising from water residuals or chemical
shift displacement across the localization voxel. The study
of Baker et al. [17] showed subtle differences between the
spectra obtained at the two field strengths, including better-
resolved peaks of the NAA amide and glutamate/glutamine
region at 3T compared to 1.5T and a peak at 3.3 ppm clearly
observable in some subjects at 1.5T, which was less prominent
at 3T.

Some authors have suggested the application of estab-
lished 1.5T metabolite ratios for the evaluation of brain tu-
mours at 3T [16]. Additionally, Roser et al. [18] concluded
that the change from 2T to 1.5T had no measurable delete-
rious effect on multidimensional metabolic classification for
assignment of glial brain tumours.

To analyze this behavior, we have performed a study of
the performance of 1.5T based classifiers when tested with 3T
spectra. The main goal of our study was to test the compatibil-
ity of 1.5 and 3T data when they are used on automatic brain
tumour clinical decision support systems (CDSS) [19, 20]. To
achieve that goal, a standard spectrum-processing protocol has
been applied, and the performance of different feature extrac-
tion methods and classification algorithms has been analyzed.
Classifiers already included in a CDSS [21, 22] have been
tested on new 1.5T and 3T acquisitions, and their performance
has been evaluated on the well-known test problem [23] to
discriminate tumours high grade malignant (HGM) - glioblas-
toma and metastases -, from common grade II glial (CG2G)
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- astrocytomas grade II, oligodendrogliomas and oligoastro-
cytomas — A hypothesis testing of the accuracy of each
combination of feature extraction and classification methods
was performed to evaluate the compatibility between 3T data
and the existing classifiers based on 1.5T data. Finally, a
study on the differences between spectra obtained at both field
strengths was performed, analyzing the differences between
the main brain metabolite ratios and spectra shapes.

2. Materials and methods

2.1 In vivo 'H SV-MRS datasets

Three datasets were used in our study. The first one is a train-
ing 1.5T '"H SV-MRS dataset accrued during the INTERPRET
EU project [5]. The second dataset is part of the 1.5T dataset
compiled in the e TUMOUR EU project [24], and was used
as an independent test set to evaluate the performance of the
classifiers. The third dataset is a new 3T dataset used to evalu-
ate the performance of the 1.5T classifiers on 3T cases. All
the datasets were obtained using magnetic resonance (MR)
scanners of three major manufacturers (Philips, General Elec-
tric and Siemens) in ten international centers. The number of
cases used in each dataset is shown in Table 1.

The 1.5T training dataset included 154 1.5T short TE SV-
MRS spectra. The acquisition protocols included PRESS or
STEAM sequences with the following spectral parameters:
Repetition Time (TR) of 1600-2020ms, echo time (TE) of
20 or 30-32ms, spectral width (SW) of 1000 - 2500Hz, 512,
1024, or 2048 data-points, as described in previous studies
[4]. All these cases were validated using a standard quality
control protocol carried out by the INTERPRET Clinical Data
Validation Committee and expert spectroscopists [5, 25], and
all had a histopathological diagnosis.

The 1.5T test dataset included 155 1.5T short TE SV-
MRS spectra. These spectra were validated by an expert
spectroscopist panel, and the histopathological diagnosis of
these cases was also available. The acquisition protocols
included PRESS and STEAM with spectral parameters: TR
of 1500-2000ms, TE of 30 — 31ms, SW of 500-2500Hz, 512,
1024, or 2048 data-points.

The 3T test dataset included 37 spectra and came from
two different sources. The first 21 spectra were obtained in
the eTUMOUR project, including 4 CG2G tumours and 17
HGM tumours . Their histopathological diagnoses were also
available. The scanner used was GE Signa 3T. The acquisition
parameters included PRESS sequences with spectral parame-
ters: TR of 2000 - 5000ms, TE of 30ms, SW of 1000Hz, 2048
data-points. The remaining 16 spectra were acquired at the
Hospital Quirén of Valencia on a Philips scanner. There were
11 histopathology proven HGM tumours and 5 CG2G tumours
in which the diagnosis was made on clinical grounds, radio-
logical appearance, and follow up. The acquisition protocols
included a PRESS sequence with spectral parameters: TR of
1800-2000ms, TE of 32 ms, SW of 2000Hz,1024 data-points.
The TE’s were optimized for a satisfactory SNR without los-
ing any metabolite resonances or showing coupling variations.
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Table 1. Number of 1H SV-MRS spectra in each dataset per
tumour type. High Grade Malignant (HGM), consisting of
glioblastomas and metastases, and common grade II glial
(CG2G) consisting of astrocytomas grade II,
oligodendrogliomas and oligoastrocytomas.

