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a b s t r a c t

Nox estimation in diesel engines is an up-to-date problem but still some issues need to be solved. Raw
sensor signals are not fast enough for real-time use while control-oriented models suffer from drift
and aging. A control-oriented gray box model based on engine maps and calibrated off-line is used as
benchmark model for Nox estimation. Calibration effort is important and engine data-dependent. This
motivates the use of adaptive look-up tables. In addition to, look-up tables are often used in automotive
control systems and there is a need for systematic methods that can estimate or update them on-line.
For that purpose, Kalman filter (KF) based methods are explored as having the interesting property of
tracking estimation error in a covariance matrix. Nevertheless, when coping with large systems, the
computational burden is high, in terms of time and memory, compromising its implementation in
commercial electronic control units. However look-up table estimation has a structure, that is here
exploited to develop a memory and computationally efficient approximation to the KF, named Simplified
Kalman filter (SKF). Convergence and robustness is evaluated in simulation and compared to both a full
KF and a minimal steady-state version, that neglects the variance information. SKF is used for the online
calibration of an adaptive model for Nox estimation in dynamic engine cycles. Prediction results are
compared with the ones of the benchmark model and of the other methods. Furthermore, actual online
estimation of Nox is solved by means of the proposed adaptive structure. Results on dynamic tests with a
diesel engine and the computational study demonstrate the feasibility and capabilities of the method for
an implementation in engine control units.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Legislation on emissions strengths the importance of electronic
controls and embedded software in automotive engines (Ebert &
Jones, 2009). Focusing on nitrogen oxides (NOx) emissions, selective
catalyst reduction system (SCR) or lean NOx trap (LNT) requires from
reliable information about exhaust gas content, the former for an
appropriate urea dosing (Twigg, 2007) and the latter for a proper
regeneration (Chen, Wang, Haskara, & Zhu, 2012). Commercial elec-
tronic control units (ECU) are mainly programmed with fixed maps
and feedback for emissions control is often far from the exhaust, e.g.
mass air flow or boost pressure sensor. This argument can be extended
to soot or CO2, while exhaust oxygen measurement is more usual.

An accurate and fast NOx signal would permit its usage for real-
time tasks but still dynamic issues must be solved. NOx sensors have
been commonly used in test benches, e.g. gas analyzers or fast
ll rights reserved.
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measurement systems. But until the appearance of zirconia-based
(ZrO2) potentiometric sensors, there had been no choice of using these
in commercial engines, because of cost, size and response limitations
(Kato, Nakagaki, & Ina, 1996; Zhuiykov & Miura, 2007). However, even
with the sensor there are problems using the raw output signal in
real-time functions, in particular the delay from engine to sensor and
the response time of the sensor; see e.g. Manchur and Checkel (2005)
for an approach that addresses the effects of NOx sensor dynamics.
The use of observers is an effective solution for avoiding such effects:
e.g. Hsieh and Wang (2011), Desantes, Luján, Guardiola, and Blanco-
Rodriguez (2011), Payri, Guardiola, Blanco-Rodriguez, Mazer, and
Cornette (2012), and Alberer and del Re (2009) use ZrO2 sensors for
estimating NOx and oxygen, or Höckerdal, Frisk, and Eriksson (2009)
and Grünbacher, Kefer, and del Re (2005) apply an extended Kalman
filter EKF to estimate other relevant engine quantities. Anyway, a fast
model is needed for the observation and sensor behavior is non-linear
as studied in Galindo, Serrano, Guardiola, Blanco-Rodriguez, and
Cuadrado (2011). For illustrating sensor response, see Fig. 1: actual
NOx is expected to respond instantaneously when performing start
of injection (SOI) steps, delay and time response in the sensor are
attributed to the sensor.
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Fig. 1. NOx sensor response to SOI steps. NOx presents a clear delay and filtering
with respect to SOI signal. Dynamic response could be fitted with a first order
delayed discrete filter. SOI unit is crank angle degree before the top dead center,
while NOx is measured in ppm. Delay is in the order of 1 s while response time is
about 0.75 s.

Table 1
Engine technical data. For more information see Galindo et al. (2011).

Stroke (S) 96 mm
Bore (D) 85 mm
S/D 1.129
Number of cylinders (z) 4
Displacement 2179 cm3

EGR HP
Turbocharging system Sequential parallel (Galindo et al., 2007)
Valves by cylinder 4
Maximum power 125 kW at 4000 rpm
Compression ratio 17:1
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Fig. 2. SDMP test profile with sharp variations in mf, n and NOx.
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Without NOx sensors, modeling (or virtual sensing) is possible,
see e.g. Schilling, Amstutz, and Guzzella (2008) that develops a
real time NOx model using maps, Winkler-Ebner, Hirsch, Del Re,
Klinger, and Mistelberger (2010) that designs a virtual NOx sensor
for selective catalyst reduction (SCR) control and diagnosis or
other examples. Problem is highly non-linear and some examples
for coping with this are Takagi–Sugeno fuzzy models (Lughofer,
Macian, Guardiola, & Klement, 2011; Takagi & Sugeno, 1985),
Hammerstein–Wiener (Falck et al., in press), or neural networks
(Yen & Michel, 1991). Nevertheless, in commercial engine ECUs the
prevailing approach is to use look-up tables to model nonlinear
and operating point dependent behaviors because of the simple
programming although it attaches a big calibration effort. These
models need to be calibrated but in general will suffer from drift
problem. Section 3 presents a gray box model used as benchmark
for comparison latter.

A solution for drift correction is adaptive modeling. Main
algorithms for online adaptation are recursive least squares (RLS)
and Kalman filter (KF). Although both copes with system drift and
aging, the latter tracks estimation aging by solving the statistics of
the estimation error at every iteration (by the covariance matrix).
This paper analyzes the computational aspects of look-up table
updating with the KF. The main contribution is a new table
updating method that utilizes the KF framework but simplifies
the covariance matrix and the associated updates, and it will be
called Simplified KF (SKF). This approach is compared to both a
full Kalman filter (KF) based update, as described in Höckerdal,
Frisk, and Eriksson (2011), and a steady state Kalman filter (SSKF)
based update, as described in Guardiola, Pla, Blanco-Rodriguez,
and Cabrera (2013). Look-up tables updating is treated in Section
4, including a discussion on computational complexity, important
when talking about real time implementation.

