

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

http://dx.doi.org/10.1016/j.mcm.2010.12.049

http://hdl.handle.net/10251/39666

Elsevier

Sastre, J.; Ibáñez González, JJ.; Defez Candel, E.; Ruíz Martínez, PA. (2011). Accurate
matrix exponential computation to solve coupled differential models in engineering.
Mathematical and Computer Modelling. 54(7-8):1835-1840.
doi:10.1016/j.mcm.2010.12.049.

Accurate matrix exponential computation to solve

coupled differential models in Engineering✩

J. Sastrea,∗, J. Ibáñezb, E. Defezc, P. Ruizb

Universidad Politécnica de Valencia, Spain

aInstituto de Telecomunicaciones y Aplicaciones Multimedia
bInstituto de Instrumentación para Imagen Molecular

cInstituto de Matemática Multidisciplinar

Abstract

The matrix exponential plays a fundamental role in linear systems arising in
engineering, mechanics and control theory. This work presents a new scaling-
squaring algorithm for matrix exponential computation. It uses forward and
backward error analysis with improved bounds for normal and nonnormal
matrices. Applied to the Taylor method, it has presented a lower or similar
cost compared to the state-of-the-art Padé algorithms with better accuracy
results in the majority of test matrices, avoiding Padé’s denominator condi-
tion problems.

Keywords: Matrix exponential, scaling and squaring, Taylor series.

1. Introduction

Many engineering processes are described by systems of linear first-order
ordinary differential equations with constant coefficients, whose solutions are
given in terms of the matrix exponential, and a large number of methods for
its computation have been proposed [1, 2]. This work presents a competi-
tive new scaling and squaring algorithm for matrix exponential computation.
Throughout this paper Cn×n denotes the set of complex matrices of size n×n,

✩This work has been supported by Universidad Politécnica de Valencia grants PAID-05-
09-4338, PAID-06-08-3307 and Spanish Ministerio de Educación grant MTM2009-08587.

∗Corresponding author
Email address: jorsasma@iteam.upv.es (J. Sastre)

Preprint submitted to Mathematical and computer modelling September 12, 2014

I denotes the identity matrix for this set, ρ(A) is the spectral radius of matrix
A, and N denotes the set of positive integers. The matrix norm ‖·‖ denotes
any subordinate matrix norm; in particular ‖·‖1 is the 1-norm. This paper
is organized as follows. Section 2 presents the scaling and squaring error
analysis and the developed algorithm, and Section 3 deals with numerical
tests and conclusions. Next theorem will be used in next section to bound
the norm of matrix power series.

Theorem 1. Let hl(x) =
∑

k≥l bkx
k be a power series with radius of con-

vergence w, and let h̃l(x) =
∑

k≥l |bk|x
k. For any matrix A ∈ C

n×n with

ρ(A) < w, if ak is an upper bound for ||Ak|| (||Ak|| ≤ ak), p ∈ N, 1 ≤ p ≤ l,

and αp = max{(ak)
1

k : k= p, l, l+1, . . . , l+p−1}, then ||hl(A)|| ≤ h̃l(αp). If

p = 2 and l is odd the same bound holds taking α2 = max{(ak)
1

k : k=2, l}.

Proof. For the first part note that

||hl(A)|| ≤
∑

j≥0

l+p−1
∑

i=l

|bi+jp|||A
p||j||Ai|| ≤

∑

j≥0

l+p−1
∑

i=l

|bi+jp|α
i+jp
p =

∑

k≥l

|bk|α
k
p = h̃l(αp).

(1)
If p = 2 and l is odd note that if k ≥ l is odd then k = 2j + 1,

j ∈ N, and one gets ||Ak|| = ||A2j+1|| ≤ ||Al||||A2||
2j+1−l

2 ≤ ala
2j+1−l

2

2 =
(

a
1/l
l

)l (

a
1/2
2

)2j+1−l

≤ max
{

a
1/l
l , a

1/2
2

}2j+1

= αk
2, and for even k > l, k = 2j,

j ∈ N, ||Ak|| ≤ ||A2||j ≤
(

a
1/2
2

)2j

≤ αk
2. Hence

||hl(A)|| ≤
∑

k≥l

|bk||A
k|| ≤

∑

k≥l

|bk|α
k
2 = h̃l(α2). � (2)

