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Abstract. Imbalance datasets impose serious problems in machine learn-
ing. For many tasks characterized by imbalanced data, the F-Measure
seems more appropiate than the Mean Square Error or other error mea-
sures. This paper studies the use of F-Measure as the training criterion
for Neural Networks by integrating it in the Backpropagation algorithm.
This novel training criterion has been validated empirically on a real
task for which F-Measure is typically applied to evaluate the quality.
The task consists in cleaning and enhancing ancient document images
which is performed, in this work, by means of neural filters.
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1 Introduction

It is not uncommon in many real tasks that the number of patterns of one class
is significantly lower than other classes. Examples of tasks with very imbalanced
data are information retrieval (a lot of information and very few useful data)
or medical diagnosis (less ill than healthy patients). Imbalance datasets impose
serious problems in machine learning and, particularly, in Artificial Neural Net-
works (ANN) training. Some authors have addressed this problem by resampling
the data in order to balance the occurrences, others have modified the training
algorithm [2,15].

We have followed the second approach, designing a new training algorithm
which uses the F-Measure [13] as an objective error function for the Backprop-
agation (BP) algorithm. The F-Measure (FM) may be more suitable than the
Mean Square Error (MSE) or other error measures, for problems with imbal-
anced data, because it is a quality measure computed as a combination between
Precision and Recall. Though there are different approaches for the optimization
of the F-Measure using supervised techniques like SVMs [9], logistic regression [8]
and other approaches [1], no such algorithm exists for ANNs to the best of our
knowledge.

In order to illustrate the interest of this proposal in a real task, we have
studied a problem for which the F-Measure has been typically used to assess
the quality: image cleaning and enhancement of ancient document images. This
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task consists in estimating the probability of ink in each pixel of the cleaned
image given the noisy counterpart, and it can be considered to be an imbalanced
problem since only a few percentage of pixels in an image corresponds to ink.
This task is required not only to improve the readability of these documents
by humans but is also the first stage in most preprocessing pipelines applied in
text recognition systems. This stage is quite critical because any mistake could
be propagated to the following ones. The relevance of this stage depends on the
quality of the documents and it is particularly important in historical documents
which suffer many types of degradation.

The rest of the paper is structured as follows. First, Section 2defines the
F-Measure for continuous values and explains how this measure can be used
as objective error function in the Backpropagation algorithm. In order to illus-
trate the performance of the new training criteria, a task of image cleaning and
enhancement of ancient printed and handwritten documents is proposed (see
Section 3). The proposed method is successfully applied to different competition
datasets and experimental results are presented in Section 4. The conclusions
are finally drawn at the end.

2 Error-backpropagation with F-Measure

The Backpropagation (BP) algorithm updates the ANN weights following the
derivative of a given error function. The MSE function is widely used. For a given
ANN output 01,09, ...,0, and a its corresponding target output t1,ts,...,t,,
the MSE for one pattern is computed as MSE = 1/2- 3" (0; — t;)?, and its
derivative is OMSE/do; = (t; — 0;).

This equation for training ANNSs is well known, and has been successfully ap-
plied in several pattern recognition tasks (classification, regression, forecasting,
...). Different weight updating modes exists [4]:

— the batch training, which computes and sums the derivatives of all training
patterns and updates weights once every epoch;

— the on-line training, which computes the derivative of one training pattern
and updates weights once for each pattern every epoch; and

— finally, the mini-batch or bunch mode [3], which computes and sums the
derivatives of a few training patterns, updating weights once for the mini-
batch size, but several times for one epoch.

Mini-batch and on-line modes have some advantages compared with batch mode:
convergence is faster and the result is equal or even more accurate.

As it was previously stated, for tasks with imbalanced data, the F-Measure
(FM) function is more appropriate than MSE or other error measures. F-Measure
is a quality measure computed as a combination between Precision (PR) and
Recall (RC). It is possible to compute a version of the F-Measure interpreting
the output of the model as a binary value (for 2-class problems: 1 for relevant
and 0 for non-relevant), being o(* the output of the model for pattern i and ¢+(*)
the real-class value (0 or 1) for pattern i. The computation of FM is a harmonic
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mean of PR and RC, and leads to the final formulation of FM in terms of
true positives (TPs), false positives (FPs) and false negatives (FNs).? TPs, FPs,
and FNs are computed over a dataset of m patterns: TP = Y1 o . ¢(0),
FP=3%" 09.(1-t@) and FN = 37" (1 — 0o®) - ). FM is formalized
as usual, although the formula can be simplified by substituting TPs, FPs and
FNs with previous definitions:

Iy ~ (1+p?)-PR-RC _ (1+8%)-TP _ )
P~ 7B .PR+RC ~ (1+3)- TP+ -FN+FP
(1+5%)- Zo(i) O]
e (2)
Z(O(i>+52.t<i>>
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In order to use the F-Measure as the objective error function in BP algorithm
it is required to derive it by o(:

1+ 3% o) . ()
OF My (1+ 52)t® ;
9ol N 2 ()
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Since BP is defined for minimization, the sign of the F-Measure function has
to be inverted. Note that F-Measure derivative of pattern ¢ depends on the
others m — 1 patterns, so it is not separable as the MSE. Therefore, the exact
computation of this derivative forces to use batch training mode. However, batch
training is slow and inaccurate when the number of patterns m is large (in the
reported experiments, millions of patterns). Because of these issues, we decided
to use a mini-batch training mode, which leads to an approximation highly
correlated with the true F-Measure computed on the entire dataset. Also, for
large training partitions, it is better to train each epoch with a shorter random
replacement sampled from training data. In this way, the error of one epoch will
be the mean of each mini-batch FM. Let b be the size of the mini-batch, and R
the replacement sample size, weights are updated [R/b] times every epoch.
The derivative of F-Measure has some issues that need to be discussed: the
use of mini-batch mode combined with random replacement makes it possible to
sample a bunch of patterns where every target is false (class 0). In this case, the
FM and its derivative are both zero, meaning that these mini-batch presentations

3 TPs are those positive samples correctly classified (no error); FPs are those nega-
tive samples incorrectly classified as positive samples (error); and FNs are positive
samples incorrectly classified as negative samples (error).
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does not update the weights. This problem becomes more likely the lower the
mini-batch size and the more imbalanced the data is. Since each sample selection
is independent of others, the probability of occurrence of this situation can be
easily computed from the mini-batch size b and the proportion of 0’s in the entire
training dataset (of size m) as (F/m)b7 where F' = Z;"Zl(l — (). This problem
reduces convergence speed because mini-batches suffering from this problem does
not update weights even if the output of the model is not correct.

3 Cleaning and enhancement as a probability pixel
estimation problem

Image cleaning and enhancement, specially for ancient documents, are common
and crucial steps for any document recognition system. Traditionally, the output
of image cleaning is a binarized image where black pixels mean the presence of
ink in this region. Nevertheless, since many preprocessing techniques can also
deal with gray level images, it is possible to consider the gray level of cleaned
image pixels as the probability of ink. Thus, cleaned images are not considered as
arbitrary gray level images but, rather, as a soft estimation of a black and white
image which tries to represent, in a limited resolution, the set of ideal strokes.
Gray values are a way to represent the probability of picking a black sub-pixel in
this pixel, so intermediate gray values are expected to be found in the borders of
strokes. This idea has a correspondence with the desirable anti-aliasing property
of geometrical transformations applied in most common preprocessing stages
such as the correction of the skew of the page, the slope of the words in the lines
and the slant of the strokes.

This problem can be considered as the joint estimation of the probability of
finding ink in pixel areas, as the classification of pixels into two classes or as the
retrieval of ink areas in the whole document.

It is not easy to classify image cleaning and binarization techniques, many
are based on geometrical heuristics, but we propose the use of supervised ma-
chine learning techniques. Although other machine learning techniques exists
(e.g. based on Markov Random Fields [14]) we have used neural network fil-
ters [7] which estimate the probability of ink for each pixel given a window
of the original image centered at the pixel to be cleaned (see Figure 1). This
has two main limitations: each pixel is estimated independently, and only local
information is taken into account. The first limitation is alleviated by the high
correlation of window inputs of neighboring pixels.

There exists many assessment measures to evaluate the quality of image
cleaning and binarization which can be classified into three categories [10]: by
means of human supervision, indirectly by evaluating the overall performance
of a recognition system and, finally, by comparing the cleaned image with a
reference or ground truth. Several measures have been proposed in the literature
for the last option which is the only considered in this work. Note that, since
this task is imbalanced (the percentage of ink pixels ranges between 5 and 15
percent), the F-Measure seems quite suitable in this case. As a matter of fact,
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many prestigious image binarization contests [6] employ the F-Measure to rank
contenders.

MSE is a common error metric in BP training algorithms which has been
applied in probability estimation tasks and which can also be used to measure
the quality of image cleaning, but the use of F-Measure seems more appropriate.
Indeed, a cleaned image with lower MSE may appear subjectively of lower quality
than another one which may assign little mistakes on white pixels which are
the majority. That is why we have opted for the use of this measure as the
training criterion in BP. Since the output of the neural network is represented
as a real-value, it is straightforward to compute a “soft” F-Measure and error
derivatives interpreting the output of the model as a binary probability where
the value for a pattern i is set as o) = P(relevant|sample) and 1 — o) =
P(non-relevant|sample). The soft F-Measure is computed as stated in Section 2.

Hidden layers

Input layer

Fig. 1. Scheme of a neural network filter: a feedforward neural network estimates the
probability of ink of a pixel on the cleaned image from a window centered at the
same pixel in the original image. Another optional window receives an estimation of
background computed by means of a median filter.

