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Abstract. Demand among consumers for fruits and vegetables with improved contents in bioactive 

compounds is increasing. In particular, a lot of attention is being paid to phenolic compounds, as they 

have been reported to present many beneficial effects for human health. However, oxidation of 

phenolic compounds present in the tissues of fruits and vegetables by polyphenol oxidases (PPOs) can 

result in browning, which affects negatively the quality of the produce. Eggplant (Solanum 

melongena) presents a high content in phenolics, in particular chlorogenic acid (CGA), which confers 

nutraceutical properties to this crop. In order to obtain information relevant for the development of 

varieties with high content in CGA and low browning, we have studied the diversity for CGA, PPO 

activity, and fruit flesh browning and their relationships in a collection of 18 Spanish accessions of 

eggplant. Also, using an interspecific mapping population between S. melongena and S. incanum we 

have mapped the genes involved in the synthesis pathway of CGA as well as the eggplant PPO genes. 

The results confirmed that eggplant presents high levels of CGA, and that a wide diversity exists for 

the three traits studied. Low levels of correlation have been found between CGA and PPO activity on 

one side and browning on the other, indicate that PPO is not a limiting factor in browning in the 

germplasm collection studied. The six genes of the pathway for the synthesis of CGA from 

phenylalanine have been mapped to five different linkage groups. Only two of the genes are linked 

indicating that selection of materials with the alleles favourable of different parents will be easily 

achieved. However, the five PPO genes mapped (PPO1 to PPO5) cluster together in the same linkage 

group, which will difficult obtaining recombinants. Mapping of these genes is of interest for marker 

assisted selection for high content in CGA and reduced browning. Overall, the results indicate that 

selection of eggplant varieties with high content in CGA and low browning is feasible. The 

information obtained is also useful for the genetic improvement of other fruits and vegetables in order 

to develop new cultivars with increased added value resulting from high content in phenolics and low 

browning. 
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INTRODUCTION 

 

During the last years there has been an increased demand for fruits and vegetables 

having a higher content in nutraceutical compunds (Herath et al., 2006; Kris-Etherton et al., 

2002). In this respect, breeding programmes for improving the content of bioactive 

compounds in fruits and vegetables are becoming more important for public and private 

breeders (Diamanti et al., 2011). Phenolic compounds present in fruits and vegetables are 

raising an increased interest due to their multiple beneficial effects for human health, which in 

many cases is derived from their high antioxidant acitivty (Crozier et al., 2009; Dai and 

Mumper, 2010). Furthermore, many of the phneolic compounds have a great thermal stability 

and therefore are not lost after cooking (Friedman and Jürgens, 2000; Lo Scalzo et al., 2010). 

115

mailto:jprohens@btc.upv.es


However, increasing the content in phenolics in fruits and vegetables may lead to 

browning and a consequent loss of quality (Toivonen et al., 2008). When the internal tissues 

of a fruit or vegetable with significant amounts of phenolic compounds are exposed to the air 

and cell damage occurs (due to cutting or biting), the phenolic substrates, which are mostly 

found in vacuoles, become accessible to polyphenol oxidases (PPO) (Mayer, 2006; Toivonen 

et al., 2008). The PPOs catalyze the oxidation of phenolic compounds to quinones, which 

subsequently react with air oxygen and other cellular compounds to give brown-coloured 

compounds which cause browning. As a consequence, breeding programmes aimed at 

improving the content in phenolics in fruits and vegetables should also take into account 

browning. 

One of the vegetables with a highest content in phenolics is eggplant (Solanum 

melongena L.)  (Gajewski et al., 2009; Hanson et al., 2006; Mennella et al., 2012; Prohens et 

al., 2007; Stommel and Whitaker, 2003). Because of this, eggplant is considered as a model 

vegetable crop for the improvement of nutraceutical quality (Plazas et al., 2013). The main 

phenolic compound of eggplant is chlorogenic acid (CGA), which is an hydroxicinnamic acid 

with multiple beneficial properties for human health (Mennella et al., 2012; Stommel and 

Whitaker, 2003). CGA has displayed anti-oxidant, anti-carcinogenic, anti-inflammatory, anti-

obesity, cardiprotective, neuroprotective, and analgesic effects (Plazas et al., 2013). As a 

result, CGA plays a major role in the nutraceutical properties of eggplant (Akanatapichat et 

al., 2010; Cao et al., 1996; Das et al., 2011; Kwon et al., 2008). This has resulted in the 

development of breeding programmes specifically aimed at increasenf the CGA content of 

eggplant (Plazas et al., 2013). 