The algorithms are first evaluated in simulation in Section 5
and then Section 6 applies the algorithms for the NOx estimation
problem in a diesel engine, showing SKF possibilities. The applica-
tion uses a Sportive Driving Mountain Profile (SDMP) cycle with
sharp variations on injection and speed to identify a static TNOx

map as function of injected fuel mass mf and speed n during one
part of the cycle storing NOx values, and then, the whole cycle NOx

emissions are predicted with such map. SKF is also applied to the
New European Driving Cycle (NEDC). The only requirement is
that sensor properties (delay and dynamics) must be known for
estimating actual NOx. For that, paper includes sensor dynamics in
the standard state-space model. First, experimental setup and
engine data used in the paper is commented.
2. Experimental setup and engine data

Experimental data is obtained from a twin sequential-parallel
turbocharged diesel engine. This engine is a 2.2-liter 4-cylinder
common rail. Engine specifications are shown in Table 1. Conven-
tional sensor set is used (mass air flow, boost pressure, etc.) and
the following extra-sensors are added: a ZrO2 multilayer based
NOx sensor (Kato et al., 1996) giving a twofold measurement of
NOx (yNOx

) and oxygen in the tailpipe and a gas analyzer (HORIBA,
2001) in a long line connecting intake manifold and tailpipe
as steady-state calibration standard. These sensors are used for
collecting dynamic data and some of them as inputs for the model,
removing the need of observing some of the variables.

A rapid prototyping system is connected via ETK to a bypass-
allowed ECU, permitting commanding and receiving signals by
means of coupling a real time system via CAN. This allows easy
access to injection parameters (injection pressure or start of
injection SOI), boost and EGR control set points, engine calibration
and possibilities to easily test new programs and routines.

The test campaign includes data for steady-state and transient
tests for the benchmark model calibration. Steady-state ones cover
around 300 operating points, with nominal control inputs. Oper-
ating points are fixed and signals stability is checked for storing
steady-state points. Transient tests include variations on the
actuators and two dynamic cycles: a designed SDMP and NEDC.
SDMP performs sharp variations on injected fuel mass and speed
and is shown in Fig. 2. This is a good test bench for comparing after
look-up table estimation results with the ones given by the model.
NEDC is also used as application. For more details about experi-
mental setup see Lughofer et al. (2011). SOI steps are used for NOx

sensor characterization; the interested reader can go to Galindo
et al. (2011) for further information.
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3. A control-oriented model for NOx estimation

Literature about NOx modeling in diesel engines is extensive
and some examples have been already referenced in the introduc-
tion. Physical models rely on first principles but uses complex
structures that require big computing times. In addition, these are
not free from drift problem. On the other hand, control-oriented
models are often data driven. Here, different possibilities can be
found. For example, heuristic approaches can derive maps from
complex models (Schilling, Amstutz, Onder, & Guzzella, 2006) or
engine data (Lughofer et al., 2011), building a model that is easy to
integrate into the engine ECU, but lacking of extrapolation cap-
abilities. This needs some filtering for catching dynamics and if
implemented online, drift can be corrected with observers (Payri
et al., 2012) or feedback control. Black box models rely on system
identification (Karlsson, Ekholm, Strandh, Tunestål, & Johansson,
2010) but are often operating point dependent and its adapta-
tion is not an easy task. As an intermediate solution, gray box
structures can use fundamental relationships with experimental
fittings (Hirsch, Alberer, & del Re, 2008). In the following a gray
box NOx model is provided for comparison with the online
methods presented hereinafter.
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Fig. 3. Model simulation ym and sensor signal yNOx
in the SDMP test. In spite of the

hypothesis taken, the results are quite good and capable of tracking NOx emissions.
3.1. NOx model used as benchmark

Thermal NOx formation (Lavoie, Heywood, & Keck, 1970) is the
dominant mechanism in diesel, benefited from peak temperatures
in the cylinder and lean conditions (excess of air). These conditions
maximize engine efficiency and reduce soot emissions: the well-
known soot-NOx trade-off, see e.g. Neeft, Makkee, and Moulijn
(1996). Three in-cylinder variables should be necessary for NOx

reconstruction: peak temperature, oxygen concentration and resi-
dence time, but these cannot be directly measured. In-cylinder
pressure may be used as input but signal treatment is still an issue
(Guardiola, López, Martín, & García-Sarmiento, 2011). For a fast
mean value NOx model, oxygen rate in the cylinder and engine
operating conditions (usually speed n and injected fuel mass mf)
seem to be suitable variables for characterizing NOx; see e.g.
Ericson, Westerberg, Andersson, and Egnell (2006), Galindo, Luján,
Climent, and Guardiola (2007).

The model is set-point relative and the main equation is

xm ¼NOx;0ðmf ;nÞe�kðmf ;nÞ�ðrEGRFr�rEGR;0Fr;0ÞCðcomb;H; Tw;…Þ ð1Þ

where subindex 0 indicates nominal conditions defined by man-
ufacturer calibration. NOx;0 is NOx emissions as function of nominal
operating point conditions (n and mf), and exponential is built
around nominal values of inert gas rEGRFr , which expresses the real
quantity of burned gas fraction, being rEGR the EGR ratio and Fr
the relative fuel-to-air ratio. EGR flow is solved by a mean value
engine model (MVEM) and Fr is observed from mf, ma and oxygen
output from ZrO2 sensor at the exhaust: see Appendix A for more
details on the sub-model equations. rEGR;0, Fr;0, which define the
nominal values for rEGR and Fr, respectively, and k are mapped with
a proper grid using n and mf as inputs. The set-point relative
structure is suitable for minimizing errors around nominals,
especially when real time actions are pursued and allows defining
optimal control strategies. Effects of combustion modes, humidity
H, engine temperature Tw are considered with the correction factor
C, i.e. C¼1 when no correction. Tw and H are directly measured on
engine.

The model cannot be used for stand-alone simulation because
it not only requires ECU signals but also is suitable for control and
diagnosis and for offline NOx diagnosis after tests, i.e. if no NOx

sensor is available. Nevertheless, model can be completed with
a full air-path MVEM including turbocharger and combustion
blocks; a good example of an air-path model can be found in
Wahlström and Eriksson (2011).

For comparing with sensor signal, a first order discrete filter
G(z) with a time delay τ∈Zþ is applied to model output

ym ¼ 1�a
1�az�1 z

�τxm ð2Þ

obtaining ym where SOI steps are performed for characterizing
a and τ. Sensor response time a can be modeled as constant
but delay τ has a non-linear behavior difficult to model. A detailed
study on NOx sensor characterization is made in Galindo et al.
(2011). In this work, τ is constant as being sufficient for obtaining
good results with the SDMP and NEDC for the model and updating
methods. Anyway, a robust implementation should include τ
variability; the interested reader can go to Trimboli, Di Cairano,
Bemporad, and Kolmanovsky (2012) who model delay in Fr signal
from NOx sensor as function of air mass flow, engine operating
conditions and speed.