2. Error analysis and algorithm

If we denote the truncated matrix exponential Taylor series as Tm(A) =
∑m

i=0 A
i/i!, and its remainder as Rm(A) =

∑

i≥m+1 A
i/i!, for a scaled matrix

2−sA, s ∈ N ∪ {0}, see [3], we can write

(

Tm(2
−sA)

)2s
= eA

(

I + gm+1(2
−sA)

)2s
= eA+2shm+1(2−sA), (3)

gm+1(2
−sA) = −e−2−sARm(2

−sA), hm+1

(

2−sA
)

= log
(

I+gm+1(2
−sA)

)

, (4)

2

where log denotes the principal logarithm, hm+1(X) is defined in the set Ωm =
{

X ∈ C
n×n : ρ

(

e−XTm(X)− I
)

< 1
}

, see [4, sec. 3], and both gm+1(2
−sA)

and hm+1 (2
−sA) are holomorphic functions of A in Ωm and then commute

with A. If we choose s so that 2−sA ∈ Ωm, then from (3) one gets that

∆A = 2shm+1 (2
−sA) and ∆E = eA

[

(I + gm+1 (2
−sA))

2s
− I

]

represent the

backward and forward errors in exact arithmetic from the approximation of
eA by the Taylor series with scaling and squaring, respectively. If s is chosen
so that

∥

∥hm+1

(

2−sA
)
∥

∥ ≤ max
{

1,
∥

∥2−sA
∥

∥

}

u, (5)

where u=2−53 is the unit roundoff in IEEE double precision arithmetic, then:
if 2−s ‖A‖ ≥ 1, then ∆A ≤ ‖A‖u and using (3) one gets (Tm (2−sA))

2s
=

eA+∆A ≈ eA, and if 2−s ‖A‖ < 1, using (3)-(5) and the Taylor series one gets

∥

∥Rm

(

2−sA
)∥

∥ =
∥

∥

∥
e2

−sAgm+1

(

2−sA
)

∥

∥

∥
=

∥

∥

∥
e2

−sA
(

ehm+1(2−sA) − I
)
∥

∥

∥

=
∥

∥

∥
e2

−sA
∑

k≥1 (hm+1 (2
−sA))

k
/k!

∥

∥

∥
≤

∥

∥

∥
e2

−sA
∥

∥

∥

∑

k≥1 u
k/k!

≈
∥

∥Tm

(

2−sA
)∥

∥u
(

1+u/2!+u2/3!+· · ·
)

≈
∥

∥Tm

(

2−sA
)∥

∥ u.(6)

Hence, as we will evaluate explicitly Tm (2−sA), by (6) one gets Tm (2−sA) +
Rm (2−sA) ≈ Tm (2−sA), and there is no need to increase m or the scaling
parameter s to try to get better accuracy. Using the Taylor series in (4) one
gets

gm+1(x) =
∑

k≥m+1

b
(m)
k xk, hm+1(x) =

∑

k≥1

(−1)k+1(gm+1(x))
k

k
=

∑

k≥m+1

c
(m)
k xk,

(7)

where b
(m)
k and c

(m)
k depend on order m, and b

(m)
k = c

(m)
k , k = m + 1,m +

2, . . . , 2m+1. Using MATLAB symbolic Math Toolbox, high precision arith-
metic, 200 series terms and a zero finder we obtained the maximal values Θm

of Θ = ‖2−sA‖, shown in Table 1, such that, using the notation of Theorem
1

||hm+1 (2
−sA) || ≤ h̃m+1 (Θ) =

∑

k≥m+1 c
(m)
k Θk ≤ max{1,Θ}u. (8)

Hence, if ||2−sA|| ≤ Θm then (5) holds. For the cases where Θm > 1, note
that f(Θ) = h̃m+1 (Θ)−Θu is a continuous function in [0,Θm] and f(Θm) = 0,
f(0) = 0. For m = 20, 25, 30 we have checked that there are no other zeros
in [0,Θm], and f(Θ) < 0, Θ ∈]0,Θm[. Thus, for those orders the next bound

3

holds

||hm+1

(

2−sA
)

|| ≤ h̃m+1

(

||2−sA||
)

= h̃m+1 (Θ) ≤ Θu, 0 ≤ Θ ≤ Θm. (9)

In Section 2.2 we will obtain an initial maximum value of the scaling pa-
rameter s, denoted by s0, using values Θm, Theorem 1, (9) and the powers
of A computed for the evaluation of Tm (2−sA) which we analyze in next
subsection.