Dataset CG2G HGM Total
1.5T Training 34 120 154
1.5T Test 53 102 155
3T Test 9 28 37

In Figure 2, spectra sample of the two tumour types in-
cluded in the study are presented from 1.5T and 3T MR scan-
ners.

2.2 MRS processing
A common MRS processing pipeline, previously used in the
INTERPRET and eTUMOUR EC projects, and included in
the CDSS software they developed [22, 26, 24], was applied
in the present study. Each spectrum was semi-automatically
pre-processed using a pipeline consisting of 1) eddy current
correction applied to the water-suppressed free induction de-
cay of each case using the Klose algorithm [27]; 2) zero and
first order manual phase correction; 3) residual water res-
onance suppression by the Hankel-Lanczos singular value
decomposition time-domain selective filtering using 10 sin-
gular values and a water region of [4.33, 5.07] ppm; 4) an
apodization with a Lorentzian function of 1Hz of damping; 5)
zero filling, to increase the number of points of the low reso-
lution spectra to the maximum number used in the acquisition
protocols (2048); 6) baseline offset subtraction, estimated as
the mean value of the regions [11, 9] and [-2,-1] ppm; 7) nor-
malization of spectra to the Euclidean norm using the regions
[-2.7,4.33][5.07, 7.1] ppm; 8) additional frequency alignment
check of the spectrum by referencing the ppm-axis to the total
creatine at 3.03ppm or to the choline-containing compounds
at 3.21 ppm or the mobile lipids at 1.29ppm, depending on
the SNR and the tumor pattern; and finally 9) reduction of
the number of points of the spectra, using 512 points for the
defined region of [-2.7, 7.1] ppm. No corrections for T1 or T2
relaxation effects were made to the spectra prior to the pattern
recognition analysis.

The software used to pre-process the spectra was jJMRUI
3.0 [28] in batch mode (steps 1-5) and jDMS [26] (steps 6-9).

2.3 Feature extraction method

One of the major problems in spectral classification arises
from the number of variables that represent the full region of
interest (190 data points in this case). The use of a large num-
ber of variables in classification problems generally overfits
the training sample and generalizes poorly to new samples. To
overcome this problem, the variables are usually transformed
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Figure 1. Example short TE spectra from 1.5 and 3T MR
scanners of the two tumour types used in this study. Spectra
have been processed as described in section 2.2.

into a reduced representation set of features that maintains the
most representative information [29].

Two different feature extraction methods were used in this
study: stepwise (SW) and peak integration (PI). SW is a sub-
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optimal greedy hill climbing approach [30]. This algorithm
was applied with the Mahalanobis squared distance, for se-
lecting relevant subsets of features based on the performance
measure of the training classification. PI computes the value
of the area under the peaks of the most relevant metabolites
as a representation of the significant information contained in
the spectra. To obtain the areas under the peaks we consid-
ered an interval of 0.15 ppm from the assumed peak centre
(Figure 2).The metabolites used were mobile lipids, lactate,
alanine, N-acetyl asparate, creatine, total choline, glutamine,
glutamate, myo-inositol+glycine, and taurine.

SW is an automatic feature selection method that does
not assume any a prior knowledge; in contrast PI uses the
knowledge of the experts to select the potentially most relevant
parts of the spectra for discrimination purposes.

2.4 Classifiers

Fisher’s linear discriminant analysis (LDA), k-nearest neigh-
bors (KNN) and artificial neural networks (ANN) were used
for the classification. All of them have been successfully ap-
plied in a CDSS for brain tumor diagnosis based on MRS [1,
5,31].

Fisher’s LDA [32] is a classification technique that finds
the linear combination of features that best separates the
classes of objects. It consists of a ratio between the difference
of the projected means and a measure of dispersion of each
class. This function is optimal when the distance between
means is maximal and the inside class dispersion is minimal.

ANN are data models composed by an interconnected
group of simple processors that work in parallel to process
the information from the input to the output [14]. A multi-
layer perceptron trained with the back-propagation algorithm
with Bayesian regularization was used. The architecture of
the network considered here had two hidden layers with 10
perceptrons in each layer. The activation function for each
neuron or processor was the hyperbolic tangent function.

The KNN algorithm is an instance-based method for clas-
sifying objects based on the closest training examples in the
feature space given a metric. A number of kK = 8 has been
chosen for this study after carrying out an empirical tuning
using the training dataset.

