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Abstract 

The use of a voltammetric electronic tongue as a tool to monitor grape ripeness is 

proposed herein. The electronic tongue consists of eight metallic electrodes housed 

inside a stainless steel cylinder. The study was carried out over a period of ca. 1 month 

(August 2012) on different grape varieties (Macabeo, Chardonnay, Pinot Noir, 

Cabernet Sauvignon, Shyrah, Merlot and Bobal) from various vineyards near Requena 

and Utiel (Valencia, Spain). Apart from the electrochemical studies, the physico-

chemical parameters, such as, Total Acidity, pH and ºBrix, were also determined in 
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grapes. The PCA models, obtained using the physico-chemical or electrochemical data, 

showed variation of ripeness with time. Moreover the study was completed by using 

partial least squares (PLS) regression in an attempt to establish a correlation between 

the data collected from the electronic tongue and Total Acidity, pH and ºBrix values. A 

good predictive model was obtained for the prediction of Total Acidity and ºBrix. These 

results suggest the possibility of employing electronic tongues to monitor grape ripeness 

and of, therefore, evaluating the right time for harvesting.  

 

Keywords: electronic tongue, grape ripeness, total acidity, Brix. 

 

1. Introduction 

During wine production, the composition of grapes at the time of picking is an 

important parameter which may be considered the most crucial decision in winemaking. 

While grape ripen, some complex physicochemical and biochemical processes occur, 

such as the continuous rising and lowering of sugar concentrations and acid levels, 

respectively, which are also influenced by genetic, climatic and geographical factors, 

and by cultural practices (González-Sanjosé et al., 1991; Palacios et al., 1986; Andrades 

& González-Sanjosé, 1995; Jones & Davis, 2000). All these defining the ripeness 

process determine grape quality and the time of harvesting for winemaking. 

Traditionally, harvesting date indicators have been determined by parameters such as 

berry weight, must density (Coombe, 1987) and the relation between sugars content and 

Total Acidity (Peynaud, 1989; King et al., 1988; Robredo et al., 1991). Nowadays, Near 

Infrared Spectroscopy (NIRS) has also been reported as a suitable technique capable of 

measuring parameters such as sugar content (Fernández-Novales, 2009), pH value 

(Larraín, Guesalaga & Agosin, 2008) and acidity (Chauchard, 2004) in grapes. All these 
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procedures imply the use of instrumentation. In fact, even one of the simplest traditional 

systems to determine harvesting date, i.e., the determination of sugar content (Brix) and 

Total Acidity, requires the use of a refractometer and an automatic titration system (or 

manual titrations) which employs chemical products (Jackson, 2000). Moreover, other 

techniques, such as Near Infrared Spectroscopy (NIRS), require expensive 

instrumentation and complex calibration (Ferrer-Gallegoa, 2013). In this context, the 

possibility of designing alternative methods to monitor grape ripeness (an important 

factor to determine when to harvest) simply and rapidly may be of importance.  

From another point of view, an electronic tongue is a device that produces a signal 

which can be correlated with taste when properly calibrated. Besides, there are many 

electronic tongues capable of identifying and classifying liquid samples, and of 

predicting or quantifying the concentration of particular substances or taste attributes 

(Ciosek & Wróblewski, 2007). In the last few years, electronic tongues have made the 

best of different measuring principles, including potentiometry, voltammetry and 

amperometry (Del Valle, 2010). They have also been constructed on the basis of optical 

and mass sensors (Zhang & Turner, 2005). Electronic tongues are usually composed of 

an array of chemical sensors coupled to a pattern recognition analysis. Another aim in 

electronic tongues development is to design easy-to-use reduced-in-size systems 

applicable for in-situ and at-site monitoring. A number of studies has described the use 

of such sensor arrays to analyze foodstuffs (Scampicchio et al., 2008; Gallardo, Alegret 

& Del Valle, 2005) pharmaceutical samples (Lorenz et al., 2009; Wilson & Baietto, 

2011), clinical samples (Gutierrez, Alegret & Del Valle, 2007; Lvova et al., 2009) and 

environmental monitoring (Rudnitskaya et al., 2009; Mimendia et al., 2010). Moreover, 

the literature includes some works which apply electronic tongues to grapes and to wine 

samples. For instance, electronic tongues have been used to monitor both post-harvest 
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grape dehydration (Santonico et al., 2010; Buratti et al., 2011) and wine aging (Apetrei 

et al., 2013; Gay et al., 2010). Besides, attempts have also been made to correlate 

electronic tongues data with traditional human sensory perception of wine attributes 

(Legin et al., 2003) or to quantify the presence of grape varieties in wines (Gutierrez et 

al., 2011; Buratti et al., 2012). Recently, electronic tongues have been also employed to 

determine concentrations of chemical compounds in wine, such as sulfites (Kirsanov et 

al., 2012), polyphenols and different sugars (Cetó et al., 2012; Pigani et al., 2011). As 

far as we know, no studies on the potential use of electronic tongues for grape ripeness 

monitoring or for determining harvesting dates have been reported. 

