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Abstract  
The results of a randomized pilot study and qualitative evaluation of the clinical decision support system 

Curiam BT are reported. We evaluated the system’s feasibility and potential value as a radiological 

information procedure complementary to magnetic resonance (MR) imaging to assist novice radiologists 

in diagnosing brain tumours using MR spectroscopy (1.5 and 3.0 Tesla). Fifty-five cases were analysed at 

three hospitals according to four non-exclusive diagnostic questions. Our results show that Curiam BT 

improved the diagnostic accuracy in all the four questions. Additionally, we discuss the findings of the 

users’ feedback about the system, and the further work to optimize it for real environments and to conduct 

a large clinical trial. 

Keywords. randomized pilot study, clinical decision support systems, brain tumours, radiological 
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Introduction 

Conventional magnetic resonance (MR) images provide highly detailed morphological and 

microstructural information, and are fundamental in the diagnosis and grading of brain tumours. Although 

the development of contrast-enhanced and diffusion-weighted MR imaging have greatly improved the 

diagnostic accuracy of MR imaging, the accurate characterization of tumours remains problematic. 

During the last decade, magnetic resonance spectroscopy (MRS) has demonstrated its capability to 

complement MR imaging for initial diagnosis exam of brain masses [2], based on the modification of the 

metabolic information of different types of brain tumors [3]. 

 

Several studies have applied pattern recognition techniques to classify brain tumours based on Proton 
1H MRS signals [4-7]. Nevertheless, the difficulty of interpreting the signal is a major impediment to the 

introduction of such technology in routine clinical practice [2][4][19]. Horská and Baker [19] suggested 
that automated procedures to analyze MRS and display its results are needed to overcome this issue. For 

this reason, translational research has focused its attention in developing and evaluating clinical decision 

support systems (CDSS) based on 1H MRS to help radiologists in the diagnosis of brain tumors [4][8-10]. 

Additionally, a CDSS for brain tumour diagnosis may be of special interest to novice radiologists, where 

the lack of clinical experience on large number of real cases of specific tumor types, offers an optimal 

opportunity for the use of a CDSS [15]. In fact, the evaluation of CDSSs with novice clinicians has been 

largely addressed in the literature [16][17]. 

 

In this work, we present the results of a randomized pilot study to evaluate the feasibility and to 

define the potential value for clinical practice of Curiam BT, a CDSS for brain tumour diagnosis based on 
1H MRS (an earlier abstract was presented in [24]). The evaluation was carried out based on a prospective 

parallel-randomized pilot trial, in which resident and expert radiologists from three hospitals were 
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involved in both quantitative and qualitative assessments. To the best of our knowledge this is the first 

multi-center randomised pilot study of a CDSS for brain tumour diagnosis using both 1.5 and 3.0 Tesla 

(T) cases, where we provide evidence to support the feasibility of large scale multi-centre trials in this 

area [19]. 

Materials and methods 

 

The design of the pilot study to evaluate Curiam BT with novice radiologists was twofold. First, we 

carried out a quantitative evaluation based on a prospective parallel-randomized trial. Second, we 

completed the study with a qualitative evaluation based on the Technology Acceptance Model (TAM) 
methodology [14], a feedback questionnaire and personal interviews about the clinical use and value of 

the system. 

Curiam BT 

Curiam BT is a CDSS for brain tumour diagnosis based on the analysis of 1.5 and 3.0T Single Voxel 

(SV) 1H MRS data. Curiam BT is a specialization of the generic framework for CDSS Curiam [20] 

(Figure 1). Curiam provides the generic user interface and logical software components as a basis to build 

CDSS for specific clinical problems. In addition, it uses the generic classification framework published 

by the authors in [12], which permits easily including new predictive models based on different pattern 

recognition or artificial intelligence methods. 