2.1. Taylor matrix polynomial evaluation
For the evaluation of Tm (2−sA) we have improved the Horner’s and

Paterson-Stockmeyer’s method of [3] calculating matrix powers Ai = Ai, i =
2, 3, . . . , q in the same way, but including the scaling in the Taylor series
coefficients and saving some divisions of matrix A by scalar as follows:

Tm

(

2−sA
)

=

{{

· · ·

{

Aq

2sm
+Aq−1

}

/[2s(m−1)]+Aq−2

}

/[2s(m−2)]+· · ·+A2

}

/[2s(m−q+2)] +A

+2s(m− q + 1)I

}

Aq

22s(m− q + 1)(m− q)
+Aq−1

}

/[2s(m− q − 1)] +Aq−2

}

/ [2s(m− q − 2)] + · · ·+A2

}

/[2s(m− 2q + 2)] +A+ 2s(m− 2q + 1)I

}

×
Aq

22s(m− 2q + 1)(m− 2q)
+ · · ·+A2

}

/[2s(q + 2)]+A+2s(q + 1)I

}

×
Aq

22s(q + 1)q
+Aq−1

}

/[2s(q − 1)] + · · ·+A2

}

/[2s2]+A

}

/2s + I. (10)

Note that the matrix powers Ai will be obtained before the optimal scaling
s is calculated and with this formula it is not necessary to calculate explic-
itly and save scaled matrices Ai/2

si → Ai, i = 1, 2, . . . , q. We will use the
optimal values of m in terms of the number of evaluations of matrix prod-
ucts mk = [1, 2, 4, 6, 9, 12, 16, 20, 25, 30], k = 0, 1, . . . , 9, respectively, see [3].
If the maximum allowed order, denoted by mM , is 25 or 30, we will take
q = [1, 2, 2, 3, 3, 4, 4, 5, 5, 5] for each value of mk, respectively, because in the
scaling algorithm it will be necessary that the two last orders mM−1 and mM

use the same matrix powers of A, i.e. Ai, i = 2, 3, . . . , q. If the maximum al-
lowed order is mM = 20 we will use q = 4 for that order for the same reason.
Counting the number of evaluations of matrix products in (10), denoted by
Πmk

, including those for obtaining matrix powers Ai, i = 2, 3, . . . , q, for the
proposed values of mk and q we have that using (10), Tmk

(2−sA) is evalu-
ated in Πmk

= k matrix products. Similar rounding error bounds to those in
[3] could be applied to the intermediate results in Tmk

(2−sA) to try to save
matrix products.

4

2.2. Scaling algorithm

For all norms appearing in the scaling algorithm we will use the 1-norm.
Let mM be the maximum allowed Taylor order. Using the same bounds and
process that we will use in the proposed scaling algorithm described below,
we will first check if any of the Taylor optimal orders mk = 1, 2, 4, . . . ,mM−1

satisfy (5) without scaling, i.e. with s = 0. If not, we will calculate the
optimal scaling s for order mM as follows: First, we will compute the 1-norm
estimate of ||AmM+1|| using the block 1-norm estimation algorithm of [5]. For
a n × n matrix this algorithm carries out a 1-norm power iteration whose
iterates are n× t matrices, where t is a parameter that has been taken to be
2, see [4, p. 983]. Hence, the estimation algorithm has O(n2) computational
cost, negligible compared to matrix products, whose cost is O(n3). The
bounds ak for ||Ak|| needed to apply Theorem 1 in (8) will be obtained using
the products of norms of matrix powers estimated for previous and current
tested orders, ||Amk+1||, k = 0, 1, 2, . . . ,M , and the powers of A computed
for the evaluation of TmM