 Following our interest in the development of sensing systems and probes 

(Martínez-Máñez & Sancenón, 2006), and given our experience in designing electronic 

tongue devices for several applications (Labrador et al., 2009; Campos et al., 2010; 

Campos et al., 2012), we report herein the development of an electronic tongue based 

on simple metallic electrodes and voltammetry, and its use to characterize grape 

ripeness. This research aims to demonstrate the potential use of this electronic tongue to 

determine the Total Acidity and ºBrix parameters that are related with grape ripeness, 

which is traditionally used to determine the harvesting date.  

 

2. Experimental 

2.1.Samples preparation 

The study into the ripeness process was carried out on seven grape varieties 

(Macabeo, Chardonnay, Pinot Noir, Cabernet Sauvignon, Shyrah, Merlot and Bobal) 

over a period of ca. 1 month (August 2012), which were sampled every 2 days (11 

sampling days in all) from different vineyards near Requena and Utiel (Valencia, 

Spain). The final number of samples was 68, which were less than the total expected 
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samples (11 sampling days x 7 grape varieties) because the harvest of same varieties 

took place before the studies finished. After collection and crushing, and after waiting 

for 5 min, samples were decanted to separate the juice from the pulp. During the grapes 

monitoring period, the average daily temperature was between 35ºC and 40°C, and 

precipitation during this time was practically zero (ca. 0.5 l/m
2
). 

 

2.2. Physicochemical characterization. 

For the purpose of controlling grape ripeness, three chemical parameters;  i.e., Total 

Acidity, pH and sugar content (ºBrix); were determined. Total acidity was calculated by 

titration with NaOH 0.5 N using a pHmeter (Crison Titromatic 2S 3B, Spain). This 

equipment was also used to determinate pH. Sugar content was determined with a 

manual refractometer (Zuzi 300, Spain). 

 

2.3. The Electronic Tongue  

2.3.1. The Electronic System 

The system used in the electronic tongue was developed by the Centre of Molecular 

Recognition and Technological Development (IDM) at the Polytechnic University of 

Valencia. The system consists of electronic equipment and a software application that 

runs on a PC. The system included a potentiostat which applies voltage to the 

electrochemical cell and measures both the voltage and current at the working 

electrodes. The potentiostat permits measurements with up to eight multiplexed working 

electrodes. Briefly, the electronic equipment included a 16-bit microcontroller 

(PIC24FJ256), a 12-bit Digital-to-Analog converter (DAC), two 12-bit Analog-to-

Digital converters (ADC), a potentiostat that incorporated a current measurement 

circuit, a working electrode multiplexing block and a stabilization circuit. Some analog 
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signal conditioning circuits were also used to adapt the signals connecting the 

potentiostat to the DAC and the ADC. The microcontroller received the data sent by the 

PC. After receiving all the data corresponding to a test, the microcontroller configured 

the current scale and the stabilization level of the potentiostat, and then selected the 

desired working electrode. Then it outputted the value corresponding to the temporal 

evolution of the signal to the DAC at a rate that fulfilled the signal timing requirements. 

In the same loop, the program of the microcontroller sampled the signals corresponding 

to the voltage and current flowing at the selected working electrode. The collected data 

were sent to the PC where they were processed and stored. Details of the characteristics 

of this electronic equipment have been published elsewhere (Alcañiz et al., 2012). 

 

2.3.2. Preparation of an E-Tongue 

The electronic tongue device consisted of an array of eight working electrodes (Au, 

Pt, Ir, Rh, Ag, Cu, Ni, and Co) with a purity of 99.9% and a 2 mm diameter from 

GOODFELLOW, which were housed inside two homemade stainless steel cylinders 

that were used at the same time as both the body of the electronic tongue system and the 

counter electrode. The different wire electrodes were fixed inside the cylinder using an 

epoxy RS 199-1468 polymer. The generation of pulses and recording current data were 

performed by the previously described electronic equipment. Traditionally, fouling is 

one of the major drawbacks that limits the application of electrochemical sensors. In 

this context, one advantage of using electronic tongues based on metallic electrodes is 

that it is quite simple to remove any accumulated unwanted material on the electrode by 

simply polishing the surface (Olsson, Winquist & Lundström, 2006). This simple 

procedure helps obtain a clean new surface ready to be used after each, or after a certain 

number of, measurement(s). Before being used in this work, the electrode surface was 
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prepared by mechanical polishing with emery paper and was rinsed with distilled water. 