 

From a user-centered approach, the objective of the generic Curiam framework was simple: to offer a 
single-purpose tool to clinicians who may require support in its decisions. We only focused to one role: 

clinicians; and to one high-level use case: obtain support for a clinical case based on one or more 

questions to solve. Thus, specific requirements and use cases are defined when building a specialized 

version of Curiam for a specific clinical problem. 

  

Based on the Curiam framework several CDSS have been developed for different clinical domains: 

soft tissue tumour classification and grading (Curiam STT) [20], postpartum depression prediction 

(Curiam PPD) [20][22], classification of paediatric brain tumours (Curiam BT-Kids) [21], and the CDSS 

evaluated here, Curiam BT [8]. 

 

 
 

Figure 1. Curiam BT specialization based on the generic Curiam CDSS framework. Following the application 

program interface (API) of Curiam, only components to manage MRS, a semantic description, and the brain tumour 
predictive models were required. 
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Based on the knowledge acquired during the European projects eTumour [1] and HealthAgents [18] 

we defined several of the requirements and developed Curiam BT. Figure 2 shows the more fine-grained 

use case of Curiam BT. The input of Curiam BT is a raw short time echo (STE) signal (~20ms) alone or 

in combination with a raw long time echo (LTE) signal (~136ms) acquired with the acquisition protocol 

described in [5]. The automatic MRS preprocessing pipeline carried out by Curiam BT is based on 

jMRUI [11] and DMS [4] and is fully described in [6]. An additional zero-order and first-order phase 

manual correction, especially useful for 3.0T signals [7], can be also performed by Curiam BT. 

 

 

 
 

Figure 2. Use case of Curiam BT. 

 

The CDSS used in the pilot study included the four predictive models listed in Table 1. Models M1 

and M2 are the STE and combined time echo classifiers for discriminating Aggressive (Glioblastoma and 

Metastasis), Meningioma and Low Grade Glial (Oligoastrocytoma, Oligodendroglioma and Astrocytoma 

Grade II) tumours developed and evaluated in [5]. Model M3 was developed and evaluated in [12] to 
discriminate High Grade Tumours (grade III and IV) and Low Grade Tumours (grade I and II). The three 

models are based on Fisher Linear Discriminant Analysis (LDA) over the variable space defined in [6] 

(Peak Integration of metabolites in STE MRS). 

 

Finally, a fourth new classifier, M4, was included in the CDSS to discriminate Meningioma from 

Non-Meningioma tumours. Non-Meningioma consists of Aggressive and Low Grade Glial tumours as 

defined in models M1 and M2. This model is also based on Fisher LDA and Peak Integration. The model 

was trained with 195 cases (from the INTERPRET [4] database: 58 Meningioma, 159 Non-Meningioma), 

and tested with an independent set of 177 cases (from the eTumour [1] database: 16 Meningioma, and 

161 Non-Meningioma). The accuracy (ACC) of the model was 91%.  

 
Predictive 

model 

Discriminated classes Spectra ACC (%) 

M1 Aggressive vs. Meningioma vs. Low Grade Glial STE 88 

M2 Aggressive vs. Meningioma vs. Low Grade Glial STE + LTE 92 

M3 High Grade Tumour vs. Low Grade Tumour STE 83 

M4 Meningioma vs. Non-Meningioma STE 91 

 

Table 1. List of predictive models included in the evaluated version of Curiam BT. The established classes or groups are based 

on the World Health Organization (WHO) classification of tumours of the central nervous system [13]. Aggressive tumours include 

Metastasis and Glioblastoma; Low Grade Glial includes Oligoastrocytoma, Oligodendroglioma and Astrocytoma Grade II; Low 

Grade Tumour includes Grade I and II tumours, and High Grade Tumour includes Grade III and IV. STE: Short TE, LTE: Long TE. 
 

The main information provided by Curiam BT consists of the four predictions obtained from the 

predictive models for the case under study (see Figure 3), where the posterior probabilities calculated by 

each model are displayed. Additionally, the system provides latent space projections to compare the case 

under study with similar reference cases used to train the models, labelled according to their 

histopathological diagnoses. Moreover, the user is able to compare the current spectra with the mean 
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spectra and standard deviation of the diagnostic classes or groups distinguished by each model. 