(2−sA), Ai, i = 1, 2, . . . , q, as

∥

∥Ak
∥

∥ ≤ ak = min
{

‖A‖i1
∥

∥A2
∥

∥

i2 · · · ‖Aq‖iq
∥

∥Am1+1
∥

∥

im1+1
∥

∥Am2+1
∥

∥

im2+1 · · ·

×
∥

∥AmM+1
∥

∥

imM+1 : i1 + 2i2 + · · ·+ qiq + (m1 + 1)im1+1

+ (m2 + 1)im2+1 + · · ·+ (mM + 1)imM+1 = k
}

, (11)

where the minimum is desirable, but not necessary. We will obtain suc-
cessively αp value of Theorem 1 with l = mM + 1 for p = 2, 3, . . . , q,m1 +
1,m2+1, . . . ,mM+1, stopping the process when (ap)

1/p ≤ max{(ak)
1/k : k =

m+1,m+2, . . . ,m+ p}. We will select the minimum value of all values αp,
denoted by αmin. Then we will take the appropriate initial minimum scaling
parameter s0 ≥ 0 so that 2−s0αmin ≤ ΘmM

, i.e. if αmin ≤ ΘmM
then s0 = 0,

and otherwise s0 = ⌈log2(αmin/ΘmM
)⌉. Then, if ΘmM

≤ 1 using Theorem
1 and (8), and taking for simplicity in the rest of the algorithm description
m = mM , it follows that

||hm+1

(

2−s0A
)

|| ≤ h̃m+1

(

2−s0αmin

)

≤ h̃m+1 (Θm) ≤ u, (12)

and (5) holds. Taking into account that ||Ak||1/k ≤ ||A||, from (11) it follows

that a
1/k
k ≤ (||A||k)1/k = ||A||. Thus, αmin from Theorem 1 satisfies αmin ≤

||A|| . Hence, if m = 20, 25 or 30, where Θm > 1, using (9) one gets

||hm+1

(

2−s0A
)

|| ≤ h̃m+1

(

2−s0αmin

)

≤ 2−s0αmin u ≤ 2−s0 ||A||u, (13)

5

Table 1: Maximal values Θm=‖2−sA‖ such that h̃m+1 (Θm)≤max{1,Θm}u,

coefficient ratios c
(m)
k /c

(m)
m+2 for the first values of k ≥ m + 1, and values

u/c
(m)
m+2.

c
(m)
k /c

(m)
m+2 u

m Θm m+ 1 m+ 3 m+ 4 m+ 5 c
(m)
m+2

1 1.490116111983279e-8 -3/2 -3/4 3/5 -1/2 3.3e-16
2 8.733457513635361e-6 -4/3 -2/5 0 1/7 8.9e-16
4 1.678018844321752e-3 -6/5 -3/7 1/8 -1/36 1.6e-14
6 1.773082199654024e-2 -8/7 -4/9 2/15 -1/33 6.4e-13
9 1.137689245787824e-1 -11/10 -11/24 11/78 -11/336 4.4e-10
12 3.280542018037257e-1 -14/13 -7/15 7/48 -7/204 7.5e-7
16 7.912740176600240e-1 -18/17 -9/19 3/20 -1/28 4.2e-2
20 1.438252596804337 -22/21 -11/23 11/72 -11/300 5.9e03
25 2.428582524442827 -27/26 -27/56 9/58 -3/80 4.7e10
30 3.539666348743690 -32/31 -16/33 8/51 -4/105 9.4e17

and (5) also holds. Once obtained s0, if s0 ≥ 1 check if (5) holds reducing
the scaling s = s0 − 1, and using the bounds for

∥

∥Ak
∥

∥ ≤ ak to test if bound

‖hm+1 (2
−sA)‖

|c
(m)
m+2|

≤
∑

k≥m+1

∣

∣

∣

∣

∣

c
(m)
k

c
(m)
m+2

∣

∣

∣

∣

∣

ak
2sk

≤ max
{

1,
∥

∥2−sA
∥

∥

} u

|c
(m)
m+2|

, (14)

holds, truncating the series. Note that we will stop the series summation if

after summing one term the sum is greater than max{1, ||2−sA||}u/|c
(m)
m+2|.