Then the electrode was placed on a felt pad and was polished with 0.05 m alumina 

polish from BAS, washed with distilled water and polished again on a nylon pad with 

15 m, 3 m and 1 m diamond polishes to produce a smooth, mirror-like electrode 

surface. Later while taking the series of measures, only simple diamond polishing was 

applied.  

 

2.4.Measurement procedure 

Every 2 days, samples of different grape varieties were collected early in the 

morning and were analyzed on the same day in the TorreOria laboratories. For each 

sample, traditional determinations were made (Brix, pH and Total Acidity), whereas at 

the same time, the electrochemical response of the sample was analyzed with the 

electronic tongue. Before the electrodes were used, they were polished. Having 

completed the measurement, the electronic tongue was switched off until the next 

samples arrived 2 days later. All the samples were measured with the electronic tongue 

under thermostatted conditions (25.0 ± 0.1ºC).  

 

Insert here Figure 1 

 

In this study, we employed a Large Amplitude Pulse Voltammetry (LAPV) wave 

form (Winquist, Lundström & Wide, 1999; Gutés et al., 2006). Figure 1A shows the 

applied pulse pattern, which consists of 40 pulses in a similar configuration to a 

staircase voltammetry, but with potential set to 0 after each increment. The pulse 

sequence was: 0, 200, 0, 400, 0, 600, 0, 800, 0, 1000, 0, 800, 0, 600, 0, 400, 0, 200, 0, -

200, 0, -400, 0, -600, 0, -800, 0, -1000, 0, - 800, 0, -600, 0, -400, 0, -200, 0, 0, 0, 0 
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(mV). Each pulse was applied for 50 ms. The increment for the potential steps was 200 

mV, and the maximum and minimum potentials were chosen in order to avoid water 

electrolysis phenomena. In all, 8000 values of current (25 points per pulse x 40 pulses x 

8 electrodes) were recorded per sample. The time required to complete the measure with 

five iterations was only 2 seconds. The rate limiting step for data acquisition was 

actually the mechanical polishing of electrodes, which took about 5 min (for all eight 

electrodes). By way of example, Figure 1B illustrates the current measured for a 

Macabeo sample for the Pt (continuous line) or Ag electrodes (dotted line) when the 

pulse sequence was applied. The remaining noble electrodes (Rh, Ir and Au) displayed a 

similar behavior to the platinum electrode, while the remaining non noble electrodes 

displayed a similar behavior to the silver electrode.  

In all, 68 samples were measured. The calibration and validation samples were 

randomly selected. Each sample was measured 5 times and a mean value was calculated 

in a pre-processing step. For the noble electrodes, the typical value of the standard 

deviation within a sample did not usually exceed the value of 0.5 A, although it was 

somewhat higher for the cobalt and nickel electrodes. When the standard deviation was 

higher than 0.5, the data series was eliminated and replaced with data from a new 

repetition. The standard deviation value of 0.5 A corresponded to a mean error value 

of 1% in the reading. By using the electronic tongue described herein and applying this 

criterion, only two samples of 100 samples were discarded and replaced with new ones. 

 

2.5. Data management 

In order to show the electronic tongue’s different responses to different samples, the 

voltammetric electrochemical response data were combined to form ensembles for 
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pattern recognition in an attempt to discriminate samples. A multivariate data analysis 

(MVDA) was used for this purpose (Labrador et al., 2009).  

 

2.5.1. Principal Components Analysis (PCA) 

Typically, a PCA decomposes the primary data matrix by projecting the 

multidimensional data set onto a new coordinate base formed by the orthogonal 

directions with maximum data variance. The eigenvectors of the data matrix are called 

principal components and they do not intercorrelate because they are characteristic of 

each data matrix. The principal components (PCs) are ordered so that PC1 displays the 

largest amount of variance, followed by the next largest PC2, and so on. The main PCA 

features are the coordinates of the data in the new base (scores plot) and the contribution 

of the sensors to each component (loading plot) (Abdi & Williams, 2010).  