Additionally, the system permits generating PDF or MS-Word reports of the classification results (an 

example of a report is included in Supplementary Material 3). As additional information, Figure 4 shows 

the manual phase correction dialog of Curiam BT. 

 

 
 

 

Figure 3. Screenshot of Curiam BT. On the left, the user can select a case from the database or insert a new one. When 

inserting a new case the user can load a reference image and the corresponding STE and/or LTE spectra. The user can classify the 

selected case using all or a selection of the included predictive models. On the right the results of a classification are shown. The list 

at the top shows the resultant diagnosis of each predictive model. Below are shown the posterior probabilities, LDA latent space 

projection and mean spectra comparison of the selected model. All MRS plots can show the identifiers of the most important 

metabolites by switching the corresponding button in the toolbar; in addition, they are zoomable, show the PPM index of the cursor 

position, and their colors can be inverted. The LDA latent space permits visualizing cases similar to the case in-hand to observe their 

validated diagnoses and apply similar treatments. By the report button, users can generate PDF or MS-Word reports containing the 

classification results. 
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Figure 4. Manual phase correction dialog of Curiam BT. After loading RAW MRS files, the user can manually perform a 

zero-order and first-order phase correction by means of moving the corresponding slidebar or setting a specific value in its 

associated text boxes. Also, the user can select whether to show the absolute, real or imaginary signals. This manual correction 

results especially useful in 3.0T spectra[7]. 

 

Quantitative evaluation 

The quantitative evaluation of the pilot study consisted of a prospective parallel randomized trial. The 

research aim was to determine the effect on the diagnostic accuracy of novice clinicians when using 

Curiam BT as an additional radiological information procedure. Consequently, cases were randomized –

using simple randomization– into two parallel groups: control and experiment. Cases in the control group 

were diagnosed using common radiology tests, comprising conventional MR imaging together with 

diffusion and perfusion weighted images. In the experiment group, Curiam BT was used as an additional 

radiological information procedure in their common workflow. The system was installed in the radiology 

services with the supervision of the IT staff of the hospitals. 

 

The evaluation was carried out by three novice radiologists (radiologists in their last year of 

residence) from three clinical centres, namely the Hospital Quirón Valencia, Hospital Universitario de La 
Ribera (Alzira) and Hospital Universitario Dr. Peset (Valencia). The participants were asked to diagnose 

each case according to four non-exclusive diagnostic questions: Q1) High Grade vs. Low Grade vs. N/A; 

Q2) Grade I vs. II vs. III vs. IV vs. N/A; Q3) Aggressive Tumour vs. Low Grade Glial vs. Meningioma 

vs. Other; and Q4) Radiologic diagnosis based on WHO [13] –where N/A means ‘not applicable’. In the 

experiment group, the CDSS allowed participants to classify MRS using the four simultaneous predictive 

models listed in Table 1. Users were free in their interpretation of CDSS results. Before the evaluation, all 

participants passed a formative period on the use of Curiam BT. On the other hand, the reference 

radiologic diagnoses were provided by two expert radiologists. The cases were distributed among them, 

who used all the available information of the case to provide their diagnoses. The expert radiologists also 

provided their advice and feedback in the development of the study. 

 
The evaluation metrics were defined according to a multiple-class setting. Then, for each class in 

each question we calculated its recall (REC) and precision (PREC). Note that in a classical two-class 

setting comprising positive and negative classes, sensitivity (SEN) and specificity (SPE) correspond to 

REC of positive and REC of negative respectively. Thus, for each question we calculated the ACC 

(Equation 1) and the macro-averaged recall (RECM). The RECM provides an average per-class 

effectiveness to identify class labels [27]. Equation 2 shows the RECM formula, calculated as the 

arithmetic mean of the recalls of each class. 
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Patients  

The study was approved by the ethics committee of the participating hospitals. Data protection was 

guaranteed as any information that might disclose the identity of the patients was anonymized. 