This has been the case many times in numerical tests after calculating just
the first series term. If the sum of one or more terms is lower than the bound
but the complete truncated series sum is not, we can estimate ||Am+2|| to
improve the bound am+2 and check if (14) holds then. This has improved the
computational cost in numerical tests. If (14) does not hold with s = s0 − 1,
then we will check if next bound holds

‖hm+1 (2
−sA)‖

|c
(m)
m+2|

≤

∥

∥Am+1
∥

∥

2s(m+2)

∥

∥

∥

∥

∥

c
(m)
m+12

sI

c
(m)
m+2

+A+
c
(m)
m+3A2

c
(m)
m+22

s
+
c
(m)
m+4A3

c
(m)
m+22

2s
+· · ·+

c
(m)
m+q+1Aq

c
(m)
m+22

s(q−1)

∥

∥

∥

∥

∥

+
∑

k≥m+2+q

∣

∣

∣

∣

∣

c
(m)
k

c
(m)
m+2

∣

∣

∣

∣

∣

ak
2sk

≤ max
{

1,
∥

∥2−sA
∥

∥

} u

|c
(m)
m+2|

(15)

where we will truncate the series by k = m+N , with N ≥ 2+q, and we have
divided by the coefficient of A to save the product of matrix A by a scalar.

6

We propose using at least one term of the infinite series because the norm of
the previous matrix polynomial in (15) might vanish in some cases where the
infinite series might be large, e.g. scalar A when A is a zero of the resulting
scalar polynomial. For convenience we will also truncate the series in (14)
by the same value of k, i.e. k = m+N . For the proposed orders mk and the

first 1000 series terms we have observed in (7) that b
(m)
m+j = (−1)j|b

(m)
m+j| and

1/(j + 1) < |b
(m)
m+1+j/b

(m)
m+j| < 1/j, j ≥ 1, and then bounds for the last terms

of gm+1(||2
−sA||) and hm+1(||2

−sA||) can be obtained. Table 1 presents some

values of c
(m)
k /c

(m)
m+2, and the values u/|c

(m)
m+2|. Next we obtain lower bounds

for expression (15) to avoid its unnecessary evaluation: Taking

Tmax = max

{
∣

∣

∣

∣

∣

c
(m)
m+1

c
(m)
m+2

∣

∣

∣

∣

∣

2s, ‖A‖ ,

∣

∣

∣

∣

∣

c
(m)
m+3

c
(m)
m+2

∣

∣

∣

∣

∣

‖A2‖ /2
s, · · · ,

∣

∣

∣

∣

∣

c
(m)
m+q+1

c
(m)
m+2

∣

∣

∣

∣

∣

‖Aq‖ /2
s(q−1)

}

,

(16)
and Ti as the other q elements of the same set, note that

∥

∥

∥

∥

∥

c
(m)
m+12

sI

c
(m)
m+2

+A+
c
(m)
m+3A2

c
(m)
m+22

s
+
c
(m)
m+4A3

c
(m)
m+22

2s
+· · ·+

c
(m)
m+q+1Aq

c
(m)
m+22

s(q−1)

∥

∥

∥

∥

∥

≥ minsum, (17)

where minsum = max {0, Tmax −
∑q

i=1 Ti}, and if

∥

∥Am+1
∥

∥

2s(m+2)
×minsum+

m+N
∑

k=m+2+q

∣

∣

∣

∣

∣

c
(m)
k

c
(m)
m+2

∣

∣

∣

∣

∣

ak
2sk

> max
{

1,
∥

∥2−sA
∥

∥

} u

|c
(m)
m+2|

, (18)

then there is no need to evaluate bound (15). Using (18) saved many times
the evaluation of (15) in numerical tests. Using now the 2-norm and taking
into account that for normal matrices ||Ai||2 = ||A||i2, i = 2, 3, . . . , for any
scalar coefficients dk ∈ R, k = 0, 1, . . . , q, one gets

||Am+1||2||d0I + d1A+ · · ·+ dqA
q||2 ≤ ||Am+1||2(|d0|+ |d1|||A||2 + · · ·

+ |dq|||A
q||2) = |d0|||A

m+1||2 + |d1|||A
m+2||2 + · · ·+ |dq|||A

m+1+q||2, (19)

and then using the 2-norm, the bound in (15) is lower or equal than the bound
in (14) for normal matrices. As our algorithm uses 1-norm, any of (14) or (15)
may be the lower bound depending on the matrix. In the case of nonnormal
matrices any of (14) or (15) may also be the lower bound. Moreover, the first
m + 1 non-zero coefficients of hm+1(x) have an alternating sign, see Table
1, and then the bound in (15) may be higher for matrices with all negative