 

2.5.2. Partial least squares (PLS) 

PLS regression is a technique that generalizes and combines features from the PCA 

and the multiple regression. Its goal is to predict or analyze a set of dependent variables 

(Y) from a set of independent variables or predictors (X) by the simultaneous 

decomposition of those matrices or vectors in a group of components (latent variables) 

which explain the covariance of X and Y as much as possible (Gelali & Kowalski, 

1986). Prediction models for the Total Acidity, pH and ºBrix parameters were built by 

using the data collected from the electronic tongue in the calibration set. Prior to 

building the model, ―leave-one-out‖ cross validation studies were performed to estimate 

the performance of the predictive model and to select the quantity of latent variables. 

The model obtained for these parameters was then applied to the set of validation 

samples. Model evaluation was carried out by comparing the real concentrations with 
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the predicted ones from the PLS regression using the determination coefficient (r
2
), 

parameters p1, p2 (from y = p1x + p2), and the root mean square error of prediction 

(RMSEP). All the statistical analyses were performed with the Solo application 

software (version 6.5, Eigenvector Research, Inc). 

 

3. Results and discussion 

3.1. Grape ripeness and PCA plots. 

The Total Acidity, pH and ºBrix parameters determined for the distinct grape 

varieties on the different sampling days are shown in Table S1 (see Supporting 

Information). Moreover, Figure 2 shows a plot of the Total Acidity and 
o
Brix data 

according to each grape variety and sampling date. By simply inspecting the 

experimental data, it is apparent that some parameters such as pH showed a relatively 

minor change (the pH values remained within the ca. 2.5-3.5 range). In contrast, other 

parameters such as Total Acidity displayed wider variation depending on time for a 

certain grape variety, and also between different grapes on a given day. Typically, 

acidity ranged from 20-30 g/l on the first sampling days, to values lower than 10 g/l 

when grapes were harvested. As expected, sugar content increased and ran in parallel to 

decreased total acidity. Moreover, the increase in the ºBrix values and its evolution also 

differed for the various grapes. As shown in Figure 2 and Table S1, at the end of 

August, all the grape varieties reached a ºBrix value of 23, regardless of the initial value 

at the start of the study, except for grapes Macabeo and Chardonnay, which were 

harvested at 20 °Brix to manufacture cava. Besides, at the beginning of this study, some 

grapes such as Bobal, Shyrah, Pinot Noir and Chardonnay, were at a more advanced 

maturation stage (with ºBrix values of over 10) than the remaining grapes (i.e., 

Macabeo, Cabernet and Merlot) which started with lower ºBrix values. Despite these 
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differences, the evolution of ripening for all the grapes generally ran in parallel, which 

was most likely caused by the close proximity between the vineyards where the grapes 

came from, and also because of the similar constant weather conditions (high 

temperatures and no precipitations), which contribute to a continuous ripeness process 

for all grapes. In fact, this ripeness evolution can be observed from the PCA score plots 

constructed from the physico-chemical data. Typically, a PCA decomposes the primary 

data matrix by projecting the multi-dimensional data set onto a new coordinate base 

formed by the orthogonal directions with data maximum variance. Here the PCA was 

used as a simple method to project data onto a two-dimensional plane. Figure 3A shows 

the PCA score plot from the Total Acidity, pH and 
o
Brix data for grapes Merlot, 

Cabernet Sauvignon and Bobal. The remaining grapes were omitted for clarity; 

however, they followed a similar trend in the PCA plot to that found for the represented 

grapes. In this plot, the two first principal components explained 99.18% of data 

variance. As shown, the grapes analyzed at the beginning of our study, which therefore 

presented low ripeness, (i.e., high Total Acidity values and low
 o

Brix values) are on the 

left of the PCA plot, whereas at the end of the study (before harvesting), samples are 

located on the right of the figure.  

Figure 3B displays the PCA score plot from the data collected from the 

electrochemical studies acquired with the noble metal electrodes when using the 

electronic tongue also for grapes Merlot, Cabernet Sauvignon and Bobal. As in the 

above case, the remaining grape varieties were omitted for clarity, although they 

followed a similar trend. This PCA study reveals a high degree of dispersion among the 

independent dimensions created by the combinations of the electrochemical responses 

of the four electrodes used in these arrays (similar results were found when the whole 

set of electrodes was considered). For this plot, the first principal component explained 
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only 46.30% of data variance, whereas the first two components represented 67.39% of 

total variance. In this case, a general trend is also observed. Low-ripeness grapes are 

positioned on the positive part of the PC1 axis, whereas the grapes obtained on the last 

days are located on the left of the plot. However, neither the PCA obtained from the 

physic-chemical data nor that from the electrochemical data was able to discriminate 

between grape varieties.  