Model is calibrated using steady-state measurements and
dynamic tests minimizing ∑np

i ¼ 1ðyNOx
�ymÞ2 by least squares fitting

where np is the number of points included. Model validation has
been made with a set of engine cycles, including NEDC and SDMP.
Fig. 3 shows results in the SDMP test comparing yNOx

and ym. The
fitting is good and the model is capable of estimating yNOx

with a
minimum error. Fig. 18 presented in Section 6.4 shows results of
a non-optimized calibration for the NEDC and even though some
drift appears, dynamic behavior is cached.
3.2. Motivation for updating look-up tables

Two problems can be underlined when working with control-
oriented models. On one hand, the model accuracy is driven by
the collection of the appropriate data and calibration of all the
parameters. This is a hard and time consuming task. In fact, ECU
has a big number of maps and parameters for engine and vehicle
management. On the other hand, independently of how well the
model has been calibrated there is inevitably a drift between the
system and the model as the surrounding conditions changes and
the engine ages. Data based models are highly sensitive to the
calibration data set and will have problems with aging, manufac-
turing discrepancies, slowly varying parameters and other non-
modeled variables. To show this, an old calibration set for the
model (for maps and sensor dynamics) is used for simulating the
SDMP test. Results can be seen in Fig. 4, where dynamics are well
cached but a clear drift exists. Here is not only aging that affects,
but test or ambient conditions.

These problems are similar for other model structures and
therefore learning algorithms for look-up tables can be used
for calibration and/or online adaptation. In the next, the paper
focuses on the online adaptation of look-up tables and develops a
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Fig. 4. Model simulation ym and sensor signal yNOx
in the SDMP test with a non-

optimized calibration data set. Even though dynamics are well cached, ym is drifted
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computationally efficient method for correcting drift, aging and
indeed allowing self-calibration.
4. Updating look-up tables

In the literature different approaches for online learning of
look-up tables can be found. Peyton Jones and Muske (2009) use a
recursive least-squares method with a forgetting factor, Wu (2006)
distributes proportionally the existing error on the estimation
between the active parameters and Karlsson, Ekholm, Strandh,
Johansson, and Tunestal (2008) use the subspace method for
identifying NOx and soot emission models in heavy-duty diesel
engines. However KF based approaches (see a complete book
about KF methods in Simon, 2006) provide a systematic way
for updating map parameters and it is also appealing for engine
applications as it can also handle aging (see Höckerdal et al., 2011
for a discussion) both for parameters and estimation, i.e. para-
meters that have not been excited for a longer time are expected
to have bigger drift with respect to those have been excited
recently. KF manages this issue optimally in the sense of minimiz-
ing expected estimation error.

Nevertheless, when observing large maps there are high memory
requirements and computational burden. The core of the problem
is that a KF implementation for updating a look-up table with
20-by-20 elements gives rise to a covariance matrix of 400-by-400
elements and thereby also a significant computational burden
when solving the Riccati equations. Therefore an important dis-
cussion of the paper is how the KF can be used or modified to get
an efficient updating procedure for look-up tables without an
important loss of properties.

4.1. Kalman filter basics

The main equations in the KF Kalman (1960) are recalled here
for presenting the nomenclature used after although the reader
familiarized with control engineering could skip this subsection. In
the setting the data is assumed to be generated by the following
discrete time system

xk ¼ f ðxk�1;ukÞ þwk ð3aÞ

yk ¼ hðxk;ukÞ þ vk ð3bÞ
where xk∈Rnx represents the state vector, uk∈Rnu the input vector,
yk∈R

ny the output vector. If f and/or h are non-linear a previous
linearization step is required for the filter and then, elements ij of
Fk and Hk are obtained

Fk;ij ¼
∂f i
∂xj

���
x ¼ x̂k

; Hk;ij ¼
∂hi
∂xj

���
x ¼ x̂k

; ð4Þ
being F the linearized process matrix and H the linearized output
matrix. From now, discussion is valid both for linear and non-
linear systems and KF will be used referring to Kalman filter based
methods, including non-linear Extended version and standard one.

Noises wk∈Rnx and vk∈Rny are assumed to be independent
and both generated by Gaussian distribution with zero mean and
covariance matrices Qk resp. Rk, defined by

E½wkw
T
k � ¼Qk ð5aÞ

E½vkvTk � ¼ Rk ð5bÞ
In applications these are often chosen to be constant, i.e. Q and R,
and diagonals.

Then, x̂k∈Rnx is the observation of the state vector xk

x̂kjk�1 ¼ f ðx̂k�1;ukÞ ð6aÞ

ek ¼ yk�hðx̂kjk�1;ukÞ ð6bÞ

x̂k ¼ x̂kjk�1 þ Kkek ð6cÞ
where Kk Kalman gain is solved by the following iterative equa-
tion:

Pkjk�1 ¼ ðFkPk�1F
T
k þ Q Þ ð7aÞ

Kk ¼ Pkjk�1H
T
kðHkPkjk�1H

T
k þ RÞ�1 ð7bÞ

Pk ¼ ðI�KkHkÞPkjk�1 ð7cÞ
where matrix Pk is the covariance matrix of the state estimate
error (Ljung, 1999)

Pk ¼ E½xk�x̂k�½xk�x̂k�T ð8Þ

4.2. Look-up tables

A look-up table T∈R∏N
i ¼ 1ni is defined as a N-Dimensional

mapping fT : RN-Rg defined by a grid in N∈Zþ dimensions,
where each one has ni grid points. The mapping further relies on
a multivariate interpolation qð � Þ to calculate the function value
from the input using the grid for the interpolation variables and T.
In automotive systems, the multivariate interpolation schemes are
often linear in the dimensions, and this is the case that will be
considered here. Without loss of generality the presentation will
use 2D tables as being the most frequently occurring dimensions,
since working with other dimensions is only a matter of reducing
or increasing indexes. Then, for N¼2,

T¼ ½θi;j� ð9Þ
where i¼ 1;…;nr and j¼ 1;…;nc (r stands for row and c for column).
The multivariate interpolation function for generating the output
yk from input uk ¼ ½u1ðkÞ u2ðkÞ�T can be expressed as

yk ¼ vecðqðukÞÞT vecðTÞ
where vecð � Þ is the vectorization transformation and qðukÞ is the
interpolation matrix that both selects the elements to be inter-
polated and contains the weights. In the 2D case qkðukÞ selects the
4 (2N in the ND case) active elements θi;j, θi;jþ1, θiþ1;j, θiþ1;jþ1 (with
i; j fulfilling u1;k∈½ri; riþ1� and u2;k∈½cj; cjþ1�) and thus contains the
following block with non-zero weights

qðukÞi;j qðukÞi;jþ1

qðukÞiþ1;j qðukÞiþ1;jþ1

" #
¼

ð1�η1;kÞð1�η2;kÞ ð1�η1;kÞη2;k
η1;kð1�η2;kÞ η1;kη2;k

" #

where

η1;k ¼
u1;k�ri
riþ1�ri

; η2;k ¼
u2;k�cj
cjþ1�cj

ð10Þ
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4.3. Modeling for learning, drift or aging in tables

In the setting, T models a nonlinear function and the interest-
ing aspect is to allow the model to adapt to the system to either
learn the system and/or follow the aging of the system. This is
modeled in the standard way as a randomwalk process, where the
table parameters are collected in a state vector xk∈Rnr�nc . The full
model uk-yk is

xk ¼ xk�1 þwk ð11aÞ

yk ¼ vecðqðukÞÞT xk þ vk ð11bÞ
Note that no uncertainties are allowed in the interpolation variable uk.