7

elements and lower for matrices with all positive elements. For instance,
considering normal matrices B1 and B2, and nonnormal matrices B3, B4

B1 =

(

1 2
−2 1

)

, B2 =

(

1 2
2 −1

)

, B3 =

(

1 25
0 −1

)

, B4 =

(

1 1
2 1

)

, (20)

and B5 = −B4, for m = 4 one gets ‖B5
i ‖1 ||c

(4)
5 /c

(4)
6 I + Bi + c

(4)
7 /c

(4)
6 B2

i ||1 =

108.3, 475.7, 718.3, 175.4, 712.8 and ‖B5
i ‖1 |c

(4)
5 /c

(4)
6 |+‖B6

i ‖1+‖B7
i ‖1 |c

(4)
7 /c

(4)
6 |

= 387.4, 375.7, 43.3, 605.1, 605.1, respectively, confirming that any of both
bounds may be the best depending on the case. We have also obtained the
corresponding αmin values from the scaling algorithm, form = 4, using norms
of matrix powers ||B2

i ||1 and ||B5
i ||1, i.e. αmin = 2.53, 2.37, 1.92, 2.60, 2.60,

being lower in all cases than those obtained using theorem 4.2 of [4], i.e.

max{||B2
i ||

1/2
1 , ||B3

i ||
1/3
1 } = 2.65, 2.47, 2.96, 2.65, 2.65, respectively.

If any of both bounds (14) or (15) is satisfied with s0 − 1 then repeat
the process with s = s0 − 2, s0 − 3, . . . Note that the computational cost of
evaluating (14) or (15) is O(n2) and if any of them is satisfied with 0 ≤ s < s0
their evaluation saves matrix products, whose cost is O(n3). If the last
value of scaling parameter s where (14) or (15) are satisfied is s ≥ 1 then
if ΘmM

< 2ΘmM−1
it is possible that the same value of scaling s and order

mM−1 also satisfy (14) or (15), see [3], and this occurred in numerical tests.
Thus, if the final resulting scaling is s ≥ 1 we propose testing bounds (14)
and/or (15) with the same value of the scaling parameter s, and order mM−1.
Finally, the algorithm will return s and the minimum order satisfying (14)
or (15), which may be mM or mM−1. It is possible to evaluate Tm(2

−sA)
with both orders with the optimal number of matrix products at this point
because we set in its evaluation that both last orders used the same matrix
powers of A.

The complete matrix exponential computation algorithm will consist of:
using Theorem 1, (14) and (15) check if one of orders m = 1, 2, 4, . . . ,mM−1

satisfies (5) with s = 0. If not, obtain the values of scaling parameter s and
order m using the previous algorithm, and use (10) and squaring to evaluate
(Tm (2−sA))

2s
. We have made available online the commented MATLAB

implementation of the algorithm, denoted by exptayns, in

http://personales.upv.es/∼jorsasma/exptayns.zip

If T̂m(A) denotes the computed Taylor approximation, using error analysis
techniques for the evaluation of matrix products from [6, sec. 3.5] we have

8

Table 2: Cost in terms of total number of matrix product evaluations (P)
and relative error comparison between exptayns, expm and expm new.

Maximum allowed Taylor order mM 16 20 25 30
Eexptayns < Eexpm % 74.44 90.98 89.47 88.72

(Pexptayns − Pexpm)/Pexpm % -15.47 -15.69 -14.95 -14.35
Eexptayns < Eexpm new % 66.17 87.22 87.22 86.47

(Pexptayns − Pexpm new)/Pexpm new % 1.31 1.04 1.94 2.65

that
∥

∥

∥
Tm(A)− T̂m(A)

∥

∥

∥
≤ γ̃mnTm (‖A‖) ≤ γ̃mne

‖A‖, where γ̃k = cku
1−cku

, with

c a small integer constant. This bound might be unsatisfactory taking into
account that with the proposed scaling algorithm ‖A‖ can be large. However,
the proposed algorithm behaved in a stable way in all numerical tests.