 

    Insert here Figure 2 and Figure 3 

 

The PCA plot obtained from the electronic tongue indicates that the electrochemical 

behavior of the grape samples changed as their ripeness was modified. This should 

relate with changes in Total Acidity and 
o
Brix (sugar content). These electrochemical 

variations may relate with the presence of redox-active species during the ripeness 

process. Moreover, it should be taken into account that lack of clear redox processes did 

not hamper the use of voltammetric electronic tongues. In fact, the electrochemical 

changes in the current response on different electrodes induced by chemical species 

(i.e., due to either changes in the electrodes’ equilibrium potential of the electrodes or 

the adsorption of chemical species on the electrode) can also be used for multivariate 

data analyses. For instance, it is known that noble electrodes are capable of adsorbing 

organic substances. For example, the Pt electrode is able to adsorb a wide range of 

organic compounds on its surface; aromatics, heterocyclic aromatics, alcohols, phenols, 

sulfides, amides, aldehydes, carboxylic derivatives and esters, among others, all of 

which were present in grape juice, and may cause significant changes in the oxidation 

potential of the metal and in current intensity (Soriaga et al., 1985). Similar behaviors 

were noted for the iridium, rhodium and gold electrodes (Michelhaugh et al., 1991). 
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3.2. PLS models to quantify grape ripeness. 

Encouraged by the PCA results obtained, indicating that grape ripeness correlates 

with both the physico-chemical and voltammetric data, we completed our study by 

using partial least squares (PLS) regression in an attempt to establish a correlation 

between the data from the electronic tongue and the Total Acidity, pH and ºBrix values. 

The Simple Partial Least Square (SIMPLS) algorithm, developed by Sijmen de Jong 

(De Jong, 1993), was used for the PLS. This method relies on the orthogonalization of a 

Krylof sequence to calculate PLS weights. An autoscale was used as the preprocessing 

method; prior to building the model, cross-validation was employed to evaluate the 

adequacy of the experimental data and to select the quantity of latent variables (three 

latent variables were used for this study). In order to test the tongue’s real potential 

application to detect grape ripeness, a training/validation procedure was followed. To 

perform this task, we adopted a strategy which consisted in randomly drawing a group 

of data from the whole data set. The remaining data were used to conduct training in 

order to obtain the PLS coefficients. Moreover in a later step, the previously extracted 

data were utilized for validation purposes.  

First a PLS model was built using 46 samples (the training set) from the 

electrochemical data obtained by the electronic tongue and the known Total Acidity, pH 

and 
o
Brix values. The PLS regression method was applied to the data using the whole 

set of electrodes, and by separately using the noble (Pt, Rh, Ir and Au) and non noble 

(Cu, Co, Ag and Ni) electrodes. In a second step, the electrochemical data from 22 

samples (validation set) were employed, and the Total Acidity, pH and 
o
Brix values for 

these samples were predicted by the PLS model. These predicted vs. real concentration 

data are plotted in Figure 4 for the predicted values obtained when using only the noble 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 

 14 

metal electrodes. For comparison purposes, the training data were also included. The 

figure allows a simple visual inspection of the accuracy and precision created in the 

prediction model. In fact, most of the data in the training (square) and validation (dots) 

sets appear along the reference line 1:1 (dotted line). If the predictions using PLS for the 

22 samples were perfect, a line of slope 1 and an intercept with the y-axis of 0 would be 

obtained. Evidently, this is an ideal situation and, in fact, there were minor differences 

found between the predicted vs. the real concentration values. In this context, a simple 

way to analyze the PLS prediction for the 22 samples (the validation set) is to use a 

linear model (i.e., y = p1x + p2) in order to adjust the predicted vs. the real 

concentration data shown in Figure 4. This allowed to obtain parameters p1 (slope of 

the fitting line) and p2 (intercept with the y-axis). Moreover, parameter RMSEP (root 

mean square of prediction) was also determined. Parameters p1 and p2 are related with 

the accuracy in prediction, whereas RMSEP deals with model precision. Thus, the PLS 

model is better when the p1 value approaches 1 and when the RMSEP value comes 

close to 0. Table 1 displays the adjusting parameters (r
2
, p1, p2 and RMSEP) from the 

PLS prediction model, which was applied to the validation set for the different created 

models using the noble electrodes. In order to make comparisons, the fitting parameters 

obtained for the validation samples when using non noble electrodes and the whole set 

of eight electrodes (noble and non-noble) are also displayed in Table 1.  