2.5 Performance Measures
To determine the performance of a classifier, the following
evaluation metrics were selected:

e accuracy (ACC) : Defined as %, where N1 is the
number of samples correctly predicted by the classifier

and N is the total number of samples used for testing.

e geometric mean of recalls (G): Defined as the |C| —th
root of the product of all the successful predictions
for each type of class, where |C| is the total number
of classes, N. T is the number of samples of class C
correctly predicted by the classifier and N, is the total
number of samples of class C used for testing (Equa-
tionl). This nonlinear metric is especially useful for
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determining the average success of every discriminated
class. This estimator is more pessimistic than the com-
monly used balanced accuracy rate (BAR), being high
if and only if the accuracy of each class is high and they
are in equilibrium [33].

+
G= ‘C,‘/HA]/\‘]—" (1)

2.6 Statistical Analysis
To evaluate the compatibility between 3T data and the classi-
fiers based on 1.5T data, the Pearson’s xz test (a = 0.05) for
a contrast hypothesis was performed on the accuracy for each
combination of feature extraction and classification methods.

To complete the compatibility study between 1.5 and 3T
SV-MRS, the differences between the main brain metabo-
lite ratios were compared for both field strengths. Hence,
non-parametric Mann-Witney U test and box-and-whisker di-
agrams were calculated. The peak area ratios included in this
study were: Myo-Inositol / Creatine (MI/Cr, where MI at short
TE may also include signals from glycine which overlaps the
myo-inositol peak), Choline / Creatine (Cho/Cr) , Choline / N-
acetyl aspartate (Cho/NAA), and (Lipids+Lactate) / Creatine
( (Lip+Lac)/Cr).

The software used to perform the statistical analysis was
MATLAB 2008.

3. Results

Every MR spectrum was processed by the above-mentioned
pipeline, and the feature extraction methods were applied to
the 1.5T training dataset. The significant points selected by
the SW algorithm from the spectra region of interest ([4.1-0.5]
ppm) were 3.97, 3.76, 3.57, 3.30, 3.11, 3.03, 2.34, 1.25, 0.98,
0.85 ppm (Figure 2).

Before dealing with performances of the classifiers, an
analysis of MRS patterns at 1.5T and 3T was performed. A
qualitative comparison between the mean spectra of each class
(HGM, CG2G) for the three datasets (1.5T train, 1.5T test,
3T test) showed that the mean spectra tend to fall inside the
region of coincidence among the three patterns (Figure 2).
Also an analysis of the differences in metabolite ratios has
been done performing the Mann-Witney U nonparametric test
and using box-and-whisker diagrams (see Figure 3). In all
cases, the p-values obtained were greater than 0.05, which
indicates no significant difference among the datasets.

The performance of the classifiers on the 1.5T training
dataset was estimated by a 10-fold cross-validation. The
results are presented in the first row of Table 2.

In order to evaluate the 1.5T-based classifiers, the 1.5T
and 3T test datasets were used as independent tests. Their
performance values are presented in the second and third rows
of Table 2. In both cases, the classifiers based on Knn+PI
and ANN+PI gave better performance in terms of G and
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Figure 2. Spectral patterns of each of the classes (HGM,
CG2G) for the 1.5T training, 1.5T test and 3T test data sets.
The mean spectrum of each dataset is shown as a solid line
and its standard deviation in shadowed colour. The darker
brown region corresponds to the region of coincidence among
the three patterns. The points selected by the stepwise
algorithm are shown as vertical red dashed lines. The points
selected as centroids for the peak integration method are
shown as vertical green dash-dot lines.

ACC; however these differences were non-significant. The
results obtained showed a p-value greater than 0.1 for every
hypothesis contrast.

4. Discussion

We have tested the compatibility between the two currently
coexisting clinical MR scanners of 1.5T and 3T, both for the
development of new classifiers for tumour diagnosis support
and also for the use of the existing ones based on 1.5T spectra.
Although our present study was focused on two tumour classes
(HGM, CG2QG), the results of Kim et al. [16] also suggest
that we may apply the established methods concerning the
metabolite ratios obtained from 1.5T spectra for the evaluation
of brain tumours at 3T. Thus it may be possible to extend the
results to other focal brain lesions as long as their classification
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Figure 3. Box-and-whisker diagrams for each tumour class
(HGM,CG2G), comparing the main brain metabolite ratios
obtained for both field strengths. Outliers are shown as red
crosses.

Table 2. Classification results obtained for the three datasets.
In the columns, the results for each combination of feature
extraction method (SW and PI) and classifier (Knn, LDA and
ANN) expressed in terms of accuracy (ACC) and geometric
mean of success (G). CV has been applied in the case of the
1.5T training dataset in order to obtain the G and the ACC
estimators.