Inclusion criteria consisted of adult patients who were referred to the Radiology Department with the 

suspicion of a brain tumour, having signed the informed consent. Exclusion criteria consisted of patients’ 

incompatibility to have an MR examination and those with more than one brain tumour or inflammatory-

demyelinating lesions. 
 

From an initial set of 69 eligible cases, a total of 55 cases, 27 in experiment and 28 in control, were 

included in the final analysis after discarding those that met exclusion criteria or were discontinued 

because no reference diagnosis was provided (due to time limitations of the project). Cases were assigned 

to the corresponding group at each hospital. STE and LTE MRS were acquired in all the analysed cases, 

where 27 cases were acquired at 1.5T and 28 at 3.0T (randomly distributed in control and experiment). 

The radiological and histopathological diagnoses of the included cases were unknown to the participants 

at the moment of the study. Figure 5 shows the CONSORT flow diagram of the study. 

 

 

     
       

 
 

 

      
 

   
       

   

   
 

Equation 1. Formula of accuracy in a multiple-class setting. TPc corresponds to the true positive answers of 

the diagnostic class or group c pertaining to the set C of classes. Note that there is no negative class, as each 

addend considers c as the positive class. N corresponds to the total number of cases. 

Equation 2. Formula of macro-averaged recall [27] in a multiple-class setting. TPc and FNc correspond, 

respectively, to the true positive and false negative answers of the diagnostic class or group c pertaining to the set 
C of classes. N corresponds to the total number of cases. 
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Table 2 shows the distribution of diagnostic classes on each clinical question to solve based on the final 

diagnosis for all the cases included in the pilot study. It can be observed that most cases correspond to 

astrocytic tumours and to non-tumour cases. Those cases labelled as N/A in Q4, correspond to non-

tumour cases. Also, metastatic tumours are labelled as N/A in Q2 as no grade is associated to such tumour 

type in the WHO classification.  
 

 

Q4 Q3 Q2 Q1 n for Q2, Q1 

Astrocytic tumour (n=27) Aggressive (n=14) III HG 2 

IV HG 12 

Low Grade Glial (n=13) I LG 8 

II LG 5 

Oligodendrogial tumour (n=2) Low Grade Glial II LG 2 

Meningioma (n=3) Meningioma I LG 2 

II LG 1 

Cranial and paraspinal nerves tumour (n=1) Other I LG 1 

Metastastic tumour (n=2) Aggressive N/A HG 2 

Neuronal and mixed neuronal-glial tumours (n=2) Low Grade Glial I LG 2 

N/A (n=18) Other N/A N/A 18 

 
 

Table 2. Frequency of analyzed cases grouped by the clinical questions to solve. N/A means ‘not applicable’. The last column 

shows the joined frequency of cases grouped by the clinical questions. 

Qualitative evaluation 

The evaluation of user acceptance was carried out by means of a questionnaire, based on the 

Technology Acceptance Model (TAM) methodology [14]. The TAM provides two constructs or groups 

of questions. The first evaluates the users’ perspective on usefulness and the second evaluates the ease of 

use of the application. Each construct is composed by six Likert-scale questions ranging from “Totally 

Figure 5. CONSORT flow diagram of the study. From an initial 

set of 69 eligible cases, the final analysis consisted of 27 cases in the 

experiment group and 28 in the control group, after discarding those  

that met exclusion criteria or were discontinued because no reference 

diagnosis was provided. 
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disagree” to “Totally agree”. The internal consistency of both constructs is demonstrated in [14]. 

However, from past experience we noted a central tendency bias in users’ answers. Thus, to alleviate this 

bias, in this study we decided to reduce the size of the Likert-scale answers to five items. Additionally, to 

reduce a possible social desirability bias, questionnaires were answered anonymously by means of an 

online tool. 