For convenience, the non-zero elements in vecðqðukÞÞ are
denoted qok∈R

1�4 (o stands for observable) and the corresponding
elements in the state vector, xok∈ðRÞ4. Then, following expression is
obtained for the output:

yk ¼ qokx
o
k þ vk ð12aÞ

qok ¼ ½ð1�η1;kÞð1�η2;kÞ η1;kð1�η2;kÞ ð1�η1;kÞη2;k η1;kη2;k� ð12bÞ
where Q and R are

Q ¼ s2wInr�nc ð13aÞ

R¼ s2v ð13bÞ
and Inr�nc is the identity square matrix. If there is engineering
application knowledge available, s2w might be selected individually
for each table element building a vector Σ2

w ¼ ½s2w;1…s2w;nr�nc
� that

contains individual variances in such way Q ¼ Σ2
wInr�nc . In auto-

motive, this is useful for considering order of magnitude of
the parameters, i.e. absolute error will not be the same for low
emissions at lower loads than highest peaks at higher ones, and on
the other hand, if driving pattern exists, noise could be mapped
over the table grid. This is linked with the foreseen probability that
engine is running at a certain operating condition, i.e. elements
aging in more usual grid areas will be slower and the opposite.

4.4. Kalman filter based method for updating look-up tables, KF

The EKF can now be used to observe xk, when measurements of
yk are given. At every iteration, Kk is calculated based on (7), where
F¼ Inr�nc is constant and Hk ¼ vecðqðukÞÞT . Although only the
active elements xok are updated at every k, all Pk elements enter
in the equation, which leads to huge calculations and big required
memory resources. This makes difficult the implementation in
commercial ECUs.

There are several publications on computational aspects of
Kalman filters, for example some have studied the filter optim-
ization when different nonlinear functions are handled, e.g.
Charalampidis and Papavassilopoulos (2011), Jørgensen, Homsen,
Madsen, and Kristensen (2007) and Singer and Sea (1971); the
latter make an interesting study on the total number of operations
required for the updating phase. Chandrasekar, Kim, and Bernstein
(2007) present an interesting methodology when system order is
extremely large by using the finite-horizon optimization technique
for obtaining reduced-order systems. But key observation here is
that the look-up table estimation has structural properties that can
be exploited to reduce the computational and memory require-
ments significantly in a simple way.

To understand the problem, covariance matrix in the KF P is
studied. For instance, a 2D look-up table with a size nr � nc needs
system F and covariance matrices P of ðnrncÞ � ðnrncÞ. However,
only the active elements are influenced during the update and
by defining a local observable system (which corresponds to the
active elements), one receives a system which is 4�4 against
ðnrncÞ � ðnrncÞ. That means that non-active elements do not affect
the updating until they become active (zero values for the K
related elements). Furthermore, Pk is a symmetrical and positive-
semidefinite matrix, which allows further simplifications in the KF
calculations.

4.5. Local observable system and steady-state approach, SSKF

The Local Observable System is defined and analyzed and a
computationally efficient approximation for the KF, from Guardiola
et al. (2013), is described. Following with the 2D look-up table
application, at every iteration a maximum number of 4 elements
can be updated and then, if no dynamics are accounted, the general
nr � nc system (11) can be written as 4�4

xok ¼ I4xok�1 þwk ð14aÞ

yk ¼ qokx
o
k þ vk ð14bÞ

The simplest 2D map is a table of only 4 elements, and where the
one existing area is always active, i.e. system (14) is exactly (11). For
the general case, (14) must be rewritten at every k as elements and
matrices change. Supposing that system (3) is linear time-invariant
(LTI): s2w , s

2
v , F and H are constant, then KF is steady-state (Simon,

2001). Of course system (14) is not time invariant, because qok (and
then H) depends on u1;k and u2;k, which are the inputs. But, if inputs
are considered stationary during a certain time, sequence fKg1i ¼ 1
converges to a steady-state gain KSS. For the 2D case

KSS ¼

kiðη1; s2v=s2wÞ � kiðη2; s2v=s2wÞ
kiðη1; s2v=s2wÞ � kið1�η2; s

2
v=s

2
wÞ

kið1�η1; s
2
v=s

2
wÞ � kiðη2; s2v=s2wÞ

kið1�η1; s
2
v=s

2
wÞ � kið1�η2; s

2
v=s

2
wÞ

2
66664

3
77775 ð15Þ

where ki is computed as follows:

kiðη; s2v=s2wÞ ¼
0:5ð1�ηÞð1þ sÞ

0:5ð1þ sÞð1�2ηþ 2η2Þ þ s2v=s2w
ð16aÞ

s¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

ð1�2ηþ 2η2Þ
s2v
s2w

s
ð16bÞ

This approach allows mapping K and this only depends on
inputs (η1 and η2 calculated in (10)) and noise trade-off s2v=s

2
w.

Nevertheless, as parameter aging is not considered, this makes the
algorithm quite fast and light but robustness must be assessed in
the applications. Algorithm pseudo-code is in Appendix B.

4.6. About system observability

The system (11) is not fully observable in one iteration. But local
observability can be ensured if parameters or states in the local
system (14) can converge with a given data set. As system is not LTI,
the ordinary observability rank condition (Ogata, 2001) is not directly
applicable. qok depends on the input data, and it is evident that
if a enough level of excitation is given, then the system could
be observed, whatever the method chosen. This minimum level
of excitation could be proved if 4 elements have been excited.
A sufficient observability matrix for local observability may be built
with the first 4 independent observations not necessarily consecutive
in instants i1; i2; i3 and i4 of the elements of the involved area:

O¼

qoi1
qoi2
qoi3
qoi4

2
66664

3
77775 ð17Þ

and if the rank of this matrix is 4, then system (14) could be
observable. But here the problem is linked with the noise tuning and
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indeed full rank O does not lead to system full convergence (full
observability does not lead to full convergence as method and model
structure affect). Majority of elements are also included in other
neighbor areas and because of this the minimum condition of
observability of a given state depends on the number of independent
measurements that affect this state, and as other elements affect
this, the condition stated in Höckerdal et al. (2011) gives a general
condition.
4.7. The simplified Kalman filter SKF

Despite that only the active elements affect Kk, all Pk elements
are predicted and updated at every k. Pk can be reorganized in
such way that variances related with observable Po

k and unobser-
vable Pu

k elements are split.

ð18Þ

Kk, qk and Q can also be split in the same way. Iterating one step
ahead (7c) is written

ð19Þ
where all observable matrices are 4�4, while the unobservable
ones are ðnrnc�4Þ � ðnrnc�4Þ. (19) shows how only diagonal
elements of Pu

k are affected by adding the diagonal matrix Qu.
However, both diagonal and non-diagonal elements of Po

k are
affected as in a 4�4 KF. Crossed relationships between observable
and unobservable system, showed as dots in the matrix, are kept
constant. This allows simplifying the complete system to the 4�4
active state-space system, whose resolution is highly computa-
tionally efficient.