4 Experimental Setup and Results

The ANNSs for enhancement and cleaning have been applied to the four Docu-
ment Image Binarization COntest (DIBCO) datasets (DIBCO 2009 [5], DIBCO
2010 [12], DIBCO 2011 [6], and DIBCO 2012 [11]), partitioned as follows:

— Training set: includes DIBCO 2009 and DIBCO 2010 datasets. A total of 24
images (19.8 Mpx, 6.6% classified as ink).

— Validation set: includes DIBCO 2011 dataset. A total of 12 images (10.0
Mpx patterns, 9.0% classified as ink).



6 Joan Pastor-Pellicer et al.

— Test: includes DIBCO 2012 dataset. A total of 14 images. (19.2 Mpx, 6.7%
classified as ink).

In order to compare the proposed technique, different configurations have
been tried with which differ in the error criteria:

— Logistic output unit ANN trained using the MSE error criteria.
— Logistic output unit ANN trained using the FM error criteria.

using training and validation data to 1) find a common topology which works
fine with both error criteria, and 2) adjust parameters afterwards. Finally, the
trained networks have been used to compute the performance on the test set.
The quality of ANN filters has been measured by comparing the cleaned images
with the ground-truth.

Each type of error criteria has been tested on a network which share the
same input, hidden and output layers with the other network. The input layer is
composed by 90 input neurons: 81 pixels corresponding to a window of size 9 x 9
centered at the pixel to be cleaned and 9 additional context pixels associated to
a 3 x 3 window with an estimation of background using a median filter. Relating
the hidden layers, the best configuration was two hidden layers of sizes 64 and 16,
respectively. 9 different random initialized networks have been trained in order
to reduce the effect of local minima. Table 1 shows the average of the FM and
MSE measures, along with the standard deviation on validation and test sets
for a training with a mini-batch of 32 samples. Also, an example of a test set
image cleaned with both ANNs is depicted in Figure 2. In general, both training
techniques perform quite well when measured either on MSE or on FM, since a
well cleaned image gives good results on both metrics. Comparing these results
with [11], which is measured on the same test, the results are not competitive
compared with the best models although they are better than method 1 which is
also based on neural networks (they obtain a FM 0.82, and we obtain a FM 0.836
for a soft measure which is a lower bound on the binarized measure. We can also
observe, from Table 1, that ANNs trained with the FM error function obtains
better F-Measure than ANNs trained with the MSE error function. Conversely,
the second model outperforms the first one in MSE in both validation and test.
As expected, each training criteria prioritizes a different goal.

Table 1. Average and Standard Deviation of the MSE and FM.

Validation Data Test Data
u+ o MSE pwEtoFM w+ o MSE pw+o FM
MSE training|0.0254 + 0.0010(0.708 + 0.013{|0.0165 + 0.0004|0.754 + 0.007
FM  training|0.0376 £ 0.0036(0.774 4 0.012(/0.0181 % 0.0006|0.836 + 0.009

In order to study the influence of the size of the mini-batch, different trainings
have been carried out varying this parameter and the reported F-Measure is
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Fig. 2. (Top) Example of a noisy test image. (Bottom left) The same image cleaned
with the ANN trained with the MSE error criteria. (Bottom right) The same image
cleaned with the F-Measure error criteria.

illustrated in Figure 3(a). In this case, two different factors may influence the
results in opposite ways: on the one side, the bigger the mini-batch size, the
more accurate the approximation to the true F-Measure is. On the other side,
a lower mini-batch value corresponds to a training scheme closer to the online
version of BP which may have faster convergence. As can be observed, as the
mini-batch size is increased, the F-Measure performs worse, which means that
even smaller mini-batches may be highly correlated with the global F-Measure.
In order to study this correlation, a statistic experiment has been carried out
(see Figure 3(b)) obtaining a Pearson product-moment correlation coefficient
r = 0.9991 £ 0.0004 with a confidence interval 99.9% (p < 0.001).
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(a) Influence of mini-batch size. (b) Correlation between the average FM of

100000 mini-batches of size 32 taken ran-
domly and the FM value computed on the
concatenation of all validation images.
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5 Conclusions

In this work, a novel objective error function for the Backpropagation algorithm
is proposed based on the F-Measure and it has been explained how it can be
adapted to mini-batch training mode of BP. In order to empirically validate
this training mode a real task using an imbalanced dataset of several millions
of patterns has been carried out. The task has consisted in the estimation of a
cleaned image from a noisy one by means of neural network filters. Experimen-
tal results show that, although ANNSs trained with MSE or with FM performs
quite well, each training mode prioritizes its corresponding assessment measure.
This error criteria can be used in tasks where F-Measure makes sense, as is the
case of information retrieval or document classification. As a future work, we
plan to extend this work to other symmetrical measures such as the Matthews
correlation coefficient.
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