3. Numerical experiments and conclusions

133 matrices from 2×2 to 10×10 from MATLAB (gallery test matrices
and other special matrices), Eigtool package [7], and references [3, 8], have
been used to compare the proposed algorithm exptayns to MATLAB func-
tions expm [8], and expm new from [4]. The accuracy was tested by computing
relative errors E = ||eA − X̃||1/||e

A||1, where X̃ is the computed approxima-
tion. The “exact” value of matrix exponential eA was computed using MAT-
LAB’s Symbolic Math Toolbox and a [33/33] diagonal Padé method with
scaling and squaring at 1000 decimal digit precision. We have compared
function exptayns truncating the series in (14) and (15) by N = 150 terms,
and truncating them with N = q+2 terms. The same results were obtained
in almost the 100% of the test matrices and we used definitelyN = q+2 series
terms in the comparison with expm and expm new. Table 2 shows that the
cost for exptayns is lower than the cost for expm, and slightly greater than
that for expm new, and that exptayns is more accurate than both methods
in the majority of test matrices. Figure 1a shows the performance profile [9]
of the compared functions, where the α coordinate varies between 1 and 5
in steps equal to 0.1, and p coordinate is the probability that the considered
method has a relative error lower than or equal to α-times the smallest error
over all the methods, where probabilities are defined over all matrices. Fig-
ure 1b shows the ratio of relative errors Eexpm new/Eexptayns using the Taylor
maximum orders mM = 16 and 30. Figures 1a and 1b show that exptayns

9

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

 α

 p

expm
expmnew
exptayns(16)
exptayns(20)
exptayns(25)
exptayns(30)

(a)

0 20 40 60 80 100 120
10

−2

10
0

10
2

10
4

10
6

10
8

Test matrices

m
M

=16

m
M

=30

(b)

Figure 1: (a) Performance profile (mM = 16, 20, 25, 30). (b) Ratio of relative
errors Eexpm new/Eexptayns with Taylor maximum orders mM = 16 and 30.

has better accuracy than the other functions in the majority of test matrices.
A normwise relative error study [2, p. 252-253] was also made and showed
that the three functions performed in a numerically stable way on this test.

To sum up, a new scaling and squaring competitive algorithm has been
proposed. It is based on a mixed backward and forward error analysis which
uses improved bounds for normal and nonnormal matrices. Applied to the
Taylor method, it has shown to be more accurate than existing state-of-the-
art algorithms in the majority of matrices in numerical tests, with lower or
similar cost. Its extension to IEEE single precision arithmetic is straightfor-
ward. Now, we are applying the new scaling and squaring algorithm to the
Padé method, however, denominator condition problems are expected as in
[4].

4. References

[1] C.B. Moler, C.V. Loan, Nineteen dubious ways to compute the expo-
nential of a matrix, twenty-five years later, SIAM Rev. 45 (2003) 3–49.

[2] N.J. Higham, Functions of Matrices: Theory and Computation, Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2008.

[3] J. Sastre, J. Ibáñez, E. Defez, P. Ruiz, Efficient orthogonal matrix poly-

10

nomial based method for computing matrix exponential, Appl. Math.
Comput. (2011) in press, (doi: 10.1016/j.amc.2011.01.004).

[4] A.H. Al-Mohy, N.J. Higham, A new scaling and squaring algorithm for
the matrix exponential, SIAM J. Matrix Anal. Appl. 31 (3) (2009) 970–
989.

[5] J. Higham, F. Tisseur, A block algorithm for matrix 1-norm estimation,
with an application to 1-norm pseudospectra, SIAM J. Matrix Anal.
Appl. 21 (2000) 1185–1201.

[6] N.J. Higham. Accuracy and Stability of Numerical Algorithms. Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2002.

[7] G. Wright, www.comlab.ox.ac.uk/pseudospectra/eigtool/, (2002).

[8] N.J. Higham, The scaling and squaring method for the matrix exponen-
tial revisited, SIAM J. Matrix Anal. Appl. 26 (4) (2005) 1179–1193.

[9] E.D. Dolan, J.J. Moré, Benchmarking optimization software with per-
formance profiles, Math. Programming 91 (2002) 201–213.

11