Current work develops an approximation of the KF that
requires both less memory and computations in the iterations
and is named SKF. SKF builds and solves the local observable
system (14) at every k. Some simplifications are assumed: for the
non-active elements, whose covariance matrix is Pu, non-diagonal
elements are neglected building a vector Pu ¼ diagðPuÞ. This is
justified for two reasons. First, when the system is running, then
leaves one area and later returns to it, related variances reflect the
time that the system has been out of this area. This is a desired
property since the aging is captured by the variance increase due
to Qu which indeed here is defined as a diagonal matrix. Older
crossed correlations are maintained over the time and whether or
not they are valid is not sure. Second, simulation results show that
the full EKF and the SKF have similar performances when running
on synthetic data and real data from the engine application. Then,
at every iteration, the local system (14) is solved with the only
additional operation of Pu

k þ Qu (converted to a vectorial calcula-
tion). SKF is a suboptimal filter but with a similar behavior than KF,
as will be demonstrated in Sections 5 and Appendix A.

Pseudo-code for the SKF implementation is given in Algorithm 1.
Note that code is to show the algorithm where some variables are
not strictly needed in the computer programming, e.g. Puk always that
Pk exists, but are kept for the sake of clarity. Here, noise variance s2w is
the same for all elements, allowing to pre-define diagonal matrix
Qo ¼ r2wI4�4 for active system and vector Qu ¼ s2wdiagðInr�nc�4Þ for
the non-active one.
Algorithm 1. Pseudocode for the simplified Kalman filter SKF.
In the following section the memory allocation and computa-
tional complexity of the three methods, full EKF (here denoted KF),
the SKF developed here and described about, as well as the SSKF is
described.
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4.8. Analysis of memory and computations

A computation time study is made programming code in
Matlab software on a laptop computer Intel Core 2DUO T9300
2.5 GHz with Windows VISTA 64 bits. Fig. 5 shows the relative
computation time used by the three methods for updating 2D
look-up tables of different sizes. Only square n�n tables have
been considered with n ranging from 2 to 21, since it is the total
number of elements in vec(T) that influences memory allocation
and computations. The Y-axis shows the relative computation time
with respect to the average time that the SSKF takes for perform-
ing 1000 iterations, i.e., a relative time of 1 is that method needs
exactly the same time that SSKF. SKF needs around 1.15 times the
SSKF calculation time, whatever the number of parameters. This
slight difference is explained by the manipulation of variances and
the need of redefining active vector and matrices Po and xo when
active area changes (see lines 4 and 5 of Algorithm 1 and compare
with Algorithm 2). However, required time for KF rapidly grows
when number of parameters increases, i.e. for 256 parameters
(16�16), KF needs around 7.8 times the one for SSKF. An expo-
nential function is fitted by least squares method to the KF time as
function of number of parameters np, whose result is the relative
time KF with respect to the one of SSKF.

Table 2 gives some numbers when comparing required mem-
ory resources and computation times for the algorithms. SKF
permits reducing the requirements in terms of memory resources
and the general system ðnrncÞ � ðnrncÞ is reduced to a simple 4�4.
These results show the benefits in memory and computational
when using the SSKF and SKF compared to the full KF.
5. Simulation of the updating algorithms

With these promising results the convergence and robust-
ness of approximations need also to be studied and this is first
performed using simulations. The objective of this section is
Table 2
Memory storage and computational burden comparison between Kalman Filter KF,
Simplified Kalman Filter SKF and steady-state approach SSKF.

P K Rel. Time

KF ðnrncÞ � ðnrncÞ ðnr � ncÞ � 1 (by (7)) 0:82 expð0:0087npÞ
SKF 4�4 + ðnr � ncÞ � 1 4�1 (by (7)) 1.15
SSKF 4�4 4x1 (by (16)) 1
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Fig. 5. Relative computation time required for the methods for updating 2D
look-up tables. Times are normalized with the average time that SSKF needs for
computing 1000 iterations of the filter.
comparing the abilities and performance of the algorithms against
different synthetic cases where no dynamics are accounted
(real system and model are static); later, Section 6 will prove the
algorithms under real conditions in a diesel engine considering
dynamics (sensor output will be used there as reference) and
completing the study on methods capabilities.

For automotive applications, engine speed n and fuel mass
injection quantitymf usually define the engine operating point and
the look-up table scheduling points selected in the simulation are
inspired by these quantities. Hence r represents a grid for u1ðkÞ
(speed in rpm) and c for u2ðkÞ (injected mass fuel in mg/str):

r¼ ½500 1500 2500 3500� ð20aÞ

c¼ ½0 20 40 60� ð20bÞ
and the true map Tr is defined with the surface

Tr ¼

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

2
6664

3
7775 ð21Þ

where xr ¼ vecðTrÞ is the expanded state vector objective of the
estimation process. No initial process knowledge is considered: x0,
xo0, P0 are initialized with zeros. s2v ¼ s2w ¼ 1 for all cases, unless it
should be pointed.

Systemmeasurements are given and algorithms performance is
evaluated. As synthetic signals are used, this allows defining error
metrics. Simulations include two worst-cases and a favorable one:
�
 Input with random variation: a random shot of values following
an uniform probability distribution. This is an ideal situation
for learning as all areas are excited and parameters aging is
low (excitation is high). Measurements are perfect and constant
yk ¼ 1 ∀k.
�
 Linear variation: varying u2 keeping constant u1. This variation
tests a degenerated case where observability is critical along
the u1-dimension. Measurements are perfect and constant
yk ¼ 1 ∀k.
�
 Measurement noise rejection: studying the effects of noise
transmission between output and observation when measure-
ment vector is noisy.

5.1. Simulation 1: input with random variation

Sequence fukg1400k ¼ 1 following an uniform distribution over
grid defined in (20) is used for exciting the system. A complete
identification is possible as grid is completely covered. This
situation is not so far of the reality for diesel engines, e.g. urban
cycles with a lot of speeding/braking actions cause quasi-random
variations in partial-low load areas of the engine map (see Section
6 for seeing how dynamics are considered). The selected grid and
covered points are shown in Fig. 6.

Here, variance information is not as relevant as in other cases,
because of the stochastic nature of inputs. The mean value of
all states is plotted for at each time step in Fig. 7. All three
methods perform well and rate of convergence can be tuned
varying s2v and s2w .