Dataset Knn+SW Knn+PI
ACC G ACC G ACC G ACC G ACC G ACC G

1.5Twain (CV) [ 093 090 091 08 093 091 091 090 095 094 093 090
1.5T test 087 087 090 09 084 08 082 079 088 088 091 092
3T test 089 08 091 09 084 08 084 082 091 09 089 089

LDA+SW LDA+PI ANN+SW ANN+PI

is not heavily dependent on features relating to metabolites
that are well resolved in 3T MRS but not in 1.5T (e.g. Glu
and Gln). [17].

This initial study was designed to provide evidence of
whether we will be able to further benefit from the effort made
throughout many years in the compilation of large databases
of 1.5T MRS data by using them to analyze results obtained
at 3T [24, 5].

The classification algorithms (ANN, LDA, Knn) as well
as the feature extraction methods (PI, SW) used in this study
have been selected from those used in published works to
facilitate validation of the results [1]. Also, the algorithms
already implemented in diagnosis support systems [22, 26]
have been taken into account to increase the relevance of the
conclusions obtained.

The training performances obtained show consistent re-
sults. Firstly, most of the points automatically selected by
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the SW algorithm are related to or are close to the metabo-
lite peaks chosen by the spectroscopists: creatine (3.03 and
3.93 ppm), alanine (3.77 ppm), myo-Inositol (3.53 and 3.26),
choline (3.21 ppm), creatine (3.02 ppm), lactate (1.30 ppm),
taurine (3.30ppm), glycine (3.56ppm), N-acetyl-L-aspartic
acid(2.02ppm), glutamine (2.14 ppm), glutamate (2.35ppm)
and lipids (0.92 and 1.29ppm). Secondly, the performances
obtained on the training data using a cross validation method
(first row of Table 2) are comparable with the ones reported
by Garcia-Goémez et al, in [1, 23].

Since the cross validation method is optimistic compared
to an independent test, a performance reduction occurs when
using the trained classifiers on the test samples. This expected
performance reduction can be observed between the first and
second row of Table 2.

Because no significant difference on ACC was achieved
between the two test datasets, we consider that the perfor-
mances of the 1.5T based classifiers when tested on either
1.5T test set or 3T test set are comparable for the tumour
classes analyzed. These results establish the possibility of
using existing 1.5T based classifiers on 3T SV-MRS spec-
tra. This agrees with the results obtained for 1.5T and 2T by
Roser et al. in [18] when using multidimensional metabolic
classification for assignment of glial brain tumors.

This conclusion was reinforced by the similarities ob-
served between both spectra types (1.5T and 3T). For each
tumour type obtained for 1.5T and 3T the spectral patterns fell
inside the coincidence region defined by the spectra standard
deviations, and the height of the metabolite peaks were simi-
lar (see Figure 2). Nevertheless, there were clear differences
in the mean 3T spectra compared to the 1.5T spectra in the
region of 3.5 to 4 ppm where strong signals from coupled
spins can be found.

Furthermore, a comparison between the main metabolite
ratios at the two magnetic field strengths was performed. The
Mann-Witney U test showed non-significant differences be-
tween metabolite ratios at the two magnetic fields except for
the case of the Myo-Inositol / Creatine ratio in HGM tumours.
The box-and-whisker diagrams (see Figure 3) showed that
in all cases the intervals defined by the first and third quar-
tile contained common values for both magnetic fields. This
agrees with the conclusions obtained by Kim et al. in [16].

In future work, incremental learning algorithms [34] will
be introduced to generate new classifiers based on 1.5T data
that could learn from new 3T cases. These techniques will
increase the performance of the classifiers over the course
of time, and will provide more reliable results. Also the
generalization of this study to the case of multi-voxel MRSI
data is an important goal for future work. This is not a trivial
problem, because of the substantial differences between the
two data types, both in the acquisition and processing of
the spectra. Moreover the differences between 1.5T and 3T
datasets maybe larger in the case of MRSI data [35] even with
long TE if the advantages of 3T are used for rapid MRSI data
acquisitions [36].
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5. Conclusions

The present study has tested the compatibility of existing
classifiers based on 1.5T datasets when used to classify 3T 1H
SV-MRS brain tumour spectra. The results obtained suggest
that existing classifiers based on 1.5T datasets are applicable
to classification of 3T 1H SV-MRS data. Since the methods
used in this study are available on existing software [22, 26],
the conclusions obtained have immediate implications for
the use of the currently-available multi-centre brain tumour
datasets and prediction models that are based on 1.5T MR
spectra.
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