The TAM questionnaire was complemented with two questions regarding the assessment for future 

improvements of the CDSS, both related to its usefulness and to its ease of use: 1) What would you 

improve to make Curiam BT more useful in your work?, 2) What would you improve to make Curiam BT 

easier to use?. The full questionnaire is shown in Supplementary Material 1. 
To be confident in their answers, the three novice radiologists involved in the quantitative evaluation 

and two expert radiologists answered the questionnaire after having acquired sufficient experience in the 

use of Curiam BT during the evaluation period. Finally, the qualitative study was completed with the 

feedback obtained from personal interviews with the involved radiologists during the development of the 

project.  

Results 

Quantitative evaluation 

Table 3 shows the ACC and RECM for each of the evaluated questions. In the four questions, the 

experiment group provided a higher diagnostic accuracy and RECM. We may highlight the improvement 

of the experiment group when answering Q2. This improvement is especially observed when measuring 

RECM because of the imbalance of the diagnoses (the RECM can signal the presence of over or 
underestimated accuracy results due to class imbalance). On the other hand, it was not possible to 

calculate the RECM measurement for Q4 due to the fact that some of the class labels present in the 

definitive expert diagnoses were not present in the control and experiment groups.  

 

 

 

 

 

 

 

 

 

 

We used these results as a baseline for the estimation of the total number of cases required to obtain 

statistical significant difference (α=0.05) in a larger RCT for the discrimination of tumour grades (Q2). 

The estimation yielded a number of 117 cases with the current statistical power for Q2 of 0.50, or 237 

cases with a statistical power of 0.80. 

 

The calculated REC and PREC for each of the classes on each question is reported in the 

Supplementary Material 2. These results show that in general there are no situations with high accuracy 
and low precision. However, note that the distribution of the number of cases among the different classes 

(as it can be observed in Table 2) causes some of these to have few individuals in some of the questions. 

It may increase the variability of the measurements in some questions. 

Qualitative evaluation 

The evaluation of the questionnaires was carried out by five clinical users. According to the results 

the usefulness of Curiam BT for their task was valued with an average of 3.58 (0.20), and its ease of use 

was valued with 4.29 (0.29). 
 

Regarding the additional question for suggestions to improve the usefulness of the system, 

radiologists suggested adding additional predictive models to the CDSS to increase its value in routine 

 ACC (95% CI) RECM 

 Control Experiment Control Experiment 

Q1) HG vs. LG vs. N/A .64 (.46, .79) .70 (.51, .84) .64 .72 

Q2) Grade I vs. II vs. III vs. IV vs. N/A .46 (.30, .64) .59 (.41, .76) .46 .68 

Q3) AGG vs. LGG vs. MEN vs. Other .68 (.49, .82) .74 (.55, .87) .75 .83 

Q4) WHO radiologic diagnosis .64 (.46, .79) .67 (.47, .81) - - 

 

Table 3. Estimated accuracy (ACC) and macro-averaged recall (RECM) for each 

question. In the ACC columns the 95% confidence interval (CI) is reported (calculated based 

on the modified Wald method [23]). For this sample size confidence intervals overlap in 

control and experiment groups and no significant difference is achieved. 
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clinical practice. Regarding the diagnostic/pre-operative radiological advice, it was suggested that the 

system should indicate whether we deal with a tumour or not: 1) Tumour vs. Non Tumour, 2) Is it an 

infection (e.g., abscess)?, 3) Is it a lesion (e.g., demyelinating lesion)?; in case of a tumour, which is its 

type: 4) Glioblastoma vs. Metastasis, 5) Classification of subtypes of Low Grade Gliomas; and which is 

its grade: 6) Grade I vs. II, 7) Grade III vs. IV, 8) Grading of meningioma. Regarding the post-operative 

assessment, it was proposed as a very useful question for patient’s follow-up the discrimination between 

9) Tumor recurrence vs. Radionecrosis. 