A quick view on the effect of the hypothesis for the SKF is
shown for one element x6 in top plot of Fig. 8, which shows
variance P6 of x6 for KF and SKF (not applicable for SSKF). This
value indicates the observability of x6: when it increases mono-
tonically, x6 is not observable. In some parts, an offset between P6
for KF and SKF appears because of the neglected covariances in
SKF, but in the end, this offset is absorbed and the two methods
behave similar. The bottom plot of Fig. 8 shows x6 evolution for the
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three methods. x6 is updated when the element becomes obser-
vable. Note that x6 is already active in the first iteration and KSS

1 ,
which represents the converged value of the equivalent LTI
system, is non-null. Then, SSKF updates x6 in k¼1 while K1 for
KF and SKF is null. Anyway, this is not an advantage of this
method: KF and SKF can behave similar if P0 is non-null, but here
for the simulations P0 ¼ ½0�. When there exists no previous knowl-
edge of the system to be learnt, it should advisable to initialize
P0 with a certain value for speeding up updating during first
iterations.

5.2. Simulation 2: input with linear variation

Tr is identified with a sequence fukg200k ¼ 1 where u1 varies
monotonically from 0 to 60 (from k¼0 to 100) and coming back
from 60 to 0 (from k¼101 to 200), while u1 ¼ 2000 ∀k. This
condition is highly restrictive as the excitation level is not high:
at each k only small variations of input u2 are applied and due to
this full convergence condition is not fulfilled in the first running
of one area, and interactions between areas and the way back are
necessary to ensure the convergence of both KF and SKF. Three
matrix areas are excited (see (22)); area 1: elements 5,6,9,10;
area 2: 6,7,10,11; area 3: 7,8,11,12. Moreover, due to inputs nature,
row 5–8 evolution is equivalent to 9–12.

ð22Þ

Fig. 9 shows the evolution of 4 states x5 to x8. First thing to note
is the similar performance of KF and SKF and the instabilities of
SSKF. For instance, x5 is in the area 1, and during the first run it is
not capable of converging, but in one round KF and SKF methods
converge, and SSKF seems to do it, at least in k¼200. The other
states have slightly different performances, because the first area
has been already been covered; e.g. x6 is closer to the convergence
as being a member of area 1 and area 2, but until the way round it
does not get the full convergence for KF and SKF methods. Similar
behaviors are observed for x7 with these methods. In addition, x8,
as member of the area 3, has the advantage that areas 1 and 2 have
been covered first, and the information is already available for
getting the full convergence for KF and SKF in k¼100. The full
observability (in the sense of convergence) of these 8 elements is
reached only when O in (17) accounts for the three areas when
using KF and SKF. Nevertheless, SSKF estimation does not converge
for x6, x7 and x8 due to no state error information is tracked, and
the system and convergence becomes more dependent on data.
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In order to understand how KF and SKF behave is informative
to study also the variance and covariance evolution (remember
that this is not present for the steady state filter, SSKF). Fig. 10
shows the variance evolution for row elements, while Fig. 11
shows the evolution of a few covariances between states (corre-
sponding to non-diagonal elements of P). As for the random
case in 8, variance evolution for KF and SKF is similar, although
some deviation exists in elements 6 and 7. This is explained for
covariances or non diagonal Pij ∀i≠j elements that SKF only
accounted for active areas. This is shown in Fig. 11 where some
crossed covariances are plotted. When the pair of elements are not
active, covariances of these are not tracked, equivalent to reset
them to zero in the global P. This is a particular difference with
KF, which always tracks covariance, although area would not be
active, increasing computational requirements without a justified
improvement in the estimation. However, when an area is active,
the SKF covariance evolves as the KF and in the limit is equivalent
to the KF. The difference is larger initially but after the observa-
tions have converged the difference is negligible, as shown in
Fig. 9. This pattern may be slightly modified linking the covariance
values to elements pairs and not to the involved areas (excepting
boundaries, all pair of elements are shared in two different areas),
although final results are similar.

5.3. Simulation 3: measurement noise rejection

A uniform distributed noise with zero mean and maximum
amplitude of 0.2 is applied to the measurement given in simula-
tion 2; yk is shown in Fig. 12. A robust method must filter this noise
and converges to the true values.

The resulting estimations are shown in Fig. 13, and the evolu-
tions are quite similar to the ones of Fig. 9 although with a slight
noise transmission. KF and SKF performs well, being able to also
filter the noise, but SSKF is not capable of converging again having
a similar response as in simulation 2. Variance and covariances are
exactly the same of Figs. 10 and 11 as state-space system and input
sequence does not change.

5.4. Conclusions from simulations

SKF method is demonstrated to have similar accuracy as KF, at
least for the numerical cases proved in this section. Furthermore,
KF and SKF solutions converge for all cases, including the simula-
tions 2 and 3, which are specifically restrictive because of the low
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level of excitation. KF, as shown in Fig. 5 and Table 2, is compu-
tationally heavy. SSKF is the fastest and lightest method as
variance is not tracked and KSS formulation is derived analytically.
SKF only needs around 1.15 times the SSKF time for calculation,
and the memory resources required are similar, except for the
track of variances. SSKF behaves well in situations where variance
tracking is not critical, e.g. simulation 1, but is less robust when
data is structured and the level of excitation is low, e.g. simulations
2 and 3. KF and SKF are also capable of filtering the noise, a
minimum condition for a correct updating, and SSKF also filters
the noise, but its stability depends on data. In comparison, the SKF
method, derived from the KF, is demonstrated to be an efficient
and accurate method for updating look-up tables, at least for the
simulation conditions presented. In the next, methods are tested
in a real application.
6. Online NOx estimation

The attention is turned to the problem of online NOx estima-
tion. The approach consists of modeling NOx by using an adaptive
model based on a static 2D look-up table whose parameters are
estimated with the updating methods. The state-space model (11)
is slightly modified for coping with sensor dynamics and inputs u
are treated as well.

Model parameters are estimated online while the engine is
running, or re-calibrated if system ages once that an initial
calibration is given without any special calibration procedure or
test rig, beyond the sensor measurements. The first time that the
engine is running, parameters evolve, and when the engine
switches off, the stored parameters can be used for predicting
NOx. When the engine is running again, the parameters keep
evolving for correcting drift and slowly varying effects. Further-
more, the observer built for map updating can be utilized for
having an actual NOx estimation, i.e. avoiding filtering and delay of
sensor. SKF is appropriate for online usage because of the light
computational burden and the estimation capabilities. First,
dynamic model for learning is presented.
6.1. Dynamic equations for learning

A NOx table TNOx using mf and n as inputs is calibrated with the
SDMP and NEDC. Off the shelf ECU maps are usually 1D or 2D and
maximum sizes are around and slightly above 256 parameters
(16�16). In the case study here, TNOx is 12�18 (216 parameters)
and the first dimension accounts for engine speed n and the
second for the injected fuel mass, mf. The second dimension has
more density as NOx is more sensitive to load variations. As far as
speed sensor and injection signal from ECU are fast and responses
are expected fast, no dynamical treatment is made, while delays
are still needed to phase the system correctly with the NOx sensor

u1;k ¼ z�τnðkÞ ð23aÞ

u2;k ¼ z�τmf ðkÞ ð23bÞ

where τ represents the average sensor input delay obtained with
the SOI procedure. This is preferred to apply the delay in the state-
space model for avoiding to increase the dimension of the system.