 

Insert here Table 1 

 

For Total Acidity, r
2
 and p1, values larger than 0.9 were observed for the validation 

set. Moreover, the best model was found when only noble electrodes were used. To 

determine pH, a similar situation occurred with relatively good r
2
 and p1 values for all 
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the combinations of electrodes tested. This contrasts with sugar content (ºBrix) for 

which significant differences in prediction accuracy were found, based on the 

electrochemical information depending on the electrodes employed. When the whole set 

of electrodes or the noble electrodes was/were used, the obtained models were highly 

accurate and precise, whereas when the non noble electrodes were considered, the r
2
 and 

p1 values were significantly worse.  

To conclude, it can be established that the best models were obtained when using 

the electrochemical information from the noble electrodes. By way of example of the 

aforementioned accuracy, it can be statistically established from the PLS model and the 

adjusting parameters that medium concentrations of these parameters in the validation 

set can be determined using the electronic tongue with errors under 15%. These results 

suggest the possibility of using an electronic tongue based on simple metallic electrodes 

to monitor the parameters used to evaluate grape ripeness, such as Total Acidity and 

ºBrix. 

   

Inset here Figure 4 

 

4. Conclusions 

In summary, a study of the possible use of a voltammetric electronic tongue based 

on metallic electrodes to monitor grape ripeness has been reported. The electrochemical 

response and the physicochemical parameters Total Acidity, pH and ºBrix for seven 

varieties of grapes were determined. The PCA analysis shows that grape ripeness 

correlates with both the physic-chemical and voltammetric data, as also confirmed by 

the PLS studies. The PLS analyses were applied using 46 and 22 samples, which were 

utilized in the training steps and the validation steps, respectively. Three different PLS 
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models were created for Total Acidity, pH and ºBrix using the information from all the 

electrodes, the noble (Pt, Rh, Ir and Au) and the non noble (Cu, Co, Ag and Ni) 

electrodes. For parameters such as Total Acidity and pH, all the created models proved 

accurate and precise, whereas the ºBrix values were much better predicted when the 

electrochemical information obtained from the noble electrodes was employed. One 

remarkable result relates to the possibility of using a simple electronic tongue to 

simultaneously monitor the Total Acidity and ºBrix parameters. In particular, the use of 

stable simple noble metallic electrodes, and the potential further implementation of an 

automatic cleaning step and small portable electronic equipment, make this electronic 

tongue a suitable system to monitor grape ripeness and to determine the harvesting date, 

which we believe can compete with traditional laboratory-based, reagent-consuming 

procedures. 
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Figure 1 A) Waveform applied to carry out the measurement and B) current response 

for a Macabeo grape using Pt (continuous line) and Ag as electrodes (dotted line). 

 

Figure1 Legend
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Figure 2 A) Total Acidity and B) 
o
Brix values for the grapes studies as a function of the 

sampling day. 
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Figure 3. PCA score plot created for three different varieties of grapes: Merlot 

(diamond), Cabernet Sauvignon (square) and Bobal (triangle) from a) from the physic-

chemical parameters and b) data from the electronic tongue (data from noble metal 

electrodes were used). The number that appears close to each point is the day when the 

samples were measured. 
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Figure 4. PLS prediction model applied to the 22 validation samples for A) Total 

Acidity, B) pH and C) º Brix. The plot also shows the 46 samples used for training the 

model. Only the electrochemical information obtained from noble electrodes was 

considered in this plot. 
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Table 1. Adjusting parameters (r
2
, p1, p2 and RMSEP) from the PLS prediction models 

for levels of Total Acidity, pH and º Brix in validation samples from grape ripeness 

using different electrodes combination. 

    r
2
 p1 p2 RMSEP 

 
Total Acidity 0.956 0.947 0.486 1.60 

8 electrodes pH 0.857 0.929 0.217 0.09 

  º Brix 0.903 1.069 -1.401 1.55 

 
Total Acidity 0.969 0.919 0.855 1.41 

Noble pH 0.863 0.995 0.023 0.10 

  º Brix 0.921 1.014 -0.321 1.28 

 
Total Acidity 0.952 0.901 -1.443 1.68 

Non-noble pH 0.863 0.921 0.232 0.10 

  º Brix 0.750 0.979 -0.062 2.46 
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