Several works have revealed that there is a wide diversity for CGA content, PPO 

activity and browning in eggplant (Mishra et al., 2012; Prohens et al., 2007; Stommel and 

Whitaker, 2003). However, no studies have been made on the relationships between these 

three traits in a wide collection of germplasm. These studies would provide information of 

relevance for the breeding of eggplant cultivars with high content in CGA and low browning. 

Also, the genes involved in the synthesis of CGA (Comino et al., 2007; Joët et al., 2010; 

Mahesh et al., 2007; Menin et al., 2010; Niggeweg et al., 2004) and PPO genes (Shetty et al., 

2011) are known, which opens the way to marker assisted selection. In this respect, mapping 

of these genes in eggplant would facilitate molecular breeding for high content in CGA and 

reduced browning in eggplant (Plazas et al., 2013). 

We present the results of: a) a study of the diversity and relationships of CGA, PPO 

activity, and fruit flesh browning in a germplasm collection of eggplant, and b) the mapping 

of genes involved in CGA synthesis and of genes codifying for PPOs. The results are of 

interest for the breeding of eggplants with improved content in phenolics of nutraceutical 

value and low or moderate fruit flesh browning. It also provides information of general 

interest for the development of fruit and vegetable varieties with high content in phenolics 

with low browning.  

 

MATERIALS AND METHODS 

 

Diversity for CGA, PPO, and browning 

A collection of 18 eggplant accessions from the region of Valencia (Spain) were used 

for the study of diversity and relationships of CGA, PPO, and browning. Accessions were 

cultivated in the open field during the summer season at the Agricultural Experimental Farm 

of Carcaixent (Valencia, Spain). The accessions present a wide morphological and genetic 

diversity for fruit characteristics and belong to different cultivar groups. Fifteen fruits per 

116



accession, which were divided in five samples of three fruits, were used for studying the 

diversity for CGA, PPO and browning. 

CGA was measured by high performance liquid chromatography using lyophilized 

powdered tissue. CGA was extracted according to Naranjo et al. (2007). CGA was extracted 

with methanol and measurement was made at 320 nm (Fig. 1). PPO activity was measured 

according to Bellés et al. (2006) using lyophilized powdered tissue and using CGA as 

substrate. The PPO enzymatic reaction was followed colorimetrically at 420 nm for the first 

1.5 min. One unit of PPO activity was defined as the increase in 0.1 absorbance units/min. For 

fruit flesh browning estimation, CIELAB L*, a*, and b* colour coordinates were measured 

with a chromameter in the flesh of fruits at 0 min and 10 min after being cut. The degree of 

browning was estimated as the difference between 0 min and 10 min in the Euclidean distance 

to pure white (L*=100, a*=0, b*=0) (Prohens et al., 2007). 

The mean, minimum, maximum, maximum/minimum ratio, average standard 

deviation (obtained from ANOVA), and coefficient of variation were calculated for the three 

traits. Pearson linear correlations were also calculated using accession means. 

 

 

V17 (1)

B36 (1)

 

Fig. 1. Representative C18 column HPLC chromatograms from methanolic extracts of two samples of 

eggplant with contrasting contents in chlorogenic acid (CGA) content. High and low CGA content 

samples are represented in continuous and dashed lines, respectively. Absorbance was measured at 

320 nm. 

 

Genetic mapping of CGA and PPO genes 

The first backcross (BC1) generation resulting from the cross between an 

interspecific S. incanum × S. melongena hybrid and its S. melongena, as well as the two 

parents and the interspecific hybrid were used. This population had been used to obtain an 

interspecific genetic map of eggplant (Vilanova et al., 2010) and consists of 12 linkage groups 

in which more than 200 SSR, COS and AFLP markers have been positioned.  
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Sequencing of introns of the six genes (phenylalanine ammonia-lyase, PAL; 4-

coumaroyl:CoA ligase, 4CL; hydroxycinnamoy-CoA shikimate/quinate hydroxycinnamoyl 

transferase, HCT; cinnamic acid 4-hydroxilase, C4H; p-coumarate 3-hydroxylase, C3’H; and, 

hydroxycinnamoyl CoA quinate hydroxicinnamoyl transferase, HQT) involved in the 

synthesis of CGA from phenylalanine (Plazas et al., 2013) was performed in order to look for 

single nucleotide polymorphisms (SNPs) between parents. For the six eggplant PPO genes 

(PPO1 to PPO6) (Shetty et al., 2011), as the genes have no introns (Thypiapong et al., 2007; 

Tran et al., 2012) the exon sequence was used to look for polymorphism. SNP 

polymorphisms were transformed into cleaved amplified polymorphic sequences (CAPs) and 

used for genotyping individual plants and for mapping the CGA synthesis and PPO genes in 

the BC1 population. When no CAP marker sequence was available, detecting of 

polymorphism was performed with high resolution melting (HRM).  