In this basis, estimated NOx can be denoted as xM (M for the
used method) and is modeled using the adaptive map TNOx;t

xMðk�τÞjt ¼ TNOx;tðu1;k;u2;kÞ ð24Þ

defining a quasi-static representation of NOx output where t
defines the time that table has been updated.
Sensor dynamics are considered as in (2)

yMðkÞ ¼
1�a

1�az�1 xMðk�τÞ ð25Þ

and the global system (11) must be augmented with one extra-
dimension (if a first order filter is considered for sensor dynamics)

ð26aÞ

ywk ¼Hwxwk þ vk ð26bÞ
with

xwk ¼ x

yM

� �
k

ð27Þ

Hw ¼ ½0⋯1� ð28Þ
being xwk ∈R

nr�ncþ1 and ywk ∈R. Index w stands for wide.
The local observable system (14) is

xowk ¼ Fwk x
ow
k�1 þwk ð29aÞ

yowk ¼Hwxowk þ vk ð29bÞ

ð30Þ

Hw ¼ ½0 0 0 0 1� ð31Þ

xowk ¼

xo1
xo2
xo3
xo4
yM

2
6664

3
7775
k

ð32Þ

where Hw is constant, because qok and filtering parameter a are
included now in the time varying process matrix Fwk . Q

w process
noise matrix is also augmented and includes an extra-noise term
s2f for the new state yM

ð33Þ

Even though the new local system has one more dimension
(5�5), SKF hypothesis are still applicable as proved in Appendix C.

6.2. Comparison of the updating algorithms in the SDMP

The SDMP cycle is used for comparing the algorithms with real
engine data. TNOx;0 is the null matrix and is updated with the cycle.
Filter is calibrated by trial-and-error (see Payri et al., 2012 for a
calibration method based in a Monte Carlo approach for the KF).
The numerical values used are

s2v ¼ 252; s2w ¼ 152; s2f ¼ 502

a¼ 0:96; τ¼ 0:75 s
c¼ ½0 : 5 : 30 34 : 4 : 50 55 : 5 : 80�
r¼ ½750 780 1000 1250 1500 1750 2000 : 500 : 4500� ð34Þ
while the sampling frequency is 50 Hz. Measurement yNOx

is given
by the NOx sensor. A test subset of t¼400 s is used for updating
the adaptive map and then dynamic model with table TNOx;400 is
used for predicting NOx in the whole cycle. KF, SKF and SSKF
methods are used for updating the model. Results can be seen in
Fig. 14. All three methods behave well and are capable of predict-
ing NOx emissions. Dynamics assumptions are also good enough
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for having a good fitting in the SDMP. Note that indeed SSKF
results are also acceptable as covariance tracking is not relevant in
this cycle as in slow varying tests. These conditions are similar to
the ones exposed in Section 5.1. Fitting could be optimized tuning
independently the filter for each method.

It is worth comparing the convergence of the methods and for
this, sample subsets of the SDMP are used in a sequence for testing
the absolute mean error when the updating time is varied mono-
tonically around the cycle

eMðkÞ ¼
∑ny

i ¼ 1ðyNOx
ðiÞ�yMðiÞjt ¼ kΔT Þ
kΔT

ð35Þ

where ΔT is the sample time and t is the time that table has been
updated. Results are shown in Fig. 15. Focusing the attention in the
lines generated with the filter calibration Cal (34), eM tends to be lower
as t grows at least during first iterations when system knowledge is
poor. The horizontal line shows the benchmark model error, which is
constant as model calibration is fixed. It is clear how all threemethods,
including SSKF, converge to an error similar to that of the benchmark
model, but with the advantage that drift and aging is accounted by the
online versions but not by the model. KF and SKF behavior is quite
similar as expected. On the other hand, Fig. 15 also shows that KF and
SKF are faster than SSKF and this is due to the filter tuning. Anyway,
there exists a trade-off between convergence speed and estimation
robustness, e.g. KF and SKF have a significant oscillation with respect
to SSKF around the benchmarkmodel line. This is a matter of the noise
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Fig. 14. NOx prediction for the three updating methods when maps are updated
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Using calibration (36), noise transmission is reduced but convergence speed as well.
Final filter tuning must be a trade-off between robustness and convergence speed.
tuning and bottom plot is built with a lower gain observer with the
calibration set

s2v ¼ 252; s2w ¼ 72; s2f ¼ 502 ð36Þ

for KF and SKF, keeping the ones of SSKF. Results are shown in lines
generated by Cal (36) in Fig. 15. Here convergence speed is lower but
noise transmission and overfitting is avoided when t is large. This goes
in the direction of robustness and the optimized calibration data
set must solve this trade-off, considering uncertainties in the sensor
behavior knowledge or in the model quality and data-set quality,
among others.

With respect to the global observability, variances of 4 table
parameters are compared for both KF and SKF using calibration
(36). Fig. 16 shows the results. Top plot shows an element that
is never observed during first 200 s and due to this, variance
increases monotonically and x126 is still null in t¼200. Second and
third elements represent two elements that are active for some
instants. This is clearly seen when variance decreases, while when
elements are not active, variance increases again monotonically.
Note that in a production system application, that will run for
the life time of a vehicle, the elements of the estimation error
covariance matrix need to be limited so that they do not grow too
much and cause numerical problems, see e.g. Höckerdal et al.
(2011) that proposes a saturation for avoiding too large variances.
The bottom plot shows the variance of yM that is fairly constant
and is a proof of the system global observability.

KF and SKF lines are pretty similar and differences can be found
only when zooming in the figure. This is another proof of that SKF
behaves quite similar to KF but with a much lower computational
burden involved. SSKF behavior is not bad and prove that the method
can be useful when calibration data set fulfills some conditions in
order to ensure robustness. Anyway, for the nature of the application
here, SKF is the best solution for online updating of maps.
6.3. Online estimation

The state-space model for learning maps is useful not only for
calibrating the map but also for real time observation of NOx signal.
Fig. 17 shows an interesting result in line with this discussion for the
SDMP and keeping calibration (36). ŷSKF represents the observation of
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Fig. 16. Variance analysis in the SDMP updating. From top to bottom, variances of
elements 126, 126, 133 and 217 are plotted. Black line is KF and gray line is SKF.
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Fig. 18. NOx estimation in the NEDC. Top plot compares x̂SKF and yNOx
while bottom

ones compares yNOx
measurement with xm. Both estimations remains dynamic

properties, benefited from NEDC is slow, but benchmark model exhibits some drift.
Here, SKF could be directly used for recalibration of the NOx model.
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Fig. 17. NOx estimation by three ways: yNOx
sensor measurement, online observa-

tion of sensor signal by the SKF method ^yM , offline prediction by using the map
TNOx;100 and online actual estimation x̂SKF .
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yNOx
by using the adaptive map at every iteration. The adaptive map

provides a perfect fitting in about 30 s (this can be tuned varying filter
calibration). Alternatively, ySKF jt ¼ 100 shows the offline NOx sensor
prediction using the model TNOx;100 with acceptable results.