 

For an additional utility of the CDSS, it was also suggested that the system would be useful for 
comparing SV MRS acquisitions of the affected tissue with their contralateral normal region of the brain. 

Additionally, radiologists suggested incorporating functionality to subtract signal from necrotic tissue 

from the MR spectra and the analysis of multi-voxel protocols to allow a better comparison of those cases 

with problems in the positioning of the voxel during the acquisition. Finally, it was noted that in some bad 

quality cases (e.g., due to a bad positioning of the voxel) some of the predictive models included in the 

CDSS were inconsistent among their answers. These inconsistences may highlight problems with the case 

or its quality; however, they should be specifically managed by the system to facilitate its understanding 

by the users. Regarding the additional question on suggestions to improve the ease of use, two of the 

novice radiologists suggested incorporating a full-automatic method to correct the zero- and first-order 

phase. 

 
On the other hand, we also describe the findings from the continuous feedback collected during the 

development of the project. 

Regarding the usefulness of Curiam BT expert radiologists stated that, in general terms, novice 

radiologists would be more influenced by the CDSS than them, in congruence with the premise of our 

evaluation with such participants. Expert radiologists suggested that the CDSS could be a successful tool 

for the training of novice radiologists as it introduces MRS and makes them reason about the diagnoses 

while permitting the possibility to compare the current case with similar past cases (in a case-based 

learning platform). During these interviews, users expressed that the CDSS is particularly useful for 

performing their task as a diagnostic confirmation tool for routine cases, which gives them more 

confidence on their diagnoses. It was also reported to be useful as a tool for identifying and helping make 

decisions on borderline cases, where probabilities are unclear, and based on the latent space projections 
they can find similar reference cases. Finally, users suggested that the auto-generated reports are useful to 

be attached to the patients’ electronic health records. 

 

 Regarding the system’s ease of use, users generally expressed their satisfaction, considering the user 

interaction fluid and comprehensible. They suggested that integrating the CDSS in the picture archiving 

and communication system (PACS) of the hospital would significantly increase its efficiency during 

routine practice.  

Discussion 

In this study, the use of the CDSS as an additional radiological information procedure provided an 

apparent better performance. However, for this sample size it was not significant, according to the 

resultant confidence intervals and statistical tests of differences. Besides, the positive difference in RECM 

metric is suggestive of the system’s reliability in imbalanced problems. As a pilot study, we must 
consider these outcomes as suggestive of the improvement in diagnostic accuracy on real settings. A 

larger sample size would be required to confirm. 

 

The results suggest that when Curiam BT is used, an apparent larger improvement effect in terms of 

RECM is observed, in comparison with ACC. It may indicate that using conventional MR methods the 

participant novice radiologists tend to diagnose cases as the more prevalent classes; however, when using 

the CDSS they are more confident in making diagnoses of less prevalent classes. Probably as a 

consequence of this, users trusted the system outcome as a diagnostic confirmation tool and to make 

decisions in borderline cases. 

 

We compare next our work with previously published evaluations involving CDSS for brain tumour 
diagnosis ([4], [9] and [10]). As a main difference with respect to their approaches, we have focused our 

work to study the impact on novice radiologists. Also, following the Fuster et al. study [7], that 
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demonstrates the feasibility of classifying 3.0T cases with 1.5T-based predictive models, we have been 

the first to include both 1.5 and 3.0T cases in the evaluation. 

 

In [4], [9] and [10], they evaluated 16, 10 and 40 patient cases respectively. However, they distributed the 

set of cases among the different radiologists, which increased the total number of evaluated cases, 

although involving repetition. Also, they counted with a larger number of radiologists to evaluate cases. 

In our study we randomly separated our 55 patient cases into the experiment and control groups. The 

limited resources we counted with did not permit distributing all the cases among all the evaluators, 

which may have provided other interesting measures such as evaluating the effect on inter-evaluator 
agreement. We may also have applied other solutions such as a prior stratification of cases based on a 

previous reference diagnosis. However, we can observe that in general our results are in line with 

previous works, where the use of MRS-based CDSS may improve the radiologic diagnostic efficacy. 