 

RESULTS AND DISCUSSIONS 

 

Diversity for CGA, PPO, and browning 

The results obtained show that eggplant presents a high content of CGA when 

compared with other vegetable crops (Plazas et al., 2013). In this respect, the average value 

has been of 3.55 g/kg, with a maximum value of 6.27 g/kg. An important variation was found 

in the collection of accessions for the three traits studied, with differences of 2.54-fold for 

CGA, 2.86-fold for PPO activity, and 3.36-fold for fruit flesh browning (Tab. 1). These 

results are in agreement with former studies in which the diversity of CGA content, PPO 

activity, and browning have been studied in eggplant (Mennella et al., 2012; Mishra et al., 

2013; Prohens et al., 2007; Stommel and Whitaker, 2003). In addition, the high diversity 

values found  represent a confirmation that Spain is a secondary center of diversity for 

eggplant (Hurtado et al., 2012) and that a wide variation can be found for these traits in a 

single geographical region. 

 
Tab. 1  

Mean minimum, maximum, maximum/minimum ratio, average standard deviation for accession, and 

coefficient of variation for the chlorogenic acid content, polyphenol oxidase activity, and fruit flesh 

browning in a collection of 18 eggplant accessions. 

 
 

Parameter 
Chlorogenic acid 

content (g/kg dw) 

Polyphenol oxidase 

activity (units) 

Fruit flesh browning 

(units) 

Mean 3.55 1.552 5.15 

Minimum 2.47 0.870 2.47 

Maximum 6.27 2.490 8.31 

Maximum/Minimum 2.54 2.86 3.36 

Average standard deviation 1.73 0.773 1.88 

Coefficient of variation (%) 39.2 54.4 46.1 

 

The coefficient of correlation between CGA and fruit flesh browning has been 

significant (P<0.05) although the value has been low (r=0.253; Fig. 2). The coefficient of 

determination (r
2
) for this correlation has been r

2
=0.064, indicating that only 6.4% of the 

variation found in fruit flesh browning is explained by variation in CGA. The coefficient of 

correlation between PPO activity and fruit flesh browning has been non-significant (P>0.05; 

r=0.185) (Fig. 3).  
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Fig. 2. Relationships between chlorogenic acid content and fruit flesh browning in a collection of 18 

eggplant accessions. The linear regression line is displayed. 

 

Polyphenol oxidase activity (units)
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Fig. 3. Relationships between polyphenol oxidase (PPO) activity and fruit flesh browning in a 

collection of 18 eggplant accessions. The linear regression line is displayed. 

 

The results from the correlation studies indicate that additional factors other than 

CGA content or PPO activity are influencing fruit flesh browning in the eggplant collection 

studied. In this respect, cell and cell organelle size, morphology and distribution, presence of 
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phenolic compounds other than CGA and of other non-phenolic compounds able to produce 

browning, amount of CGA and PPO release from cell compartments, diffusion of CGA and 

PPO, accessibility of O2 to CGA, intracellular pH, or differences in the concentration of 

intracellular antioxidants may have considerable impact in fruit flesh browning (Barbagallo et 

al., 2012; Concellón et al., 2012; Mishra et al., 2012; Ghidelli et al., 2013; Toivonen et al., 

2008). In other crops, like potato, low correlations between PPO activity and browning have 

been reported in some populations (Culley et al., 2002) 

The results obtained suggest that it is possible to select eggplant accessions with high 

content in CGA and low browning. The lack of correlation between PPO activity and 

browning suggests that even the lowest levels of PPO activity found by us in the eggplant 

collection studied are more than sufficient to produce high levels of browning. Other studies 

have shown that PPO inhibition reduces browning of the eggplant fruit flesh (Barbagallo et 

al., 2012; Ghidelli et al., 2013; Hu et al., 2010; Massolo et al., 2011; Mishra et al., 2012), 

which may indicate that selection of PPO genes with no or very low activity may be of 

interest for reducing fruit flesh browning in eggplant. 