Table itself might predict actual NOx emissions if interpolating the
table directly applying no delay nor filtering. Furthermore, actual NOx

can be directly observed in the basis of the state-space system for
learning having a compact programming and providing an adaptive
estimation. For that, xSKF must be included in the state vector xw. This
does not compromise the assumptions made for the SKF. Coming back
to Fig. 17, x̂SKF is the online observation of the actual NOx using the
adaptive map for high frequencies and sensor for low ones. The more
that TNOx;100 fits in yNOx

, the more reliable is x̂SKF . This signal should be
used for online NOx tracking. The use of the table allows solving the
non-causalities for real-time estimation: note that observer is built in
the basis of delayed inputs.

6.4. Results in the NEDC with the SKF and the benchmark model

SDMP is a test with sharp variations on the operating point
conditions but homologation cycles such as NEDC are much slower
and this could compromise the global observability; remind that
higher levels of excitation are beneficial for updating. Here, air path
dynamics are fast enough to follow load variations and then EGR and
turbine commands are able to follow their references. Then, the table
TNOx might directly replace NOx;0 map in (1) or update it for canceling
drift. Indeed, NOx;0 could be used for initializing TNOx but here the
initial map is the null matrix, which is a worst-case condition. NEDC
cycle is running and map is updated. Calibration (36) is used. Fig. 18
shows results comparing yNOx

, ym (which exhibits drift) and ySKF,
which here represents NOx prediction by using the updated map after
1 run of the cycle. Adaptive map gets a good NOx estimation which is
slightly better than NOx benchmark model one.

SKF could be used for online adaptation and/or calibration
of complex models, where a number of maps and parameters
must be updated. Anyway, a deep study is required for ensuring
observability, convergence and robustness properties and for gett-
ing a computationally efficient learning structure. A big number
of parameters and maps should be updated and problem is non-
convex. Of course that computational issue is critical and there SKF
can be an effective solution. Here, SKF has been used for updating
single maps with succeed.
7. Conclusions

NOx emissions are estimated by using static maps function of a
diesel engine operating conditions and a delayed low-pass filter for
including dynamics. The solution is not new and several other authors
have published about this, but here an online adaptive algorithm is
presented for maps calibration and updating. Kalman filtering is used
for updating because of its capability for tracking system and para-
meters aging. Computational issues involved when of updating look-
up tables online with the Kalman filter based methods are then
addressed. A simplified version of the Kalman filter SKF with similar
accuracy as the standard KF, but that requires a much lower memory
resources and calculation time, is developed. The local observable
system serves as inspiration for analyzing the variance matrix
performance and is used for comparison. SKF is based on the KF but
neglects covariances of locally unobservable states. The methods
results under simulation and real data remark two key points that
make that the SKF is a suitable option for online estimation:
�
 Calculation and memory resources: The KF is a heavy method
with similar accuracy than SKF, and the required computational
time is rapidly growing when the system complexity increases,
as well as the required memory. SSKF is the fastest method
and it achieves good results with random-like data and with
calculation times similar to the ones of SKF.
�
 Robustness: KF and SKF perform quite well and do not have
robustness problems, while the SSKF exhibited oscillatory
behavior when input data are structured.

The methods and especially the SKF are validated using a real
world nonlinear model and sportive driving mountain profile
SDMP for NOx estimation, being an application of a high interest.
The results are compared with the ones of a gray box NOx model,
obtaining similar results, which also shows the calibration cap-
abilities of the method. Another contribution is considering sensor
dynamics in the original state-space system. The obtained results
as well as the simplicity of the formulation could be the key for
implementing it in HIW structures and opens the possibility of its
use in commercial ECUs. Future work must be in using adaptive
strategies for calibrating full engine models and cope with sensor
non-linearities, especially the delay.
Appendix A. Submodel equations for the NOx model

For estimating EGR rate rEGR, a mean value EGR flow model
with sensor signals of boost pressure p2 and mass air flow ma as
inputs is used. Intake manifold mass flow mi is obtained from
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volumetric efficiency ηv (mapped with the steady-state tests),
assuming constant intake temperature T2 (the error is pretty low
compared with other error sources) and using p2 signal

Qd ¼
Vdnηv
2� 60

ðm3=sÞ

ρi ¼
p2
RT2

ðkg=m3Þ
mi ¼Qdρiðkg=sÞ ðA:1Þ
where Qd is the volume flow at intake and ρi is the density at
intake and all variables are introduced in the international standard
system.

Considering mass accumulation effects in the node of air-EGR-
intake and ma, rEGR can be calculated

rEGR ¼ 1�ma

mi
ðA:2Þ

For model calibration, measurements of oxygen at intake and
exhaust from the gas analyzer are used

rEGR ¼
O2;exhaust�0:209
O2;intake�0:209

ðA:3Þ

If these measurements would be available online, an observer
could be built for having a more reliable estimation. Furthermore,
there exists fast EGR sensors prototypes but because of tempera-
ture and pressure limitations, measurements are not reliable;
there an observer could be proposed using EGR model presented
here as input and sensor as output.

Actual relative fuel-to-air ratio Fr can be observed by using the
model

Fr ¼ 14:5
mf

ma
ðA:4Þ

and using the oxygen output of the ZrO2 sensor for drift correction.
Oxygen measurement is steady-state reliable but presents filtering
and delay; Fr model is calculated from ma and mi, which are fast
signals but present drift. See Payri et al. (2012) for a complete
procedure for estimating Fr.
Appendix B. Algorithm for SSKF
Algorithm 2. Pseudocode for the steady-state Kalman filter for
updating look-up tables SSKF.
Appendix C. Variance tracking for the dynamic system

The system (29) is the dynamic local observable system. For
this system, (18) is still valid. The only modification is that the new
observable part Pwo

k has n extra dimensions corresponding to the
n:th order discrete filter. In the paper, a first order discrete filter is
used, and then Pwo
k is 5�5.

ðC:1Þ

ðC:2Þ

where Pdo
k is the scalar variance coupled to sensor dynamics and

Pndo
k is the vector 1�4 with the covariances between sensor

estimation and observable parameters. Pw
k is a positive-semidefinite

matrix, so is Pwo
k . Kk is reordered to contain the unobservable part

Ku
k ¼ 0 and the observable part Kok, and the latter in the parameters

related Kθ
k and dynamics related part Ksk

ðC:3Þ

and (19) is now

ðC:4Þ

ðC:5Þ

which shows that SKF partitioning is also applicable for the augmen-
ted dynamic system. Pk is a positive-semidefinite matrix so is Pw

k
and Pwo

k .
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