 

We can discuss other differences in the methods. The other works evaluate classical area under the 

receiver operating characteristic (ROC) curve –based measurements on multiple-class settings. It requires 

obtaining SEN and SPE for each class, which entails grouping the other classes into a negative class 

(dichotomization). Fawcett [26] denominates this as class-reference formulation. He states that although 

this approach may alter ROC measurements on multiple-class settings it still provides a valid 

measurement. Solokova and Lapalme, however, consider that <<there is yet no well-developed multi-

class ROC analysis>>. To our view, we consider that this approach may be problematic when the number 
of cases is low. It is mainly due to 1) the possible change in class prevalence and 2) the possibility that the 

dichotomized negative class contain erroneous predictions among its internal real classes (e.g., if we 

dichotomize class 1 vs. [2,3], misclassifications of 2 as 3 or 3 as 2 will be counted as TN1). For this 

reason, we consider that ACC and RECM (and also REC or PREC when the number of cases is large) are 

the most suitable measurements of quality for these problems, since they do not require dichotomizing: as 

shown in equations 1 and 2, each summand measures the number (ACC) or proportion (RECM) of correct 

answers of those cases labelled as c, not needing a complementary group. In addition, a better 

measurement would be a cost-based evaluation, where each correct or incorrect classification involves 

different benefits or costs (i.e., a cost matrix). However, it is not straightforward to define those costs in 

clinical domains. 

 
In the previous section we have listed the set of new predictive models suggested by users to be 

included in the system, with the purpose of improving its clinical usefulness. Given the difficulty to solve 

some of these classifications with MRS, we suggest studying multiparametric approaches from MR 

techniques (i.e., diffusion and perfusion images) following the quantitative MR methodology [14]. 

 

We also mentioned that users suggested integrating the system in the hospital PACS. The main reason of 

this can be that as an external tool to the PACS, it was required to gather the RAW MRS files from the 

scanner to load them in the CDSS, entailing an additional time in the workflow that, regardless of the 

possible efficacy benefits, may reduce the overall efficiency.  

 

Results of the qualitative evaluation show that users were satisfied with the usability of Curiam BT. 

The experience in the development of CDSS by the authors and, specially, the user requirements defined 
based on the knowledge acquired during the European Projects HealthAgents and eTumour may have 

contributed to that. However, these requirements were defined by expert radiologists. Thus, as evaluated 

by novice radiologists in this study, we found that this other type of users may require an adaptation to the 

use of MRS, slightly varying the requirements, what was reflected in the suggestion of facilitate an 

automatic MRS processing method. 

 

Finally, the initial results in improvement of diagnostic performance as well as the estimated number 

of samples for obtaining significant differences, suggest developing a larger RCT focusing to the 

discrimination of tumour grades as well as low prevalent classes. Additionally, the provided feedback 

regarding other clinically relevant questions is in line with this proposal, establishing the basis for a large 

clinical trial. 

Conclusions 

Despite the improved diagnostic accuracy and RECM achieved by using Curiam BT, this study 

should be interpreted as a pilot experiment to assess the feasibility of incorporating the CDSS in a 
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radiological service and to plan a large clinical trial. The results of this work, with the novelty of 

evaluating both 1.5 and 3.0T cases, are in line with evaluations of similar systems previously published. 

In addition, we have compiled a large feedback to improve the clinical usefulness and quality of CDSSs 

for brain tumour diagnosis, which can give insights to researchers in further works. Finally, in this pilot 

study we have demonstrated that Curiam BT can be a useful tool for the training of novice radiologists in 

the diagnosis of brain tumours. In further work, the compiled feedback will be used to prepare an 

improved version of Curiam BT for its integration in the clinical workflow. 
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