Genetic mapping of CGA and PPO genes 

For the six genes involved in  the CGA synthesis pathway (Comino et al., 2007; Joët 

et al., 2010; Mahesh et al., 2007; Menin et al., 2010; Niggeweg et al., 2004), orthologous 

genes could be found in tomato with a high identity to the eggplant unigenes. In all cases, 

polymorphism could be found between S. melongena and S incanum. For the PAL, 4CL, and 

C3’H genes CAPs markers could be developed, while for HCT, C4H, and HQT genes, SNP 

polymorphism was detected with HRM. The six genes could be situated in our interspecific 

genetic map (Tab. 2).  

 
Tab. 2 

Genes involved in the synthesis of chlorogenic acid content and their position in the genetic map of 

eggplant. 

 

Gene Linkage group 
Distance (cM) from 

linkage group end 

Phenylalanine ammonia-lyase (PAL) 9 15.0 

4-Coumaroyl:CoA ligase (4CL) 3 90.3 

Hydroxycinnamoy-CoA shikimate/quinate hydroxycinnamoyl 

transferase (HCT) 
3 89.0 

Cinnamic acid 4-hydroxilase (C4H) 6 107.1 

p-Coumarate 3-hydroxylase (C3’H) 1 86.1 

Hydroxycinnamoyl CoA quinate hydroxicinnamoyl transferase 

(HQT) 
7 3.0 

Polyphenol oxidases PPO1, PPO2, PPO3, PPO4 8 40.0 

Polyphenol oxidase PPO5 8 35.5 

 

The study of synteny with the tomato genome, revealed that these six genes mapped 

according to the syntenic position in tomato (Wu et al., 2009). The six genes are spread in 

five different linkage groups. In this way, the only genes situated in the same linkage group 

are 4CL and HCT, which are situated at a very small genetic distance. This shows that, with 

the exception of 4CL and HCT it may be relatively easy to combine the favourable alleles in a 

single material using marker assisted selection. For the 4CL and HCT genes, in case that the 

favourable allele of one of the genes is found in S. melongena and the favourable allele of the 

other gene is present in S. incanum it will be necessary to look for recombinants in 

segregating populations to find the desired genetic combination. 
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The PPO genes of tomato have no introns and are clustered together in chromosome 

8 (Newman et al., 1993; Tran et al., 2012) and consequently, the levels of polymorphism are 

lower than those of intron sequences. Eggplant PPO genes PPO1 to PPO5 could be amplified 

and sequenced in both parents. However, PPO6 gene could only be amplified and sequenced 

in S. melongena, but not in S. incanum. This result suggests that the PPO6 gene of S. incanum 

presents substantial changes with respect to the homologous gene in S. melongena, or that is 

not present in S. incanum. HRM was used to detect the SNPs and for genotyping the mapping 

population.  

The five PPO genes that could be mapped (PPO1 to PPO5) were situated in linkage 

group 8, in a position syntenic with the cluster of PPO genes in tomato (Wu et al., 2009). 

PPO1 to PPO4 genes are situated at the same distance from the linkage group end (40.0 cM), 

while PPO5 is a little bit separated, being situated at 35.5 cM from the linkage group end. It 

remains to be studied which PPO gene/s are expressed in the fruit. In any case, the fact that 

the PPO genes are found clustered in the same genomic region means that it will be difficult 

to obtain recombinants between S. melongena and S. incanum for the PPO genes. Further 

studies on diversity for PPO activity and identification of allelic variants that result in 

dramatically reduced PPO activity may result in eggplant varieties with low browning. In 

other crops, transgenic materials showing low or reduced PPO activity also present reduced 

browning (Murata et al., 2001).  
 

CONCLUSION 

 

We have found that considerable diversity exists for CGA, PPO activity and 

browning within a germplasm collection of eggplant from Spain. This indicates that these 

traits are amenable to selection. Lack of correlation between CGA and PPO on one side and 

fruit flesh browning on the other indicates that it is feasible to select eggplant materials with 

high content in CGA, and therefore with improved nutraceutical properties, and low 

browning. The mapping of the genes involved in the CGA synthesis pathway and of the genes 

codifying for PPOs will be useful for marker assisted selection in order to develop eggplant 

materials with improved CGA content and reduced browning. This information is of interest 

not only for eggplant breeding, but also for the genetic improvement of other fruits and 

vegetables with increased added value resulting from containing significant amounts of 

phenolics and reduced browning susceptibility. 
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